JP6791686B2 - Manufacturing method and equipment for spiral high-strength fiber composite wire, and manufacturing method for high-strength fiber composite cable - Google Patents

Manufacturing method and equipment for spiral high-strength fiber composite wire, and manufacturing method for high-strength fiber composite cable Download PDF

Info

Publication number
JP6791686B2
JP6791686B2 JP2016170596A JP2016170596A JP6791686B2 JP 6791686 B2 JP6791686 B2 JP 6791686B2 JP 2016170596 A JP2016170596 A JP 2016170596A JP 2016170596 A JP2016170596 A JP 2016170596A JP 6791686 B2 JP6791686 B2 JP 6791686B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fiber composite
rotary die
center
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016170596A
Other languages
Japanese (ja)
Other versions
JP2018034461A (en
Inventor
裕明 中村
裕明 中村
幸仁 山本
幸仁 山本
憲章 中村
憲章 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Rope Manufacturing Co Ltd
Original Assignee
Tokyo Rope Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Rope Manufacturing Co Ltd filed Critical Tokyo Rope Manufacturing Co Ltd
Priority to JP2016170596A priority Critical patent/JP6791686B2/en
Publication of JP2018034461A publication Critical patent/JP2018034461A/en
Application granted granted Critical
Publication of JP6791686B2 publication Critical patent/JP6791686B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Ropes Or Cables (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Description

この発明は,らせん状高強度繊維複合線材の製造方法,高強度繊維複合ケーブルの製造方法,および高強度繊維複合ケーブルに関する。 The present invention relates to a method for manufacturing a spiral high-strength fiber composite wire, a method for manufacturing a high-strength fiber composite cable, and a high-strength fiber composite cable.

炭素繊維等の連続強化繊維に熱可塑性樹脂を含浸させることが提案されている(特許文献1)。一般に熱硬化性樹脂を硬化するための加熱時間に比べて熱可塑性樹脂を硬化するための冷却時間の方が短く,熱可塑性樹脂を用いることでサイクル時間の短縮化によるコストダウンを期待することができる。 It has been proposed to impregnate continuously reinforcing fibers such as carbon fibers with a thermoplastic resin (Patent Document 1). In general, the cooling time for curing a thermoplastic resin is shorter than the heating time for curing a thermosetting resin, and the use of a thermoplastic resin can be expected to reduce costs by shortening the cycle time. it can.

特開2013−26171号公報Japanese Unexamined Patent Publication No. 2013-26171

熱可塑性樹脂は熱を加えることで変形するので,熱可塑性樹脂を含浸させかつ硬化させた繊維束をあらかじめ用意しておき,その後にその繊維束(繊維束に含浸された熱可塑性樹脂)を加熱することで繊維束を柔らかくすることができる。柔らかくした複数本の繊維束を撚り合わせることで,熱可塑性樹脂が含浸された繊維束を撚り合わせたケーブルを作成することができる。しかしながら,熱可塑性樹脂を繊維束に含浸するときと,ケーブルを作成するときの2回の加熱を必要とするので,高いコストがかかってしまう。また,加熱して柔らかくした複数本の繊維束を撚り合わせてケーブルを作成し,その後に熱可塑性樹脂を硬化すると,隣接する繊維束同士が熱可塑性樹脂によって強く接着するので,ケーブルの可撓性が損なわれてしまう。 Since the thermoplastic resin is deformed by applying heat, a fiber bundle impregnated with the thermoplastic resin and cured is prepared in advance, and then the fiber bundle (the thermoplastic resin impregnated in the fiber bundle) is heated. By doing so, the fiber bundle can be softened. By twisting a plurality of softened fiber bundles, it is possible to create a cable in which the fiber bundles impregnated with the thermoplastic resin are twisted together. However, since it is necessary to heat the fiber bundle twice, when the fiber bundle is impregnated and when the cable is made, the cost is high. In addition, when a cable is made by twisting a plurality of fiber bundles softened by heating to form a cable and then the thermoplastic resin is cured, the adjacent fiber bundles are strongly adhered to each other by the thermoplastic resin, so that the cable is flexible. Will be damaged.

この発明は,2回の加熱を必要とせず,したがってより安価に熱可塑性樹脂を含浸させた繊維束を用いたケーブルを製造することを目的とする。 It is an object of the present invention to manufacture a cable using a fiber bundle impregnated with a thermoplastic resin, which does not require two heatings and is therefore cheaper.

この発明はまた,可撓性に富み,したがって搬送性および作業性に適する,熱可塑性樹脂を含浸させた繊維束を用いたケーブルを提供することを目的とする。 It is also an object of the present invention to provide a cable using a fiber bundle impregnated with a thermoplastic resin, which is highly flexible and therefore suitable for transportability and workability.

この発明は,心線の周囲に複数本のらせん状の側線が配置されたケーブルの上記側線(らせん状高強度繊維複合線材)の製造方法を提供する。ケーブルを構成する心線および側線は,いずれも繊維強化樹脂(Fiber Reinforced Plastics )によって製造される点において共通するが,側線がらせん状に型付けられるのに対し,心線はらせん状の型付けを持たず,両者はその形状において異なる。心線および側線に用いられる高強度繊維は,炭素繊維,ガラス繊維,ボロン繊維,アラミド繊維,ポリエチレン繊維,PBO(polyp-phenylenebenzobisoxazole)繊維,その他の繊維(合成繊維)を含む。これらの繊維は非常に細く,高強度かつ低伸度であり,複数本の高強度繊維を束にして熱可塑性樹脂を含浸することでワイヤロープと同等の高い引っ張り強度を発揮する。熱可塑性樹脂には,たとえばポリアミド,ポリカーボネート,ポリプロピレン,ポリエーテルエーテルケトン,フッ素樹脂等を用いることができる。 The present invention provides a method for manufacturing the above-mentioned lateral line (spiral high-strength fiber composite wire) of a cable in which a plurality of spiral lateral lines are arranged around a core wire. The core wire and side wire that make up the cable are common in that they are both manufactured of fiber reinforced plastic (Fiber Reinforced Plastics), but the lateral line is spirally typed, whereas the core wire is spirally typed. However, the two differ in their shape. High-strength fibers used for core and side lines include carbon fibers, glass fibers, boron fibers, aramid fibers, polyethylene fibers, PBO (polyp-phenylenebenzobisoxazole) fibers, and other fibers (synthetic fibers). These fibers are extremely fine, have high strength and low elongation, and exhibit high tensile strength equivalent to that of wire rope by bundling multiple high-strength fibers and impregnating them with a thermoplastic resin. As the thermoplastic resin, for example, polyamide, polycarbonate, polypropylene, polyetheretherketone, fluororesin and the like can be used.

第1の発明によるらせん状高強度繊維複合線材の製造方法(側線の製造方法)は,複数本の高強度繊維が束にされた繊維束を供給し,供給された繊維束に溶融した熱可塑性樹脂を含浸し,上記熱可塑性樹脂が含浸された繊維束を回転駆動する回転ダイに供給し,その偏心出口から引出してらせん状に型付け,らせん状に型付けられた熱可塑性樹脂が含浸された繊維束を,らせん状の型付けを維持したまま冷却して上記熱可塑性樹脂を硬化するものである。 In the method for producing a spiral high-strength fiber composite wire rod (method for producing a side wire) according to the first invention, a fiber bundle in which a plurality of high-strength fibers are bundled is supplied, and the thermoplastic is melted in the supplied fiber bundle. A fiber impregnated with a resin, the fiber bundle impregnated with the thermoplastic resin is supplied to a rotary die that is driven to rotate, drawn out from the eccentric outlet, and spirally shaped, and the fiber impregnated with the thermoplastic resin impregnated in a spiral shape. The bundle is cooled while maintaining the spiral molding to cure the thermoplastic resin.

第1の発明によると,回転駆動する回転ダイの偏心出口(回転ダイの回転中心から外周方向にずれた位置に形成された出口)から熱可塑性樹脂が含浸された繊維束を引き出すことによって,繊維束がらせん状に型付けられる。らせん状の型付けを維持したまま繊維束を冷却して熱可塑性樹脂を硬化することによって,熱可塑性樹脂が含浸された繊維束(高強度繊維複合線材)のらせん形状がその後も保たれる。 According to the first invention, fibers are drawn by pulling out a fiber bundle impregnated with a thermoplastic resin from an eccentric outlet of a rotary die that is driven to rotate (an outlet formed at a position deviated from the center of rotation of the rotary die in the outer peripheral direction). The bundle is spirally shaped. By cooling the fiber bundle and curing the thermoplastic resin while maintaining the spiral molding, the spiral shape of the fiber bundle (high-strength fiber composite wire) impregnated with the thermoplastic resin is maintained thereafter.

側線として,上述の製造方法によって製造されるあらかじめ型付けられたらせん状高強度繊維複合線材を複数本用意する。心線として,熱可塑性樹脂が含浸され,かつ上熱可塑性樹脂が硬化した複数本の高強度繊維を束にまとめた,上記側線のらせん内径と同じ直径を有する高強度繊維複合線材を用意する。上記心線の周囲に上記複数本の側線を配置して,心線の周囲に複数本の側線が撚り合わされた状態にすることで,高強度繊維複合ケーブルが製造される。すなわち,心線の周囲に複数本の側線を撚り合わせるのではなく,撚り合わせたときのらせん形状をあらかじめ側線に型付けておき,あらかじめ型付けられた側線を心線の周囲に配置することで,高強度繊維複合ケーブルは製造される。心線の周囲に側線を撚り合わせるために側線を軟化させる,すなわち側線(熱可塑性樹脂)を加熱する必要がないので,加熱工程によるケーブルの製造速度の低下がなく,また製造コストの低減を図ることができる。 As the lateral line, prepare a plurality of pre-molded spiral high-strength fiber composite wires manufactured by the above-mentioned manufacturing method. As the core wire, a high-strength fiber composite wire having the same diameter as the spiral inner diameter of the lateral line is prepared by bundling a plurality of high-strength fibers impregnated with the thermoplastic resin and cured with the upper thermoplastic resin. A high-strength fiber composite cable is manufactured by arranging the plurality of side wires around the core wire so that the plurality of side wires are twisted around the core wire. That is, instead of twisting multiple lateral lines around the core wire, the spiral shape when twisted is pre-typed into the lateral line, and the pre-typed lateral line is placed around the core wire to increase the height. Strong fiber composite cables are manufactured. Since it is not necessary to soften the lateral line in order to twist the lateral line around the core wire, that is, to heat the lateral line (thermoplastic resin), the manufacturing speed of the cable does not decrease due to the heating process, and the manufacturing cost is reduced. be able to.

高強度繊維複合ケーブルを構成する心線およびその周囲の側線は,それぞれにおいて熱可塑性樹脂が硬化している状態であるから,心線とその周囲の側線,および隣り合う側線同士にはすべり(位置ずれ)が許容される。これによって曲げが加えられたときに適度な撓みを生じやすく,取り扱いに優れたケーブルが提供される。たとえば長尺の高強度繊維複合ケーブルを小径のリールに巻き付けてコンパクトにまとめることができ,作業現場における取り扱いも容易になる。この発明による高強度繊維複合ケーブルは,たとえば電線(送電線),光ファイバーケーブル,海底ケーブルその他の比較的長尺の部材または設備の補強材としての利用に適している。 Since the thermoplastic resin is cured in each of the core wire and the lateral line around it that make up the high-strength fiber composite cable, the core wire, the lateral line around it, and the adjacent lateral lines slip (position). Shift) is allowed. This provides a cable that is easy to handle and is prone to moderate bending when bent. For example, a long high-strength fiber composite cable can be wound around a small-diameter reel to make it compact and easy to handle at the work site. The high-strength fiber composite cable according to the present invention is suitable for use as a reinforcing material for, for example, electric wires (transmission lines), optical fiber cables, submarine cables and other relatively long members or equipment.

一実施態様では,上記回転ダイが溶融した熱可塑性樹脂の流路を備え,上記繊維束が上記回転ダイの流路を通過する。繊維束が回転ダイの流路を通過するときに,繊維束に熱可塑性樹脂を含浸することができる。 In one embodiment, the rotary die is provided with a flow path of a molten thermoplastic resin, and the fiber bundle passes through the flow path of the rotary die. As the fiber bundle passes through the flow path of the rotary die, the fiber bundle can be impregnated with the thermoplastic resin.

他の実施態様では,上記回転ダイの回転中心に,上記らせん状に型付けられた熱可塑性樹脂が含浸された繊維束を巻き付ける支持棒が着脱自在に固定されている。回転ダイの偏心出口から引き出されて冷却されるまでの間,繊維束のらせん形状を維持することができる。 In another embodiment, a support rod around which a fiber bundle impregnated with the spirally molded thermoplastic resin is wound is detachably fixed to the center of rotation of the rotating die. The spiral shape of the fiber bundle can be maintained until it is pulled out from the eccentric outlet of the rotary die and cooled.

第2の発明によるらせん状高強度繊維複合線材の製造方法は,複数本の高強度繊維と複数本の熱可塑性樹脂繊維とを束ねたコミングルヤーンを供給し,上記コミングルヤーンを加熱して上記熱可塑性樹脂繊維を溶融し,上記熱可塑性樹脂繊維が溶融したコミングルヤーンを回転駆動する回転ダイに供給し,その偏心出口から引出してらせん状に型付け,らせん状に型付けられたコミングルヤーンを,らせん状の型付けを維持したまま冷却して熱可塑性樹脂を硬化するものである。複数本の高強度繊維と複数本の熱可塑性樹脂繊維とを束ねたコミングルヤーンを加熱することで熱可塑性樹脂繊維が溶融し,複数本の高強度繊維に熱可塑性樹脂が含浸される。含浸時間を短縮することができ,また設備の簡素化を図ることができる。 In the method for producing a spiral high-strength fiber composite wire rod according to the second invention, a commingle yarn in which a plurality of high-strength fibers and a plurality of thermoplastic resin fibers are bundled is supplied, and the commingle yarn is heated. The thermoplastic resin fiber is melted, and the molten combingle yarn is supplied to a rotary die that is driven to rotate, and is drawn out from the eccentric outlet to be spirally shaped and spirally shaped. Is cooled to cure the thermoplastic resin while maintaining the spiral molding. By heating a commingle yarn that bundles a plurality of high-strength fibers and a plurality of thermoplastic resin fibers, the thermoplastic resin fibers are melted, and the plurality of high-strength fibers are impregnated with the thermoplastic resin. The impregnation time can be shortened and the equipment can be simplified.

この発明による高強度繊維複合ケーブルは,熱可塑性樹脂が含浸された複数本の高強度繊維を有し,これらが束にまとめられた心線と,それぞれが,熱可塑性樹脂が含浸された複数本の高強度繊維を有し,これらがそれぞれ束にまとめられた複数本の側線と,を備え,上記熱可塑性樹脂が硬化状態にあり,上記複数本の側線のそれぞれが,上記熱可塑性樹脂の硬化性を利用して上記心線の直径に沿うらせん内径でらせん状に型付けられており,型付けられた複数本の側線のそれぞれが,上記心線の周囲に撚り合わされた状態になっていることを特徴とする。適度の撓みを生じる,取り扱いに優れた高強度繊維複合ケーブルが提供される。 The high-strength fiber composite cable according to the present invention has a plurality of high-strength fibers impregnated with a thermoplastic resin, and a core wire in which these are bundled together and a plurality of wires impregnated with a thermoplastic resin, respectively. The above-mentioned thermoplastic resin is in a cured state, and each of the above-mentioned plurality of side wires is a cured state of the above-mentioned thermoplastic resin, each of which has a plurality of side wires in which these are bundled together. It is formed in a spiral shape with a spiral inner diameter along the diameter of the core wire by utilizing the property, and each of the plurality of molded side wires is twisted around the core wire. It is a feature. A high-strength fiber composite cable that is easy to handle and that causes moderate deflection is provided.

炭素繊維ケーブルの正面図である。It is a front view of a carbon fiber cable. 炭素繊維ケーブルの分解斜視図である。It is an exploded perspective view of a carbon fiber cable. 図1のIII−III線に沿う炭素繊維ケーブルの断面図である。It is sectional drawing of the carbon fiber cable along the line III-III of FIG. 側線製造システムの斜視図である。It is a perspective view of the lateral line manufacturing system. 樹脂含浸成型装置の断面図である。It is sectional drawing of the resin impregnation molding apparatus. 回転ヘッドの正面図である。It is a front view of a rotary head.

図1は炭素繊維ケーブルの外観を示している。図2は炭素繊維ケーブルの分解斜視図である。図3は図1のIII−III線に沿う炭素繊維ケーブルの拡大断面図を示している。 FIG. 1 shows the appearance of a carbon fiber cable. FIG. 2 is an exploded perspective view of the carbon fiber cable. FIG. 3 shows an enlarged cross-sectional view of the carbon fiber cable along the line III-III of FIG.

炭素繊維ケーブル1は,1本の心線2と,その周囲に撚り合わされた状態にされた6本の側線3(3a〜3f)とから構成されている(1×7構造)。断面からみて,炭素繊維ケーブル1,心線2および側線3は,いずれもほぼ円形の形状を持つ。また,断面からみて,炭素繊維ケーブル1はその中心に心線2が配置され,心線2を取り囲むように6本の側線3が位置する。炭素繊維ケーブル1はたとえば5mm〜20mm程度の直径を持つ。 The carbon fiber cable 1 is composed of one core wire 2 and six side wires 3 (3a to 3f) twisted around the core wire 2 (1 × 7 structure). Seen from the cross section, the carbon fiber cable 1, the core wire 2, and the side wire 3 all have a substantially circular shape. Further, when viewed from the cross section, the core wire 2 is arranged at the center of the carbon fiber cable 1, and six side wires 3 are located so as to surround the core wire 2. The carbon fiber cable 1 has a diameter of, for example, about 5 mm to 20 mm.

心線2は,断面円形に束ねられた多数本たとえば数万本の長尺の炭素繊維4の束に熱可塑性樹脂(たとえばポリアミド)5を含浸させ,これを硬化させたものである。側線3も,断面円形に束ねられた多数本たとえば数万本の長尺の炭素繊維4の束に熱可塑性樹脂5を含浸させ,これを硬化させたものである。炭素繊維ケーブル1の全体には数十万本程度の炭素繊維4が含まれる。 The core wire 2 is obtained by impregnating a bundle of a large number of long carbon fibers 4 bundled with a circular cross section, for example, tens of thousands of long carbon fibers 4, with a thermoplastic resin (for example, polyamide) 5 and curing the bundle. The lateral line 3 is also obtained by impregnating a bundle of a large number of long carbon fibers 4 bundled with a circular cross section, for example, tens of thousands of long carbon fibers 4, with a thermoplastic resin 5 and curing the bundle. The entire carbon fiber cable 1 contains about several hundred thousand carbon fibers 4.

炭素繊維4のそれぞれは非常に細く,たとえば5μm〜7μmの直径を持つ。炭素繊維4の束を複数本撚り合わせることによって,心線2および側線3をそれぞれ形成してもよい。心線2および側線3は炭素繊維強化樹脂(CFRP)(Carbon Fiber Reinforced plastics)製のものと言うこともできる。 Each of the carbon fibers 4 is very fine, for example having a diameter of 5 μm to 7 μm. A core wire 2 and a lateral wire 3 may be formed by twisting a plurality of bundles of carbon fibers 4 together. It can be said that the core wire 2 and the side wire 3 are made of carbon fiber reinforced resin (CFRP) (Carbon Fiber Reinforced plastics).

心線2および側線3は,この実施例では同じ太さ(断面積)のものが用いられている。もっとも,心線2よりも細い,または太い側線3を用いてもよい。炭素繊維4の本数によって,心線2および側線3のそれぞれの太さは任意に調整することができる。 The core wire 2 and the lateral line 3 have the same thickness (cross-sectional area) in this embodiment. However, the lateral line 3 which is thinner or thicker than the core wire 2 may be used. The thickness of each of the core wire 2 and the lateral line 3 can be arbitrarily adjusted depending on the number of carbon fibers 4.

炭素繊維ケーブル1を構成する心線2および側線3として,熱可塑性樹脂5をあらかじめ硬化させたものが用いられる。すなわち,熱可塑性樹脂5が硬化した状態の心線2の周囲に,同じく熱可塑性樹脂5が硬化した状態の側線3を配置して撚り合わされた状態とすることによって炭素繊維ケーブル1はつくられる。心線2および側線3のそれぞれの熱可塑性樹脂5が硬化しているので,心線2とその周囲の側線3,および側線3同士には適度なすべりが許容される。 As the core wire 2 and the side wire 3 constituting the carbon fiber cable 1, those obtained by pre-curing the thermoplastic resin 5 are used. That is, the carbon fiber cable 1 is made by arranging the side wires 3 in the same cured state of the thermoplastic resin 5 around the core wire 2 in the cured state of the thermoplastic resin 5 and making them twisted. Since the thermoplastic resins 5 of the core wire 2 and the side wire 3 are cured, appropriate slippage is allowed between the core wire 2 and the side wires 3 and 3 around the core wire 2.

心線2の周囲に撚り合わされた状態とされる6本の側線3は,いずれもあらかじめらせん状に型付けられており,他方心線2はらせん状の型付けを持たない。側線3のらせん形は熱可塑性樹脂5を硬化する前に型付けられるのは言うまでもない。各側線3のらせん状の型付けのピッチはほぼ同じであり,また各側線3のらせん内径は心線2の直径にほぼ等しい。 The six lateral lines 3 that are twisted around the core wire 2 are all pre-shaped in a spiral shape, while the core wire 2 does not have a spiral shape. It goes without saying that the spiral shape of the lateral line 3 is molded before the thermoplastic resin 5 is cured. The spiral molding pitch of each lateral line 3 is substantially the same, and the spiral inner diameter of each lateral line 3 is substantially equal to the diameter of the core wire 2.

図4は,炭素繊維ケーブル1を構成するらせん状に型付けられた側線3を製造する側線製造システムを示している。 FIG. 4 shows a lateral line manufacturing system for manufacturing the spirally shaped lateral line 3 constituting the carbon fiber cable 1.

側線製造システムは,樹脂含浸成型装置10,冷却装置50および巻取り装置60を備えている。 The lateral line manufacturing system is equipped with a resin impregnation molding device 10, a cooling device 50, and a winding device 60.

樹脂含浸成型装置10は,熱可塑性樹脂5を溶融して押出す押出装置20と,溶融された熱可塑性樹脂5を炭素繊維束6に含浸し,熱可塑性樹脂5が含浸された炭素繊維束6をらせん状に型付ける型付装置30と,上記押出装置20と型付装置30とを連結する連結装置40とを備えている。連結装置40の側方に押出装置20が設けられ,連結装置40の前方に型付装置30が設けられている。これらの押出装置20,型付装置30および連結装置40の3つの装置が一体となって樹脂含浸成型装置10が構成される。 The resin impregnation molding device 10 includes an extrusion device 20 that melts and extrudes the thermoplastic resin 5, and a carbon fiber bundle 6 in which the molten thermoplastic resin 5 is impregnated into the carbon fiber bundle 6 and the thermoplastic resin 5 is impregnated. It is provided with a typing device 30 that spirally molds the resin, and a connecting device 40 that connects the extrusion device 20 and the molding device 30. An extrusion device 20 is provided on the side of the coupling device 40, and a molding device 30 is provided in front of the coupling device 40. These three devices, the extruder 20, the molding device 30, and the coupling device 40, are integrated to form the resin impregnation molding device 10.

型付装置30から,硬化前の熱可塑性樹脂5が含浸された炭素繊維束が排出される。炭素繊維束は冷却装置50において冷却され,ここで熱可塑性樹脂5が硬化する。熱可塑性樹脂5が硬化したらせん状の炭素繊維束が,巻取り装置60において巻き取りリール64に巻き取られる。 The carbon fiber bundle impregnated with the thermoplastic resin 5 before curing is discharged from the molding device 30. The carbon fiber bundle is cooled in the cooling device 50, where the thermoplastic resin 5 is cured. When the thermoplastic resin 5 is cured, the spiral carbon fiber bundle is wound on the winding reel 64 in the winding device 60.

炭素繊維束6(熱可塑性樹脂5を含浸する前のもの)が巻回された繰出リール(図示略)が用意される。繰出リールから繰出された炭素繊維束6が樹脂含浸成型装置10に与えられる。炭素繊維束6の繰出しは,たとえば下流側に配置される巻取り装置によって行うことができる。炭素繊維束6は,多数本の炭素繊維を一方向に揃えて束ねたものであっても,多数本の炭素繊維を撚り合わせて束ねたものであってもよい。 A reel (not shown) around which the carbon fiber bundle 6 (before impregnation with the thermoplastic resin 5) is wound is prepared. The carbon fiber bundle 6 fed from the feeding reel is given to the resin impregnation molding apparatus 10. The carbon fiber bundle 6 can be unwound by, for example, a winding device arranged on the downstream side. The carbon fiber bundle 6 may be a bundle in which a large number of carbon fibers are aligned in one direction or a bundle in which a large number of carbon fibers are twisted and bundled.

図5は樹脂含浸成型装置10を平面から見た横断面図を示している。図6は後述する回転ヘッドの正面図である。 FIG. 5 shows a cross-sectional view of the resin impregnated molding apparatus 10 as viewed from a plane. FIG. 6 is a front view of the rotating head described later.

上述したように,樹脂含浸成型装置10は,押出装置20と,型付装置30と,連結装置40とを備えている。 As described above, the resin impregnation molding apparatus 10 includes an extrusion apparatus 20, a molding apparatus 30, and a coupling apparatus 40.

押出装置20は,円柱形のスクリュー空間22が形成された筐体を備え,スクリュー空間22内にスクリュー23が回転自在に設けられている。筐体の上面には下端開口がスクリュー空間22につながるホッパ25が設けられている。ホッパ25に投入される固形の熱可塑性樹脂のペレット26が,適量ずつスクリュー空間22に送り込まれる。 The extruder 20 includes a housing in which a cylindrical screw space 22 is formed, and the screw 23 is rotatably provided in the screw space 22. A hopper 25 whose lower end opening is connected to the screw space 22 is provided on the upper surface of the housing. The solid thermoplastic resin pellets 26 charged into the hopper 25 are fed into the screw space 22 in appropriate amounts.

スクリュー空間22の周囲の筐体内に円筒形のヒータ24が埋設されている。ヒータ24はたとえば通電することによって発熱する発熱抵抗体によって構成される。ヒータ24からの熱が筐体を伝わってスクリュー空間22に伝達され,これによりスクリュー空間22を通過する間に熱可塑性樹脂のペレット26が溶融される。スクリュー23が回転することによって溶融された熱可塑性樹脂5はスクリュー空間22の外に押し出される。 A cylindrical heater 24 is embedded in a housing around the screw space 22. The heater 24 is composed of, for example, a heat generating resistor that generates heat when energized. The heat from the heater 24 is transmitted to the screw space 22 through the housing, whereby the thermoplastic resin pellet 26 is melted while passing through the screw space 22. The molten thermoplastic resin 5 is pushed out of the screw space 22 by the rotation of the screw 23.

押出装置20から押し出された溶融状態の熱可塑性樹脂5は,連結装置40に形成された熱可塑性樹脂5の流路42に流入する。流路42において,押出装置20による熱可塑性樹脂5の押出し方向と直角に流れ方向が転回される(いわゆるクロスヘッドダイ)。連結装置40は,炭素繊維束6が通る通路と,押出装置20から押し出された熱可塑性樹脂5が流れる流路42とを提供する。また,連結装置40は,型付装置30が備える後述する回転ヘッドを回転自在に支持する支持機構としても機能する。 The molten thermoplastic resin 5 extruded from the extruder 20 flows into the flow path 42 of the thermoplastic resin 5 formed in the coupling device 40. In the flow path 42, the flow direction is rotated at right angles to the extrusion direction of the thermoplastic resin 5 by the extruder 20 (so-called crosshead die). The connecting device 40 provides a passage through which the carbon fiber bundle 6 passes and a passage 42 through which the thermoplastic resin 5 extruded from the extruder 20 flows. In addition, the coupling device 40 also functions as a support mechanism for rotatably supporting the rotary head described later included in the molding device 30.

連結装置40内には,炭素繊維束6が通る通過孔41cが形成されたノズル41が設けられており,炭素繊維束6はこのノズル41の通過孔41cに通されている。ノズル41は円錐形の外形を備える先端部分41aと,円筒形の外形を備える末端部分41bとを備え,先端部分41aが型付装置30の方を向いている。繰出リールから繰り出された炭素繊維束6は,連結装置40の開口から連結装置40の内部に入り,ノズル41の末端部分41bから通過孔41cに通され,ノズル41の先端部分41aから外に出る。ノズル41の通過孔41cを通るときに炭素繊維束6は断面円形に引き揃えられる。 A nozzle 41 having a passage hole 41c through which the carbon fiber bundle 6 passes is provided in the connecting device 40, and the carbon fiber bundle 6 is passed through the passage hole 41c of the nozzle 41. The nozzle 41 includes a tip portion 41a having a conical outer shape and an end portion 41b having a cylindrical outer shape, and the tip portion 41a faces the molding device 30. The carbon fiber bundle 6 unwound from the feeding reel enters the inside of the connecting device 40 through the opening of the connecting device 40, is passed through the passing hole 41c from the end portion 41b of the nozzle 41, and exits from the tip portion 41a of the nozzle 41. .. When passing through the passage hole 41c of the nozzle 41, the carbon fiber bundles 6 are aligned in a circular cross section.

また,連結装置40内において上記ノズル41の周囲には空間が確保されており,このノズル41の周囲空間が,連結装置40内において熱可塑性樹脂5が流れる流路42となる。 Further, a space is secured around the nozzle 41 in the coupling device 40, and the space around the nozzle 41 serves as a flow path 42 through which the thermoplastic resin 5 flows in the coupling device 40.

型付装置30は回転ヘッド31と回転ダイ34とを備えている。回転ヘッド31は,中心軸を同じとする一体に形成された大径の円筒状部分31aと小径の円筒状部分31bを備える。回転ヘッド31の小径円筒状部分31bが連結装置40の内部空間に前方から嵌め込まれ,連結装置40の内部に設けられた転がり軸受け45によって回転自在に支持されている。 The molding device 30 includes a rotating head 31 and a rotating die 34. The rotary head 31 includes an integrally formed large-diameter cylindrical portion 31a having the same central axis and a small-diameter cylindrical portion 31b. The small-diameter cylindrical portion 31b of the rotating head 31 is fitted into the internal space of the connecting device 40 from the front, and is rotatably supported by a rolling bearing 45 provided inside the connecting device 40.

回転ヘッド31の大径円筒状部分31aの外周面の末端部(連結装置40に近い端部)に大径ギア33が固定されている。図4を参照して,大径ギア33は,回転軸がモータ39に接続された小径ギア37と噛み合っている。モータ39が回転駆動すると小径ギア37が回転し,これに応じて小径ギア37に噛み合わされた大径ギア33も回転する。大径ギア33が回転することによって回転ヘッド31の全体が回転する。 The large-diameter gear 33 is fixed to the end portion (the end portion close to the connecting device 40) of the outer peripheral surface of the large-diameter cylindrical portion 31a of the rotary head 31. With reference to FIG. 4, the large-diameter gear 33 meshes with the small-diameter gear 37 whose rotating shaft is connected to the motor 39. When the motor 39 is rotationally driven, the small-diameter gear 37 rotates, and the large-diameter gear 33 meshed with the small-diameter gear 37 also rotates accordingly. The rotation of the large-diameter gear 33 causes the entire rotation head 31 to rotate.

回転ヘッド31の大径円筒状部分31a内および小径円筒状部分31b内は中空である。大径円筒状部分31aの中空内部に,外周面にヒータ36が設けられた円柱形の外形を持つ回転ダイ34がきつく嵌め込まれて固定されている。小径円筒状部分31bの中空内部には,上述したノズル41がその周囲に熱可塑性樹脂5の流路42を確保した状態で配置されている。 The inside of the large-diameter cylindrical portion 31a and the inside of the small-diameter cylindrical portion 31b of the rotary head 31 are hollow. A rotating die 34 having a cylindrical outer shape with a heater 36 on the outer peripheral surface is tightly fitted and fixed inside the hollow of the large-diameter cylindrical portion 31a. Inside the hollow of the small-diameter cylindrical portion 31b, the nozzle 41 described above is arranged in a state where the flow path 42 of the thermoplastic resin 5 is secured around the nozzle 41.

回転ヘッド31の大径円筒状部分31a内に嵌め込まれて固定された回転ダイ34には,その内部に,ノズル41の先端部分41aが位置する概略円錐形の中空部分34aと,中空部分34aにつながる断面円形の直線状の流路(通路)34bとが形成されている。ノズル41の先端部分41aが位置する回転ダイ34の円錐形中空部分34aにも熱可塑性樹脂5が通る流路が確保されている。 The rotary die 34, which is fitted and fixed in the large-diameter cylindrical portion 31a of the rotary head 31, has a substantially conical hollow portion 34a in which the tip portion 41a of the nozzle 41 is located and a hollow portion 34a. A linear flow path (passage) 34b having a circular cross section is formed. A flow path through which the thermoplastic resin 5 passes is also secured in the conical hollow portion 34a of the rotating die 34 where the tip portion 41a of the nozzle 41 is located.

回転ダイ34の内部に形成された直線状流路34bは斜めに伸びている。図6を参照して,回転ダイ34を正面から見ると,直線状流路34bの出口は回転ダイ34の回転中心から外れた位置(偏心位置)に形成されている。 The linear flow path 34b formed inside the rotary die 34 extends diagonally. When the rotary die 34 is viewed from the front with reference to FIG. 6, the outlet of the linear flow path 34b is formed at a position (eccentric position) deviated from the rotation center of the rotary die 34.

回転ダイ34の正面の回転中心に,回転ダイ34の正面方向に突出する細長い支持棒35がねじ結合されている。支持棒35は回転ダイ34に着脱自在に取り付けられ,支持棒35のみを交換することができる。支持棒35は,好ましくは製造する炭素繊維ケーブル1を構成する心線2(図3参照)と同じ直径のものが用いられる。 An elongated support rod 35 protruding in the front direction of the rotating die 34 is screwed to the center of rotation on the front surface of the rotating die 34. The support rod 35 is detachably attached to the rotating die 34, and only the support rod 35 can be replaced. The support rod 35 preferably has the same diameter as the core wire 2 (see FIG. 3) constituting the carbon fiber cable 1 to be manufactured.

上述したように,ノズル41を通された炭素繊維束6は,回転ダイ34内に位置するノズル41の先端部分41aから外に出る。ノズル41から外に出た炭素繊維束6は,回転ダイ34内の直線状流路34bを通って回転ダイ34の外に出る。直線状流路34bを通過するときに,炭素繊維束6に溶融状態の熱可塑性樹脂5が含浸される。回転ダイ34の直線状流路34bの出口からは,熱可塑性樹脂5が含浸された炭素繊維束6(いわゆるプリプレグ)が外に出ることになる。以下,熱可塑性樹脂5が含浸された炭素繊維束6を,炭素繊維複合線材7と呼ぶ。 As described above, the carbon fiber bundle 6 passed through the nozzle 41 goes out from the tip portion 41a of the nozzle 41 located in the rotary die 34. The carbon fiber bundle 6 that has come out of the nozzle 41 goes out of the rotary die 34 through the linear flow path 34b in the rotary die 34. When passing through the linear flow path 34b, the carbon fiber bundle 6 is impregnated with the molten thermoplastic resin 5. The carbon fiber bundle 6 (so-called prepreg) impregnated with the thermoplastic resin 5 comes out from the outlet of the linear flow path 34b of the rotary die 34. Hereinafter, the carbon fiber bundle 6 impregnated with the thermoplastic resin 5 is referred to as a carbon fiber composite wire rod 7.

上述したように回転ヘッド31は回転自在である。回転ヘッド31が回転すると,これに伴って回転ヘッド31に固定された回転ダイ34も回転する。回転ダイ34に形成された直線状流路34bの出口が偏心して形成されているので,回転ダイ34から外に出るときに,炭素繊維複合線材7にはらせん形状が付与される。 As described above, the rotary head 31 is rotatable. When the rotary head 31 rotates, the rotary die 34 fixed to the rotary head 31 also rotates accordingly. Since the outlet of the linear flow path 34b formed in the rotary die 34 is eccentrically formed, the carbon fiber composite wire 7 is given a spiral shape when going out from the rotary die 34.

直線状流路34bの出口から外に出た炭素繊維複合線材7は,回転ダイ34の正面中心から突出する支持棒35の周囲に巻き付けられるようにして送り出される。 The carbon fiber composite wire 7 that goes out from the outlet of the linear flow path 34b is sent out so as to be wound around a support rod 35 that protrudes from the front center of the rotary die 34.

支持棒35の周囲に巻き付けられた炭素繊維複合線材7の熱可塑性樹脂5はまだ硬化していない。支持棒35の周囲に巻き付けられることで,炭素繊維複合線材7のらせん内径は支持棒35の直径とおおよそ等しいものとなる。上述したように,支持棒35は回転ダイ34に交換可能に取り付けられるので,直径の異なる支持棒35を用いることで炭素繊維複合線材7のらせん内径を調整することができる。なお,炭素繊維複合線材7のらせん形状のピッチは,後述する巻取り装置による炭素繊維複合線材7の巻取り速度等によって調整することができる。 The thermoplastic resin 5 of the carbon fiber composite wire 7 wound around the support rod 35 has not yet been cured. By being wrapped around the support rod 35, the spiral inner diameter of the carbon fiber composite wire 7 becomes approximately equal to the diameter of the support rod 35. As described above, since the support rod 35 is interchangeably attached to the rotary die 34, the spiral inner diameter of the carbon fiber composite wire 7 can be adjusted by using the support rods 35 having different diameters. The spiral pitch of the carbon fiber composite wire 7 can be adjusted by the winding speed of the carbon fiber composite wire 7 by a winding device described later.

図4を参照して,らせん形状が付与された炭素繊維複合線材7は冷却装置50に進む。冷却装置50は水57が溜められた浴槽51と,浴槽51の入口側および出口側のそれぞれに設けられた案内ロール52,55と,浴槽51内に設けられた案内ロール53,54を備えている。入口側案内ロール52を経た炭素繊維複合線材7は浴槽51内の案内ロール53,54にかけられて水に浸されることで冷却され,これによって熱可塑性樹脂5が硬化する。熱可塑性樹脂5が硬化した炭素繊維複合線材7は出口側案内ロール55を経て次の工程に進む。水冷に代えてまたは加えて,空冷によって熱可塑性樹脂5を硬化してもよい。 With reference to FIG. 4, the carbon fiber composite wire 7 having the spiral shape proceeds to the cooling device 50. The cooling device 50 includes a bathtub 51 in which water 57 is stored, guide rolls 52 and 55 provided on the inlet side and outlet side of the bathtub 51, and guide rolls 53 and 54 provided in the bathtub 51. There is. The carbon fiber composite wire 7 that has passed through the inlet side guide roll 52 is cooled by being hung on the guide rolls 53 and 54 in the bathtub 51 and immersed in water, whereby the thermoplastic resin 5 is cured. The carbon fiber composite wire rod 7 obtained by curing the thermoplastic resin 5 proceeds to the next step via the outlet side guide roll 55. The thermoplastic resin 5 may be cured by air cooling instead of or in addition to water cooling.

熱可塑性樹脂5が硬化した炭素繊維複合線材7は,巻取り装置60に進む。巻取り装置60は,炭素繊維複合線材7のらせん内に配置される支持線62が巻回されたリール61と,リール61から繰り出された支持線62の進行方向を転回するロール63と,支持線62に巻き付けられた状態の炭素繊維複合線材7を巻き取る巻き取りリール64を備えている。支持線62が巻回されたリール61は炭素繊維複合線材7の周囲を回転(公転)し,これによってらせん状に型付けられた炭素繊維複合線材7のらせん内に支持線62を収める(支持線62の周囲に炭素繊維複合線材7が巻き付けられた状態とする)ことができ,炭素繊維複合線材7のらせん形状を保持することができる。 The carbon fiber composite wire rod 7 on which the thermoplastic resin 5 is cured proceeds to the winding device 60. The take-up device 60 includes a reel 61 around which a support wire 62 arranged in the spiral of the carbon fiber composite wire 7 is wound, a roll 63 that rotates the traveling direction of the support wire 62 unwound from the reel 61, and a support. The winding reel 64 for winding the carbon fiber composite wire 7 wound around the wire 62 is provided. The reel 61 around which the support wire 62 is wound rotates (revolves) around the carbon fiber composite wire 7 and accommodates the support wire 62 in the spiral of the carbon fiber composite wire 7 formed in a spiral shape (support wire). The carbon fiber composite wire 7 is wound around the 62), and the spiral shape of the carbon fiber composite wire 7 can be maintained.

巻き取りリール64に巻き取られた炭素繊維複合線材7は,上述した炭素繊維ケーブル1の側線3として用いられる。すなわち,炭素繊維複合線材7から必要な長さの6本の側線3が切り取られ,これを心線2の周囲に配置して撚り合わせた状態にすることで,図1および図3に示す炭素繊維ケーブル1が製造される。側線3があらかじめらせん状に型付けられているので,側線3を加熱して側線3に含浸されている熱可塑性樹脂5を溶融(軟化)させる必要はない。 The carbon fiber composite wire 7 wound around the take-up reel 64 is used as the side wire 3 of the carbon fiber cable 1 described above. That is, six side wires 3 of the required length are cut out from the carbon fiber composite wire 7, and these are arranged around the core wire 2 to be in a twisted state, whereby the carbon shown in FIGS. 1 and 3 is formed. The fiber cable 1 is manufactured. Since the lateral line 3 is formed in a spiral shape in advance, it is not necessary to heat the lateral line 3 to melt (soften) the thermoplastic resin 5 impregnated in the lateral line 3.

炭素繊維ケーブル1を構成する心線2および側線3には,熱可塑性樹脂5をあらかじめ硬化させたものが用いられる。すなわち,心線2とその周囲の6本の側線3は熱可塑性樹脂5によって互いに接着されていない。側線3同士も同様である。心線2とその周囲の6本の側線3との間,および隣接する側線3間にすべりが許容されるので,炭素繊維ケーブル1は可撓性がよく,取り扱いに優れた炭素繊維ケーブル1が提供される。 As the core wire 2 and the side wire 3 constituting the carbon fiber cable 1, those obtained by pre-curing the thermoplastic resin 5 are used. That is, the core wire 2 and the six lateral lines 3 around it are not adhered to each other by the thermoplastic resin 5. The same applies to the lateral lines 3. Since slippage is allowed between the core wire 2 and the six sidings 3 around it, and between the adjacent sidings 3, the carbon fiber cable 1 has good flexibility and is easy to handle. Provided.

なお,炭素繊維ケーブル1を構成する心線2はらせん状の型付けを持たないので,断面円形の長尺の炭素繊維束に熱可塑性樹脂5を含浸し,熱可塑性樹脂5を冷却することによって作成することができる。 Since the core wire 2 constituting the carbon fiber cable 1 does not have a spiral shape, it is created by impregnating a long carbon fiber bundle having a circular cross section with the thermoplastic resin 5 and cooling the thermoplastic resin 5. can do.

上述した側線製造システムを複数台用意し,複数本の炭素繊維複合線材7(側線3)を同時に製造してもよい。複数本の炭素繊維複合線材7(側線3)を同時に製造する場合には,炭素繊維複合線材7を巻き取りリール64に巻き取るのに代えて,複数台の側線製造システムによって製造される複数本の側線3を寄せ集め,心線2の周囲に配置して炭素繊維ケーブル1を製造する工程を,側線の製造工程に連続して実施してもよい。 A plurality of the above-mentioned lateral line manufacturing systems may be prepared, and a plurality of carbon fiber composite wire rods 7 (lateral wire 3) may be manufactured at the same time. When a plurality of carbon fiber composite wires 7 (side wires 3) are manufactured at the same time, instead of winding the carbon fiber composite wires 7 on the take-up reel 64, a plurality of carbon fiber composite wires 7 are manufactured by a plurality of side wire manufacturing systems. The steps of gathering the side wires 3 of the above and arranging them around the core wire 2 to manufacture the carbon fiber cable 1 may be continuously carried out in the manufacturing process of the side wires.

上述した側線製造システムは,炭素繊維束6を供給し,炭素繊維束6に溶融した熱可塑性樹脂5を含浸しているが,複数本の炭素繊維と複数本の熱可塑性樹脂繊維とをあらかじめ束ねたコミングルヤーンを用いる場合には,上述した熱可塑性樹脂の押出し工程(押出装置20および連結装置40内の流路42)は必ずしも必要とされない。たとえば回転ダイ34の外周面に設けられたヒータ36によってコミングルヤーンを加熱することでコミングルヤーンを構成する熱可塑性樹脂繊維を溶融し,炭素繊維束に熱可塑性樹脂を含浸することができる。回転駆動する回転ダイ34の偏心出口から外に出るときに,コミングルヤーンにらせん形状が付与される。 In the side line manufacturing system described above, the carbon fiber bundle 6 is supplied and the carbon fiber bundle 6 is impregnated with the molten thermoplastic resin 5, but a plurality of carbon fibers and a plurality of thermoplastic resin fibers are bundled in advance. When the commingle yarn is used, the above-mentioned thermoplastic resin extrusion step (flow path 42 in the extrusion device 20 and the coupling device 40) is not always required. For example, by heating the commingle yarn with a heater 36 provided on the outer peripheral surface of the rotary die 34, the thermoplastic resin fibers constituting the commingle yarn can be melted, and the carbon fiber bundle can be impregnated with the thermoplastic resin. A spiral shape is given to the commingle yarn as it exits through the eccentric outlet of the rotationally driven rotary die 34.

1 炭素繊維ケーブル
2 心線
3,3a,3b,3c,3d,3e,3f 側線
4 炭素繊維
5 熱可塑性樹脂
6 炭素繊維束
7 炭素繊維複合線材
10 樹脂含浸成型装置
20 押出装置
22 スクリュー空間
23 スクリュー
24,36 ヒータ
30 型付装置
31 回転ヘッド
33 大径ギア
34 回転ダイ
34b 流路
35 支持棒
37 小径ギア
39 モータ
40 連結装置
42 流路
50 冷却装置
60 巻取り装置
1 Carbon fiber cable 2 Core wire 3,3a, 3b, 3c, 3d, 3e, 3f Side wire 4 Carbon fiber 5 Thermoplastic resin 6 Carbon fiber bundle 7 Carbon fiber composite wire
10 Resin impregnation molding equipment
20 Extruder
22 Screw space
23 screw
24, 36 heaters
30 typed device
31 rotating head
33 Large diameter gear
34 rotating die
34b Channel
35 Support rod
37 Small diameter gear
39 motor
40 Coupling device
42 Channel
50 Cooling device
60 Winder

Claims (5)

複数本の高強度繊維が束にされた繊維束を供給し,
回転中心入口と偏心出口とを直線状に結ぶ流路を備え,回転中心を軸に回転駆動する回転ダイの上記流路に,上記繊維束を通しかつ溶融した熱可塑性樹脂を供給して上記繊維束に溶融した熱可塑性樹脂を含浸し,
上記熱可塑性樹脂が含浸された繊維束を,上記回転ダイの偏心出口から引出し,回転ダイの出口側中央に固定される支持棒に巻き付けてらせん状に型付け,
らせん状に型付けられた熱可塑性樹脂が含浸された繊維束を,らせん状の型付けを維持したまま冷却して上記熱可塑性樹脂を硬化する,
らせん状高強度繊維複合線材の製造方法。
Supplying a fiber bundle in which multiple high-strength fibers are bundled,
The fiber is provided by providing a flow path that linearly connects the rotation center inlet and the eccentric outlet, and a molten thermoplastic resin is supplied to the flow path of the rotary die that is rotationally driven around the rotation center. The bundle is impregnated with molten thermoplastic resin and
Typing the fiber bundle the thermoplastic resin is impregnated, the drawer from the eccentric outlet of the rotary die, spirally wound around a support rod which is fixed to the outlet side center of the rotary dies,
The fiber bundle impregnated with the spirally molded thermoplastic resin is cooled while maintaining the spirally molded to cure the thermoplastic resin.
A method for manufacturing a spiral high-strength fiber composite wire rod.
複数本の高強度繊維と複数本の熱可塑性樹脂繊維とを束ねたコミングルヤーンを供給し,
ヒータおよび回転中心入口と偏心出口とを直線状に結ぶ流路を備え,回転中心を軸に回転駆動する回転ダイの上記流路に上記コミングルヤーンを通し上記コミングルヤーンを加熱することによって上記熱可塑性樹脂繊維を溶融し,
上記熱可塑性樹脂繊維が溶融したコミングルヤーンを,上記回転ダイの偏心出口から引出し,回転ダイの出口側中央に固定される支持棒に巻き付けてらせん状に型付け,
らせん状に型付けられたコミングルヤーンを,らせん状の型付けを維持したまま冷却して熱可塑性樹脂を硬化する,
らせん状高強度繊維複合線材の製造方法。
We supply a commingle yarn that bundles multiple high-strength fibers and multiple thermoplastic resin fibers.
By providing a flow path that linearly connects the heater and the inlet of the center of rotation and the outlet of the eccentric, and heating the commingle yarn by passing the commingle yarn through the flow path of the rotary die that is rotationally driven around the center of rotation. Melt the thermoplastic resin fiber and
The commingle yarn in which the thermoplastic resin fiber is melted is pulled out from the eccentric outlet of the rotary die, wound around a support rod fixed to the center of the outlet side of the rotary die, and spirally molded.
The spirally shaped commingle yarn is cooled while maintaining the spirally shaped to cure the thermoplastic resin.
A method for manufacturing a spiral high-strength fiber composite wire rod.
側線として,請求項1またはに記載の製造方法によって製造されるらせん状高強度繊維複合線材を複数本用意し,
心線として,熱可塑性樹脂が含浸され,かつ上記熱可塑性樹脂が硬化した複数本の高強度繊維を束にまとめた,上記側線のらせん内径と同じ直径を有する高強度繊維複合線材を用意し,
上記心線の周囲に上記複数本の側線を配置して,心線の周囲に複数本の側線が撚り合わされた状態にする,
高強度繊維複合ケーブルの製造方法。
As the lateral line, a plurality of spiral high-strength fiber composite wires manufactured by the manufacturing method according to claim 1 or 2 are prepared.
As the core wire, a high-strength fiber composite wire having the same diameter as the spiral inner diameter of the lateral line was prepared by bundling a plurality of high-strength fibers impregnated with the thermoplastic resin and cured by the thermoplastic resin.
Arrange the plurality of lateral lines around the core wire so that the plurality of lateral lines are twisted around the core wire.
Manufacturing method of high-strength fiber composite cable.
複数本の高強度繊維が束にされた繊維束を供給する繰出リール,A reel that supplies a bundle of fibers in which multiple high-strength fibers are bundled.
熱可塑性樹脂のペレットを溶融し,溶融された熱可塑性樹脂を供給する手段,Means for melting thermoplastic resin pellets and supplying the molten thermoplastic resin,
回転中心入口と偏心出口とを直線状に結ぶ流路を備え,回転中心を軸に回転駆動する回転ダイを含み,上記回転ダイの流路を通過する上記繊維束に上記回転ダイの流路に供給される溶融した熱可塑性樹脂を含浸し,上記熱可塑性樹脂が含浸された繊維束を上記回転ダイの偏心出口から引出し,回転ダイの出口側中央に固定される支持棒に巻き付けてらせん状に型付ける型付装置,およびA flow path that linearly connects the inlet and eccentric outlet of the center of rotation is provided, and the flow path of the rotary die includes a rotary die that is rotationally driven around the center of rotation, and the fiber bundle that passes through the flow path of the rotary die. The supplied molten thermoplastic resin is impregnated, and the fiber bundle impregnated with the thermoplastic resin is pulled out from the eccentric outlet of the rotating die and wound around a support rod fixed to the center of the outlet side of the rotating die in a spiral shape. Typed equipment and typing
らせん状に型付けられた熱可塑性樹脂が含浸された繊維束を,らせん状の型付けを維持したまま冷却して上記熱可塑性樹脂を硬化する冷却装置を備えている,It is equipped with a cooling device that cures the thermoplastic resin by cooling the fiber bundle impregnated with the spirally molded thermoplastic resin while maintaining the spiral molding.
らせん状高強度繊維複合線材の製造装置。Equipment for manufacturing spiral high-strength fiber composite wire rods.
複数本の高強度繊維と複数本の熱可塑性樹脂繊維とを束ねたコミングルヤーンを供給する操出リール,A reel that supplies a commingle yarn that bundles multiple high-strength fibers and multiple thermoplastic resin fibers.
ヒータおよび回転中心入口と偏心出口とを直線状に結ぶ流路を備え,回転中心を軸に回転駆動する回転ダイを含み,上記回転ダイの流路を通過するコミングルヤーンを加熱することによって上記熱可塑性樹脂繊維を溶融し,上記熱可塑性樹脂繊維が溶融したコミングルヤーンを上記回転ダイの偏心出口から引出し,回転ダイの出口側中央に固定される支持棒に巻き付けてらせん状に型付ける型付装置,ならびにThe above is provided by providing a flow path that linearly connects the heater and the inlet of the center of rotation and the outlet of the eccentric, including a rotary die that is rotationally driven around the center of rotation, and by heating the commingle yarn that passes through the flow path of the rotary die. A mold in which the thermoplastic resin fiber is melted, the commingle yarn in which the thermoplastic resin fiber is melted is pulled out from the eccentric outlet of the rotary die, wound around a support rod fixed to the center of the outlet side of the rotary die, and spirally molded. Attached equipment, and
らせん状に型付けられたコミングルヤーンを,らせん状の型付けを維持したまま冷却して熱可塑性樹脂を硬化する冷却装置を備えている,It is equipped with a cooling device that cures the thermoplastic resin by cooling the spirally shaped commingle yarn while maintaining the spirally shaped shape.
らせん状高強度繊維複合線材の製造装置。Equipment for manufacturing spiral high-strength fiber composite wire rods.
JP2016170596A 2016-09-01 2016-09-01 Manufacturing method and equipment for spiral high-strength fiber composite wire, and manufacturing method for high-strength fiber composite cable Active JP6791686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016170596A JP6791686B2 (en) 2016-09-01 2016-09-01 Manufacturing method and equipment for spiral high-strength fiber composite wire, and manufacturing method for high-strength fiber composite cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016170596A JP6791686B2 (en) 2016-09-01 2016-09-01 Manufacturing method and equipment for spiral high-strength fiber composite wire, and manufacturing method for high-strength fiber composite cable

Publications (2)

Publication Number Publication Date
JP2018034461A JP2018034461A (en) 2018-03-08
JP6791686B2 true JP6791686B2 (en) 2020-11-25

Family

ID=61565201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016170596A Active JP6791686B2 (en) 2016-09-01 2016-09-01 Manufacturing method and equipment for spiral high-strength fiber composite wire, and manufacturing method for high-strength fiber composite cable

Country Status (1)

Country Link
JP (1) JP6791686B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115353285B (en) * 2022-08-29 2023-08-08 启东育锋新材料科技有限公司 Automatic drawing device for glass fiber yarn
CN116852751B (en) * 2023-09-04 2023-12-26 北京玻钢院复合材料有限公司 Spiral composite material forming method and forming control system

Also Published As

Publication number Publication date
JP2018034461A (en) 2018-03-08

Similar Documents

Publication Publication Date Title
US4956039A (en) Method of manufacturing a cable-like plastic composite body
JP6055461B2 (en) Composite core for electric cable
CA2831358C (en) Continuous fiber reinforced thermoplastic rods and pultrusion method for its manufacture
US10543640B2 (en) Additive manufacturing system having in-head fiber teasing
TW201303192A (en) Umbilical for use in subsea applications
CN112157926B (en) Fiber reinforced composite material winding forming equipment and winding forming process thereof
WO2020241615A1 (en) Modeling material for 3d printers and shaped article
KR102403167B1 (en) Injection box for pultrusion system for producing fiber-reinforced plastic profiles, in particular plastic rods
JP2021123026A (en) Strand and modeling
CN103282565A (en) Fiber-reinforced strand, method of manufacturing a fiber-reinforced strand
JP6791686B2 (en) Manufacturing method and equipment for spiral high-strength fiber composite wire, and manufacturing method for high-strength fiber composite cable
CN105556054A (en) Composite tapes and rods having embedded sensing elements
JP2019001066A (en) Production method of long fiber reinforced thermoplastic resin filamentous material
JP5467828B2 (en) Manufacturing method of long fiber reinforced thermoplastic resin pellets
KR101279328B1 (en) Apparatus for producing long-fiber-reinforced thermoplastic resin pellet
JP5862109B2 (en) Method and apparatus for producing natural fiber reinforced resin strand
JP2006069188A (en) Fiber-reinforced resin string molding method, fiber-reinforced resin string, fiber-reinforced resin string molding device and fiber bundle used for molding fiber-reinforced resin string
JP5225260B2 (en) Manufacturing apparatus and manufacturing method of long fiber reinforced thermoplastic resin strand
JP6009368B2 (en) Manufacturing apparatus and manufacturing method of long fiber reinforced thermoplastic resin strand
JP2984021B2 (en) Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same
JP2018016733A (en) Long fiber reinforced thermoplastic resin linear article and manufacturing method therefor
JPH074875B2 (en) Method for producing fiber reinforced thermoplastic resin pipe
JP2869116B2 (en) Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same
CN110884166A (en) Fiber reinforced thermoplastic pipe, manufacturing system and method thereof
JPH0735270A (en) Manufacture of fiber reinforced thermoplastic resin pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201105

R150 Certificate of patent or registration of utility model

Ref document number: 6791686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250