JP2019001066A - Production method of long fiber reinforced thermoplastic resin filamentous material - Google Patents
Production method of long fiber reinforced thermoplastic resin filamentous material Download PDFInfo
- Publication number
- JP2019001066A JP2019001066A JP2017117885A JP2017117885A JP2019001066A JP 2019001066 A JP2019001066 A JP 2019001066A JP 2017117885 A JP2017117885 A JP 2017117885A JP 2017117885 A JP2017117885 A JP 2017117885A JP 2019001066 A JP2019001066 A JP 2019001066A
- Authority
- JP
- Japan
- Prior art keywords
- thermoplastic resin
- fiber
- reinforcing fiber
- fiber bundle
- guide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920005989 resin Polymers 0.000 title claims abstract description 181
- 239000011347 resin Substances 0.000 title claims abstract description 181
- 229920001431 Long-fiber-reinforced thermoplastic Polymers 0.000 title claims abstract description 80
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 64
- 239000000463 material Substances 0.000 title claims abstract description 64
- 239000000835 fiber Substances 0.000 claims abstract description 181
- 239000012783 reinforcing fiber Substances 0.000 claims abstract description 173
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 78
- 239000011159 matrix material Substances 0.000 claims abstract description 53
- 238000001125 extrusion Methods 0.000 claims abstract description 45
- 238000002844 melting Methods 0.000 claims abstract description 17
- 230000008018 melting Effects 0.000 claims abstract description 17
- 238000005470 impregnation Methods 0.000 claims abstract description 14
- -1 polyethylene terephthalate Polymers 0.000 claims description 27
- 238000000926 separation method Methods 0.000 claims description 21
- 239000002184 metal Substances 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 238000007765 extrusion coating Methods 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 14
- 239000000155 melt Substances 0.000 claims description 11
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 9
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 9
- 230000003014 reinforcing effect Effects 0.000 claims description 9
- 239000004743 Polypropylene Substances 0.000 claims description 7
- 238000001816 cooling Methods 0.000 claims description 7
- 229920001155 polypropylene Polymers 0.000 claims description 7
- 229920001707 polybutylene terephthalate Polymers 0.000 claims description 5
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 claims description 4
- 239000011112 polyethylene naphthalate Substances 0.000 claims description 4
- 229920002215 polytrimethylene terephthalate Polymers 0.000 claims description 4
- 239000004953 Aliphatic polyamide Substances 0.000 claims description 3
- 229920003231 aliphatic polyamide Polymers 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 14
- 230000000704 physical effect Effects 0.000 abstract description 8
- 230000002787 reinforcement Effects 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 7
- 239000006260 foam Substances 0.000 description 7
- 229920000049 Carbon (fiber) Polymers 0.000 description 6
- 238000005452 bending Methods 0.000 description 6
- 239000004917 carbon fiber Substances 0.000 description 6
- 239000000498 cooling water Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 238000007493 shaping process Methods 0.000 description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 229920001187 thermosetting polymer Polymers 0.000 description 4
- 238000010924 continuous production Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229920002492 poly(sulfone) Polymers 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004697 Polyetherimide Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 2
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- 229920001895 acrylonitrile-acrylic-styrene Polymers 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000011199 continuous fiber reinforced thermoplastic Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000003733 fiber-reinforced composite Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010409 ironing Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920001652 poly(etherketoneketone) Polymers 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920001230 polyarylate Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 229920001601 polyetherimide Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920001470 polyketone Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 239000011208 reinforced composite material Substances 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- 239000004594 Masterbatch (MB) Substances 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000013034 phenoxy resin Substances 0.000 description 1
- 229920006287 phenoxy resin Polymers 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 239000003017 thermal stabilizer Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
Description
本発明は、長繊維束と熱可塑性樹脂マトリックスからなる長繊維強化熱可塑性樹脂線状物の製造方法に関する。 The present invention relates to a method for producing a long fiber reinforced thermoplastic resin linear product comprising a long fiber bundle and a thermoplastic resin matrix.
強化用繊維を合成樹脂で結着した繊維強化熱硬化性樹脂製物品(以下、「FRP」と称することがある。)は強度が高くかつ軽量であるという点から、金属製物品に代わる材料として、自動車、電子、農林、建築材、家具等の多くの分野で利用されている。このFRP技術を使用した製品のひとつであるガラスロービング等の長繊維束を強化用繊維とし、熱硬化性樹脂をマトリックスとするパイプ、ロッド、線状物等も古くから各種産業分野で使用されている。
近年、この様な長繊維強化樹脂製の長尺材料を、製品内の個々の部材としても使用したいという要求が高まっている。この様な個々の部材として使用することを可能にするためには長尺材料が、その使用される製品を加工する時点で、その製品の形状に適合するべく、賦形できることが必要である。特に加熱による温度刺激によって目的の形状に賦形すると共にその形を安定化できることが求められている。
しかしながら、一般にFRPは、マトリックス樹脂としての熱硬化性樹脂が強化用繊維の内部まで完全に含浸し、硬化後においては、熱硬化性樹脂硬化物の特性から、加熱変形することによって所望の形状に塑性加工することが困難である。特に、長手方向の断面において繊維が均一に分散しているFRP線状物は、非常に高剛性で、曲げても真直状に復元し、塑性変形はしないので、曲げて使用する用途には適さない。
Articles made of fiber reinforced thermosetting resin (hereinafter sometimes referred to as “FRP”) in which reinforcing fibers are bound with a synthetic resin are high in strength and light in weight, so that they can be used as an alternative to metal articles. It is used in many fields such as automobiles, electronics, agriculture and forestry, building materials and furniture. Pipes, rods, linear objects, etc. with long fiber bundles such as glass rovings, which are one of products using this FRP technology, as reinforcing fibers and thermosetting resin as a matrix have been used in various industrial fields for a long time. Yes.
In recent years, there is an increasing demand for using such long fiber reinforced resin long materials as individual members in products. In order to be able to be used as such an individual member, it is necessary that the elongate material can be shaped so as to conform to the shape of the product when the product to be used is processed. In particular, it is required that the target shape can be shaped and stabilized by temperature stimulation by heating.
However, in general, the FRP is completely impregnated with the thermosetting resin as the matrix resin up to the inside of the reinforcing fiber, and after curing, due to the characteristics of the thermosetting resin cured product, it is deformed by heating to a desired shape. It is difficult to perform plastic working. In particular, the FRP linear material in which the fibers are uniformly dispersed in the cross section in the longitudinal direction is very high in rigidity, is restored to a straight shape even when bent, and is not plastically deformed. Absent.
一方、強化用繊維に熱可塑性樹脂を含浸させた繊維強化熱可塑性樹脂製物品(以下、「FRTP」と称することがある。)は、加熱による塑性変形がある程度可能である。しかしながら、長繊維状の強化用繊維にマトリックス樹脂として熱可塑性樹脂を含浸したFRTP線状物においては、加熱賦形による曲げ加工が必ずしも容易ではない。 On the other hand, an article made of a fiber reinforced thermoplastic resin in which a reinforcing fiber is impregnated with a thermoplastic resin (hereinafter sometimes referred to as “FRTP”) can be plastically deformed to some extent by heating. However, in a FRTP linear material in which a long fiber-like reinforcing fiber is impregnated with a thermoplastic resin as a matrix resin, bending by heat shaping is not always easy.
特許文献1には、連続した強化用繊維を引きながら溶融熱可塑性樹脂を含浸させる長繊維強化複合材料の製造方法において、繊維に溶融樹脂を含浸もしくは被覆させた後、スリットノズルで過剰量の樹脂を絞り込みながら連続的に引き抜き、次いで賦形ノズルを通して目的形状に整えることを特徴とする長繊維強化複合材料の製造方法が開示されている。そして、特許文献1の製造方法によれば、得られる複合材料中の繊維の分散および樹脂の含浸性も良好で、高品質の複合材料を効率よく安定して得ることができるという効果が挙げられている。 In Patent Document 1, in a method for producing a long fiber reinforced composite material in which a molten thermoplastic resin is impregnated while drawing continuous reinforcing fibers, an excessive amount of resin is impregnated with a slit nozzle after impregnating or coating the fibers with the molten resin. A method for producing a long fiber reinforced composite material is disclosed, which is continuously drawn out while narrowing down and then adjusted to a desired shape through a shaping nozzle. And according to the manufacturing method of patent document 1, the dispersion | distribution of the fiber in the obtained composite material and the impregnation property of resin are also favorable, and the effect that a high quality composite material can be obtained stably stably is mentioned. ing.
また、特許文献2には、長繊維状の炭素繊維束に熱可塑性樹脂を含浸した直径1〜5mmの炭素繊維強化複合材料を複数本撚合せてなる炭素繊維強化複合材料からなるロープ及びその製造方法が開示されている。特許文献2には、一般に熱可塑性樹脂の溶融粘度は高いので、炭素繊維束内に均一に樹脂を含浸するのは難しいが、熱可塑性樹脂をエクストルーダーで一定量の割合で吐出し、樹脂含浸部で炭素繊維束を開繊しながら加圧下で樹脂を含浸し、エクストルーダーとは分離して設置されたダイスで繊維束を円形に整形し巻き取り装置で巻き取る技術が開示されている。 Patent Document 2 discloses a rope made of a carbon fiber reinforced composite material obtained by twisting a plurality of carbon fiber reinforced composite materials having a diameter of 1 to 5 mm in which a long fiber carbon fiber bundle is impregnated with a thermoplastic resin, and the production thereof. A method is disclosed. In Patent Document 2, since the melt viscosity of a thermoplastic resin is generally high, it is difficult to uniformly impregnate the resin into the carbon fiber bundle, but the thermoplastic resin is discharged at a constant rate with an extruder to impregnate the resin. A technique is disclosed in which resin is impregnated under pressure while a carbon fiber bundle is opened at a section, the fiber bundle is shaped into a circle with a die installed separately from an extruder, and wound with a winding device.
上記の特許文献1及び2に記載のFRTPの製造方法は、いずれも長繊維状の強化用繊維束に溶融した熱可塑性樹脂を均一に含浸させることを課題としており、特に得られたFRTPを長手方向に曲げた状態での熱賦形性についての開示はない。 Each of the methods for producing FRTP described in Patent Documents 1 and 2 has a problem of uniformly impregnating a molten thermoplastic resin into a long fiber-like reinforcing fiber bundle. There is no disclosure of heat shaping in a state bent in the direction.
また、特許文献3には、発泡体と、前記発泡体にインサート成形されてシート表皮材の係止部が係止する樹脂ワイヤとを備える車両用シートパッドであって、前記樹脂ワイヤは、複数の長繊維に熱可塑性樹脂を含浸させてなるとともに、屈曲部における前記樹脂が肉抜きされた肉抜き部を有する長繊維状の繊維に熱可塑性樹脂を含浸した直径1〜5mmの樹脂ワイヤが開示されている。この樹脂ワイヤは予めシートパッド成形を想定した屈曲部に、表面の熱可塑性樹脂を断面方向に断続的に、複数個所に、肉抜きすることによって熱曲げ賦形性を付与するとともに、肉抜きによって樹脂ワイヤ内部の繊維を露出させ、この露出繊維に発泡体との結合性を生じさせるものであるが、繊維の露出部分が屈曲部に限定されているため、樹脂ワイヤ全体と発泡体との結合性自体が不充分であった。 Patent Document 3 discloses a vehicle seat pad that includes a foam and a resin wire that is insert-molded into the foam and is locked by a locking portion of a seat skin material, and the resin wire includes a plurality of resin wires. A resin wire having a diameter of 1 to 5 mm is obtained by impregnating a thermoplastic resin into a long fiber having a thinned portion in which the resin is thinned in a bent portion. Has been. This resin wire is provided with a heat bending shapeability by bending the thermoplastic resin on the surface intermittently in the cross-sectional direction at a plurality of locations in a bent portion that is preliminarily assumed to be seat pad molding, The fiber inside the resin wire is exposed, and the exposed fiber is made to be bonded to the foam. However, since the exposed portion of the fiber is limited to the bent part, the entire resin wire is bonded to the foam. Sex itself was insufficient.
本発明者らは、先に、長繊維状補強材と熱可塑性樹脂マトリックスからなる長繊維強化熱可塑性樹脂製線状物に関し、熱賦形により長手方向に曲げ加工がし易く、取り扱いが容易な長繊維強化熱可塑性樹脂製線状物、及びその製造方法について、鋭意検討し、特願2016−148732として出願した。
この出願に係る発明は、熱可塑性樹脂であるマトリックス樹脂からなる海部分と、長繊維状強化用繊維束からなる3個以上50以下の島部分とで構成される断面海島構造を有する長繊維強化熱可塑性樹脂線状物において、該島部分を構成する強化用繊維束は、長手方向に直交する断面において、マトリックス樹脂が含浸していない未含浸部を有することを特徴とする長繊維強化熱可塑性樹脂線状物に関するものである。
The present inventors have previously made a long-fiber-reinforced thermoplastic resin wire made of a long-fiber reinforcing material and a thermoplastic resin matrix, which is easy to bend in the longitudinal direction by heat shaping and easy to handle. The wire-reinforced thermoplastic resin linear product and its manufacturing method were studied intensively and filed as Japanese Patent Application No. 2006-148732.
The invention according to this application is a long fiber reinforcement having a cross-sectional sea-island structure composed of a sea portion made of a matrix resin, which is a thermoplastic resin, and three or more and 50 or less island portions made of a long-fiber reinforcing fiber bundle. In the thermoplastic resin wire, the reinforcing fiber bundle constituting the island portion has a non-impregnated portion not impregnated with the matrix resin in a cross section orthogonal to the longitudinal direction. The present invention relates to a resin linear material.
さらに、本出願人らは、先に、車両シート用に適した長繊維強化熱可塑性樹脂線状物として、熱可塑性樹脂であるマトリックス樹脂と、長繊維状強化用繊維束とからなる車両シート用長繊維強化熱可塑性樹脂線状物であって、強化用繊維束は、長手方向に直交する断面において、マトリックス樹脂が含浸していない未含浸部を有し、かつ、強化用繊維束の一部の繊維が線状物の表面に、6箇所以上12箇所以下のそれぞれ別個の位置に露出して、線状物の長手方向に連続してなる車両シート用長繊維強化熱可塑性樹脂線状物を特願2016−201598として共同出願した。 Further, the present applicants previously described a long fiber reinforced thermoplastic resin linear material suitable for a vehicle seat as a vehicle sheet comprising a matrix resin that is a thermoplastic resin and a long fiber reinforcing fiber bundle. It is a long fiber reinforced thermoplastic resin linear material, and the reinforcing fiber bundle has a non-impregnated portion not impregnated with the matrix resin in a cross section orthogonal to the longitudinal direction, and a part of the reinforcing fiber bundle A long fiber reinforced thermoplastic resin linear material for vehicle seats, which is exposed on the surface of the linear object at discrete positions of 6 or more and 12 or less and continuous in the longitudinal direction of the linear object. A joint application was filed as Japanese Patent Application No. 2006-201598.
本発明者らは、長繊維強化熱可塑性樹脂線状物の熱賦形性について検討した結果、長手方向において海島構造の断面を有する線状物において、長繊維状強化用繊維間の全体にマトリックス樹脂としての熱可塑性樹脂を高度に含浸することなく、未含浸部を有する構造とすることにより、熱賦形がし易く、賦形加工性が向上することを確認されたが、物性及び賦形加工性が長繊維状強化用繊維束の単繊維間へのマトリックス樹脂の含浸度合いに依存するため、製造ロット間でバラツキが生じる場合があって、品質の安定性、連続生産性において問題があった。
また、線状物の表面に強化用繊維束の一部を露出させ、この露出繊維によりポリウレタン等の発泡体との結合性を強化することのできる長繊維強化熱可塑性樹脂線状物の製造においては、表面の強化用繊維束の露出度合い、及び当該強化用繊維束と線状物を構成するマトリックス樹脂との接合度合いを一定の範囲とする必要があり、製造ロット間で接合度合いのバラツキを低減して安定的に製造する方法が求められていた。
本発明は、熱可塑性樹脂であるマトリックス樹脂と、長繊維強化用繊維束とからなる長繊維強化熱可塑性樹脂線状物の製造方法において、長繊維強化用繊維束への熱可塑性樹脂であるマトリックス樹脂の含浸度合い等を均一にして、得られる長繊維強化熱可塑性樹脂線状物の物性(特性)を均一化でき、かつ、長尺物を連続して安定に生産できる方法を提供することを目的とする。
The inventors of the present invention have studied the thermal formability of the long fiber reinforced thermoplastic resin linear material, and as a result, in the linear material having the sea-island cross section in the longitudinal direction, the matrix is formed between the long fiber reinforcing fibers. It has been confirmed that by forming a structure having an unimpregnated part without highly impregnating a thermoplastic resin as a resin, heat shaping is easy and shape forming processability is improved. Since the processability depends on the degree of impregnation of the matrix resin between the single fibers of the long fiber reinforcing fiber bundle, there may be variations between production lots, and there is a problem in quality stability and continuous productivity. It was.
Further, in the production of a long-fiber-reinforced thermoplastic resin linear material in which a part of the reinforcing fiber bundle is exposed on the surface of the linear material, and this exposed fiber can reinforce the bondability with a foam such as polyurethane. Therefore, it is necessary that the degree of exposure of the reinforcing fiber bundle on the surface and the degree of bonding between the reinforcing fiber bundle and the matrix resin constituting the linear object be within a certain range. There has been a demand for a method of reducing and stably producing.
The present invention relates to a method for producing a long fiber reinforced thermoplastic resin linear product comprising a matrix resin which is a thermoplastic resin and a fiber bundle for long fiber reinforcement, and a matrix which is a thermoplastic resin for a fiber bundle for long fiber reinforcement. To provide a method capable of making the physical properties (characteristics) of the obtained long fiber reinforced thermoplastic resin linear material uniform by uniformizing the degree of impregnation of the resin and the like, and capable of continuously producing a long product stably. Objective.
本発明者らは、熱可塑性樹脂であるマトリックス樹脂と、長繊維強化用繊維束とからなる長繊維強化熱可塑性樹脂線状物の製造方法において、所定の撚り数を有する長繊維強化用繊維束を所定速度で引取りながら、該強化用繊維束に該張力調整手段を介して1本当り5〜100gの張力を負荷し、予熱装置を昇温して強化用繊維束を加熱しつつ、クロスヘッドダイに導いて、ガイド芯金の溶融樹脂含浸(接触)部及びダイ内において分離状の各強化用繊維束と溶融した熱可塑性樹脂を接触させて、各強化用繊維束に熱可塑性樹脂を部分的に含浸させ、引き続き収束ガイドを経て、所定の断面形状の押出ノズルを備えるダイにて加圧下に該長繊維強化用繊維束群を線状物として押出被覆する工程、を含み、前記予熱装置内での強化用繊維束の加熱は、溶融した熱可塑性樹脂の温度Tmに対して、強化用繊維束の表面温度がTm〜Tm−200℃に達する範囲とすることで、前記目的を達成できることを知得して、本願発明を完成した。 In the method for producing a long fiber reinforced thermoplastic resin linear product comprising a matrix resin which is a thermoplastic resin and a long fiber reinforcing fiber bundle, the present inventors have provided a long fiber reinforcing fiber bundle having a predetermined number of twists. The tension is applied to the reinforcing fiber bundle via the tension adjusting means, and the reinforcing fiber bundle is heated to raise the temperature of the preheating device while heating the reinforcing fiber bundle. Guided to the head die, the molten resin impregnated (contact) portion of the guide core and the separated reinforcing fiber bundles in contact with the molten thermoplastic resin are brought into contact with each other, and the thermoplastic resin is put on each reinforcing fiber bundle. Including a step of partially impregnating and subsequently extruding and covering the long-fiber reinforcing fiber bundle group as a linear object under pressure with a die having an extrusion nozzle having a predetermined cross-sectional shape through a convergence guide, and the preheating Addition of reinforcing fiber bundle in the device Knowing that the object can be achieved by setting the surface temperature of the reinforcing fiber bundle to Tm to Tm-200 ° C. with respect to the temperature Tm of the molten thermoplastic resin. completed.
すなわち、本発明は、以下の〔1〕〜〔8〕を提供する。
〔1〕熱可塑性樹脂であるマトリックス樹脂と、長繊維強化用繊維束とからなる長繊維強化熱可塑性樹脂線状物の製造方法であって、
(1)所定の撚り数を有する長繊維強化用繊維束を所要本数クリールより張力調整手段を介して引出し、未昇温の予熱装置内に通し、分離ガイド、溶融樹脂含浸部及び収束ガイドを備えるガイド芯金の該分離ガイド及び該収束ガイドの所定の透孔に各繊維束を順に配列して挿通し、該ガイド芯金をクロスヘッドダイ本体部に装着し、次いでサヤ芯及び押出ノズルを備えるダイ、冷却槽、及び引取装置に導く、長繊維強化用繊維束群の予備引出し工程、
(2)該引取装置を駆動して、該長繊維強化用繊維束群を所定速度で引取りながら、該強化用繊維束に該張力調整手段を介して1本当り5〜100gの張力を負荷し、該予熱装置を昇温して該強化用繊維束を加熱しつつ該溶融押出機を駆動して、該クロスヘッドダイに該熱可塑性樹脂を供給して、該ガイド芯金の溶融樹脂含浸部及びダイ内において分離状の各強化用繊維束と溶融した熱可塑性樹脂を接触させて、各強化用繊維束に熱可塑性樹脂を部分的に含浸させ、引き続き収束ガイドを経て、所定の断面形状の押出ノズルを備えるダイにて加圧下に該長繊維強化用繊維束群を線状物として押出被覆する工程、
(3)押出被覆された線状物を冷却固化し、引取る工程、
を有し、
前記線状物を押出被覆する工程において、該予熱装置内での強化用繊維束の加熱は、溶融した熱可塑性樹脂の温度Tmに対して、強化用繊維束の表面温度がTm〜Tm−200℃に達する範囲とする、ことを特徴とする長繊維強化熱可塑性樹脂線状物の製造方法。
〔2〕前記(2)押出被覆工程において、押出ノズル23の吐出孔部は、ランドLが2mm以上であり、孔径をAとするとき、吐出側に向かって、押出ノズルが上底Aの円錐台状にくり抜かれており、該押出ノズルの厚み方向断面において該円錐台傾斜線232と吐出孔部壁面線231とが交わる角度θが90°を超え、相対向するサヤ芯の先端の開口の孔径Bが、該吐出部孔径Aに対して105〜360%大である関係にあるサヤ芯を備えたダイにより、溶融した熱可塑性樹脂を押出被覆する前記〔1〕に記載の長繊維強化熱可塑性樹脂線状物の製造方法。
〔3〕前記ガイド芯金の収束ガイドは、以下の(a)要件又は(a)及び(b)の2要件を満足する、前記〔1〕または〔2〕に記載の長繊維強化熱可塑性樹脂線状物の製造方法。
(a)収束ガイドの中央部透孔の孔径Dcが長繊維強化熱可塑性樹脂線状物の外径Dp対して50〜100%である。
(b)収束ガイドの放射状扇形透孔を形成する扇形下辺半径の2倍を扇形下辺直径Dfcとして、該扇形下辺直径Dfcが長繊維強化熱可塑性樹脂線状物の外径Dpに対して105〜360%である、前記〔1〕または〔2〕に記載の長繊維強化熱可塑性樹脂線状物の製造方法。
〔4〕前記線状物において、所要本数の該強化用繊維束を表面に露出させてなる、前記〔1〕〜〔3〕のいずれか1に記載の長繊維強化熱可塑性樹脂線状物の製造方法。
〔5〕前記強化用繊維束が、単繊維繊度が1.5dtex〜30dtexの繊維を80f〜150f集束し、かつ、2回〜500回/mの撚りを有するマルチフィラメントである、前記〔1〕〜〔4〕のいずれか1に記載の長繊維強化熱可塑性樹脂線状物の製造方法。
〔6〕前記強化用繊維束を構成する強化用繊維が熱可塑性樹脂からなり、前記マトリックス樹脂が該強化用繊維の融点又は軟化点よりも20℃以上低い融点を有する熱可塑性樹脂である、前記〔1〕〜〔5〕のいずれか1に記載の長繊維強化熱可塑性樹脂線状物の製造方法。
〔7〕前記熱可塑性樹脂からなる強化用繊維が、ポリエチレンテレフタレート繊維、ポリブチレンテレフタレート繊維、ポリエチレンナフタレート繊維、ポリトリメチレンテレフタレート繊維、ポリアクリロニトリル繊維、脂肪族ポリアミド繊維から選ばれる一種又は複数種の併用あるいは混繊維である、前記〔6〕に記載の長繊維強化熱可塑性樹脂線状物の製造方法。
〔8〕前記マトリックス樹脂を構成する熱可塑性樹脂が、メルトフローレート(230℃、21.18N)が20〜100g/10分であるポリプロピレン樹脂からなる、前記〔1〕〜〔7〕のいずれか1に記載の長繊維強化熱可塑性樹脂線状物の製造方法。
That is, the present invention provides the following [1] to [8].
[1] A method for producing a long fiber reinforced thermoplastic resin linear product comprising a matrix resin which is a thermoplastic resin and a long fiber reinforcing fiber bundle,
(1) A long-fiber reinforcing fiber bundle having a predetermined number of twists is drawn from a required number of creels through a tension adjusting means, and is passed through an unheated preheating device, and includes a separation guide, a molten resin impregnation portion, and a convergence guide. The fiber bundles are sequentially arranged and inserted through the predetermined through holes of the separation guide and the convergence guide of the guide core, the guide core is attached to the crosshead die main body, and then provided with a sheath core and an extrusion nozzle. A preliminary drawing step of a bundle of long fiber reinforcing fiber bundles, which is led to a die, a cooling tank, and a drawing device;
(2) While driving the take-up device and taking up the long fiber reinforcing fiber bundle group at a predetermined speed, the reinforcing fiber bundle is loaded with a tension of 5 to 100 g via the tension adjusting means. And driving the melt extruder while heating the reinforcing fiber bundle by heating the preheating device, supplying the thermoplastic resin to the crosshead die, and impregnating the guide core metal with the molten resin Each separated reinforcing fiber bundle is brought into contact with the molten thermoplastic resin in the part and die, and each reinforcing fiber bundle is partially impregnated with the thermoplastic resin, followed by a convergence guide, and a predetermined cross-sectional shape. A step of extruding and coating the long fiber reinforcing fiber bundle group as a linear object under pressure with a die having an extrusion nozzle of
(3) a step of cooling and solidifying the extrusion-coated linear material and taking it out;
Have
In the step of extrusion coating the linear material, the heating of the reinforcing fiber bundle in the preheating device is such that the surface temperature of the reinforcing fiber bundle is Tm to Tm-200 with respect to the temperature Tm of the molten thermoplastic resin. A method for producing a long fiber reinforced thermoplastic resin linear product, characterized in that the temperature reaches a range that reaches ° C.
[2] In the (2) extrusion coating step, the discharge hole portion of the extrusion nozzle 23 has a land L of 2 mm or more, and when the hole diameter is A, the extrusion nozzle is a cone having an upper base A toward the discharge side. The angle θ at which the frustoconical inclined line 232 and the discharge hole wall surface line 231 cross each other in the thickness direction cross section of the extrusion nozzle exceeds 90 °, and the opening at the tip of the opposing sheath core is cut out. The long fiber reinforced heat according to the above [1], wherein the molten thermoplastic resin is extrusion coated by a die having a sheath core having a relationship that the hole diameter B is 105 to 360% larger than the discharge portion hole diameter A. A method for producing a linear resin material.
[3] The convergent guide of the guide mandrel satisfies the following requirement (a) or the two requirements (a) and (b): [1] or [2] A method for producing a linear object.
(A) The hole diameter Dc of the central portion through hole of the convergence guide is 50 to 100% with respect to the outer diameter Dp of the long fiber reinforced thermoplastic resin linear material.
(B) The fan-shaped lower side diameter Dfc is twice the sector-shaped lower side radius forming the radial fan-shaped through hole of the convergence guide, and the sector-shaped lower side diameter Dfc is 105-105 with respect to the outer diameter Dp of the long fiber reinforced thermoplastic resin wire. The method for producing a long fiber-reinforced thermoplastic resin linear product according to [1] or [2], which is 360%.
[4] The long fiber reinforced thermoplastic resin linear material according to any one of [1] to [3], wherein a required number of the reinforcing fiber bundles are exposed on the surface of the linear material. Production method.
[5] The reinforcing fiber bundle is a multifilament in which fibers having a single fiber fineness of 1.5 to 30 dtex are bundled by 80 to 150 f and have a twist of 2 to 500 times / m. [1] The manufacturing method of the long fiber reinforced thermoplastic resin linear material of any one of-[4].
[6] The reinforcing fiber constituting the reinforcing fiber bundle is made of a thermoplastic resin, and the matrix resin is a thermoplastic resin having a melting point lower by 20 ° C. or more than the melting point or softening point of the reinforcing fiber, [1] A method for producing a long fiber-reinforced thermoplastic resin wire according to any one of [1] to [5].
[7] The reinforcing fiber composed of the thermoplastic resin is one or more kinds selected from polyethylene terephthalate fiber, polybutylene terephthalate fiber, polyethylene naphthalate fiber, polytrimethylene terephthalate fiber, polyacrylonitrile fiber, and aliphatic polyamide fiber. The method for producing a long fiber-reinforced thermoplastic resin wire according to [6], which is used in combination or in a mixed fiber.
[8] Any of the above [1] to [7], wherein the thermoplastic resin constituting the matrix resin is a polypropylene resin having a melt flow rate (230 ° C., 21.18 N) of 20 to 100 g / 10 min. 2. A method for producing a long fiber reinforced thermoplastic resin filament according to 1.
本発明の長繊維強化熱可塑性樹脂線状物の製造方法によれば、長繊維強化用繊維束への熱可塑性樹脂であるマトリックス樹脂の含浸度合い及び/又は所要の表面露出繊維束の露出度合いを調整して、均一な物性(特性)の長繊維強化熱可塑性樹脂線状物を、再現性よく、安定して連続製造できる方法を提供できる。 According to the method for producing a long fiber reinforced thermoplastic resin linear material of the present invention, the degree of impregnation of the matrix resin, which is a thermoplastic resin, into the long fiber reinforcing fiber bundle and / or the degree of exposure of the required surface exposed fiber bundle is set. By adjusting, it is possible to provide a method capable of stably and continuously producing a long fiber reinforced thermoplastic resin linear material having uniform physical properties (characteristics) with good reproducibility.
以下、本発明の長繊維強化熱可塑性樹脂線状物の製造方法について、図面を参照して説明する。なお、本発明において、図面は、本発明の技術思想を説明するためのものであり、各構成部材及び部材間の寸法上のバランスや、構成要素等が図面に表わされたものに限定されることはない。 Hereinafter, the manufacturing method of the long fiber reinforced thermoplastic resin linear material of this invention is demonstrated with reference to drawings. In the present invention, the drawings are for explaining the technical idea of the present invention, and the dimensional balance between the components and the members, the components, etc. are limited to those shown in the drawings. Never happen.
本発明の長繊維強化熱可塑性樹脂線状物の製造方法について、先ず(1)の予備引出し工程について説明する。
先ず、図1に製造工程を略示するように所定の撚り数を有する長繊維強化用繊維束Fを所要本数クリール1より引き出し、強化用繊維束に該張力調整手段TCを介して、未昇温の予熱装置PH内に通し、さらに、溶融押出機Eに装着されるガイド芯金、サヤ芯、押出ノズルの孔部から強化用繊維束群を引出し、冷却水を満たしていない冷却水槽3を経てキャタピラー式等の引取装置4によりキャタピラー間で挟持して引取可能とする予備引出し工程(1)の作業を行う。
なお、強化用繊維束をガイド芯金20に通すのは次のような手順で行えばよい。
図7(A)、(B)に部分断面図として示すガイド芯金20に装着される図5又は図6に示す分離ガイド201a、201b、収束ガイド202a、202bの所定の孔に強化用繊維束Fを通し、半割り状のガイド芯金20の前記各ガイドの保持用溝204、205にてセットし、保持相方の半割り状のガイド芯金と組み合わせて、円筒状のガイド芯金20に組み立てる。次いで、表面に所要本数の露出繊維束を有する線状物を製造する場合(実施態様2)について図9(B)として例示しているように、強化用繊維束Fが所定の孔通されたガイド芯金20を溶融押出機のクロスヘッドダイ部22に嵌装されたサヤ芯21に固定し、押出ノズル23の孔部先端から強化用繊維束群を引出し、前述の如く引取装置4まで強化用繊維束群を導く。
Regarding the method for producing a long fiber reinforced thermoplastic resin linear product of the present invention, first, the preliminary drawing step (1) will be described.
First, as schematically shown in FIG. 1, a long-fiber reinforcing fiber bundle F having a predetermined number of twists is pulled out from the required number of creels 1 and is not raised to the reinforcing fiber bundle via the tension adjusting means TC. The reinforcing fiber bundle group is drawn out from the hole of the guide core bar, the sheath core, and the extrusion nozzle that is passed through the warm preheating device PH, and the cooling extruder 3 is not filled with the cooling water. Then, a pre-drawing step (1) is performed in which the take-up device 4 such as a caterpillar type is held between the caterpillars and can be taken out.
The reinforcing fiber bundle may be passed through the guide mandrel 20 according to the following procedure.
7A and 7B, the reinforcing fiber bundles in predetermined holes of the separation guides 201a and 201b and the convergence guides 202a and 202b shown in FIG. F is set in the holding grooves 204 and 205 of each of the guides of the half-shaped guide mandrel 20 and combined with the half-shaped guide mandrel of the holding partner to form a cylindrical guide mandrel 20 assemble. Next, as illustrated in FIG. 9B in the case of manufacturing a linear object having the required number of exposed fiber bundles on the surface (Embodiment 2), the reinforcing fiber bundle F was passed through a predetermined hole. The guide mandrel 20 is fixed to the sheath core 21 fitted to the crosshead die portion 22 of the melt extruder, the reinforcing fiber bundle group is drawn from the tip of the hole of the extrusion nozzle 23, and is reinforced to the take-up device 4 as described above. Lead fiber bundle group.
次に本発明の製造方法において、(2)の押出被覆工程は、引取装置4を駆動して、長繊維強化用繊維束群を所定速度で引取りながら、強化用繊維束Fに張力調整手段TCを介して1本当り所定の張力を負荷し、予熱装置PHを昇温して強化用繊維束を加熱しつつ溶融押出機Eを駆動して、クロスヘッドダイ2に熱可塑性樹脂を供給して、図9(C)に例示するようにガイド芯金20の溶融樹脂含浸部203及びダイ内において分離状の各強化用繊維束Fと溶融した熱可塑性樹脂を接触させて、各強化用繊維束に熱可塑性樹脂を部分的に含浸させ、引き続き収束ガイド202a又は202bを経て、所定の断面形状の押出ノズル23を備えるクロスヘッドダイ2にて加圧下に長繊維強化用繊維束群を線状物として押出被覆する工程である。
前記(2)の押出被覆工程の後、引続いて(3)押出被覆された線状物を冷却固化し、引取る工程、を経て、長繊維強化熱可塑性樹脂線状物が製造される。
また、本発明の長繊維強化熱可塑性樹脂線状物の製造方法は、前記線状物を押出被覆する工程において、該予熱装置内での強化用繊維束の加熱は、溶融した熱可塑性樹脂の温度Tmに対して、強化用繊維束の表面温度がTm〜Tm−200℃に達する範囲とすることを特徴とする。
以下、本発明の長繊維強化熱可塑性樹脂線状物の製造方法について、更に詳しく説明する。
Next, in the production method of the present invention, in the extrusion coating step of (2), the tension adjusting means is applied to the reinforcing fiber bundle F while the take-up device 4 is driven and the long fiber reinforcing fiber bundle group is taken up at a predetermined speed. A predetermined tension is applied through each TC, the preheating device PH is heated to drive the melt extruder E while heating the reinforcing fiber bundle, and the thermoplastic resin is supplied to the crosshead die 2. As shown in FIG. 9C, the reinforcing fiber impregnated portion 203 of the guide mandrel 20 and the separated reinforcing fiber bundles F in the die are brought into contact with the molten thermoplastic resin to thereby provide each reinforcing fiber. A bundle of thermoplastic resin is partially impregnated into the bundle, and then the fiber bundle group for reinforcing long fibers is linearized under pressure by the crosshead die 2 having the extrusion nozzle 23 having a predetermined cross-sectional shape through the convergence guide 202a or 202b. It is a process of extrusion coating as a product.
After the extrusion coating step (2), a continuous fiber-reinforced thermoplastic resin linear product is manufactured through (3) a step of cooling and solidifying the linear product that has been extrusion-coated and taking it out.
Further, in the method for producing a long fiber reinforced thermoplastic resin linear product of the present invention, in the step of extrusion coating the linear product, the heating of the reinforcing fiber bundle in the preheating device is performed by using a molten thermoplastic resin. The surface temperature of the reinforcing fiber bundle is in a range that reaches Tm to Tm−200 ° C. with respect to the temperature Tm.
Hereinafter, the manufacturing method of the long fiber reinforced thermoplastic resin linear material of the present invention will be described in more detail.
<長繊維強化用繊維束の撚り数、繊維構成>
本発明に用いられる長繊維強化用繊維束は所定の撚り数を有する必要がある。これは強化用維束の所要本数を線状物の表面に露出させる場合においては、撚りが無いと、繊維束の中の繊維単糸がその周囲のマトリックス樹脂に全く接着していない部分は脱落する。即ち、撚りがあること、すなわち、繊維束が長手方向に所定の螺旋ピッチで撚回していることによって、露出をさせようとしている所定の位置におけるマトリックス樹脂の溝部の底部、周壁部などのいずれかの部位で、撚回している単繊維がマトリックス樹脂側へ食い込んで、いわゆるアンカー接着する確率が高い。すなわち、繊維の単糸が最表面に出現したり、マトリックス樹脂側に食い込んだりすることを繰り返えすことで、脱落しない構造になっている。強化繊維束の撚り数は1m当たり2回〜500回の甘撚りであることが好ましく、これ以上の強い撚りがあると繊維束の表面付近へのマトリックス樹脂のなじみや埋まり込みが悪くなり、表面に露出させた強化繊維束の脱落が起きやすくなり、線状物としての機能も低下する。全く撚りのない強化繊維束を使うこともできるが、この際は、撚りをかけて給糸することで、2回/m以上の撚りを生み出して引出すようにすればよい。なお、該線状物を短くカットして使う場合は、その長さ以下の撚りが必要である、例えば、200mmにカットして使う場合は200mm以内に1回、好ましくは3回以上の撚りを要す。強化用繊維に用いられる市販の強化用繊維束においては、ポリエチレンテレフタレート(PET)繊維が50回/m、ガラスヤーンが40回/m、の撚りが施されており、アラミド繊維は0回/mで無撚りである。
また、強化用繊維束は、構成する繊維の単繊維繊度が1.5dtex〜30dtexの繊維を80f〜150f集束し、かつ、前記の2回〜500回/mの撚りを有するマルチフィラメントを用いることが、クリールからの引出し時にケバが発生したり、マトリックス樹脂の未含浸率の調整がし難い等の問題の発生がなく、適度の補強効果を発現させ得る観点から好ましい。
<Number of twists of fiber bundles for reinforcing long fibers, fiber configuration>
The fiber bundle for reinforcing long fibers used in the present invention needs to have a predetermined number of twists. In the case where the required number of reinforcing fibers are exposed on the surface of the linear object, if there is no twist, the portion of the fiber bundle where the fiber single yarn is not adhered to the matrix resin around it will fall off. To do. That is, there is a twist, that is, the fiber bundle is twisted at a predetermined helical pitch in the longitudinal direction, so that any one of the bottom of the matrix resin groove, the peripheral wall, etc. at a predetermined position to be exposed There is a high probability that the twisted monofilament will bite into the matrix resin side and so-called anchor adhesion. That is, the structure is such that the single yarn of the fiber appears on the outermost surface or bites into the matrix resin side so as not to fall off. The number of twists of the reinforcing fiber bundle is preferably 2 to 500 sweet twists per meter, and if there is a stronger twist than this, the familiarity and embedding of the matrix resin near the surface of the fiber bundle will deteriorate, The reinforcing fiber bundle exposed to the surface is likely to fall off, and the function as a linear object is also reduced. It is possible to use a reinforcing fiber bundle having no twist at all, but in this case, it is only necessary to generate a twist of 2 times / m or more and draw it out by feeding with a twist. In addition, when using the linear object by cutting it short, twisting of the length or less is necessary. For example, when using it by cutting to 200 mm, twisting is preferably performed once within 200 mm, preferably 3 times or more. I need it. In the commercially available reinforcing fiber bundle used for the reinforcing fiber, the polyethylene terephthalate (PET) fiber is twisted 50 times / m, the glass yarn is 40 times / m, and the aramid fiber is 0 times / m. With no twist.
Further, the reinforcing fiber bundle uses multifilaments in which fibers having a single fiber fineness of 1.5 to 30 dtex are bundled by 80 f to 150 f and have a twist of 2 to 500 times / m. However, there are no problems such as generation of cracks during withdrawal from the creel and difficulty in adjusting the non-impregnation rate of the matrix resin, and this is preferable from the viewpoint that a moderate reinforcing effect can be exhibited.
<長繊維強化用繊維束の張力調整手段>
上記の(2)押出被覆する工程において、強化用繊維束の走行時の張力を一定にするための張力調整手段として用いられる張力調整装置は、強化用繊維束に一定の張力を負荷できるものであれば、特に限定されない。クリールからの引出し時に余りスペースを要しない簡易なタイプであってよく、例えば、図2に示すように、軸心Jを有する2枚の平板D間に挟まれるように繊維束を通し、上部の平板の上面に錘Wを負荷することによって張力を調整する装置(載荷タイプテンサー)や、図3に示すように円板に2本の円柱ガイドGBを立設し、2本の円柱ガイドGBと繊維束Fとの接触角度θを変更することによって、張力を変更できるいわゆる「しごきタイプガイドバーテンサー」も簡易に用いることができる。また、これらの組み合わせて用いてもよい。
(2)の押出被覆する工程において、強化用繊維束への張力は、1本当り5〜100gであり、5〜95gがより好ましく、10〜50gが特に好ましい。張力が5g未満であると製造工程において強化用繊維束を構成する単繊維間でたるみを生じ、ガイド類の入口でもつれたり、最悪には切断したりして、連続生産が阻害される。また、100gを超えるとガイド芯金の溶融樹脂含浸部203やダイ内において、溶融した熱可塑性樹脂が強化用繊維束へ含浸し難く、繊維による補強効果の低い長繊維強化熱可塑性樹脂線状物となり、また、表面露出タイプの線状物を目的とする場合において、線状物の表面に繊維束が露出しないので、インサート成形等において、発泡体との係止力が発現しない等の問題が生じる。
<Tension adjusting means for long fiber reinforcing fiber bundle>
In the above (2) extrusion coating step, the tension adjusting device used as a tension adjusting means for making the tension during running of the reinforcing fiber bundle constant can apply a constant tension to the reinforcing fiber bundle. If there is, it will not be specifically limited. For example, as shown in FIG. 2, the fiber bundle is passed between the two flat plates D having the axis J as shown in FIG. A device (loading type tensor) for adjusting the tension by loading the weight W on the upper surface of the flat plate, or two cylindrical guides GB standing on the circular plate as shown in FIG. By changing the contact angle θ with the fiber bundle F, a so-called “ironing type guide bar tensor” that can change the tension can be easily used. A combination of these may also be used.
In the extrusion coating step (2), the tension to the reinforcing fiber bundle is 5 to 100 g, more preferably 5 to 95 g, and particularly preferably 10 to 50 g. If the tension is less than 5 g, sagging occurs between the single fibers constituting the reinforcing fiber bundle in the manufacturing process, and the continuous production is hindered by being entangled at the entrance of the guides or in the worst case. Further, if it exceeds 100 g, the molten fiber impregnated portion 203 and the die of the guide core bar are difficult to impregnate the molten thermoplastic resin into the reinforcing fiber bundle, and the long fiber reinforced thermoplastic resin linear material has a low reinforcing effect by the fibers. In addition, when a surface-exposed type linear object is intended, since the fiber bundle is not exposed on the surface of the linear object, there is a problem that a locking force with the foam does not appear in insert molding or the like. Arise.
<強化用繊維束の予熱>
本発明の製造方法においては、(2)の線状物を押出被覆する工程において、予熱装置内での強化用繊維束の加熱は、溶融した熱可塑性樹脂の温度Tmに対して、強化用繊維束の表面温度がTm〜Tm−200℃に達する範囲とすることを要する。用いられる予熱装置PHとしては、温度制御の容易性、安全性等から電気的な装置が望ましく、予備引出し工程での、強化用繊維束のガイド芯金の分離ガイドへの案内作業、収束ガイドの所定孔への線状物内部埋設用繊維束及び露出用繊維束の区分け作業等の関係から、下半、上半に開放できる構造であることが好ましい。加熱方式としては、熱風、遠赤外線ヒーター等いずれであってもよい。熱風式を用いる場合は、熱風の向きを、強化用繊維束の走行方向に順行させることが、繊維束の乱れが生じ難い観点から好ましい。
<Preheating of reinforcing fiber bundle>
In the production method of the present invention, in the step of extrusion-coating the linear product of (2), the reinforcing fiber bundle is heated in the preheating device with respect to the temperature Tm of the molten thermoplastic resin. It is necessary to make the surface temperature of the bundle reach Tm to Tm-200 ° C. The preheating device PH to be used is preferably an electrical device from the viewpoint of ease of temperature control, safety, and the like. In the preliminary drawing step, the guide operation of the reinforcing fiber bundle to the separation guide of the reinforcing core, the convergence guide It is preferable that the structure can be opened to the lower half and the upper half in view of the sorting operation of the fiber bundle for embedding the linear object in the predetermined hole and the fiber bundle for exposure. The heating method may be any of hot air, far infrared heater, and the like. In the case of using the hot air type, it is preferable that the direction of the hot air is made to follow the traveling direction of the reinforcing fiber bundle from the viewpoint that the disturbance of the fiber bundle hardly occurs.
工程(2)すなわち、長繊維強化用繊維束群を線状物として押出被覆する工程においては、該予熱装置内での強化用繊維束の加熱は、溶融した熱可塑性樹脂の温度Tmに対して、強化用繊維束の表面温度がTm〜Tm−200℃に達する範囲とすることにより、強化用繊維束とマトリックス用の熱可塑性樹脂との接触時に、各強化用繊維束に熱可塑性樹脂を部分的に含浸させることが可能となり、得られる長繊維強化熱可塑性樹脂線状物に所定の特性を備えさせることができる。すなわち、図9により説明するならば、強化用繊維束Fがガイド芯金20の溶融樹脂含浸部203を走行する時点において、強化用繊維束Fの表面温度が、Tm〜Tm−200℃に達する範囲とする必要がある。例えば、強化用繊維束Fの表面温度が常温でガイド芯金20に給糸するとマトリックス樹脂とのなじみが悪いだけでなく、繊維束F周辺のマトリックス樹脂の温度も下げることになり、マトリックス樹脂の溶融粘度が高くなることで繊維切れなどのトラブルが発生し継続生産が不能となる場合がある。一度繊維切れが発生すると、クロスヘッド2内の樹脂溜まりを完全に掃除してから、繊維束Fを通しなおす必要があり、原材料と作業工数のロスが大きい。
なお、前記マトリックス樹脂が該強化用繊維の融点又は軟化点よりも20℃以上低い融点を有する熱可塑性樹脂を用いれば、マトリックス樹脂の溶融温度Tmに近い温度を、強化用繊維束の予熱としてかけることは問題がない。強化用繊維束の適切な表面温度(予熱)は、用いる強化用繊維やマトリックス樹脂によって変化するが、強化用繊維束の表面温度がクロスヘッド内の樹脂溜まり中のマトリックス樹脂の温度Tmに対して、Tm+0℃〜Tm−50℃以内であることが、得られる長繊維強化熱可塑性樹脂線状物の物性および連続安定生産性の観点から特に好ましい。
In the step (2), that is, in the step of extrusion-coating the long fiber reinforcing fiber bundle group as a linear product, the heating of the reinforcing fiber bundle in the preheating device is performed with respect to the temperature Tm of the molten thermoplastic resin. By setting the surface temperature of the reinforcing fiber bundle to a range that reaches Tm to Tm-200 ° C., when the reinforcing fiber bundle and the matrix thermoplastic resin are brought into contact with each other, the thermoplastic resin is partially added to each reinforcing fiber bundle. It is possible to impregnate, and the obtained long fiber reinforced thermoplastic resin linear material can have predetermined characteristics. That is, if it demonstrates with FIG. 9, the surface temperature of the reinforcing fiber bundle F reaches Tm-Tm-200 degreeC at the time of the reinforcing fiber bundle F driving | running the molten resin impregnation part 203 of the guide metal core 20. FIG. Must be in range. For example, if the surface temperature of the reinforcing fiber bundle F is fed to the guide core 20 at room temperature, not only does the familiarity with the matrix resin worsen, but the temperature of the matrix resin around the fiber bundle F also decreases. If the melt viscosity becomes high, troubles such as fiber breakage may occur and continuous production may become impossible. Once the fiber breakage occurs, it is necessary to clean the resin reservoir in the crosshead 2 and then pass the fiber bundle F again, resulting in a large loss of raw materials and work man-hours.
In addition, if the matrix resin uses a thermoplastic resin having a melting point 20 ° C. lower than the melting point or softening point of the reinforcing fiber, a temperature close to the melting temperature Tm of the matrix resin is applied as preheating of the reinforcing fiber bundle. There is no problem. The appropriate surface temperature (preheating) of the reinforcing fiber bundle varies depending on the reinforcing fiber and matrix resin used, but the surface temperature of the reinforcing fiber bundle is relative to the temperature Tm of the matrix resin in the resin pool in the crosshead. From the viewpoint of physical properties and continuous stable productivity of the obtained long fiber reinforced thermoplastic resin linear material, Tm + 0 ° C. to Tm−50 ° C. is particularly preferable.
<押出被覆工程の押出ノズル孔径とサヤ芯の先端開口部の孔径の関係>
本発明の製造方法の(2)押出被覆工程においては、図8に示す押出ノズル23の吐出孔部Aは、ランドLが2mm以上であり、孔径をAとするとき、吐出側に向かって、押出ノズルの上底が円錐台状にくり抜かれており、該押出ノズル23の厚み方向断面において該円錐台傾斜線232と吐出孔部壁面線231とが交わる角度θが90°を超え、相対向するサヤ芯の先端の開口の孔径Bが、該吐出部孔径Aに対して105〜360%大である関係にあるサヤ芯21を備えたクロスヘッドダイ2により、溶融した熱可塑性樹脂により押出被覆される。
図8により説明すると、押出ノズル23はランドLが2mm以上であれば、押出ノズル23の部分に高い圧力がかかるために線状物(製品)に空隙ができにくくなること、溶融熱可塑性樹脂がダイ内ガイド芯金の溶融樹脂接触部203に流れ込みやすくなること、及び線状物の外径の制御がしやすい点で好ましい。また、前記角度θが90°を超えれば、強化用繊維Fの進行方向と逆進行方向とのマトリックス樹脂の流動方向を制御できる点で好ましい。
サヤ芯21の先端の開口の孔径Bは、押出ノズルの孔径Aとの関係において口径の比(B/A)が105〜360%である。B/Aが105%以上であることでマトリックス樹脂がダイ内のガイド芯金の溶融樹脂接触部203に流れ込みやすくなり、360%以下とすることで、ガイド芯金に流れる溶融熱可塑性樹脂量と押出ノズルから吐出される溶融熱可塑性樹脂量のバランスを取ることができる点で好ましい。
<Relationship between the extrusion nozzle hole diameter in the extrusion coating step and the hole diameter at the tip opening of the sheath core>
In the extrusion coating step (2) of the production method of the present invention, the discharge hole portion A of the extrusion nozzle 23 shown in FIG. 8 has a land L of 2 mm or more, and when the hole diameter is A, toward the discharge side, The upper bottom of the extrusion nozzle is cut out in a truncated cone shape, and the angle θ at which the truncated cone inclined line 232 and the discharge hole wall surface line 231 cross each other in the thickness direction cross section of the extrusion nozzle 23 exceeds 90 °. The hole diameter B of the opening at the tip of the sheath core is 105 to 360% larger than the discharge section hole diameter A. The crosshead die 2 having the sheath core 21 is extruded and coated with molten thermoplastic resin. Is done.
Referring to FIG. 8, if the land L of the extrusion nozzle 23 is 2 mm or more, a high pressure is applied to the portion of the extrusion nozzle 23, which makes it difficult to form voids in the linear object (product), and the molten thermoplastic resin This is preferable in that it easily flows into the molten resin contact portion 203 of the guide core metal in the die and the outer diameter of the linear object can be easily controlled. Moreover, if the angle θ exceeds 90 °, it is preferable in that the flow direction of the matrix resin in the traveling direction and the backward traveling direction of the reinforcing fibers F can be controlled.
The diameter B of the opening at the tip of the sheath core 21 is 105 to 360% in terms of the diameter ratio (B / A) in relation to the diameter A of the extrusion nozzle. When the B / A is 105% or more, the matrix resin can easily flow into the molten resin contact portion 203 of the guide core in the die, and by 360% or less, the amount of the molten thermoplastic resin flowing through the guide core is This is preferable in that the amount of molten thermoplastic resin discharged from the extrusion nozzle can be balanced.
<ガイド芯金の収束ガイド>
本発明の長繊維強化熱可塑性樹脂線状物において、収束ガイドは、以下の(a)要件、又は(a)及び(b)の2要件を満足することが好ましい。
(a)収束ガイドの中央部透孔の孔径Dcが長繊維強化熱可塑性樹脂線状物の外径Dp対して50〜100%である。
(b)収束ガイドの放射状扇形透孔を形成する扇形下辺半径の2倍を扇形下辺直径Dfcとして、該扇形下辺直径Dfcが長繊維強化熱可塑性樹脂線状物の外径Dpに対して105〜360%である。
先ず、(a)の要件は、図5及び図6の(C)に示すように、ガイド芯金20の収束ガイドの中央部透孔202Ca又は202Cbは、線状物の内部に配置される強化用繊維束がまとめて挿通される孔であり、該強化用繊維束を線状物の内部に配置するという観点から、孔径Dcを得ようとする長繊維強化熱可塑性樹脂線状物の外径Dpの50〜100%とすることが好ましく、この範囲であれば、この中央部透孔202Ca、202Cbで収束された強化用繊維束が表面に露出することがなく、線状物の補強効果を発現できる。
一方、(b)の要件は、図6(B)、(C)に示すように線状物の表面に露出されるべき強化用繊維束の本数に応じて放射状扇形透孔208bを形成するが、当該放射状扇形透孔208bの扇形上辺半径の2倍を扇形上辺直径Dfcとして、該扇形上辺直径Dfcが長繊維強化熱可塑性樹脂線状物の外径Dpに対して105〜360%とすることが好ましく、この範囲であれば、線状物の外周に所定本数の強化用繊維束を露出させることができる。
また、放射状扇形透孔208bの上辺は、中央透孔の中心に対して同心の曲率となっており、強化用繊維束に負荷される張力等によって、所要の本数の露出すべき各強化用繊維束が、扇形上辺のほぼ中部に移動し、線状物の外周にほぼ均等に配置することができる。
<Guide guide for guide mandrel>
In the long fiber reinforced thermoplastic resin linear material of the present invention, the convergence guide preferably satisfies the following requirements (a) or two requirements (a) and (b).
(A) The hole diameter Dc of the central portion through hole of the convergence guide is 50 to 100% with respect to the outer diameter Dp of the long fiber reinforced thermoplastic resin linear material.
(B) The fan-shaped lower side diameter Dfc is twice the sector-shaped lower side radius forming the radial fan-shaped through hole of the convergence guide, and the sector-shaped lower side diameter Dfc is 105-105 with respect to the outer diameter Dp of the long fiber reinforced thermoplastic resin wire. 360%.
First, as shown in FIG. 5 and FIG. 6C, the requirement (a) is that the central through hole 202Ca or 202Cb of the converging guide of the guide mandrel 20 is disposed inside the linear object. From the viewpoint of arranging the reinforcing fiber bundle inside the linear object, the outer diameter of the long fiber reinforced thermoplastic resin linear object to obtain the hole diameter Dc is a hole through which the fiber bundle is inserted. It is preferable to make it 50 to 100% of Dp, and if it is this range, the reinforcing fiber bundle converged by the central portion through holes 202Ca and 202Cb is not exposed on the surface, and the reinforcing effect of the linear object is obtained. It can be expressed.
On the other hand, the requirement (b) is that the radial fan-shaped through holes 208b are formed according to the number of reinforcing fiber bundles to be exposed on the surface of the linear object as shown in FIGS. 6 (B) and 6 (C). The fan-shaped upper side diameter Dfc is twice the sector-shaped upper side radius of the radial fan-shaped through hole 208b, and the sector-shaped upper side diameter Dfc is 105 to 360% with respect to the outer diameter Dp of the long fiber reinforced thermoplastic resin wire. In this range, a predetermined number of reinforcing fiber bundles can be exposed on the outer periphery of the linear object.
Further, the upper side of the radial fan-shaped through hole 208b has a concentric curvature with respect to the center of the central through hole, and the required number of reinforcing fibers to be exposed by the tension applied to the reinforcing fiber bundle or the like. The bundle moves to substantially the middle part of the fan-shaped upper side, and can be arranged almost evenly on the outer periphery of the linear object.
なお、本発明の製造方法では、クリール1から引き出された各強化用繊維束Fは、ガイド芯金20において、前記の収束ガイドの所定の中央部透孔202Cに強化用繊維束Fを案内(挿通)する以前に、図5(A)及び6(A)に示す分離ガイド201a、201bの所定の孔に挿通される。図6(A)の分離ガイド201bの最外周に配置された孔には、露出すべき強化用繊維束が案内(挿通)される。 In the manufacturing method of the present invention, the reinforcing fiber bundles F drawn from the creel 1 guide the reinforcing fiber bundles F to the predetermined central through holes 202C of the convergence guide ( Before the insertion), the separation guides 201a and 201b shown in FIGS. 5A and 6A are inserted into predetermined holes. The reinforcing fiber bundle to be exposed is guided (inserted) into the hole arranged on the outermost periphery of the separation guide 201b in FIG.
本発明においては、所要本数の強化用繊維束を表面に露出させてなる線状物とすることができる。
すなわち、熱可塑性樹脂であるマトリックス樹脂と、長繊維状強化用繊維束とからなる長繊維強化熱可塑性樹脂線状物において、強化用繊維束は、長手方向に直交する断面において、マトリックス樹脂が含浸していない未含浸部を有し、かつ、強化用繊維束の一部の繊維が線状物の表面に、例えば6箇所以上12箇所以下のそれぞれ別個の位置に露出して、線状物の長手方向に連続してなる長繊維強化熱可塑性樹脂線状物とすることができる。
線状物の断面において、表面に露出している強化用繊維束の繊維露出箇所のそれぞれの長さlが0.3mm〜0.7mmの範囲であることが車両シート用の長繊維強化熱可塑性樹脂線状物とする場合においては好ましい。
強化用繊維束を所要本数線状物の表面に露出させることによって、例えば、椅子のクッション等の表皮材を取付ける部材として用いる場合に、インサート成形される際に線状物の露出部分の長繊維強化用繊維束の単繊維と発泡剤がアンカー接着して、椅子部材としての機能を発現できる。
In this invention, it can be set as the linear thing formed by exposing the required number of reinforcing fiber bundles on the surface.
That is, in a long fiber reinforced thermoplastic resin linear material composed of a matrix resin which is a thermoplastic resin and a long fiber reinforcing fiber bundle, the reinforcing fiber bundle is impregnated with the matrix resin in a cross section perpendicular to the longitudinal direction. The fiber bundle has a non-impregnated portion, and some of the fibers of the reinforcing fiber bundle are exposed on the surface of the linear object, for example, at 6 to 12 separate positions, respectively. It can be set as the continuous fiber reinforced thermoplastic resin linear thing formed continuously in a longitudinal direction.
The long fiber reinforced thermoplasticity for vehicle seats is such that the length l of each fiber exposed portion of the reinforcing fiber bundle exposed on the surface in the cross section of the linear object is in the range of 0.3 mm to 0.7 mm. In the case of using a resin linear material, it is preferable.
By exposing the reinforcing fiber bundle to the surface of the required number of linear objects, for example, when used as a member for attaching a skin material such as a cushion of a chair, the long fibers of the exposed part of the linear object when insert-molded The single fiber of the reinforcing fiber bundle and the foaming agent are anchored to each other, so that the function as a chair member can be expressed.
特に、車両シート用の長繊維強化熱可塑性樹脂線状物においては、線状物の断面における前記繊維露出箇所の長さの総和に対する、線状物の見なし外径から計算される外周の長さの比として算出される繊維露出率が20〜60%であることがより好ましい。
繊維の露出率は露出本数、露出率共に、当該線状物の用途において要求される、インサート成形後の当該成形品の物性等に応じて適宜決定される。
In particular, in the case of a long fiber reinforced thermoplastic resin linear material for vehicle seats, the length of the outer circumference calculated from the assumed outer diameter of the linear material with respect to the total length of the exposed fiber portions in the cross section of the linear material It is more preferable that the fiber exposure rate calculated as the ratio is 20 to 60%.
The exposure rate of the fiber is appropriately determined in accordance with the physical properties of the molded product after the insert molding, which is required for the use of the linear product, for both the number of exposed fibers and the exposure rate.
(長繊維強化熱可塑性樹脂線状物の繊維露出箇所数及び繊維露出率の算出)
本発明の長繊維強化熱可塑性樹脂線状物の製造方法において、繊維露出箇所数および繊維露出率は以下の手順で求める。
(i)長繊維強化熱可塑性樹脂線状物を長手方向に直交する方向で長さ1cm程度に切断し、切断面が上になるように、デジタルマイクロスコープ(キーエンス製、製品名:VHX‐5000)の台上に粘土等で固定する。
(ii)倍率30倍として、反射光でサンプルを観察し、長繊維強化熱可塑性樹脂線状物の表面に露出している繊維束の数を数える。(=繊維露出箇所数)
(iii)デジタルマイクロスコープに内蔵されている距離算出機能を用いて、表面の繊維露出箇所(マトリックス樹脂に覆われていない部分)の長さを一つずつ算出する。(=1箇所の繊維露出長さ)
(iv)繊維露出箇所長さの合計を求め、外径から求めた長繊維強化熱可塑性樹脂線状物の円周長さより、下記の式により繊維露出率を算出する。
繊維露出率(%)=〔(繊維露出箇所長さ合計)/(円周長さ)〕×100
なお、長繊維強化熱可塑性樹脂線状物の円周長さは、長繊維強化熱可塑性樹脂線状物の見なし外径から計算される。該見なし外径は、上記(ii)の観察において、長繊維強化熱可塑性樹脂線状物のマトリックス樹脂(熱可塑性樹脂)を外表面とする部分の最大径と最小径からその平均を算出して、これを見なし外径Daとする。
(Calculation of the number of exposed fibers and the fiber exposure rate of the long fiber reinforced thermoplastic resin linear material)
In the method for producing a long fiber reinforced thermoplastic resin linear product of the present invention, the number of exposed fiber portions and the exposed fiber rate are determined by the following procedure.
(I) A long-fiber reinforced thermoplastic resin linear material is cut into a length of about 1 cm in a direction orthogonal to the longitudinal direction, and a digital microscope (manufactured by KEYENCE, product name: VHX-5000) is so cut. ) Is fixed on the table with clay.
(Ii) The sample is observed with reflected light at a magnification of 30 times, and the number of fiber bundles exposed on the surface of the long fiber reinforced thermoplastic resin linear material is counted. (= Number of exposed fibers)
(iii) Using the distance calculation function built in the digital microscope, the length of the exposed fiber portion (the portion not covered with the matrix resin) on the surface is calculated one by one. (= Fiber exposed length at one location)
(Iv) The total fiber exposed portion length is obtained, and the fiber exposure rate is calculated by the following formula from the circumferential length of the long fiber reinforced thermoplastic resin linear material obtained from the outer diameter.
Fiber exposure rate (%) = [(total length of exposed fiber) / (circumferential length)] × 100
The circumferential length of the long fiber reinforced thermoplastic resin linear material is calculated from the assumed outer diameter of the long fiber reinforced thermoplastic resin linear material. In the observation of (ii) above, the assumed outer diameter is calculated by calculating the average from the maximum diameter and the minimum diameter of the portion having the matrix resin (thermoplastic resin) of the long fiber reinforced thermoplastic resin linear material as the outer surface. The outside diameter Da is not seen.
以下に、本発明の長繊維強化熱可塑性樹脂線状物の製造方法に用いられる強化用繊維束について説明する。
(強化用繊維束)
本発明の繊維強化熱可塑性樹脂線状物の製造に用いられる強化用繊維(束)としては、特に限定されないが、ガラス繊維、炭素繊維等の融点のない無機繊維や、各種の熱可塑性樹脂からなる長繊維(フィラメント)状の強化用繊維が挙げられる。
熱可塑性樹脂からなる強化用繊維束としては、ポリエチレンテレフタレート繊維、ポリブチレンテレフタレート繊維、ポリナフチレンフタレート繊維、ポリトレメチレンテレフタレート繊維、ポリアクリロニトリル繊維、脂肪族ポリアミド繊維から選ばれる一種又は複数種の併用或いは混繊維が有利に選択できる。
熱可塑性樹脂繊維の融点(Tfm)は、前記のように、マトリックス樹脂の融点(Tmx)より高い必要がある。低いと押出ダイ内部で繊維が溶融して、切れてしまう恐れがある。これらの融点差 Tfm −Tmx は、概ね20℃以上であることが好ましい。
The reinforcing fiber bundle used in the method for producing the long fiber reinforced thermoplastic resin linear material of the present invention will be described below.
(Reinforcing fiber bundle)
The reinforcing fibers (bundles) used in the production of the fiber-reinforced thermoplastic resin linear material of the present invention are not particularly limited, but include inorganic fibers having no melting point such as glass fibers and carbon fibers, and various thermoplastic resins. A long fiber (filament) -like reinforcing fiber.
As a reinforcing fiber bundle made of thermoplastic resin, one or a plurality of types selected from polyethylene terephthalate fiber, polybutylene terephthalate fiber, polynaphthylene phthalate fiber, polytremethylene terephthalate fiber, polyacrylonitrile fiber, and aliphatic polyamide fiber are used. Alternatively, mixed fibers can be advantageously selected.
As described above, the melting point (Tfm) of the thermoplastic resin fiber needs to be higher than the melting point (Tmx) of the matrix resin. If it is low, the fibers may melt and break inside the extrusion die. These melting point differences Tfm−Tmx are preferably approximately 20 ° C. or more.
本発明に用いられる熱可塑性樹脂であるマトリックス樹脂は、特に限定されないが、強化用繊維束に用いる熱可塑性繊維の融点又は軟化点よりも低い融点を有する熱可塑性樹脂から選択される。より具体的には、ポリプロピレン、ポリエチレン、ポリブチレン等のポリオレフィンや、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PENp)、液晶ポリエステル等のポリエステル系樹脂や、ポリスチレン(PS)、アクリロニトリル−ブタジエン−スチレンABS)、アクリロニトリル−アクリル−スチレン(AAS)、アクリロニトリル・エチレンプロピレンゴム・スチレン(AES)等のスチレン系樹脂、ウレタン樹脂、ポリオキシメチレン(POM)、ポリアミド(PA)、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフェニレンスルフィド(PPS)、ポリフェニレンエーテル(PPE)、変性PPE、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリスルホン(PSU)、変性PSU、ポリエーテルスルホン(PES)、ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリアリレート(PAR)、ポリエーテルニトリル(PEN)、フェノール系樹脂およびフェノキシ樹脂が挙げられる。また、マトリックス樹脂としての熱可塑性樹脂は、上記の樹脂の共重合体や変性体および/または2種類以上ブレンドした樹脂などであってもよい。
これらの中でも成形性および軽量性の観点から、該強化用繊維の融点又は軟化点よりも20℃以上低い融点を有するポリオレフィン系樹脂が好ましく、例えば、ポリプロピレン樹脂が特に好ましい。
The matrix resin that is the thermoplastic resin used in the present invention is not particularly limited, but is selected from thermoplastic resins having a melting point lower than the melting point or softening point of the thermoplastic fiber used for the reinforcing fiber bundle. More specifically, polyolefins such as polypropylene, polyethylene and polybutylene, and polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PENp), and liquid crystal polyester. Resins, polystyrene (PS), acrylonitrile-butadiene-styrene ABS), styrene-based resins such as acrylonitrile-acrylic-styrene (AAS), acrylonitrile / ethylene propylene rubber / styrene (AES), urethane resin, polyoxymethylene (POM) , Polyamide (PA), polycarbonate (PC), polymethyl methacrylate (PMMA), polyvinyl chloride (PVC), polyphenylene sulfide (PPS), Rephenylene ether (PPE), modified PPE, polyimide (PI), polyamideimide (PAI), polyetherimide (PEI), polysulfone (PSU), modified PSU, polyethersulfone (PES), polyketone (PK), polyether Examples include ketone (PEK), polyether ether ketone (PEEK), polyether ketone ketone (PEKK), polyarylate (PAR), polyether nitrile (PEN), phenolic resin, and phenoxy resin. The thermoplastic resin as the matrix resin may be a copolymer or modified body of the above resin and / or a resin blended with two or more kinds.
Among these, from the viewpoint of moldability and lightness, a polyolefin resin having a melting point lower by 20 ° C. or more than the melting point or softening point of the reinforcing fiber is preferable, and for example, a polypropylene resin is particularly preferable.
また、本発明に用いられる熱可塑性樹脂であるマトリックス樹脂は、強化用繊維束への含浸性の観点から、メルトフローレート(MFR)(230℃、21.18N荷重)が20〜100 g/10minの範囲であることが好ましい。
MFRが20 g/10min以上であれば、強化用繊維束への含浸が可能で、強化用繊維束同士が一つに纏まる傾向も少なく、強化用繊維束による補強効果が発現される。また、MFRが100 g/10min以下であれば、樹脂の物性の低下も少なく、FRTP線状物の曲げ加工等に際して、折れ易くなることもない。
マトリックス樹脂として用いられる熱可塑性樹脂には、必要に応じて、タルク等の無機充填材、難燃剤、導電性付与剤、紫外線吸収剤、酸化防止剤、熱安定剤、帯電防止剤、着色剤、顔料、染料等を配合してもよい。
The matrix resin, which is a thermoplastic resin used in the present invention, has a melt flow rate (MFR) (230 ° C., 21.18 N load) of 20 to 100 g / 10 min from the viewpoint of impregnation into the reinforcing fiber bundle. It is preferable that it is the range of these.
If the MFR is 20 g / 10 min or more, the reinforcing fiber bundles can be impregnated, and the reinforcing fiber bundles are less likely to be bundled together, and the reinforcing effect by the reinforcing fiber bundle is exhibited. In addition, when the MFR is 100 g / 10 min or less, the physical properties of the resin are not significantly lowered, and the FRTP linear material is not easily broken during bending.
The thermoplastic resin used as the matrix resin includes, as necessary, an inorganic filler such as talc, a flame retardant, a conductivity imparting agent, an ultraviolet absorber, an antioxidant, a thermal stabilizer, an antistatic agent, a colorant, You may mix | blend a pigment, dye, etc.
<長繊維強化熱可塑性樹脂線状物の断面形状等>
本発明の製造方法で得られる線状物の断面形状としては、真円とは限らず、楕円、凹凸のある形など様々な形をとりうる。
また、線状物の断面における、繊維束の断面形状においても、真円とは限らず、楕円、多角形などをとり得る。
さらに、線状物の断面における、強化用繊維束(島)の分布は均一とは限らないが、線状物断面の中心を基準になるべく点対称であることが好ましい。断面における繊維束分布に極端な偏りがあると、線状物を曲げる向きによって曲がりやすさが変わり、扱いづらくなるだけでなく、特定の方向に折れやすくなる恐れがある。
また、強化用繊維束により形成される島同士は必ずしもマトリックス樹脂によって明確に分かれているとは限らず、隣どうしが部分的に接触していても構わない。
強化用繊維束(島)の数は3以上50以下である必要がある。これより少ないと曲げた際に折れやすくなってしまい、これより多いと熱賦形性が下がってしまう。
強化用繊維束(島)の大きさは均一とは限らず、最大の島面積が最小の島面積の5倍程度あってもよい。すなわち、強化用繊維束の繊度が異なるもの、強化用繊維束の種類が異なるものを使用してもよい。
<Cross sectional shape etc. of long fiber reinforced thermoplastic resin wire>
The cross-sectional shape of the linear object obtained by the manufacturing method of the present invention is not limited to a perfect circle, and can take various shapes such as an ellipse and a shape with irregularities.
In addition, the cross-sectional shape of the fiber bundle in the cross-section of the linear object is not limited to a perfect circle, and may be an ellipse or a polygon.
Furthermore, the distribution of reinforcing fiber bundles (islands) in the cross-section of the linear object is not necessarily uniform, but it is preferable that the distribution is point-symmetrical with respect to the center of the cross-section of the linear object. If the fiber bundle distribution in the cross section is extremely biased, the ease of bending changes depending on the direction in which the linear object is bent, and not only is it difficult to handle, but there is a possibility that the fiber bundle may be easily broken in a specific direction.
Further, the islands formed by the reinforcing fiber bundle are not necessarily clearly separated by the matrix resin, and the neighboring may be partially in contact with each other.
The number of reinforcing fiber bundles (islands) needs to be 3 or more and 50 or less. If it is less than this, it will be easy to bend at the time of bending, and if it is more than this, the heat formability will be lowered.
The size of the reinforcing fiber bundle (island) is not necessarily uniform, and the maximum island area may be about five times the minimum island area. That is, the reinforcing fiber bundles having different fineness and the reinforcing fiber bundles having different types may be used.
以下、本発明を実施例により説明するが、本発明はこれらの実施例になんら限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples at all.
実施例1
(予備引出し工程)
強化用繊維束Fとして、1670dtex/144fのポリエチレンテレフタレートマルチフィラメント(東レ製、単繊維繊度11.6dtex)25本を、クリール1から引出し、未昇温の予熱装置内を経て、図5に示す円形の金属プレートに直径1mmの25個の孔があけられた分離ガイド201aの一個の孔に1本ずつ通し、続いて25本の繊維全てを、円形の金属プレートに直径2.5mmの孔が1個中央にあけられた収束ガイド202Caに通し、線状物の表面に露出する強化用繊維束を有しない、長手方向断面が海島型の線状物となるように強化用繊維束を収束ガイド202aに配置した。
次いで、図7に示す強化用繊維束Fを通した分離ガイド201a及び収束ガイド202aを、クロスヘッドダイ内部に取り付けるための半割り状の一方のガイド芯金20の溝204、205に嵌め、相対する他方の半割り状のガイド芯金と重ね合わせて円筒状のガイド芯金20とし、収束ガイド202aに通した強化用繊維束群をダイス先端に取着された直径3.2mmの円形押出ノズル23に通した上で、ガイド芯金(ガイドホルダー)20をクロスヘッドダイ本体2の後方へ取り付けた。
Example 1
(Preliminary withdrawal process)
As the reinforcing fiber bundle F, 25 polyethylene terephthalate multifilaments (manufactured by Toray, monofilament fineness 11.6 dtex) of 1670 dtex / 144 f are drawn out from the creel 1, passed through an unheated preheating device, and shown in FIG. One of the separation guides 201a having 25 holes with a diameter of 1 mm in one metal plate is passed through one hole, and then all 25 fibers are passed through the circular metal plate with one hole with a diameter of 2.5 mm. The reinforcing fiber bundle is passed through the converging guide 202Ca opened at the center of the individual piece, and the reinforcing fiber bundle is not included in the converging guide 202a so that the longitudinal cross section becomes a sea-island type linear object without the reinforcing fiber bundle exposed on the surface of the linear object. Arranged.
Next, the separation guide 201a and the convergence guide 202a that are passed through the reinforcing fiber bundle F shown in FIG. 7 are fitted into the grooves 204 and 205 of one half of the half-shaped guide mandrel 20 for mounting inside the crosshead die, A circular extrusion nozzle having a diameter of 3.2 mm, in which the reinforcing fiber bundle group passed through the convergence guide 202a is attached to the tip of the die by overlapping with the other half-divided guide core bar to form a cylindrical guide core bar 20. Then, a guide mandrel (guide holder) 20 was attached to the back of the crosshead die body 2.
(強化用繊維束の引出し張力)
強化用繊維束であるマルチフラメントは紙管に巻いた状態で繰り出しスタンドに取り付けられており、図2に示す張力調整手段TCとして載荷タイプテンサーTC1を介して引き出した。この張力調整手段TC1により、各強化用繊維束の張力(テンション)は全て20g/本になるように調整した。
(Drawing tension of reinforcing fiber bundle)
The multi-fragment, which is a reinforcing fiber bundle, is attached to a feeding stand in a state of being wound around a paper tube, and pulled out via a loading type tensor TC1 as tension adjusting means TC shown in FIG. By this tension adjusting means TC1, the tension (tension) of each reinforcing fiber bundle was adjusted to 20 g / line.
(長繊維強化熱可塑性樹脂線状物の製造)
押出ノズル23を通した強化用繊維束群を、冷却水槽3を通した上で、ベルト式引取装置4を用いて3m/minの速度で引取りながら、予熱装置PHを200℃に昇温しつつ溶融押出機を起動し、押出温度220℃で溶融したのちポリプロピレン樹脂(プライムポリマー製、MFR:55g/10min:230℃、21.18Nに剛性調整のためのタルク、銅害防止剤、青色を付けるためのマスターバッチをブレンドしたもので、実MFRは34.2g/10min)をダイ内部に供給した。なお、押出ノズルの吐出孔部は、ランドLが4mmであり、孔径Aが3.2mmであって、吐出側に向かって、上底Aが3.2mmの円錐台状にくり抜かれており、該押出ノズル23の厚み方向断面において該円錐台傾斜線232と吐出孔部壁面の線231とが交わる角度θが125°で、相対向するサヤ芯の先端の開口の孔径Bが、6.4mmで吐出部孔径Aに対して200%大である関係にあるサヤ芯を備えたクロスヘッドダイ2を用いた。溶融したポリプロピレン樹脂は、サヤ芯21の外周から入り、サヤ芯21の先端に達した後、一部はサヤ芯の中を通過する繊維束とともに押出ノズル方向に吐出されるが、残りは一旦サヤ芯21の先端からサヤ芯開口側に逆流し、そこで滞留しながらガイド芯金20を通った強化用繊維束Fの一部に含浸する。最後に押出ノズル23により形状を付与される。これを冷却水槽3で冷却しつつ引取ることで直径3.4mmの長繊維強化熱可塑性樹脂線状物(ロッド)を得た。得られた長繊維強化熱可塑性樹脂の断面の模式図を図10(A)に示す。得られた線状物の物性等について表1に示す。
(Manufacture of long fiber reinforced thermoplastic resin wire)
The temperature of the preheating device PH is raised to 200 ° C. while taking the reinforcing fiber bundle group that has passed through the extrusion nozzle 23 through the cooling water tank 3 and using the belt type take-up device 4 at a speed of 3 m / min. The melt extruder was started and melted at an extrusion temperature of 220 ° C., and then a polypropylene resin (manufactured by Prime Polymer, MFR: 55 g / 10 min: 230 ° C., 21.18 N with talc, copper damage inhibitor, blue for rigidity adjustment) The master batch for attaching was blended, and the actual MFR was 34.2 g / 10 min). In addition, the discharge hole portion of the extrusion nozzle has a land L of 4 mm, a hole diameter A of 3.2 mm, and is cut out in a truncated cone shape with an upper base A of 3.2 mm toward the discharge side. In the cross section of the extrusion nozzle 23 in the thickness direction, the angle θ at which the frustoconical inclined line 232 and the line 231 of the discharge hole wall face 231 is 125 °, and the hole diameter B of the opening of the opposite sheath core is 6.4 mm. The crosshead die 2 having a sheath core having a relationship of 200% larger than the discharge portion hole diameter A was used. The molten polypropylene resin enters from the outer periphery of the sheath core 21 and reaches the tip of the sheath core 21, and then a part is discharged in the direction of the extrusion nozzle together with the fiber bundle passing through the sheath core. The fiber 21 flows backward from the tip of the core 21 toward the opening of the sheath core, and impregnates a part of the reinforcing fiber bundle F that has passed through the guide core metal 20 while staying there. Finally, the shape is given by the extrusion nozzle 23. This was taken out while being cooled in the cooling water tank 3 to obtain a long fiber reinforced thermoplastic resin wire (rod) having a diameter of 3.4 mm. A schematic diagram of a cross section of the obtained long fiber reinforced thermoplastic resin is shown in FIG. It shows in Table 1 about the physical property etc. of the obtained linear thing.
実施例2
(予備引出し工程)
強化用繊維束として、1100dtex/95fのポリエチレンテレフタレート繊維(東レ製)25本を、クリールから張力調整手段TCとしてのテンサーおよび未昇温の予熱装置PHを経て、円形の金属プレートに直径1mmの25個の孔があけられた分離ガイド201b(図6(A))の1個の孔に1本ずつ通し、続いて分離ガイドの孔のうちPCDφ18mmの位置に配置された、外側の6個の孔に通した繊維束6本を、図6(B)に示す円形の金属プレートの中央に直径2.0mmの孔が1個、その周囲に放射状扇形の孔が6個あけられた収束ガイド202bの扇形の6個の孔に1本ずつ通し、分離ガイド内側の19個の孔を通した残りの繊維19本を、中央の孔202Cbに通した。分離ガイド外側の繊維を収束ガイド202bの扇形の孔208bに通す際は、繊維が直線的に通るようにし、繊維同士の交差がないようにした。なお、放射状扇形の孔の扇形下辺2021の直径Dfcは7.0mの収束ガイドを用いた。
次いで、分離ガイド201b及び収束ガイド202bを、実施例1と同じクロスヘッドダイ2の内部に取り付けるため、半割り状の一方のガイド芯金20の溝204,205に嵌め、相対する他方の半割り状のガイド芯金と重ね合わせて円筒状のガイド芯金20とし、収束ガイド202bに通した強化用繊維束群をダイス先端に取着された直径3.2mmの円形押出ノズル23に通した上で、ガイド芯金20をクロスヘッドダイ本体2の後方へ取り付けた。この時、分離ガイドの孔のうちPCDφ18mmの位置に導通された、外側の6本の繊維束は押出ノズル23の吐出孔内壁に接触する様にした。
なお、押出ノズルの吐出孔部は、ランドLが4mmであり、孔径Aが3.2mmであって、吐出側に向かって、上底が3.2mmの円錐台状にくり抜かれており、該ダイスの厚み方向断面において該円錐台傾斜線232と吐出孔部壁面線231とが交わる角度θが125°で、相対向するサヤ芯の先端の開口の孔径Bが、6.4mmで吐出部孔径Aに対して200%大である実施例1と同一のサヤ芯を備えたダイを用いた。
Example 2
(Preliminary withdrawal process)
As a reinforcing fiber bundle, 25 1100 dtex / 95 f polyethylene terephthalate fibers (manufactured by Toray) were passed through a tensor as a tension adjusting means TC and an unheated preheater PH from a creel, and 25 mm of a diameter of 1 mm on a circular metal plate. One of the holes in the separation guide 201b (FIG. 6 (A)) with a plurality of holes, one through each, and then the outer six holes arranged at a position of 18 mm PCD among the holes in the separation guide 6 of the converging guide 202b in which one hole having a diameter of 2.0 mm is formed at the center of the circular metal plate shown in FIG. 6B and six radial fan-shaped holes are formed around it. The remaining 19 fibers passed through 19 holes inside the separation guide, one by one through the 6 fan-shaped holes, were passed through the central hole 202Cb. When the fibers outside the separation guide are passed through the fan-shaped holes 208b of the convergence guide 202b, the fibers are linearly passed so that the fibers do not intersect each other. In addition, the convergence guide whose diameter Dfc of the fan-shaped lower side 2021 of a radial fan-shaped hole is 7.0 m was used.
Next, in order to attach the separation guide 201b and the convergence guide 202b to the inside of the same crosshead die 2 as in the first embodiment, the separation guide 201b and the convergence guide 202b are fitted in the grooves 204 and 205 of one half-shaped guide core bar 20 and the other half-section is opposed. A cylindrical guide core 20 is formed by superimposing it with a cylindrical guide core, and the reinforcing fiber bundle group passed through the convergence guide 202b is passed through a circular extrusion nozzle 23 having a diameter of 3.2 mm attached to the tip of the die. The guide mandrel 20 was attached to the back of the crosshead die body 2. At this time, the outer six fiber bundles conducted to the position of PCD φ18 mm among the holes of the separation guide were in contact with the inner wall of the discharge hole of the extrusion nozzle 23.
Note that the discharge hole portion of the extrusion nozzle has a land L of 4 mm, a hole diameter A of 3.2 mm, and is hollowed out into a truncated cone shape having an upper base of 3.2 mm toward the discharge side. In the cross section in the thickness direction of the die, the angle θ at which the frustoconical inclined line 232 and the discharge hole wall surface line 231 intersect is 125 °, the hole diameter B at the tip of the opposite sheath core is 6.4 mm, and the discharge hole diameter A die having the same sheath core as in Example 1, which is 200% larger than A, was used.
(長繊維強化熱可塑性樹脂線状物の成形)
押出ノズル23を通した強化用繊維束群を、冷却水槽3を通した上で、ベルト式引取装置4を用いて5m/minの速度で引取りながら、クリールからの各強化用繊維束Fの張力調整手段として中央軸Jに2枚の円板状セラミック板を間挿したテンサーTC1に強化用繊維束Fを通し、円板に錘Wを載置することで荷重を調整して、張力測定装置(横河電子機器株式会社製、テンションメータ Tー101)により張力が10g/本になるように調整しつつ、さらに上下半割りで組み立て時に円筒状を呈し、熱風発生機(株式会社 ライスター・テクノロジーズ製、ライスター・エレクトロン)を備えた予熱装置PHにより、強化用繊維束の表面温度が押出温度220℃より20℃低温の200℃となるように設定し、溶融押出機Eを起動して、押出温度220℃で溶融したのちポリプロピレン樹脂(プライムポリマー製、MFR:55g/10min:230℃、21.18N)を図9(C)に示すように、ダイ内部(221〜223)およびガイド芯金20の溶融樹脂接触部203に供給した。押出ノズル23から出てきた長繊維強化熱可塑性樹脂線状物を、冷却水を満たした冷却水槽3で冷却しつつ引取ることで直径3.4mmの長繊維強化熱可塑性樹脂線状物101を得た。得られた長繊維強化熱可塑性樹脂線状物101の断面の模式図を図10(B)に示す。
(Molding of long fiber reinforced thermoplastic resin wire)
The reinforcing fiber bundle group passed through the extrusion nozzle 23 is passed through the cooling water tank 3 and then taken up at a speed of 5 m / min using the belt-type take-up device 4. Tension measurement by adjusting the load by passing the reinforcing fiber bundle F through the tensor TC1 with two disc-shaped ceramic plates inserted in the central axis J as tension adjusting means, and placing the weight W on the disc. A device (Yokogawa Electronics Co., Ltd., tension meter T-101) is used to adjust the tension to 10 g / piece, and it is divided into upper and lower halves and forms a cylindrical shape when assembled. With the preheating device PH equipped with Technology, Leister Electron), the surface temperature of the reinforcing fiber bundle is set to 200 ° C., which is 20 ° C. lower than the extrusion temperature 220 ° C., and the melt extruder E is started. After melting at an outlet temperature of 220 ° C., a polypropylene resin (manufactured by Prime Polymer, MFR: 55 g / 10 min: 230 ° C., 21.18 N), as shown in FIG. 9 (C), inside the die (221 to 223) and the guide core 20 molten resin contact portions 203 were supplied. The long fiber reinforced thermoplastic resin linear product 101 having a diameter of 3.4 mm is taken out while being cooled in the cooling water tank 3 filled with cooling water. Obtained. A schematic diagram of a cross section of the obtained long fiber reinforced thermoplastic resin linear product 101 is shown in FIG.
本実施例2により得られた長繊維強化熱可塑性樹脂線状物の繊維露出箇所は6箇所であった。また、繊維露出率は28%であった。引き抜き強力は18.3Nであり、繊維露出のない、または露出の少ない長繊維強化熱可塑性樹脂線状物と比べて高い結果が得られた。これらの結果をまとめて表1に示す。 The number of exposed fiber portions of the long fiber reinforced thermoplastic resin filament obtained in Example 2 was 6. The fiber exposure rate was 28%. The pulling strength was 18.3 N, and a high result was obtained as compared with the long fiber reinforced thermoplastic resin linear material having no fiber exposure or little exposure. These results are summarized in Table 1.
実施例3〜7、比較例1〜3
長繊維強化熱可塑性樹脂線状物の長尺物の量産技術を確立するため、特に表面に所定本数の強化用繊維束を露出させた長繊維強化熱可塑性樹脂線状物について、生産速度を20m/minとして、安定連続生産性および露出繊維束の外観を評価した。
実施例2の製造条件において、クリールからの強化用繊維束の引出張力を3g/本〜120g/本、強化用繊維束の予熱温度を常温(20℃)〜200℃とした実施例、比較例について、安定(連続)生産性、繊維の露出度合いを観察し、以下のように評価した。
(i)連続生産性:生産長5000mを、生産速度20m/minで約4時間生産する場合を標準の連続生産として、当該生産時間における強化用繊維の繊維切れ回数により、次のように評価した。
○:4時間中繊維切れなし、△:4時間中繊維切れ1回、×:繊維切れ2回以上
(ii)繊維の露出:実施例2と同様に線状物の外周表面に6本の強化用繊維束を露出状に配置する場合において、繊維の露出度合いを評価した。
○:強化繊維束の1/3以上が露出(良好)、△:1/3以下露出、または不安定、×:繊維束の露出なし。
結果をまとめて表2に示す。
Examples 3-7, Comparative Examples 1-3
In order to establish the mass production technology for long-length long fiber-reinforced thermoplastic resin filaments, the production rate is 20 m, especially for long-fiber-reinforced thermoplastic resin filaments with a predetermined number of reinforcing fiber bundles exposed on the surface. As / min, the stable continuous productivity and the appearance of the exposed fiber bundle were evaluated.
In the production conditions of Example 2, an example in which the pulling tension of the reinforcing fiber bundle from the creel was 3 g / line to 120 g / line, and the preheating temperature of the reinforcing fiber bundle was normal temperature (20 ° C.) to 200 ° C., comparative example The stability (continuous) productivity and the degree of fiber exposure were observed and evaluated as follows.
(I) Continuous productivity: The production length of 5000 m was evaluated as follows based on the number of fiber breakage of reinforcing fibers during the production time, assuming that the production length was about 4 hours at a production rate of 20 m / min. .
○: No fiber breakage during 4 hours, Δ: One fiber breakage during 4 hours, X: Two or more fiber breaks (ii) Fiber exposure: Six reinforcements on the outer peripheral surface of the linear object as in Example 2. In the case of arranging the fiber bundles for exposure, the degree of fiber exposure was evaluated.
○: 1/3 or more of the reinforcing fiber bundle is exposed (good), Δ: 1/3 or less exposed or unstable, ×: fiber bundle is not exposed.
The results are summarized in Table 2.
表2より、クリールからの引出張力が3g、予熱温度が200℃である比較例1では、4連続生産性時間中に3回の強化用繊維束切れが発生し、繊維の露出状態は、「△」であった。引出張力を5g/本とし、予熱温度を常温(20℃)として比較例2では、比較例1同様に糸切れが4回、発生したが、繊維の露出度合いは良好であった。引出張力を5g/本とし、予熱温度を150℃(実施例3)、200℃(実施例4)では、実施例3で、4時間生産中に一回の糸切れが見られたが、露出度合いは共に良好であった。予熱温度を200℃として、引出張力を5g/本(実施例4)、10g/本(実施例5=実施例2)、50g/本(実施例6)、100g/本(実施例7)、120g/本(比較例3)では、引出張力が50g/本を超えると繊維の露出度合いが悪化する傾向が見られ、実施例6及び実施例7では「△」であった。また、連続生産性は、実施例7で1回の糸切れが発生し(「△」)、比較例3では、連続生産性、繊維の露出度合が共に「×」であった。
実施例3〜7により生産速度を大幅に向上させても、安定して連続生産でき、強化繊維束の露出度合いも良好であることが確認できた。
From Table 2, in Comparative Example 1 in which the pulling tension from the creel is 3 g and the preheating temperature is 200 ° C., the fiber bundle for reinforcement is broken three times during the four continuous productivity times, and the exposed state of the fiber is “ Δ ”. In Comparative Example 2, thread breakage occurred four times as in Comparative Example 1 with a drawing tension of 5 g / bar and a preheating temperature of room temperature (20 ° C.), but the degree of fiber exposure was good. When the drawing tension was 5 g / bar and the preheating temperatures were 150 ° C. (Example 3) and 200 ° C. (Example 4), one thread breakage was observed during production for 4 hours in Example 3, but exposure was not possible. Both degrees were good. The preheating temperature is 200 ° C., and the pulling tension is 5 g / line (Example 4), 10 g / line (Example 5 = Example 2), 50 g / line (Example 6), 100 g / line (Example 7), In the case of 120 g / line (Comparative Example 3), when the pulling tension exceeded 50 g / line, the degree of fiber exposure tended to deteriorate, and in Examples 6 and 7, it was “Δ”. As for continuous productivity, one thread breakage occurred in Example 7 (“Δ”), and in Comparative Example 3, both continuous productivity and fiber exposure degree were “x”.
It was confirmed that even if the production speed was greatly improved by Examples 3 to 7, stable production was possible and the degree of exposure of the reinforcing fiber bundle was good.
本発明の長繊維強化熱可塑性樹脂線状物の製造方法は、長繊維強化用繊維束への熱可塑性樹脂であるマトリックス樹脂の含浸度合い及び、表面露出繊維束の露出度合いを調整して、均一な物性(特性)の長繊維強化熱可塑性樹脂線状物を、再現性よく、安定して連続製造できる方法を提供でき、長手方向に曲げる賦形加工が容易なので、従来金属ワイヤを曲げ加工して使用されていた用途に代替できる非金属部材の製造方法として利用できる。
また、車両シート用長繊維強化熱可塑性樹脂線状物として利用できる、強化用繊維束が、長手方向に直交する断面において、該マトリックス樹脂が含浸していない未含浸部を有し、該強化用繊維束はそれぞれその一部が長繊維強化熱可塑性樹脂線状物の表面にそれぞれ別個の束状に露出して長手方向に連続してなり、前記強化用繊維束内の、マトリックス樹脂の未含浸部に、シートパッド成形時に、シートのクッション材である軟質ポリウレタン発泡樹脂が含浸することによって長繊維強化熱可塑性樹脂線状物と発泡体との結合性が発揮できる長繊維強化熱可塑性樹脂線状物を安定的に連続生産する製造方法として利用できる。
The method for producing a long fiber reinforced thermoplastic resin filament according to the present invention is performed by adjusting the degree of impregnation of the matrix resin, which is a thermoplastic resin, into the long fiber reinforcing fiber bundle and the degree of exposure of the surface exposed fiber bundle. It is possible to provide a method that enables continuous production of long fiber reinforced thermoplastic resin filaments with excellent physical properties (reproducibility) in a stable and reproducible manner. It can be used as a method for producing a non-metallic member that can be used in place of a use that has been used.
Further, a reinforcing fiber bundle that can be used as a long fiber reinforced thermoplastic resin linear material for vehicle seats has an unimpregnated portion that is not impregnated with the matrix resin in a cross section perpendicular to the longitudinal direction. Each of the fiber bundles is partly exposed in the form of a separate bundle on the surface of the long fiber reinforced thermoplastic resin wire, and is continuous in the longitudinal direction. The fiber bundle for reinforcement is not impregnated with the matrix resin. Long fiber reinforced thermoplastic resin linear shape that can exhibit the bond between the long fiber reinforced thermoplastic resin linear material and the foam by impregnating with soft polyurethane foam resin, which is the cushion material of the seat, at the time of seat pad molding It can be used as a production method for stably producing products continuously.
1 クリール
2 溶融押出機クロスヘッドダイ部
3 水冷槽
4 引取装置
20 ガイド芯金
21 サヤ芯
22 クロスヘッドダイ本体
23 押出ノズル
231 吐出孔部壁面線
232 円錐台傾斜線
100 長繊維強化熱可塑性樹脂線状物(第1態様)
101 長繊維強化熱可塑性樹脂線状物(第2態様:所要本数表面露出タイプ)
201a、b 分離ガイド
202a、b 収束ガイド
202C 収束ガイド中央透孔
2021 扇形下辺
203 溶融樹脂含浸部
203S 溶融樹脂含浸部内の含浸始点
203E 溶融樹脂含浸部内の含浸終点
204、205 ガイド保持用溝
206 フランジ
207 取付孔
208 収束ガイドの放射状扇形肉抜部又は透孔ガイド部
209 樹脂流入孔
221 ダイ内樹脂流路
222 ダイ内傾斜部樹脂流路
223 含浸部向樹脂流路
A 押出ノズル孔径
B サヤ芯先端開口の孔径
D 円板
E 溶融押出機
F 長繊維状強化用繊維束
Fo’ 露出している強化用繊維
Fi’ 内部の強化用繊維
G1、G2 第1、第2ガイド(糸道ガイド)
G3 集合ガイド
GB ガイドバー
L 押出ノズルのランド部
l 繊維露出箇所長さ
M マトリックス樹脂
S 海
I 島
TC 張力調整手段
PH 予熱装置
W 錘
Rfc 収束ガイドの扇形下辺半径
Rc 収束ガイド中央透孔半径
Dfc 収束ガイド扇形下辺直径
Dc 収束ガイド中央透孔直径
DESCRIPTION OF SYMBOLS 1 Creel 2 Melt extruder Crosshead die part 3 Water cooling tank 4 Take-out apparatus 20 Guide core 21 Saya core 22 Crosshead die main body 23 Extrusion nozzle 231 Discharge hole part wall line 232 Frustum inclined line 100 Long fiber reinforced thermoplastic resin line Form (first aspect)
101 Linear fiber reinforced thermoplastic resin (second aspect: required number surface exposed type)
201a, b Separation guide 202a, b Convergence guide 202C Convergence guide central through hole 2021 Fan-shaped lower side 203 Molten resin impregnated portion 203S Impregnation start point 203E in molten resin impregnated portion 204E Impregnation end point 204, 205 Guide retaining groove 206 Flange 207 Mounting hole 208 Radial fanned portion or through hole guide portion 209 of the converging guide Resin inflow hole 221 In-die resin flow path 222 In-die inclined portion resin flow path 223 Impregnation section resin flow path A Extrusion nozzle hole diameter B Saya core tip opening Diameter D disk E melt extruder F long fiber reinforcing fiber bundle Fo 'exposed reinforcing fiber Fi' internal reinforcing fiber G1, G2 first and second guides (thread guide)
G3 Collective guide GB Guide bar L Extrusion nozzle land l Fiber exposed part length M Matrix resin S Sea I Island TC Tension adjusting means PH Preheating device W Weight Rfc Fan-shaped lower radius of convergence guide Rc Convergence guide central hole radius Dfc Convergence Guide fan bottom diameter Dc Convergence guide center through hole diameter
Claims (8)
(1)所定の撚り数を有する長繊維強化用繊維束を所要本数クリールより張力調整手段を介して引出し、未昇温の予熱装置内に通し、分離ガイド、溶融樹脂含浸部及び収束ガイドを備えるガイド芯金の該分離ガイド及び該収束ガイドの所定の透孔に各繊維束を順に配列して挿通し、該ガイド芯金をクロスヘッドダイ本体部に装着し、次いでサヤ芯及び押出ノズルを備えるダイ、冷却槽、及び引取装置に導く、長繊維強化用繊維束群の予備引出し工程、
(2)該引取装置を駆動して、該長繊維強化用繊維束群を所定速度で引取りながら、該強化用繊維束に該張力調整手段を介して1本当り5〜100gの張力を負荷し、該予熱装置を昇温して該強化用繊維束を加熱しつつ該溶融押出機を駆動して、該クロスヘッドダイに該熱可塑性樹脂を供給して、該ガイド芯金の溶融樹脂含浸部及びダイ内において分離状の各強化用繊維束と溶融した熱可塑性樹脂を接触させて、各強化用繊維束に熱可塑性樹脂を部分的に含浸させ、引き続き収束ガイドを経て、所定の断面形状の押出ノズルを備えるダイにて加圧下に該長繊維強化用繊維束群を線状物として押出被覆する工程、
(3)押出被覆された線状物を冷却固化し、引取る工程、
を有し、
前記線状物を押出被覆する工程において、該予熱装置内での強化用繊維束の加熱は、溶融した熱可塑性樹脂の温度Tmに対して、強化用繊維束の表面温度がTm〜Tm−200℃に達する範囲とする、ことを特徴とする長繊維強化熱可塑性樹脂線状物の製造方法。 A method for producing a long fiber reinforced thermoplastic resin linear product comprising a matrix resin which is a thermoplastic resin and a fiber bundle for reinforcing long fibers,
(1) A long-fiber reinforcing fiber bundle having a predetermined number of twists is drawn from a required number of creels through a tension adjusting means, and is passed through an unheated preheating device, and includes a separation guide, a molten resin impregnation portion, and a convergence guide. The fiber bundles are sequentially arranged and inserted through the predetermined through holes of the separation guide and the convergence guide of the guide core, the guide core is attached to the crosshead die main body, and then provided with a sheath core and an extrusion nozzle. A preliminary drawing step of a bundle of long fiber reinforcing fiber bundles, which is led to a die, a cooling tank, and a drawing device;
(2) While driving the take-up device and taking up the group of long fiber reinforcing fiber bundles at a predetermined speed, a tension of 5 to 100 g is applied to the reinforcing fiber bundle via the tension adjusting means. And driving the melt extruder while heating the reinforcing fiber bundle by heating the preheating device, supplying the thermoplastic resin to the crosshead die, and impregnating the guide core metal with the molten resin Each separated reinforcing fiber bundle is brought into contact with the molten thermoplastic resin in the part and die, and each reinforcing fiber bundle is partially impregnated with the thermoplastic resin, followed by a convergence guide, and a predetermined cross-sectional shape. A step of extruding and coating the long fiber reinforcing fiber bundle group as a linear object under pressure with a die having an extrusion nozzle of
(3) a step of cooling and solidifying the extrusion-coated linear material and taking it out;
Have
In the step of extrusion coating the linear material, the heating of the reinforcing fiber bundle in the preheating device is such that the surface temperature of the reinforcing fiber bundle is Tm to Tm-200 with respect to the temperature Tm of the molten thermoplastic resin. A method for producing a long fiber reinforced thermoplastic resin linear product, characterized in that the temperature reaches a range that reaches ° C.
(a)収束ガイドの中央部透孔の孔径Dcが長繊維強化熱可塑性樹脂線状物の外径Dp対して50〜100%である。
(b)収束ガイドの放射状扇形透孔を形成する扇形上辺半径の2倍を扇形下辺直径Dfcとして、該扇形下辺直径Dfcが長繊維強化熱可塑性樹脂線状物の外径Dpに対して105〜360%である。 The method for producing a long fiber-reinforced thermoplastic resin wire according to claim 1 or 2, wherein the convergent guide of the guide core metal satisfies the following requirements (a) or two requirements (a) and (b). .
(A) The hole diameter Dc of the central portion through hole of the convergence guide is 50 to 100% with respect to the outer diameter Dp of the long fiber reinforced thermoplastic resin linear material.
(B) The fan-shaped lower side diameter Dfc is twice the fan-shaped upper side radius forming the radial fan-shaped through hole of the convergence guide, and the sector-shaped lower side diameter Dfc is 105 to 105 relative to the outer diameter Dp of the long fiber reinforced thermoplastic resin wire. 360%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017117885A JP6863581B2 (en) | 2017-06-15 | 2017-06-15 | Method for manufacturing long fiber reinforced thermoplastic resin linear material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017117885A JP6863581B2 (en) | 2017-06-15 | 2017-06-15 | Method for manufacturing long fiber reinforced thermoplastic resin linear material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019001066A true JP2019001066A (en) | 2019-01-10 |
JP6863581B2 JP6863581B2 (en) | 2021-04-21 |
Family
ID=65005141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017117885A Active JP6863581B2 (en) | 2017-06-15 | 2017-06-15 | Method for manufacturing long fiber reinforced thermoplastic resin linear material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6863581B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109664525A (en) * | 2019-01-31 | 2019-04-23 | 山东柏远复合材料科技有限公司 | A kind of device and method producing the composite materials such as high performance pipe plate |
CN111441093A (en) * | 2020-05-21 | 2020-07-24 | 西安工程大学 | Needleless air spinning device for preparing composite nano fibers and working method thereof |
CN112224491A (en) * | 2020-11-09 | 2021-01-15 | 重庆电子工程职业学院 | Control system and method for continuous bundling equipment for filamentous materials |
CN112976615A (en) * | 2019-12-17 | 2021-06-18 | 财团法人金属工业研究发展中心 | Apparatus and method for manufacturing thermoplastic composite pipe |
CN116852751A (en) * | 2023-09-04 | 2023-10-10 | 北京玻钢院复合材料有限公司 | Spiral composite material forming method and forming control system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56139920A (en) * | 1980-03-10 | 1981-10-31 | Ciba Geigy Ag | Method and device for manufacturing fiber reinforced plastic granular body |
JPH03183531A (en) * | 1989-12-14 | 1991-08-09 | Idemitsu Petrochem Co Ltd | Method and device for producing frp molding stock |
JP2014516822A (en) * | 2011-04-12 | 2014-07-17 | ティコナ・エルエルシー | Thermoplastic rod reinforced with continuous fiber and extrusion process for its production |
-
2017
- 2017-06-15 JP JP2017117885A patent/JP6863581B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56139920A (en) * | 1980-03-10 | 1981-10-31 | Ciba Geigy Ag | Method and device for manufacturing fiber reinforced plastic granular body |
JPH03183531A (en) * | 1989-12-14 | 1991-08-09 | Idemitsu Petrochem Co Ltd | Method and device for producing frp molding stock |
JP2014516822A (en) * | 2011-04-12 | 2014-07-17 | ティコナ・エルエルシー | Thermoplastic rod reinforced with continuous fiber and extrusion process for its production |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109664525A (en) * | 2019-01-31 | 2019-04-23 | 山东柏远复合材料科技有限公司 | A kind of device and method producing the composite materials such as high performance pipe plate |
CN109664525B (en) * | 2019-01-31 | 2023-11-14 | 山东柏远复合材料科技股份有限公司 | Equipment and method for producing high-performance composite materials such as pipe plates |
CN112976615A (en) * | 2019-12-17 | 2021-06-18 | 财团法人金属工业研究发展中心 | Apparatus and method for manufacturing thermoplastic composite pipe |
CN112976615B (en) * | 2019-12-17 | 2023-06-30 | 财团法人金属工业研究发展中心 | Apparatus and method for manufacturing thermoplastic composite pipe |
CN111441093A (en) * | 2020-05-21 | 2020-07-24 | 西安工程大学 | Needleless air spinning device for preparing composite nano fibers and working method thereof |
CN112224491A (en) * | 2020-11-09 | 2021-01-15 | 重庆电子工程职业学院 | Control system and method for continuous bundling equipment for filamentous materials |
CN112224491B (en) * | 2020-11-09 | 2022-03-29 | 重庆电子工程职业学院 | Control system and method for continuous bundling equipment for filamentous materials |
CN116852751A (en) * | 2023-09-04 | 2023-10-10 | 北京玻钢院复合材料有限公司 | Spiral composite material forming method and forming control system |
CN116852751B (en) * | 2023-09-04 | 2023-12-26 | 北京玻钢院复合材料有限公司 | Spiral composite material forming method and forming control system |
Also Published As
Publication number | Publication date |
---|---|
JP6863581B2 (en) | 2021-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2019001066A (en) | Production method of long fiber reinforced thermoplastic resin filamentous material | |
KR20130112710A (en) | Reinforced hollow profiles | |
US9659680B2 (en) | Composite core for electrical transmission cables | |
CA2831358C (en) | Continuous fiber reinforced thermoplastic rods and pultrusion method for its manufacture | |
RU2573674C2 (en) | Thermoplastic prepreg containing continuous and long fibres | |
JP5792293B2 (en) | Structural members formed from solid and linear profiles | |
US20230241837A1 (en) | Continuous Fiber Reinforced Thermoplastic Resin Composite Material and Method for Producing Same | |
JP2013530855A (en) | Method for forming reinforced pultruded profile | |
JP7449285B2 (en) | Modeling materials for 3D printers and methods for manufacturing modeled objects | |
JPH09510157A (en) | Melt impregnation method | |
US9321073B2 (en) | Impregnation section of die for impregnating fiber rovings | |
CN112639010A (en) | Additive printing filament material | |
JP5467828B2 (en) | Manufacturing method of long fiber reinforced thermoplastic resin pellets | |
JP3620103B2 (en) | Method for producing resin-coated reinforcing fiber yarn | |
JP2018016733A (en) | Long fiber reinforced thermoplastic resin linear article and manufacturing method therefor | |
JP6791686B2 (en) | Manufacturing method and equipment for spiral high-strength fiber composite wire, and manufacturing method for high-strength fiber composite cable | |
JP6677392B2 (en) | Long fiber reinforced thermoplastic resin wire for vehicle seats | |
JP6009368B2 (en) | Manufacturing apparatus and manufacturing method of long fiber reinforced thermoplastic resin strand | |
JP3724067B2 (en) | Method for producing composite material and mat-like composite material | |
WO2024161767A1 (en) | Fiber-reinforced resin composite and method for producing same | |
JP5001875B2 (en) | Method and apparatus for producing long fiber reinforced thermoplastic resin pellets | |
JPH04208408A (en) | Manufacture of fiber reinforced resin composition and device thereof | |
JPH07166665A (en) | Textile composite resin rain gutter and manufacture thereof | |
JPH07158220A (en) | Compound rain gutter and its manufacture | |
JP2000211011A (en) | Nozzle for preparing resin-coated reinforcing fiber bundle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200515 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201208 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201209 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210121 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210302 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210325 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6863581 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |