JPH04208408A - Manufacture of fiber reinforced resin composition and device thereof - Google Patents

Manufacture of fiber reinforced resin composition and device thereof

Info

Publication number
JPH04208408A
JPH04208408A JP33949990A JP33949990A JPH04208408A JP H04208408 A JPH04208408 A JP H04208408A JP 33949990 A JP33949990 A JP 33949990A JP 33949990 A JP33949990 A JP 33949990A JP H04208408 A JPH04208408 A JP H04208408A
Authority
JP
Japan
Prior art keywords
resin
strand
die
fiber bundle
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33949990A
Other languages
Japanese (ja)
Other versions
JP2934017B2 (en
Inventor
Teruo Hosokawa
細川 輝夫
Shinji Tsukamoto
真司 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2339499A priority Critical patent/JP2934017B2/en
Publication of JPH04208408A publication Critical patent/JPH04208408A/en
Application granted granted Critical
Publication of JP2934017B2 publication Critical patent/JP2934017B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

PURPOSE:To improve the creep resistance and the impact resistance of fiber reinforced plastic by a method wherein molten thermoplastic resin and long fiber bundle are extruded simultaneously and, just after their extrusion, the resin-covered fiber bundle is rolled with hot rolls. CONSTITUTION:A resin such as polypropylene or the like is charged to an extruder 1. The resin is extruded from the extruder and sent to a die 3 having L/D of 100-300. On the other hand, eight long fiber bundles made of glass filament or the like is charged from a fiber bundle feeding device 10 to the die 3 in the form of small fiber bundle so as to be pulled out in the form of long fiber-molten resin strand 2 simultaneously together with molten resin. The resultant strand 2 is heated with heating rolls consisting of fixed rolls 5 and 6 and a free roll 4, which are provided near the die 3, up to 160-250 deg.C. in this case, the linear pressure of the free roll is controlled to be 5-20kgf/cm to the total of the eight bundles. By passing the strand 2 through the rolls, the rolling of the strand is performed. The strand after being rolled is passed through a sizer 11, which is heated up to the melting temperature of the resin or higher, so as to be turned in strand having circular crosssection. After that, the resultant circular strand is passed through a cooling water tank 7 so as to cool and harden the resin. Finally, the hardened strand is taken up with a take-up machine and cut in arbitrary lengths with a cutter 9.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は繊維強化樹脂組成物の製造方法及びその製造装
置に関する発明であって、この樹脂組成物は耐クリープ
性、耐衝撃性に優れており、自動車、建材ならびに産業
資材等の分野の部品の原料として有用なものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method and apparatus for producing a fiber-reinforced resin composition, and the resin composition has excellent creep resistance and impact resistance. It is useful as a raw material for parts in fields such as automobiles, building materials, and industrial materials.

[従来の技術] 産業資材分野の用途に用いられるプラスチックにおいて
、耐クリープ性、耐衝撃性を要求される際には、繊維強
化プラスチックが用いられ、この製造方法としては、繊
維束をプルトルージョン法で樹脂を被覆する製造法ある
いはマット状繊維に樹脂を含浸する方法が採用されてい
る。
[Prior Art] Fiber-reinforced plastics are used when creep resistance and impact resistance are required for plastics used in the industrial material field. A manufacturing method in which resin is coated with resin or a method in which mat-like fibers are impregnated with resin are adopted.

プルトルージョン法により樹脂を被覆するためには、製
造上の制約から製造される製品に装入される繊維束(単
繊維の数百本ないし数千水の繊維の束)をわずかに数個
に分けた小繊維束として使わざるを得ず、繊維が各小繊
維束中の各単繊維に対してまで被覆が充分に行なわれ難
い問題があった。その結果として、強化のための繊維の
マトリックス樹脂中への分散が不均一で樹脂との間の接
着が不充分となり、強化プラスチック全体の剛性や引張
り強度への補強繊維の寄与が低く、強化不足となり易い
欠点があった。
In order to coat resin using the pultrusion method, due to manufacturing constraints, the number of fiber bundles (bundles of hundreds to thousands of single fibers) charged into the manufactured product must be reduced to just a few. This method has no choice but to be used as separate fibril bundles, and there is a problem in that it is difficult to sufficiently coat each single fiber in each fibril bundle. As a result, the reinforcing fibers are unevenly dispersed in the matrix resin, resulting in insufficient adhesion with the resin, and the contribution of the reinforcing fibers to the overall stiffness and tensile strength of the reinforced plastic is low, resulting in insufficient reinforcement. There was a drawback that could easily occur.

このため、各単繊維間への樹脂の浸透を図るためマトリ
ックスとなる樹脂の分子量を下げ、例えばポリプロピレ
ンではMFR(230’C)で30g〜100g/10
分、ポリアミドでは250’C3Kg荷重で40〜50
g/10分の如く溶融粘度を低(して小繊維束中への浸
透性を改良し、不充分ではあるがこの問題の解決を図っ
ている。
For this reason, in order to allow the resin to penetrate between each single fiber, the molecular weight of the resin that forms the matrix is lowered. For example, for polypropylene, the MFR (230'C) is 30g to 100g/10
40 to 50 at 250'C3Kg load for polyamide
The melt viscosity is lowered to 10 g/10 min to improve the permeability into the fibril bundles, which is an attempt to solve this problem, although it is not sufficient.

しかしながら、マトリックス樹脂の分子量を下げること
は、樹脂の小繊維束への浸透の問題は改善されるとして
もなあ不充分であるだけでなく、製品のクリープ強度及
び耐衝撃強度を著しく低下させ、材料の信頼性を損なう
ことを招いている。
However, lowering the molecular weight of the matrix resin not only improves the problem of resin penetration into the fibril bundles but is still insufficient, it also significantly reduces the creep strength and impact strength of the product, and the material This leads to a loss of credibility.

また、後者のマット状繊維に樹脂を含浸する場合にも、
同様にマット状繊維に対する樹脂の浸透を図り、結果と
して補強効果を改善するには、樹脂の分子量を下げる溶
融粘度の低下を必要とし、上記と同様の未解決の問題を
抱えている。
Also, when impregnating the latter matte fiber with resin,
Similarly, in order to improve the penetration of the resin into the matte fibers and thereby improve the reinforcing effect, it is necessary to lower the melt viscosity by lowering the molecular weight of the resin, which has the same unresolved problems as above.

F発明が解決しようとする課題] 本発明では、繊維強化プラスチックの耐クリープ性と耐
衝撃性の改善を図るため、各単繊維に対する樹脂の被覆
をより完全にすると共に、従来使われているマトリック
ス樹脂の分子量より高い分子量の材料を用いられるよう
に製造工程を工夫した長繊維含有樹脂組成物の製造方法
及びその製造装置の開発を目的とする。
Problems to be Solved by the Invention In the present invention, in order to improve the creep resistance and impact resistance of fiber-reinforced plastics, each single fiber is coated more completely with resin, and the conventional matrix The purpose of this invention is to develop a method for producing a long fiber-containing resin composition and an apparatus for producing the same, in which the production process is devised so that a material with a molecular weight higher than that of the resin can be used.

[課題を解決するための手段] 本発明は、長繊維に熱可塑性樹脂を含浸させるため、溶
融した熱可塑性樹脂と共に長繊維束を同時に押出し、そ
の直後加熱ロールにより樹脂で被覆された繊維束を圧延
することを特徴とする!III強化熱可塑性樹脂組成物
の製造方法に関するものであり、また長繊維に熱可塑性
樹脂を含浸させるため、溶融した熱可塑性樹脂と共に長
繊維束を同時に押出し、その直後加熱ロールにより樹脂
で被覆された繊維束を圧延し、サイザーにより形状を整
え、所定の長さに切断してペレットあるいは型材とする
ことを特徴とする繊維強化樹脂製品の製造法に関するも
のであり、更に長繊維に熱可塑性樹脂被覆を行なうため
のダイスを設けた押出機、該ダイスに近接して設置した
加熱圧延ロール、サイザー、冷却器、引取機およびカッ
ターの順に直列に構成された繊維強化樹脂組成物の製造
装置に関するものである。
[Means for Solving the Problems] In order to impregnate the long fibers with a thermoplastic resin, the present invention extrudes the long fiber bundle together with the molten thermoplastic resin, and immediately after that, the fiber bundle coated with the resin is extruded with a heated roll. Characterized by rolling! III Reinforced thermoplastic resin composition relates to a method for producing a reinforced thermoplastic resin composition, and in order to impregnate the long fibers with a thermoplastic resin, the long fiber bundle is extruded simultaneously with the molten thermoplastic resin, and immediately thereafter the long fiber bundle is coated with the resin using a heating roll. This relates to a method for manufacturing fiber-reinforced resin products, which is characterized by rolling a fiber bundle, adjusting the shape with a sizer, and cutting it into predetermined lengths to make pellets or shapes, and further involves coating the long fibers with thermoplastic resin. This invention relates to an apparatus for producing fiber-reinforced resin compositions, which comprises an extruder equipped with a die for carrying out this process, a hot rolling roll installed close to the die, a sizer, a cooler, a take-off machine, and a cutter arranged in series in this order. be.

本発明において長繊維束とは、ガラス繊維、炭素繊維、
アラミド繊維、ポリイミド繊維などのモノフィラメント
の数百本ないし数千本からなる束を意味する。
In the present invention, long fiber bundles include glass fibers, carbon fibers,
A bundle consisting of hundreds to thousands of monofilaments such as aramid fibers and polyimide fibers.

モノフィラメントとしては、補強効果があればよく、限
定されるわけではないがその繊度としては5〜20ミク
ロン程度が普通に用いられる。
The monofilament only needs to have a reinforcing effect, and its fineness is usually from 5 to 20 microns, although it is not limited to this.

以下、最もポピユラーに使用されるガラス繊維を仕表と
して本発明を説明する。
The present invention will be explained below using glass fiber, which is the most commonly used glass fiber.

マトリックス樹脂としての熱可塑性樹脂としては、繊維
強化の効果は繊維との接着性があれば大抵の樹脂にその
効果があるはずである。一般にはポリプロピレン(以下
、PPという、)、ポリアミド、ポリエステル等の樹脂
が普通に用いられる。長繊維との接着性を高めるため、
長繊維をシランカップリング剤、あるいはシランカップ
リング剤等で前処理するとか、ポリプロピレン中に無水
マレイン酸変性ポリオレフィン樹脂を少量ブレンドした
ものを用いること等の手段を講することも出来る。
As for thermoplastic resins as matrix resins, most resins should have the effect of fiber reinforcement as long as they have adhesive properties with fibers. Generally, resins such as polypropylene (hereinafter referred to as PP), polyamide, and polyester are commonly used. To improve adhesion with long fibers,
It is also possible to take measures such as pre-treating the long fibers with a silane coupling agent or a silane coupling agent, or using a blend of a small amount of maleic anhydride-modified polyolefin resin in polypropylene.

なお、製品の用途によっては長繊維と熱可塑性樹脂の特
殊な組み合わせ、例えば軽量で耐食性を必要とする場合
アラミド繊維とエンジニアリングプラスチック等も考え
られるが、この場合は繊維の配向度を乱さない加工温度
の樹脂を組み合わせることが必要となる。
Depending on the product's use, special combinations of long fibers and thermoplastic resins may be considered, such as aramid fibers and engineering plastics if light weight and corrosion resistance are required. It is necessary to combine the following resins.

本発明の製造方法では、溶融樹脂含有繊維束がダイスを
出た後で加熱ロールにより圧延され、繊維束の中まで溶
融体が混線すされ含浸するので、従来の単にプルトルー
ジョンダイスの長さ(繊維束供給口からその出口までの
距離)とダイスの径Dの比(L/D)を著しく短くする
ことができ、生産性、設備設置のスペース等を効率よく
改善できる。本発明においてダイスのL/Dは100〜
300位が好ましく用いることができる。
In the manufacturing method of the present invention, after the molten resin-containing fiber bundle exits the die, it is rolled by a heated roll, and the molten material is mixed and impregnated into the fiber bundle, so that the length of the conventional pultrusion die ( The ratio (L/D) of the distance from the fiber bundle supply port to its exit (distance from the fiber bundle supply port to its exit) and the diameter D of the die (L/D) can be significantly reduced, and productivity, equipment installation space, etc. can be efficiently improved. In the present invention, the L/D of the dice is 100~
300th position can be preferably used.

長繊維束と溶融した樹脂の同時押出は、電線被覆ダイス
またはプルトルージョン法ダイス等のダイスを設けた押
出機を用いると良い。
For simultaneous extrusion of the long fiber bundle and the molten resin, it is preferable to use an extruder equipped with a die such as an electric wire coating die or a pultrusion die.

加熱ロールはダイスに近接して設け、溶融している樹脂
の冷却、同化が避けられる距離に設置する必要がある。
The heating roll must be placed close to the die and at a distance that prevents cooling and assimilation of the molten resin.

ここで圧延されて、長繊維束中へ樹脂の含浸を更に進め
る。
Here, the long fiber bundle is rolled to further impregnate the resin into the long fiber bundle.

圧延ロールは加熱されており、材料がPPのときMFR
が40g/10分以下の比較的高分子量の場合は160
℃から250℃程度の範囲内であり、またMFRが40
〜200g/10分位の低分子量の場合では140℃〜
190℃の範囲のごとく低温で良い。
The rolling roll is heated, and when the material is PP, the MFR
160 if it has a relatively high molecular weight of 40g/10min or less
The temperature range is from ℃ to 250℃, and the MFR is 40
〜140℃〜 for low molecular weight of around 200g/10min
A low temperature such as within the range of 190°C is sufficient.

この加熱ロールの温度は使用するマトリックス樹脂の種
類、特に融点や流れ特性によって適切な温度は変わるも
のであることがいうまでもない。
Needless to say, the appropriate temperature for this heating roll varies depending on the type of matrix resin used, especially its melting point and flow characteristics.

加熱ロールは固定ロールとフリーロールとの接触による
圧力の指標として線圧で表示することが望ましい。
It is desirable to display the heating roll in linear pressure as an indicator of the pressure caused by contact between the fixed roll and the free roll.

線圧はニップさせた際に押し付けたフリーロールの重さ
をロールが接触した長さ(cm)で割った値で、例えば
約3mmの径の小繊維束8束であるときは加圧力が5〜
20Kgの範囲が望ましい。
Linear pressure is the value obtained by dividing the weight of the free roll pressed during nipping by the length (cm) of contact between the rolls. For example, if there are 8 small fiber bundles with a diameter of about 3 mm, the pressing force is 5. ~
A range of 20 kg is desirable.

このように長繊維束の間へ樹脂の含浸をした後、任意の
断面形状のサイザーを通して型材とすることも出来る。
After impregnating the resin between the long fiber bundles in this way, it can be passed through a sizer with an arbitrary cross-sectional shape to form a mold material.

また、加熱ロール及びサイザーを複数組直列に設け、長
繊維束と溶融樹脂の練り効果を高め、長繊維束中へ樹脂
の含浸の均一性、逆に言えばマトリックス樹脂中への繊
維の分散を高めることができる。
In addition, multiple sets of heating rolls and sizers are installed in series to increase the effect of kneading the long fiber bundle and molten resin, thereby improving the uniformity of resin impregnation into the long fiber bundle and, conversely, the dispersion of the fibers into the matrix resin. can be increased.

加熱ロールは2本ロール、3本ロール等いずれも使用で
きる。
As the heating rolls, two rolls, three rolls, etc. can be used.

サイザーを通った長繊維束−溶融樹脂ストランドは冷却
器、例えば冷却水槽を通して冷却し、引取機で引き取り
、ついでカッターで型材又はペレットに対応する任意の
長さに切断される。
The long fiber bundle-molten resin strand that has passed through the sizer is cooled through a cooler, such as a cooling water tank, taken off by a take-off machine, and then cut into arbitrary lengths corresponding to shapes or pellets by a cutter.

[作 用] 電線被覆ダイスまたはプルトルージョンダイスから押し
出された長繊維束−溶融樹脂ストランドは溶融樹脂が高
粘度融体であるため、たとえプルトルージョン法により
小繊維束に分割供給されていてもマトリックス樹脂中へ
の繊維の分散は不充分である。
[Function] Since the long fiber bundle-molten resin strand extruded from the wire coating die or pultrusion die is a high-viscosity melt, even if the molten resin is divided and supplied into small fiber bundles by the pultrusion method, it will not form in the matrix. Dispersion of the fibers into the resin is insufficient.

本発明ではこの問題を前記ダイスに近接した加熱ロール
を通すことにより練り効果を高め、この分散を大きく改
善したものである。また、加熱ロールとサイザーのセッ
トを複数組直列に設置することによりこの練り効果を更
に高めることができるものである。この場合第1段のサ
イザーは第2段の加熱ロールに供給し、繰り効果が高ま
る形状であればよく、このことは最終段のサイザーがペ
レットあるいは型材に合わせた形状を必要とすることは
別である。
In the present invention, this problem is solved by passing heated rolls close to the die to enhance the kneading effect and greatly improve the dispersion. Moreover, by installing a plurality of sets of heating rolls and sizers in series, this kneading effect can be further enhanced. In this case, the sizer in the first stage is supplied to the heating roll in the second stage, so long as it has a shape that increases the rolling effect. It is.

このようにダイスに近接して加熱ロール、サイザー、冷
却器、引取機、カッターを直列に設けた装置を開発する
と共に、この装置を用いることによりマトリックス樹脂
中への繊維の分散を大きく改善したものである。
In this way, we have developed a device in which a heating roll, sizer, cooler, take-off machine, and cutter are installed in series in close proximity to the die, and by using this device, we have greatly improved the dispersion of fibers into the matrix resin. It is.

[実施例] 以下、図面を参照して本発明を具体的に説明する。[Example] Hereinafter, the present invention will be specifically explained with reference to the drawings.

(実施例1) 押出機(1)八PP(ホモポリプロピレン、MFR10
g/10分)を供給する。樹脂は250℃で押出機より
押し出され、L/Dが100のダイス(3)に送られる
。一方、繊維束供給装置(10)から直径13ミクロン
のガラスフィラメント2500本からなる長繊維の繊維
束8束が供給され、これは小繊維束として前記ダイス(
3)に供給され、同時に溶融樹脂と共に長繊維−溶融樹
脂ストランド(2)として引き出される。
(Example 1) Extruder (1) 8PP (homopolypropylene, MFR10
g/10 min). The resin is extruded from an extruder at 250°C and sent to a die (3) with L/D of 100. On the other hand, eight long fiber bundles made up of 2500 glass filaments with a diameter of 13 microns are supplied from the fiber bundle supply device (10), and these are fed into the die (10) as small fiber bundles.
3), and simultaneously drawn out together with the molten resin as a long fiber-molten resin strand (2).

減速付ギヤーモーターで駆動されている固定ロール(5
)、(6)及びフリーロール(4)からなる加熱ロール
は190℃に加熱され、フリーロールの線圧は8束の合
計に対し10Kgf/cmに調節されており、この間を
長繊維−溶融樹脂ストランドを通過させて圧延を行なう
、この圧延されたストランドを樹脂の溶融温度以上に加
熱されたサイザー(11)を通して断面円形のストラン
ドとし、冷却水を満たした冷却水槽(7)を通してスト
ランドの樹脂を冷却硬化し、引取機(8)で6 m /
 m i nの速度で引き取り、13mmの長さにカッ
ター(9)で切断し繊維強化熱可塑性樹脂組成物のペレ
ットを得た。
A fixed roll (5
), (6) and the free roll (4) are heated to 190°C, and the linear pressure of the free roll is adjusted to 10 Kgf/cm for the total of 8 bundles, and the long fiber-molten resin is passed between them. The rolled strand is passed through a sizer (11) heated above the melting temperature of the resin to form a strand with a circular cross section, and the resin of the strand is passed through a cooling water tank (7) filled with cooling water. Cool and harden, then take off with a pulling machine (8) to 6 m/
The pellets were taken up at a speed of min and cut into 13 mm lengths with a cutter (9) to obtain pellets of fiber reinforced thermoplastic resin composition.

このペレットを用いてプレス成形し、JISK  71
13によりサンプルを試験したところ、引張強度は13
00 K glcl”であった。
This pellet is press-molded and JISK 71
When the sample was tested according to 13, the tensile strength was 13
00 K glcl”.

(実施例2) PPのMFRを15g/10分、加熱ロールの温度を2
15℃とした以外は実施例1と同じ操作を行なった。
(Example 2) MFR of PP was 15 g/10 minutes, temperature of heating roll was 2
The same operation as in Example 1 was performed except that the temperature was 15°C.

引っ張り強度は1050Kg/c■2であった。The tensile strength was 1050 kg/c2.

(比較例1) MFRが60g/10分のPPを用い、加熱ロールを通
さずにサイザーを通して、引取速度が4 m / m 
i nの速度で冷却槽を経てカッターに供給し、実施例
と同じ13mmの長さのペレットに切断した。
(Comparative Example 1) Using PP with an MFR of 60 g/10 minutes, the material was passed through a sizer without passing through a heating roll, and the take-up speed was 4 m/m.
The pellets were fed to a cutter via a cooling tank at a speed of 1.2 in, and cut into pellets with a length of 13 mm, the same as in the example.

このペレットを実施例1と同様にサンプル調整し、引張
強度を測定したところ、980 K glcl2であっ
た。引取速度を5 m / m i nとすると、この
引張強度は690 K g / c■2に低下し、引取
速度の上昇は練り効果に悪影響を及ぼし、生産性を向上
させると、製品の物性の低下が避けられないことが確認
された。
A sample of this pellet was prepared in the same manner as in Example 1, and the tensile strength was measured and found to be 980 K glcl2. If the take-up speed is 5 m/min, this tensile strength decreases to 690 K g/c■2.Increasing the take-up speed has a negative effect on the kneading effect, and improving productivity will lead to changes in the physical properties of the product. It has been confirmed that a decline is inevitable.

(比較例2) 加熱ロールを通さずに、ダイスより直接にサイザーを通
し、続いて冷却水槽で冷却後ペレットに切断した以外は
すべて実施例1と同一の条件でペレットを製造した。
(Comparative Example 2) Pellets were produced under the same conditions as in Example 1 except that the pellets were passed directly through a sizer through a die without passing through a heating roll, and then cooled in a cooling water bath and cut into pellets.

引張強度を測定すると500Kg/c曹2であった。When the tensile strength was measured, it was 500 kg/c carbon dioxide.

以上の実施例、比較例から、同一の分子量(MFR)の
樹脂であっても練り効果が不充分であると引張強度は半
分以下に低下すること、高分子量の樹脂と低分子量の樹
脂では同一の練り(繊維の分散度)では高分子量の組成
物が物性として優れていること、また低分子量の樹脂の
方が加熱ロールを使用しない従来法では物性値の良い樹
脂組成物が得られること、生産性の向上は物性値の低下
を招くことが判る。
From the above examples and comparative examples, it is clear that even if resins have the same molecular weight (MFR), if the kneading effect is insufficient, the tensile strength will drop to less than half, and that the tensile strength will be the same for high molecular weight resins and low molecular weight resins. In kneading (dispersity of fibers), high molecular weight compositions have superior physical properties, and low molecular weight resins can yield resin compositions with better physical properties using conventional methods that do not use heated rolls. It can be seen that improvement in productivity leads to a decrease in physical property values.

[発明の効果] 本発明の長繊維強化樹脂組成物の製造法は、ダイスに近
接して加熱ロールを設け、長繊維−溶融樹脂ストランド
を圧延することにより、マトリックス樹脂中に長繊維を
均一に分散することが出来、樹脂組成物の耐クリープ性
、耐衝撃性、引張強度を著しく改善できることをもたら
すことができた。
[Effects of the Invention] The method for producing the long fiber reinforced resin composition of the present invention includes providing a heating roll close to a die and rolling the long fiber-molten resin strand, thereby uniformly distributing the long fibers in the matrix resin. It was possible to significantly improve the creep resistance, impact resistance, and tensile strength of the resin composition.

なお、長繊維束中への溶融樹脂の含浸が従来法の長繊維
−溶融樹脂ストランドに対して反覆施工出来るので、従
来法に比して高分子量の樹脂を使用しても良好な分散が
期待できること、またストランドの引取速度をスピード
アップしても物性の低下がない等価れた方法である。
Furthermore, since the impregnation of the molten resin into the long fiber bundle can be repeated over the long fiber-molten resin strand using the conventional method, better dispersion is expected even when using a higher molecular weight resin than in the conventional method. This is an equivalent method that does not cause any deterioration in physical properties even if the strand take-up speed is increased.

また、本発明の製造装置は上記の長繊維強化樹脂組成物
製造に適した装置であって、各種の繊維、各種の樹脂か
らなる繊維強化樹脂組成物の製造方法に使用できる。
Further, the manufacturing apparatus of the present invention is suitable for manufacturing the above-mentioned long fiber-reinforced resin composition, and can be used in a method for manufacturing fiber-reinforced resin compositions made of various fibers and various resins.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は長繊維樹脂被覆装置の一例である。 (1)押出機 (2)長繊維−溶融樹脂ストランド (3)ダイス (4)フリーロール、(5)、(6)固定ロール(7)
冷却水槽、   (8)引取機 (9)カッター   (lO)繊維束供給装置(11)
サイザー
FIG. 1 shows an example of a long fiber resin coating device. (1) Extruder (2) Long fiber-molten resin strand (3) Die (4) Free roll, (5), (6) Fixed roll (7)
Cooling water tank, (8) Take-up machine (9) Cutter (1O) Fiber bundle supply device (11)
sizer

Claims (3)

【特許請求の範囲】[Claims] (1)長繊維に熱可塑性樹脂を含浸させるため、溶融し
た熱可塑性樹脂と共に長繊維束を引き出しながら両者を
同時に押出し、その直後加熱ロールにより樹脂で被覆さ
れた繊維束を圧延することを特徴とする繊維強化熱可塑
性樹脂組成物の製造方法。
(1) In order to impregnate the long fibers with a thermoplastic resin, the long fiber bundle is pulled out together with the molten thermoplastic resin and extruded at the same time, and immediately after that, the fiber bundle coated with the resin is rolled with a heated roll. A method for producing a fiber-reinforced thermoplastic resin composition.
(2)長繊維に熱可塑性樹脂を含浸させるため、溶融し
た熱可塑性樹脂と共に長繊維束を同時に押出し、その直
後加熱ロールにより樹脂で被覆された繊維束を圧延し、
サイザーにより形状を整え、所定の長さに切断してペレ
ットあるいは型材とすることを特徴とする繊維強化樹脂
製品の製造法。
(2) In order to impregnate the long fibers with a thermoplastic resin, the long fiber bundles are simultaneously extruded together with the molten thermoplastic resin, and immediately after that, the fiber bundles coated with the resin are rolled with heated rolls.
A method for manufacturing fiber-reinforced resin products, which is characterized by shaping them with a sizer and cutting them into predetermined lengths to make pellets or shapes.
(3)長繊維に熱可塑性樹脂被覆を行なうためのダイス
を設けた押出機、該ダイスに近接して設置した加熱圧延
ロール、サイザー、冷却器、引取機およびカッターの順
に直列に構成された繊維強化樹脂組成物の製造装置。
(3) Fibers configured in series in the following order: an extruder equipped with a die for coating long fibers with thermoplastic resin, a hot rolling roll installed close to the die, a sizer, a cooler, a puller, and a cutter. Equipment for manufacturing reinforced resin compositions.
JP2339499A 1990-11-30 1990-11-30 Method and apparatus for producing fiber reinforced resin product Expired - Lifetime JP2934017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2339499A JP2934017B2 (en) 1990-11-30 1990-11-30 Method and apparatus for producing fiber reinforced resin product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2339499A JP2934017B2 (en) 1990-11-30 1990-11-30 Method and apparatus for producing fiber reinforced resin product

Publications (2)

Publication Number Publication Date
JPH04208408A true JPH04208408A (en) 1992-07-30
JP2934017B2 JP2934017B2 (en) 1999-08-16

Family

ID=18328053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2339499A Expired - Lifetime JP2934017B2 (en) 1990-11-30 1990-11-30 Method and apparatus for producing fiber reinforced resin product

Country Status (1)

Country Link
JP (1) JP2934017B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182761A (en) * 1992-12-15 1994-07-05 Toyobo Co Ltd Fiber-reinforced resin pellet and molded product thereof
CN102729450A (en) * 2012-07-18 2012-10-17 常州大学 Preparation device and method of macrofiber-reinforced thermoplastic resin composite board/sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182761A (en) * 1992-12-15 1994-07-05 Toyobo Co Ltd Fiber-reinforced resin pellet and molded product thereof
CN102729450A (en) * 2012-07-18 2012-10-17 常州大学 Preparation device and method of macrofiber-reinforced thermoplastic resin composite board/sheet
CN102729450B (en) * 2012-07-18 2015-08-05 常州大学 The preparation facilities of fiber reinforced thermoplastic resin composite board/sheet material and method

Also Published As

Publication number Publication date
JP2934017B2 (en) 1999-08-16

Similar Documents

Publication Publication Date Title
CA2831358C (en) Continuous fiber reinforced thermoplastic rods and pultrusion method for its manufacture
US5520867A (en) Method of manufaturing a resin structure reinforced with long fibers
US20130113133A1 (en) Impregnation Assembly and Method for Manufacturing a Composite Structure Reinforced with Long Fibers
JP2013530855A (en) Method for forming reinforced pultruded profile
JP2013534479A (en) Reinforced hollow profile
CN107866954B (en) Method and apparatus for manufacturing continuous fiber reinforced thermoplastic resin prepreg tape
CN108724525A (en) Continuous fiber reinforced thermoplastic composite material unidirectional prepreg tape Preparation equipment and method
CA2832823A1 (en) Composite core for electrical transmission cables
JPH07251437A (en) Method and device for manufacture of long fiber reinforced thermoplastic composite material
EP2377675A1 (en) Impregnation assembly and method for manufacturing a composite structure reinforced with long fibers
CA2980235C (en) Process and device for the production of a fibre-composite material
WO2011034187A1 (en) Method for producing long-fiber-reinforced thermoplastic resin pellets
JP2829323B2 (en) Equipment for manufacturing fiber-reinforced resin molding materials
JP2524941B2 (en) Continuous glass fiber reinforced thermoplastic resin pellets and method for producing the same
JPH04208408A (en) Manufacture of fiber reinforced resin composition and device thereof
JP2862613B2 (en) Resin impregnated coated fiber
JPH0768544A (en) Impregnation of fiber bundle with resin
JPH031907A (en) Production of fiber reinforced composite material
JPH05124036A (en) Production of fiber-reinforced resin body
JP3210694B2 (en) Method for producing fiber-reinforced composite material
JP3027540B2 (en) Manufacturing method of long fiber reinforced thermoplastic resin composite
CN219133302U (en) Continuous fiber reinforced thermoplastic composite sheet and production system
JP3241435B2 (en) Fiber-reinforced thermoplastic resin composite material and method for producing the same
CN108727689A (en) A kind of production system and preparation method of long glass fiber-reinforced polypropylene materials
JP2662853B2 (en) Manufacturing method and manufacturing apparatus for long fiber reinforced thermoplastic resin molding material