JP2862613B2 - Resin impregnated coated fiber - Google Patents

Resin impregnated coated fiber

Info

Publication number
JP2862613B2
JP2862613B2 JP1907590A JP1907590A JP2862613B2 JP 2862613 B2 JP2862613 B2 JP 2862613B2 JP 1907590 A JP1907590 A JP 1907590A JP 1907590 A JP1907590 A JP 1907590A JP 2862613 B2 JP2862613 B2 JP 2862613B2
Authority
JP
Japan
Prior art keywords
resin
thermoplastic resin
fiber bundle
fiber
reinforcing fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1907590A
Other languages
Japanese (ja)
Other versions
JPH0347714A (en
Inventor
哲夫 岡本
健吉 能勢
忠彦 高田
圭郎 都解
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to DE69025225T priority Critical patent/DE69025225T2/en
Priority to US07/508,849 priority patent/US5068142A/en
Priority to EP90107113A priority patent/EP0393536B1/en
Publication of JPH0347714A publication Critical patent/JPH0347714A/en
Application granted granted Critical
Publication of JP2862613B2 publication Critical patent/JP2862613B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Multicomponent Fibers (AREA)
  • Reinforced Plastic Materials (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は成型品の補強材料あるいは土木事業における
補強材料として有用な複合材に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a composite material useful as a reinforcing material for molded articles or a reinforcing material in the civil engineering business.

<従来の技術> 従来、繊維強化熱可塑性樹脂原料の製造方法として
は、射出成形に供するペレットを作る場合には、一般に
5mm位に繊維束を切断したチョップドストランドと樹脂
とを押出機により混練押出する方法が知られている。
<Prior art> Conventionally, as a method for producing a fiber-reinforced thermoplastic resin raw material, when producing pellets to be subjected to injection molding, generally,
A method of kneading and extruding a chopped strand obtained by cutting a fiber bundle to about 5 mm and a resin using an extruder is known.

しかしながらこの方法によれば、例えば有機繊維であ
るアラミド繊維では、短く切断した場合、繊維は綿状に
なって、著しく嵩高になるため、押出機やニーダーに噛
み込みにくく、また無機繊維である炭素繊維とかガラス
繊維は押出機の混練工程で、高い剪断力により粉砕され
0.5mm以下となり、得られる繊維強化熱可塑性樹脂の機
械的性質を高めることができないという問題点があっ
た。
However, according to this method, for example, in the case of aramid fiber which is an organic fiber, when the fiber is cut short, the fiber becomes cottony and becomes extremely bulky, so that it is difficult to bite into an extruder or a kneader, and carbon fiber which is an inorganic fiber is used. Fiber and glass fiber are pulverized by high shear force in the kneading process of the extruder.
0.5 mm or less, resulting in a problem that the mechanical properties of the obtained fiber-reinforced thermoplastic resin cannot be enhanced.

また、近年PPS,PEEK,PESの如く耐熱性のある樹脂の補
強が必要になるにつれて、押出機によるペレット作成時
間及び射出成形時に補強用繊維の集束剤が熱劣化するこ
とにより繊維の分散性が悪化するという問題があった。
更に成形品の高温使用時に、補強用繊維の水及び熱劣化
した集束剤のガスの為に、得られる繊維強化熱可塑性樹
脂の耐熱性,機械的性質が低下するという問題があっ
た。これらの欠点を解決するために特開昭62−240351号
公報,特開昭57−90020号公報などが提案されている
が、噛み込み性とか補強繊維の粉砕に対しては効果があ
るも、強化用繊維の水及び熱劣化した集束剤によるガス
化の問題を解決するには至っていない。また、更に重要
なことは、補強用繊維個々が繊維強化用樹脂で覆われる
ことが必要なのであるが、上記公報の方法では補強用繊
維束を常圧下で、高粘度の樹脂を用いて被覆するため
に、主として繊維束の表面のみが被覆され、補強用繊維
個々の被覆には至らずそのために十分な補強効果が得ら
れていない。
Also, in recent years, as reinforcement of heat-resistant resins such as PPS, PEEK, and PES has become necessary, the dispersibility of the fibers due to the thermal deterioration of the reinforcing fiber sizing agent during pellet preparation time and injection molding by the extruder has increased. There was a problem of getting worse.
Further, when the molded article is used at a high temperature, there is a problem that the heat resistance and mechanical properties of the obtained fiber-reinforced thermoplastic resin are reduced due to the water of the reinforcing fibers and the gas of the sizing agent which has been thermally degraded. To solve these drawbacks, Japanese Patent Application Laid-Open Nos. 62-240351 and 57-90020 have been proposed, but they are effective for biting properties and grinding of reinforcing fibers. The problem of gasification of reinforcing fibers due to water and thermally degraded sizing agent has not been solved. More importantly, it is necessary that each reinforcing fiber is covered with a fiber reinforcing resin. In the method of the above publication, the reinforcing fiber bundle is coated with a high-viscosity resin under normal pressure. For this reason, only the surface of the fiber bundle is mainly covered, and the individual reinforcing fibers are not covered, and thus a sufficient reinforcing effect is not obtained.

また、補強用連続繊維を樹脂で被覆した樹脂被覆繊維
については、特開昭61−40113号公報などがある。この
方法では、繊維束を分散させるので補強用繊維個々の被
覆はなされているが、補強用繊維束が熱可塑性樹脂の融
点以上の温度であらかじめ加熱されていないので、補強
用繊維に付着して残存している集束剤が成形の際、成形
温度で熱劣化してガス化し、そのために成形品の耐熱
性,機械的性質を低下せしめている。さらに、長さ方向
に連続繊維が均一に分散,混合されていることも重要な
要求特性であるが、該公報の方法では長さ方向に繊維が
均一に分散,混合された樹脂被覆繊維を製造することは
できない。
JP-A-61-40113 discloses resin-coated fibers obtained by coating continuous reinforcing fibers with a resin. In this method, since the fiber bundles are dispersed, the individual reinforcing fibers are coated, but since the reinforcing fiber bundles are not preheated at a temperature equal to or higher than the melting point of the thermoplastic resin, the fibers adhere to the reinforcing fibers. At the time of molding, the remaining sizing agent is thermally degraded at the molding temperature and gasified, thereby lowering the heat resistance and mechanical properties of the molded product. It is also an important required property that the continuous fibers are uniformly dispersed and mixed in the length direction. However, according to the method of this publication, resin-coated fibers in which the fibers are uniformly dispersed and mixed in the length direction are manufactured. I can't.

<発明の目的> 本発明は、前述の如き従来技術の問題点を解決するこ
とを目的とするものである。すなわち噛み込み性,分散
性が良好で、成形段階での熱劣化によるガスの発生が少
なく、かつ成形物全体に繊維が均一に分散,混合され、
良好な耐熱性及び機械的特性を有する成形物を与えるこ
とができる樹脂含浸被覆繊維を製造する方法を提供する
ことにある。
<Object of the Invention> An object of the present invention is to solve the problems of the related art as described above. That is, the biting and dispersing properties are good, the generation of gas due to thermal deterioration in the molding stage is small, and the fibers are uniformly dispersed and mixed throughout the molded product.
An object of the present invention is to provide a method for producing a resin-impregnated coated fiber capable of providing a molded product having good heat resistance and mechanical properties.

具体的には、補強用繊維束を熱可塑性樹脂で被覆する
方法において、樹脂で被覆する前に補強用繊維束を熱可
塑性樹脂の溶融温度以上で予め加熱することで補強用繊
維に吸着または付着されている水分や油剤などの蒸発成
分を気化させて除去して、成形時のガス発生を防ぎ、溶
融した熱可塑性樹脂で被覆する際に圧力を加えることで
高粘度な熱可塑性樹脂を補強用繊維束の中に圧入せし
め、更に熱可塑性樹脂の溶融温度以上で成形ノズルを用
い成形を行うことで、長さ方向に連続繊維を均一に分散
せしめ得ることを見出し、またこれを原料として製造し
た成形品が極めて良好な耐熱性,機械的特性を示すこと
を見出し本発明に至ったものである。
Specifically, in the method of coating the reinforcing fiber bundle with the thermoplastic resin, the reinforcing fiber bundle is pre-heated at a temperature equal to or higher than the melting temperature of the thermoplastic resin before being coated with the resin, thereby adsorbing or adhering to the reinforcing fiber. Evaporates and removes evaporating components such as moisture and oils to prevent gas generation during molding, and applies pressure when coating with a molten thermoplastic resin to reinforce high-viscosity thermoplastic resin. Pressing into a fiber bundle, and further molding using a molding nozzle at a melting temperature of the thermoplastic resin or higher, found that continuous fibers could be uniformly dispersed in the length direction, and this was also used as a raw material. The inventors have found that molded articles exhibit extremely good heat resistance and mechanical properties, and have reached the present invention.

<発明の構成> 即ち本発明は、 (1) 補強用繊維束を熱可塑性樹脂で被覆した樹脂含
浸被覆繊維において、補強用繊維束と熱可塑性樹脂とが
繊維断面において分散した海島状断面を形成し、かつ補
強用繊維束を構成する単繊維群も単繊維の10〜70%が独
立した島成分として海島状断面を形成していることを特
徴とする樹脂含浸被覆繊維。
<Constitution of the Invention> That is, the present invention provides: (1) a resin-impregnated coated fiber obtained by coating a reinforcing fiber bundle with a thermoplastic resin to form a sea-island cross section in which the reinforcing fiber bundle and the thermoplastic resin are dispersed in the fiber cross section. A resin-impregnated coated fiber characterized in that the single fiber group constituting the reinforcing fiber bundle also has a sea-island cross section as an independent island component of 10 to 70% of the single fiber.

(2) 樹脂含浸被覆繊維の破断強力の40%荷重下で10
00時間経過時のクリープ歪が5%以下である請求項
(1)に記載の樹脂含浸被覆繊維。
(2) 10% under the 40% load of breaking strength of resin impregnated coated fiber
The resin-impregnated coated fiber according to claim 1, wherein the creep strain after the lapse of 00 hours is 5% or less.

(3) 請求項(1)の樹脂含浸被覆繊維を編成してな
る高強力土木資材網。
(3) A high-strength civil material network formed by knitting the resin-impregnated coated fibers according to (1).

(4) 補強用繊維束を熱可塑性樹脂で被覆した樹脂含
浸被覆繊維の製造方法において、補強用繊維束を溶融し
た熱可塑性樹脂で被覆する前に補強用繊維束を熱可塑性
樹脂の溶融温度以上であらかじめ加熱したのち成形ノズ
ルを通して25Kg/cm2以上の加圧下で補強用繊維束を溶融
した熱可塑性樹脂で覆うことを特徴とする樹脂含浸被覆
繊維の製造方法。
(4) In the method for producing a resin-impregnated coated fiber in which a reinforcing fiber bundle is coated with a thermoplastic resin, the reinforcing fiber bundle is heated to a temperature equal to or higher than the melting temperature of the thermoplastic resin before the reinforcing fiber bundle is coated with the molten thermoplastic resin. A method for producing a resin-impregnated coated fiber, characterized in that after heating in advance, the reinforcing fiber bundle is covered with a molten thermoplastic resin under a pressure of 25 kg / cm 2 or more through a forming nozzle.

である。It is.

本発明で用いる補強用繊維は、炭素繊維,ガラス繊
維,アラミド繊維,ステンレス繊維,銅繊維,アモルフ
ァス繊維などである。また繊維に適当なサイジング処理
あるいは表面処理をしたものでもよい。
The reinforcing fibers used in the present invention are carbon fibers, glass fibers, aramid fibers, stainless fibers, copper fibers, amorphous fibers and the like. Further, the fibers may be subjected to an appropriate sizing treatment or surface treatment.

含浸被覆用の熱可塑性樹脂はポリアミド,ポリエチレ
ン,ポリエステル,ポリアリレート,ポリサルフォン,
ポリアリーレンスルフィド,ポリエーテルサルフォン,
ポリエーテルイミド,ポリアミドイミド,ポリアクリロ
ニトリル,ポリカーボネート,ポリオレフィン,ポリア
セタール,ポリスチレン等である。
The thermoplastic resin for impregnated coating is polyamide, polyethylene, polyester, polyarylate, polysulfone,
Polyarylene sulfide, polyether sulfone,
Examples include polyetherimide, polyamideimide, polyacrylonitrile, polycarbonate, polyolefin, polyacetal, and polystyrene.

これらの熱可塑性樹脂には、その特性を改善するため
に種々の添加剤、例えば耐熱剤,耐候剤,紫外線劣化防
止剤,帯電防止剤,滑剤,難型剤,染料,顔料,結晶化
促進剤,難燃剤等を添加してもよい。
In order to improve the properties of these thermoplastic resins, various additives such as a heat-resistant agent, a weathering agent, an ultraviolet-ray deterioration inhibitor, an antistatic agent, a lubricant, a mold-retardant, a dye, a pigment, and a crystallization accelerator are added. , A flame retardant or the like may be added.

ここに本発明における樹脂含浸被覆繊維は繊維断面に
おいて補強用繊維束が島成分を成し熱可塑性樹脂が海成
分を成すものである。しかし補強用繊維束が樹脂被覆繊
維の中心部にすべて寄り集った形態のものでは充分な作
用効果を奏し得ない(例えば第1図)。補強用繊維束が
すべて個々に独立して島成分を形成しているか(第2図
(A),(B))または各島成分が接しているとしても
樹脂被覆繊維の中央部にすべて寄り集った形態とはなっ
ていないものである。補強用繊維束自体の断面形状は第
2図(A)のような円形でもよいが、第2図(B)のよ
うな非円形の方がより好ましい。
In the resin-impregnated coated fiber of the present invention, the reinforcing fiber bundle forms an island component and the thermoplastic resin forms a sea component in a fiber cross section. However, a structure in which the reinforcing fiber bundles are all gathered at the center of the resin-coated fiber cannot provide a sufficient effect (for example, FIG. 1). Whether the reinforcing fiber bundles individually form island components independently (FIGS. 2 (A) and (B)), or even if all the island components are in contact with each other, they all gather at the center of the resin-coated fiber. It is not in a proper form. The cross-sectional shape of the reinforcing fiber bundle itself may be circular as shown in FIG. 2 (A), but a non-circular shape as shown in FIG. 2 (B) is more preferable.

次に補強用繊維束を構成する単繊維群も単繊維の10〜
70%が独立した島成分として海島状断面を形成している
ものである。
Next, the single fiber group constituting the reinforcing fiber bundle is also 10 to
70% of the islands form sea-island cross-sections as independent island components.

補強用繊維を構成する単繊維の1本1本がすべて被覆
用樹脂で覆われていると、すなわち単繊維がすべて独立
した島成分になっていると樹脂含浸被覆繊維の曲げ強度
が大きくなりすぎ、取扱性が大幅に悪化するので単繊維
が独立した島成分である比率は70%以下、望ましくは60
%以下とする必要があるが、10%未満では補強用繊維が
樹脂から抜け易くなるので10%以上望ましくは20%以上
とする必要がある。
If all the single fibers constituting the reinforcing fiber are covered with the coating resin, that is, if all the single fibers are independent island components, the bending strength of the resin-impregnated coated fiber becomes too large. Since the handling efficiency is greatly deteriorated, the ratio of single fiber as an independent island component is 70% or less, preferably 60% or less.
%, It is necessary to be 10% or more, preferably 20% or more because the reinforcing fiber is easily removed from the resin if it is less than 10%.

次に、本発明を図面にしたがって説明する。 Next, the present invention will be described with reference to the drawings.

第1図は、従来の樹脂被覆繊維を示したものである。
第1図は多数の補強用単繊維からなる補強用繊維束5本
を引き揃え補強用繊維束となした樹脂被覆繊維の断面図
であり、補強用繊維束を5本合せ撚糸または組紐とした
場合の断面図である。補強用繊維束は分割されることな
く一ケ所に固まっており、ほぼ円形に近い。
FIG. 1 shows a conventional resin-coated fiber.
FIG. 1 is a cross-sectional view of a resin-coated fiber in which five reinforcing fiber bundles composed of a large number of reinforcing single fibers have been aligned to form a reinforcing fiber bundle. It is sectional drawing in the case. The reinforcing fiber bundle is solidified in one place without being divided, and is almost circular.

第3図は従来例である第1図に示した補強用繊維束の
一つを取り出したものの断面図である。補強用繊維束を
構成する単繊維の熱可塑性樹脂中での分散状態を示した
ものである。被覆用の熱可塑性樹脂は単繊維の中に入り
込むことはほとんどなく又は、入り込んだとしても表層
から高々数層までである。
FIG. 3 is a sectional view of one of the conventional reinforcing fiber bundles shown in FIG. 1 taken out. FIG. 3 shows a dispersion state of single fibers constituting a reinforcing fiber bundle in a thermoplastic resin. The thermoplastic resin for coating hardly penetrates into the single fiber, or even from the surface layer to at most several layers.

かかる分散状態は、集束した繊維束に通常の方法で熱
可塑性樹脂を被覆させたときに得られる形態であり、熱
可塑性樹脂と補強用繊維との間の引抜力は極めて低い。
Such a dispersed state is a form obtained when a bundled fiber bundle is coated with a thermoplastic resin by an ordinary method, and the pulling force between the thermoplastic resin and the reinforcing fibers is extremely low.

第2図(A),(B)は本発明で得られた実施態様の
一例を示したもので、補強用繊維束を5本とした場合の
断面図であり、島成分である補強用繊維束の間に海成分
である含浸被覆用熱可塑性樹脂が入り込んだ状態を示
す。
FIGS. 2 (A) and 2 (B) show an example of an embodiment obtained by the present invention, and are cross-sectional views when five reinforcing fiber bundles are used. This shows a state in which a thermoplastic resin for impregnation coating as a sea component has entered between bundles.

第2図(A)は、個々の補強用繊維束が独立して熱可
塑性樹脂で覆われた状態を示し、第1図に比し補強用繊
維束と熱可塑性樹脂との接触面積が増大する為に引抜力
は大巾に向上している。
FIG. 2 (A) shows a state in which each reinforcing fiber bundle is independently covered with a thermoplastic resin, and the contact area between the reinforcing fiber bundle and the thermoplastic resin increases as compared with FIG. Therefore, the pulling force has been greatly improved.

第2図(B)は、個々の補強用繊維束が例えば楕円,
偏平,U字,星型等の非円形断面であって、熱可塑性樹脂
で覆われた状態であり、第2図(A)に比し補強用繊維
束と熱可塑性樹脂との接触面積は更に増大する為に引抜
力はより向上している。
FIG. 2 (B) shows that each reinforcing fiber bundle is, for example, an ellipse,
It has a non-circular cross-section such as a flat, U-shaped, or star shape, and is covered with a thermoplastic resin. The contact area between the reinforcing fiber bundle and the thermoplastic resin is further larger than that in FIG. 2 (A). Due to the increase, the pull-out force is further improved.

これら第2図に示される補強用繊維束の断面形態は、
長さ方向に一定である必要は無く、これらの形態が組合
わさったものであってもよい。
The cross-sectional form of the reinforcing fiber bundle shown in FIG.
It is not necessary to be constant in the length direction, and these forms may be combined.

第4図は、第2図(A)に示される補強用繊維束の一
つを取り出したもので、補強用繊維束を構成する単繊維
群の分散状態の一例を示すものである。単繊維から構成
されてなる1補強用繊維束において単繊維は密集した部
分及び分散した部分を形成し、これらを熱可塑性樹脂が
覆っている。
FIG. 4 shows an example of a dispersion state of a group of single fibers constituting one of the reinforcing fiber bundles, taken out of one of the reinforcing fiber bundles shown in FIG. 2 (A). In one reinforcing fiber bundle composed of single fibers, the single fibers form a dense portion and a dispersed portion, which are covered with a thermoplastic resin.

単繊維のすべてが熱可塑性樹脂中に分散しているとき
は、熱可塑性樹脂との接触面積が増大し、耐引抜性は向
上するが、屈曲時に於ける圧縮,伸張に対しては熱可塑
性樹脂との接触面積が高いため、自由度が低く耐屈曲性
が悪くなる。従って耐引抜性と耐屈曲性という相反する
条件を同時に満足させるためには補強用繊維束を構成す
る単繊維群の30〜90%が密に集束し、残り70〜10%が粗
に分散していることが必要である。
When all of the single fibers are dispersed in the thermoplastic resin, the contact area with the thermoplastic resin increases and the pull-out resistance improves, but the thermoplastic resin does not compress or expand during bending. Since the contact area with the metal is high, the degree of freedom is low and the bending resistance is poor. Therefore, in order to simultaneously satisfy the contradictory conditions of pull-out resistance and bending resistance, 30 to 90% of the single fiber group constituting the reinforcing fiber bundle is densely bundled, and the remaining 70 to 10% is coarsely dispersed. It is necessary to be.

次に、図面にしたがって本発明を説明する。 Next, the present invention will be described with reference to the drawings.

第6図は、本発明の樹脂含浸被覆繊維の製造方法に用
いる製造装置の一例を示したものである。複数の連続し
た補強用繊維束Fは、ボビン1から案内ガイド2を経由
して、予熱ヒータ3に導かれ、ここで加熱され成形時に
有害となる成分を蒸発,気化させた後、案内ガイド4を
経て繊維束の導入側ダイ5からポリマー溜6に導入され
る。ここで、スクリュー9によって溶融されたスロート
8を経て押出されてきた溶融熱可塑性樹脂で被覆され、
導出側ダイ7を経て熱可塑性樹脂の溶融温度以上に加熱
された成形ノズル11により成形され、冷却バス13で冷却
されながら案内ガイドローラー12を介して、引取ロール
14で引き取られる。このストランド状の樹脂含浸被覆繊
維を捲取機15で捲取る。また、捲取機15の代りにストラ
ンドカッターあるいはペレタイザーで任意の長さに切断
する。
FIG. 6 shows an example of a production apparatus used in the method for producing a resin-impregnated coated fiber of the present invention. A plurality of continuous fiber bundles F for reinforcement are guided from the bobbin 1 to the preheater 3 via the guide 2, where they are heated to vaporize and vaporize harmful components during molding. Then, the fiber bundle is introduced from the introduction die 5 into the polymer reservoir 6. Here, it is coated with a molten thermoplastic resin that has been extruded through a throat 8 melted by a screw 9,
It is formed by a forming nozzle 11 heated to a temperature not lower than the melting temperature of the thermoplastic resin through an outlet die 7, and is taken up by a guide roll 12 via a guide guide roller 12 while being cooled by a cooling bath 13.
Picked up at 14. The strand-shaped resin-impregnated coated fiber is wound by a winder 15. Further, instead of the winding machine 15, the strand is cut to an arbitrary length by a strand cutter or a pelletizer.

第6図の予熱ヒーター3は、成形時に有害となる水
分,油剤,固着剤等を蒸発,気化させる。繊維束の損傷
を最小限に抑えるには非接触方式のヒーターとするのが
望ましい。更に、複数の繊維束を均一に加熱する為に反
射板を設け、各繊維束の温度を均一にすることが望まし
い。予熱ヒーター3の予熱温度は繊維束近傍温度が熱可
塑性樹脂の溶融温度より高ければ、成形時に問題となる
熱劣化によるガスの抑制が可能であるが、高引取速度で
効果的に予熱するには予熱温度は熱可塑性樹脂の溶融温
度より20℃以上高い方が望ましい。しかし温度が高過ぎ
るとエネルギーロスが大きいばかりでなく、繊維が熱に
よりダメージを受け、機械的強力の低下等を生ずる。従
って、例えばアラミド繊維の場合には熱可塑性樹脂溶融
温度より150℃高い温度以下、無機繊維の場合には熱可
塑性樹脂溶融温度より200℃高い温度以下で加熱するの
が望ましい。又、予熱時間は予熱温度により異なるが1
秒以上の処理時間があれば成形時のガス発生を抑制する
ことが可能である。またこのようにして予熱処理された
補強用繊維束は繊維束と溶融熱可塑性樹脂との付着性が
向上する。すなわち予熱処理しない繊維束に溶融した熱
可塑性樹脂を付着せしめる場合は、引取速度が一定以上
になると樹脂の付着が追い付かず、繊維束の長さ方向に
樹脂の付着斑が生じるようになるが、予熱処理した繊維
束では、予熱しない場合に比し1.5倍以上の速い引取速
度としても樹脂の付着斑が発生しない。これはそのまま
生産性の向上及び品質向上に結び付く効果である 導入側ダイ5は、ボルトによりダイヘッド10に固定さ
れている。第7図にダイ5の詳細を示すが、繊維束の入
り側である上部は繊維束を通し易くする為にテーパーを
設けることが望ましい。補強用繊維の導入孔16はポリマ
ー溜6での加圧を容易にし、溶融熱可塑性樹脂が導入孔
16から系外へ流出することを防ぐために、該繊維束の断
面積に近い断面積とすることが望ましいが、あまり小さ
いと繊維束と導入孔16との間の抵抗が大きくなり、繊維
束の引抜きが困難となるので導入孔断面積は繊維束断面
積の1.02倍以上が望ましい。又大き過ぎると加圧が困難
になるばかりでなく溶融熱可塑性樹脂が流出しやすくな
るので、該比率は1.7倍以下が望ましい。また導入孔16
の長さは、加圧性及び溶融熱可塑性樹脂の外部への流出
防止の為には、長い方がよいが、工作性や取扱性の点か
ら3〜20mmが望ましい。
The preheater 3 in FIG. 6 evaporates and vaporizes moisture, oils, fixing agents, and the like that are harmful during molding. In order to minimize damage to the fiber bundle, it is desirable to use a non-contact type heater. Further, it is desirable to provide a reflection plate for uniformly heating a plurality of fiber bundles, and to make the temperature of each fiber bundle uniform. If the temperature near the fiber bundle is higher than the melting temperature of the thermoplastic resin, the preheating temperature of the preheating heater 3 can suppress gas due to thermal deterioration, which is a problem at the time of molding. The preheating temperature is desirably 20 ° C. or higher than the melting temperature of the thermoplastic resin. However, if the temperature is too high, not only is the energy loss large, but also the fibers are damaged by heat, resulting in a decrease in mechanical strength and the like. Therefore, for example, in the case of aramid fibers, it is desirable to heat at a temperature of 150 ° C. or higher than the melting temperature of the thermoplastic resin, and in the case of inorganic fibers, it is desirable to heat at a temperature of 200 ° C. or lower than the melting temperature of the thermoplastic resin. The preheating time depends on the preheating temperature.
If the processing time is not less than seconds, it is possible to suppress gas generation during molding. In addition, the reinforcing fiber bundle preheat-treated in this way has improved adhesion between the fiber bundle and the molten thermoplastic resin. In other words, when the molten thermoplastic resin is attached to the fiber bundle that is not preheated, the resin cannot keep up when the take-up speed exceeds a certain value, and the resin adhesion unevenness occurs in the length direction of the fiber bundle. In the pre-heat treated fiber bundle, even when the take-up speed is 1.5 times or more as fast as that in the case where no pre-heating is performed, the resin spots do not occur. This is an effect that directly leads to improvement in productivity and quality. The introduction die 5 is fixed to the die head 10 by bolts. FIG. 7 shows the details of the die 5, and it is desirable to provide a taper at the upper portion, which is the entry side of the fiber bundle, in order to facilitate the passage of the fiber bundle. The reinforcing fiber introduction hole 16 facilitates pressurization in the polymer reservoir 6, and the molten thermoplastic resin introduces the introduction hole.
In order to prevent the fiber bundle from flowing out of the system, it is desirable that the cross-sectional area be close to the cross-sectional area of the fiber bundle. Since the drawing becomes difficult, the sectional area of the introduction hole is desirably 1.02 times or more of the sectional area of the fiber bundle. On the other hand, if the ratio is too large, not only the pressurization becomes difficult but also the molten thermoplastic resin easily flows out. Therefore, the ratio is desirably 1.7 times or less. In addition, introduction hole 16
The length is preferably long for pressurization and preventing the molten thermoplastic resin from flowing out, but is preferably 3 to 20 mm from the viewpoint of workability and handleability.

出側ダイ7はボルトによりダイヘッド10に固定されて
いる。第8図にダイ7の詳細を示す。繊維束の入り側で
ある上部にはテーパーを設けて、補強用繊維に付着含浸
した溶融熱可塑性樹脂を絞り込みながら引き抜くことが
該樹脂の含浸性を向上させる点から望ましい。
The exit die 7 is fixed to the die head 10 by bolts. FIG. 8 shows details of the die 7. It is desirable to provide a taper on the upper side, which is the entry side of the fiber bundle, and to pull out the molten thermoplastic resin adhering to and impregnating the reinforcing fibers while narrowing the resin in order to improve the impregnation property of the resin.

又、溶融熱可塑性樹脂で被覆含浸された補強用繊維束
の導出孔17は、ポリマー溜6での加圧性及び溶融熱可塑
性樹脂の外部への流出防止の為に、導入孔16の断面積と
同じかまたはそれ以上とするのが望ましい。又、導出孔
17の長さはポリマー溜6での加圧性及び溶融熱可塑性樹
脂の外部への流出防止の点より、導入孔16の長さ以下で
あることが望ましい。
In addition, the outlet hole 17 of the reinforcing fiber bundle coated and impregnated with the molten thermoplastic resin has a cross-sectional area of the inlet hole 16 for the purpose of pressurizing the polymer reservoir 6 and preventing the molten thermoplastic resin from flowing out. Desirably the same or more. Also, outlet hole
The length of the hole 17 is desirably equal to or less than the length of the introduction hole 16 from the viewpoints of pressurization in the polymer reservoir 6 and prevention of the molten thermoplastic resin from flowing out.

これら導入側ダイ5と導出側ダイ7とを用い、溶融熱
可塑性樹脂をスクリュー9から供給することにより、ポ
リマー溜6での加圧が可能となり、補強用繊維束中の気
泡を排除し、溶融熱可塑性樹脂を補強用繊維束に含浸せ
しめることが可能となる。加える圧力が低いときは、溶
融熱可塑性樹脂の粘度が高いために十分な含浸性は得ら
れず、繊維束に熱可塑性樹脂が入り込むことはできな
い。しかしながら、25Kg/cm2以上、望ましくは50Kg/cm2
以上の圧力で加圧すれば、補強用繊維束内に溶融した熱
可塑性樹脂が入り込み、樹脂中に分散し、繊維と樹脂と
の間の密着性が良好な樹脂含浸被覆繊維を得ることがで
きる。又、圧力は高いほど短時間内に繊維束内部まで溶
融熱可塑性樹脂を含浸せしめることができるが、加圧の
為のスクリュー9の回転エネルギー及びダイ5,6の工作
精度より考えて200Kg/cm2以下の圧力とすることが望ま
しい。
By supplying the molten thermoplastic resin from the screw 9 using the inlet die 5 and the outlet die 7, pressurization in the polymer reservoir 6 becomes possible, eliminating bubbles in the reinforcing fiber bundle, and This makes it possible to impregnate the reinforcing fiber bundle with the thermoplastic resin. When the applied pressure is low, sufficient impregnation cannot be obtained due to the high viscosity of the molten thermoplastic resin, and the thermoplastic resin cannot enter the fiber bundle. However, 25 kg / cm 2 or more, desirably 50 kg / cm 2
If pressurized at the above pressure, the melted thermoplastic resin enters the reinforcing fiber bundle, disperses in the resin, and a resin-impregnated coated fiber having good adhesion between the fiber and the resin can be obtained. . The higher the pressure, the more the molten thermoplastic resin can be impregnated into the fiber bundle within a short time. However, considering the rotational energy of the screw 9 for pressurization and the working accuracy of the dies 5, 6, 200 kg / cm. It is desirable to set the pressure to 2 or less.

第9図に成形ノズル11の詳細を示すが、熱可塑性樹脂
で被覆された補強用繊維束の入り側にテーパーを設ける
ことが望ましい。このテーパーを設けることにより、熱
可塑性樹脂の絞り込みを行うと共に、このテーパー部の
絞り込みにより取り除かれた樹脂のポリマー溜とするこ
とで、長さ方向に、より均一に熱可塑性樹脂を含浸被覆
せしめることが可能となる。成形孔18は、通常丸断面で
あるが、三角,四角等の多角系断面を任意に用いること
もできる。更にこの成形ノズル11において重要なこと
は、繊維束を含浸被覆している熱可塑性樹脂の溶融温度
以上に加熱することである。熱可塑性樹脂の溶融温度以
下で熱可塑性樹脂の絞り込みを行うと、高い引抜張力が
必要なばかりでなく、既に補強用繊維に含浸被覆されて
いる熱可塑性樹脂と補強用繊維との間に剥離を生じ、ま
た含浸性が大幅に低下する。又、ノズル11の温度が熱可
塑性樹脂の溶融温度に比し大幅に高いときは、熱可塑性
樹脂の粘度が低下するために、絞り込み効果が低下する
だけでなく、熱可塑性樹脂の劣化が促進され、得られる
樹脂含浸被覆繊維の機械的特性が低下する。出側ダイ7
と成形ノズル11との距離は自由に取り得るが、可能な限
り近付けることが熱可塑性樹脂で被覆された補強用繊維
束の冷却固化を防ぐうえで望ましい。
FIG. 9 shows the details of the forming nozzle 11, and it is desirable to provide a taper on the entry side of the reinforcing fiber bundle covered with the thermoplastic resin. By providing this taper, the thermoplastic resin is narrowed down, and the resin pool removed by narrowing down the tapered portion is used as a polymer reservoir, so that the thermoplastic resin can be more uniformly impregnated and coated in the length direction. Becomes possible. The forming hole 18 has a generally circular cross section, but a polygonal cross section such as a triangle or a square can be used arbitrarily. Further, what is important in the forming nozzle 11 is to heat the fiber bundle to a temperature higher than the melting temperature of the thermoplastic resin impregnated and coated. When the thermoplastic resin is squeezed below the melting temperature of the thermoplastic resin, not only a high drawing tension is required, but also the peeling between the thermoplastic resin and the reinforcing fibers already impregnated and coated on the reinforcing fibers. And the impregnation is significantly reduced. Further, when the temperature of the nozzle 11 is significantly higher than the melting temperature of the thermoplastic resin, the viscosity of the thermoplastic resin is reduced, so that not only the narrowing effect is reduced but also the deterioration of the thermoplastic resin is accelerated. In addition, the mechanical properties of the obtained resin-impregnated coated fiber are reduced. Outgoing die 7
Although the distance between the resin and the forming nozzle 11 can be freely set, it is desirable to make the distance as close as possible in order to prevent the cooling and solidification of the reinforcing fiber bundle covered with the thermoplastic resin.

<発明の効果> 本発明により補強用繊維束が被覆用熱可塑性樹脂から
抜け難く、最大強力を得られる迄の伸度が小さく、耐ク
リープ特性に優れた樹脂含浸被覆繊維を提供することが
可能となった(耐引抜性と屈曲性との向上)。
<Effects of the Invention> According to the present invention, it is possible to provide a resin-impregnated coated fiber which is hard to slip out of the reinforcing fiber bundle from the thermoplastic resin for coating, has a small elongation until a maximum strength is obtained, and has excellent creep resistance. (Improvement in pullout resistance and flexibility).

また本発明により、樹脂含浸被覆繊維を成形するにあ
たり、その品質を大きく左右するガス発生を抑制するこ
とが可能となった。
Further, according to the present invention, it has become possible to suppress the generation of gas, which greatly affects the quality, in molding the resin-impregnated coated fiber.

また補強用土木資材網は土中に埋設され、土砂等の崩
れ防止に用いられるものであるが、補強用土木資材網と
土砂とは、編目と土砂との間のインターロック効果(ア
ンカー効果)により滑りを防止する。このとき土砂の内
部応力は、補強用土木資材網を構成する樹脂含浸被覆繊
維を引き伸ばそうとする力に変化する。
In addition, the reinforcing civil engineering material network is buried in the soil and used to prevent the collapse of earth and sand. The reinforcing civil engineering material network and earth and sand are interlocking effects (anchor effect) between the stitches and the earth and sand. Prevents slippage. At this time, the internal stress of the earth and sand changes into a force to stretch the resin-impregnated coated fibers constituting the reinforcing civil engineering material network.

特に引き伸ばし力は土中への埋設が行われた後、固ま
る迄の数年間が特に強く、この力が樹脂含浸被覆繊維に
クリープを発生させることになる。樹脂含浸被覆繊維を
引き伸ばそうとする力は、熱可塑性樹脂を経て補強用繊
維束に伝わるが補強用繊維束と熱可塑性樹脂との間の引
抜抵抗力が十分でない場合は補強用繊維束の特性が生か
されず、補強用繊維を用いたにもかかわらず満足のいく
補強効果を得ることが出来ない。本発明の樹脂含浸被覆
繊維はかかる補強用土木資材網として用いた場合、十分
な引抜抵抗力を有するので補強効果が格段に優れてい
る。
In particular, the stretching force is particularly strong for several years until it hardens after being buried in the soil, and this force causes the resin-impregnated coated fiber to creep. The force to stretch the resin-impregnated coated fiber is transmitted to the reinforcing fiber bundle via the thermoplastic resin, but if the pull-out resistance between the reinforcing fiber bundle and the thermoplastic resin is not sufficient, the characteristics of the reinforcing fiber bundle Is not utilized, and a satisfactory reinforcing effect cannot be obtained despite the use of the reinforcing fibers. When the resin-impregnated coated fiber of the present invention is used as such a reinforcing civil engineering material network, it has a sufficient pulling-out resistance, so that the reinforcing effect is remarkably excellent.

<実施例> 以下、実施例により本発明を具体的に説明する。実施
例で用いた測定法は下記のとおりである。
<Example> Hereinafter, the present invention will be specifically described with reference to examples. The measuring method used in the examples is as follows.

(1) ガス発生の有無 柳本製作所製ガラスクロマトグラフィ モデルG80を
用い、昇温ガスクロ法で測定した。表面処理されていな
い補強用繊維,熱可塑性樹脂及び樹脂含浸被覆繊維の3
者を測定し、樹脂含浸被覆繊維の分解ピークが、表面処
理されていない補強用繊維の分解ピークと熱可塑性樹脂
の分解ピークとからなる場合をガス発生無し、表面処理
されていない補強用繊維の分解ピークと熱可塑性樹脂の
分解ピーク以外の分解ピークが樹脂含浸被覆繊維の分解
ピークにある場合をガス発生有りとした。
(1) Presence or absence of gas generation The temperature was measured by a gas chromatography method using a glass chromatography model G80 manufactured by Yanagimoto Seisakusho. Reinforcing fiber, thermoplastic resin and resin impregnated coated fiber not surface treated
The case where the decomposition peak of the resin-impregnated coated fiber is composed of the decomposition peak of the non-surface-treated reinforcing fiber and the decomposition peak of the thermoplastic resin, without gas generation, of the non-surface-treated reinforcing fiber Gas generation was defined as a case where the decomposition peak other than the decomposition peak and the decomposition peak of the thermoplastic resin was the decomposition peak of the resin-impregnated coated fiber.

この時の測定条件は Carrier gas:He,Inject温度:融点+15℃(PPS:300℃) Column:100℃で10分放置後、10℃/1分の割合で300℃
まで昇温後、更に10分間放置。
Measurement conditions at this time are: Carrier gas: He, Inject temperature: Melting point + 15 ° C (PPS: 300 ° C) Column: Leave at 100 ° C for 10 minutes, then 300 ° C at a rate of 10 ° C / 1 minute.
After heating up, leave for another 10 minutes.

ストランド均一性 ストランドの直径を、30倍の顕微鏡下にて、1m間隔で
20点測定しCV%(σ/)にて示した。
Strand uniformity Measure the diameter of the strand at 1m intervals under a microscope of 30x.
20 points were measured and indicated by CV% (σ /).

実施例1 本発明の製造方法に従って、1500デニール/1000フィ
ラメントのテクノーラ(帝人(株)パラ系アラミド繊
維)を350℃に加熱された予熱ヒーターで3秒間加熱し
たのち内径0.5mmφ,長さ10mmの導入孔を通してポリマ
ー溜りに導き、ここでスクリューで溶融され320℃にコ
ントロールされたPPS樹脂を50Kg/cm2の加圧下で該繊維
に含浸せしめ、ついで内径0.6mmφ,長さ2mmの導出孔よ
り引き抜き、320℃に加熱された内径0.55mmφ,長さ5mm
の成形ノズルで成形を行い、冷却し、Vf57%のストラン
ドとした。
Example 1 According to the production method of the present invention, 1500 denier / 1000 filament technola (Teijin Co., Ltd. para-aramid fiber) was heated for 3 seconds with a preheater heated to 350 ° C., and then was 0.5 mm in inner diameter and 10 mm in length. The fiber is introduced into the polymer reservoir through the introduction hole, where the fiber is impregnated with a PPS resin that has been melted with a screw and controlled at 320 ° C under a pressure of 50 kg / cm 2 , and then pulled out from a lead-out hole with an inner diameter of 0.6 mmφ and a length of 2 mm. 0.55mm inside diameter heated at 320 ℃, length 5mm
The molding was performed using a molding nozzle and cooled to obtain a Vf 57% strand.

該ストランドをストランドカッターで3mmにカット
し、射出成形用マスターペレットとし、成形時PPS樹脂
を加えてVf20%の測定用サンプルを作成した。
The strand was cut into 3 mm by a strand cutter to obtain a master pellet for injection molding, and a PPS resin was added at the time of molding to prepare a sample for measuring Vf of 20%.

尚、このときの射出成形条件は、シリンダー温度;ペ
レット入り側310℃,ノズル側;310℃,ノズル温度;310
℃,金型温度;130℃,射出圧力800Kg/cm2であった。
The injection molding conditions at this time are: cylinder temperature; 310 ° C. on the side containing pellets; 310 ° C. on the nozzle side;
° C, mold temperature; 130 ° C, injection pressure 800 kg / cm 2 .

比較例1 予熱ヒーターを用いない以外は実施例1と同様に実施
した。
Comparative example 1 It carried out similarly to Example 1 except not using a preheating heater.

比較例2 実施例1において、成形ノズルを用いない以外は同様
に測定した。この結果Vf=35%のストランドを得た。
Comparative Example 2 The measurement was performed in the same manner as in Example 1 except that the molding nozzle was not used. As a result, a strand having a Vf of 35% was obtained.

比較例3 実施例1の導出孔の内径を0.8mmφとし浸圧力を0〜5
Kg/cm2とした以外は同様に実施した。
Comparative Example 3 The inner diameter of the outlet hole of Example 1 was 0.8 mmφ, and the immersion pressure was 0 to 5
The same operation was carried out except that Kg / cm 2 was used.

得られたストランドを用いて作成した射出成形品の機
械的性質,補強用繊維の分散性,ガス発生の有無及び補
強用繊維混合分散の均一性を示すストランド均一性を表
1に示した。
Table 1 shows the mechanical properties, the dispersibility of the reinforcing fibers, the presence / absence of gas generation, and the uniformity of the dispersion and mixing of the reinforcing fibers of the injection-molded article prepared using the obtained strands.

実施例2 試料 テクノーラ糸(帝人(株)パラ系アラミド繊維)を
用い補強用繊維束となし、含浸被覆用熱可塑性樹脂とし
て高密度ポリエチレン(メルトインデックス0.25gr/10
分,軟化点128℃)を用い被覆を行いつつ、所定の方法
で、繰り返し単位28mm,線径4mmの網目を有する土木資材
網を作成し試料とした。
Example 2 Sample A fiber bundle for reinforcement was formed using a Technora yarn (para-aramid fiber of Teijin Limited), and a high-density polyethylene (melt index 0.25 gr / 10) was used as a thermoplastic resin for impregnation coating.
And a softening point of 128 ° C.), and a coating was used to prepare a civil engineering material net having a mesh of repeating units of 28 mm and a wire diameter of 4 mm by a predetermined method.

尚、以下の実施例においては特に断りの無い限り補強
用繊維束はタテ方向にのみ用いた。又、補強用繊維束の
被覆形態は、補強用繊維の供給方法及び熱可塑性樹脂の
溶融条件を変更することで異った形態のものを得た。
In the following examples, the reinforcing fiber bundle was used only in the vertical direction unless otherwise specified. In addition, the covering form of the reinforcing fiber bundle was changed by changing the method of supplying the reinforcing fiber and the melting condition of the thermoplastic resin to obtain a different form.

測定法 (1) 引張強伸度 繰り返し単位をヨコ方向に3(84mm),タテ方向に17
(476mm)となした試験片を切り出し、タテ線にチャッ
クの締付圧が掛からないように、タテ方向の両端にある
ヨコ線を治具を用いて把持した後、タテ方向の中間で両
端のタテ線を切断したものをサンプルとし、インテスコ
製引張試験機(タイプ2005)を用い、温度23℃,湿度50
%,引取速度50mm/分の条件下で最大強度及びその時の
伸度を10回繰り返し測定を行うと共に、この時の引抜性
を併せて調査した。
Measurement method (1) Tensile strength and elongation Repeat unit: 3 (84 mm) in the horizontal direction, 17 in the vertical direction
(476 mm), cut out the test piece, hold the horizontal wires at both ends in the vertical direction using a jig so that the clamping pressure of the chuck is not applied to the vertical wire, and then hold both ends in the middle of the vertical direction. Cut the vertical wire into a sample and use an Intesco tensile tester (type 2005) at a temperature of 23 ° C and a humidity of 50
The maximum strength and the elongation at that time were repeatedly measured 10 times under the conditions of% and take-off speed of 50 mm / min, and the pull-out property at this time was also examined.

(2) 単繊維の被覆状況 光学顕微鏡で反射光を用い、100倍の倍率下で熱可塑
性樹脂中での単繊維の分散状態を観察し、単繊維を熱可
塑性樹脂が取り巻いているものの本数を計測した。
(2) Single fiber covering condition Using a reflected light with an optical microscope, observe the dispersion state of the single fibers in the thermoplastic resin at a magnification of 100 times, and determine the number of single fibers surrounded by the thermoplastic resin. Measured.

(3) 施工時の取扱性 施工時の取扱性の代表特性として、樹脂含浸被覆繊維
を支点より50cm先を持ち60゜曲げた時の折損の有無によ
り判断した。
(3) Handleability during construction As a typical characteristic of handleability during construction, judgment was made based on the presence or absence of breakage when the resin-impregnated coated fiber was bent 60 mm with a point 50 cm ahead of the fulcrum.

(4) クリープ特性 繰返し単位をヨコ方向に3(84mm),タテ方向に30
(840mm)となしたクリープ特性評価用試験片を切り出
し、破断強力の40%に当る200Kgの荷重を掛け、温度23
℃,湿度50%の条件下で1000時間経過後の伸び率を測定
した。
(4) Creep characteristics Repeating unit: 3 (84 mm) in the horizontal direction, 30 in the vertical direction
(840 mm), a test piece for creep property evaluation was cut out, a load of 200 kg corresponding to 40% of the breaking strength was applied, and the temperature was changed to 23.
The elongation after 1000 hours was measured under the conditions of a temperature of 50 ° C and a humidity of 50%.

補強用繊維として1500デニール/1000フィラメントの
テクノーラ糸に74ケ/mのZ撚を入れて一本の補強用繊
維束とし、5本の補強用繊維束をノズルを用いて、300
℃,50Kg/cm2で溶融,加圧された高密度ポリエチレン樹
脂の中に送り込み被覆することにより、第2図(A)の
断面形態を有する樹脂含浸被覆繊維を得た。
As a reinforcing fiber, a Z fiber of 74 pieces / m is put into a 1500 denier / 1000 filament Technora yarn to form one reinforcing fiber bundle, and five reinforcing fiber bundles are 300
The resin-impregnated coated fiber having a cross-sectional shape shown in FIG. 2A was obtained by feeding into a high-density polyethylene resin melted and pressurized at 50 ° C. and 50 kg / cm 2 .

この試料を引張試験した結果、補強用繊維束の破断強
力の88%迄引き抜き抵抗が向上していることが判った。
またクリープ歪も3%と良好な結果を得た。
As a result of a tensile test of this sample, it was found that the pull-out resistance was improved up to 88% of the breaking strength of the reinforcing fiber bundle.
Also, the creep strain was as good as 3%.

実施例3 補強用繊維として1500デニール/1000フィラメントの
テクノーラ糸に74ケ/mのZ撚を入れて補強用繊維束を
作成し別々のノズルを用い5本の補強用繊維束が接しな
いようにした以外は実施例1と同様の方法にて被覆して
第2図(A)に示される如き断面形態を有する樹脂含浸
被覆繊維を得た。この試料を引張試験した結果、補強用
繊維束の破断強力の91%迄引き抜き抵抗が向上している
ことが判った。またクリープ歪も3%と良好な結果を得
た。
Example 3 Reinforcement fiber bundles were prepared by putting 74 strands / m of Z twist into 1500 denier / 1000 filament techno yarn as reinforcement fibers, and using separate nozzles to prevent five reinforcement fiber bundles from coming into contact with each other. Except for the above, coating was performed in the same manner as in Example 1 to obtain a resin-impregnated coated fiber having a cross-sectional shape as shown in FIG. 2 (A). As a result of a tensile test of this sample, it was found that the pull-out resistance was improved to 91% of the breaking strength of the reinforcing fiber bundle. Also, the creep strain was as good as 3%.

実施例4 補強用繊維として750デニール/500フィラメントのテ
クノーラ糸に74ケ/mのZ撚を入れ補強用繊維束とした
後、別々のノズルを用いて10本の補強用繊維束が接しな
いようにした以外は実施例2と同様の方法にて被覆し
た。この試料を引張試験した結果、補強用繊維束は引き
抜けることなく補強用繊維束の破断が生じた。又クリー
プ特性も補強用繊維とほぼ同等の値を示した。
Example 4 As a reinforcing fiber bundle, a 750 denier / 500 filament Technora yarn was used, and 74 strands / m of Z twist was put into a reinforcing fiber bundle. Then, separate reinforcing nozzles were used to prevent the ten reinforcing fiber bundles from coming into contact with each other. Coating was performed in the same manner as in Example 2 except that the coating was performed. As a result of a tensile test of this sample, the reinforcing fiber bundle was broken without being pulled out. Also, the creep characteristics were almost the same as those of the reinforcing fibers.

実施例5 補強用繊維として1500デニール/1000フィラメントの
撚を入れないテクノーラ糸5本を5本の別々のノズル
を経て樹脂含浸被覆した以外は実施例2と同様の方法に
て含浸被覆した。
Example 5 As a reinforcing fiber, impregnated coating was performed in the same manner as in Example 2 except that five techno yarns of 1500 denier / 1000 filaments without twisting were resin-impregnated and coated via five separate nozzles.

この試料を引張試験した結果、補強用繊維束は引き抜
けることなく高い破壊強力及び低いクリープ特性を示し
た。
As a result of a tensile test of this sample, the reinforcing fiber bundle exhibited high breaking strength and low creep characteristics without being pulled out.

比較例4 補強用繊維として1500デニール/1000フィラントのテ
クノーラ糸を一本の補強用繊維束とし、5本集めて17
ケ/mのS撚を入れ補強用繊維束となし、ノズルを用いて
300℃に溶融された含浸被覆用熱可塑性樹脂の中に加圧
することなく入れた以外は実施例2と同様にし、第1図
の断面形態を有する樹脂含浸被覆繊維を得た。
Comparative Example 4 1500 denier / 1000 fillant techno yarn was used as one reinforcing fiber bundle to form one reinforcing fiber bundle, and five fibers were collected.
// m S-twisted fiber bundle for reinforcement
A resin-impregnated coated fiber having a cross-sectional configuration shown in FIG. 1 was obtained in the same manner as in Example 2 except that the resin was put into the thermoplastic resin for impregnated coating melted at 300 ° C. without pressing.

この試料を引張試験した結果、引抜抵抗が弱いため
に、破断強力の50%という低い値しか得られず、又20%
荷重下のクリープ歪でさえ100%という大きな値となっ
た。
As a result of a tensile test on this sample, only a low value of 50% of the breaking strength was obtained because the pull-out resistance was weak.
Even the creep strain under load was as large as 100%.

比較例5 補強用繊維として1500デニール/1000フィラメントの
テクノーラ糸に74ケ/mのZ撚を入れ一本の補強用繊維
束とし、5本集めて17ケ/mのS撚を入れ補強用繊維束と
なし、ノズルを用いて比較例1と同様にし、第1図Bに
示す如き断面形態を有する樹脂含浸被覆繊維を得た。
Comparative Example 5 Reinforcing fiber of 74 denier / 1000 filament techno yarn as a reinforcing fiber and 74 strands / m Z twist put into one reinforcing fiber bundle to collect 5 strands and 17 strands / m S twist A resin-impregnated coated fiber having a cross-sectional shape as shown in FIG. 1B was obtained in the same manner as in Comparative Example 1 using a nozzle and a nozzle.

この試料を引張試験した結果、補強用繊維束の破断強
力の65%と低く、又20%荷重下のクリープ歪でさえ100
%と大きな値となった。
As a result of a tensile test of this sample, the breaking strength of the reinforcing fiber bundle was as low as 65%, and even a creep strain under a load of 20% was 100%.
%.

比較例6 実施例3に於て、150Kg/cm2に加圧した以外は同じ方
法にて実施した。引抜特性は良好なるも、曲げ時の折損
が発生した。
Comparative Example 6 The same procedure was performed as in Example 3 except that the pressure was increased to 150 kg / cm 2 . Although the drawing characteristics were good, breakage occurred during bending.

得られた樹脂含浸被覆繊維の機械的特性,引抜状況を
表2に示す。
Table 2 shows the mechanical properties and the drawing conditions of the obtained resin-impregnated coated fibers.

実施例6 実施例1においてPPS樹脂をPBT樹脂に変え、樹脂温度
および成形ノズル温度を300℃に変えて、Vf47%のスト
ランドを得た以外は実施例1と同様にした。
Example 6 The procedure of Example 1 was repeated except that the PPS resin was changed to PBT resin, the resin temperature and the molding nozzle temperature were changed to 300 ° C., and a Vf 47% strand was obtained.

尚、この時射出成形条件は シリンダー温度:ペレット入り側260℃、ノズル側;270
℃ ノズル温度:275℃、金型温度:70℃ 射出圧力870Kg/cm2であった。評価結果を表3に示す。
The injection molding conditions were as follows: Cylinder temperature: 260 ° C on the pellet side, nozzle side: 270
° C Nozzle temperature: 275 ° C, Mold temperature: 70 ° C Injection pressure was 870 Kg / cm 2 . Table 3 shows the evaluation results.

実施例7 実施例1においてPPS樹脂をナイロン46樹脂に変え、
樹脂温度および成形ノズル温度を330℃に変えて、Vf49
%のストランドを得た以外は実施例1と同様にした。
Example 7 In Example 1, the PPS resin was changed to nylon 46 resin.
Change the resin temperature and molding nozzle temperature to 330 ° C, and
% Of strands was obtained in the same manner as in Example 1.

尚、この時射出成形条件は シリンダー温度:ペレット入り側300℃、ノズル側;320
℃ ノズル温度:320℃、金型温度:120℃ 射出圧力1000Kg/cm2であった。評価結果を表3に示す。
At this time, the injection molding conditions were as follows: cylinder temperature: 300 ° C on the pellet side, nozzle side: 320
C. Nozzle temperature: 320 ° C., mold temperature: 120 ° C. Injection pressure was 1000 kg / cm 2 . Table 3 shows the evaluation results.

実施例8 実施例1において補強繊維を1420de/1000filのケブラ
ー49に変え、Vf39%のストランドを得た以外は実施例
1と同様にした。
Example 8 The procedure of Example 1 was repeated except that the reinforcing fiber was changed to Kevlar 49 of 1420 de / 1000 fil, and a strand having a Vf of 39% was obtained.

尚、この時射出成形条件は シリンダー温度:ペレット入り側320℃、ノズル側;330
℃ ノズル温度:335℃、金型温度:130℃ 射出圧力1000Kg/cm2であった。評価結果を表3に示す。
The injection molding conditions were as follows: Cylinder temperature: 320 ° C on the pellet side, nozzle side: 330
° C Nozzle temperature: 335 ° C, Mold temperature: 130 ° C Injection pressure was 1000 kg / cm 2 . Table 3 shows the evaluation results.

比較例7〜9 実施例6〜8の導出孔の内径を0.8mmとし、加圧含浸
圧力を0〜5Kg/cm2とした以外はそれぞれ各実施例と同
様に実施した。評価結果を表3に示す。
Comparative Examples 7 to 9 Examples 6 to 8 were carried out in the same manner as in Examples 6 to 8, except that the inner diameter of the lead-out hole was 0.8 mm and the pressure and impregnation pressure was 0 to 5 kg / cm 2 . Table 3 shows the evaluation results.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、従来の補強用繊維束と熱可塑性樹脂との形態
を示す断面図。 第2図(A),(B)は、本発明による補強用繊維束と
熱可塑性樹脂との形態を示す断面図。 第3図は従来例の第1図の1補強用繊維束における単繊
維の熱可塑性樹脂中での分散状態を示す断面図。 第4図は本発明による第2図の1補強用繊維束における
単繊維の熱可塑性樹脂中での分散状態を示す断面図。 第5図は本発明の樹脂含浸被覆繊維を用いて作成した高
強力土木資材網の平面図である。 第6図は本発明による樹脂含浸被覆繊維の製造装置の一
例を示す概要図、第7図は導入側ダイの正面図、第8図
は導出側ダイの正面図、第9図は成形ノズルの正面図。 ……補強用繊維束,……熱可塑性樹脂, ……単繊維集中部,……単繊維分散部, ……単繊維,F……供給繊維,1……ボビン, 2,4……案内ガイド,3……予熱ヒーター, 5……導入側ダイ,6……ポリマー溜り, 7……導出側ダイ,8……スロート,9……スクリュー, 10……ダイヘッド,11……成形ノズル, 12……案内ガイドローラー,13……冷却バス, 14……引取りロール,15……捲取り機, 16……補強用繊維導入孔,17……補強用繊維導出孔, 18……成形孔
FIG. 1 is a cross-sectional view showing a form of a conventional reinforcing fiber bundle and a thermoplastic resin. FIGS. 2 (A) and 2 (B) are cross-sectional views showing forms of a reinforcing fiber bundle and a thermoplastic resin according to the present invention. FIG. 3 is a cross-sectional view showing a dispersion state of single fibers in a thermoplastic resin in one reinforcing fiber bundle of FIG. 1 of a conventional example. FIG. 4 is a cross-sectional view showing a dispersion state of single fibers in a thermoplastic resin in one reinforcing fiber bundle of FIG. 2 according to the present invention. FIG. 5 is a plan view of a high-strength civil engineering material network produced using the resin-impregnated coated fiber of the present invention. FIG. 6 is a schematic view showing an example of the apparatus for producing a resin-impregnated coated fiber according to the present invention, FIG. 7 is a front view of an introduction side die, FIG. 8 is a front view of an exit side die, and FIG. Front view. ...... Reinforcing fiber bundle, Thermoplastic resin, Single fiber concentrated part, Single fiber dispersion part, Single fiber, F Supply fiber, 1, Bobbin, 2,4 Guide guide , 3 ... Preheater, 5 ... Inlet die, 6 ... Polymer pool, 7 ... Outlet die, 8 ... Throat, 9 ... Screw, 10 ... Die head, 11 ... Forming nozzle, 12 ... ... Guide guide roller, 13 ... Cooling bath, 14 ... Taking-up roll, 15 ... Winding machine, 16 ... Reinforcing fiber introduction hole, 17 ... Reinforcing fiber outlet hole, 18 ... Forming hole

フロントページの続き (72)発明者 都解 圭郎 大阪府茨木市耳原3丁目4番1号 帝人 株式会社大阪研究センター内 (56)参考文献 特開 昭49−102921(JP,A) 特開 昭47−39714(JP,A) 特開 昭48−56993(JP,A) (58)調査した分野(Int.Cl.6,DB名) D01F 8/04 D06M 15/00Continuation of front page (72) Inventor Keiro Toshiro 3-4-1, Amihara, Ibaraki-shi, Osaka Teijin, Ltd. Osaka Research Center (56) References JP-A-49-102921 (JP, A) JP-A Sho 47-39714 (JP, A) JP-A-48-56993 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) D01F 8/04 D06M 15/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】補強用繊維束を熱可塑性樹脂で被覆した樹
脂含浸被覆繊維において、補強用繊維束と熱可塑性樹脂
とが繊維断面において分散した海島状断面を形成し、か
つ補強用繊維束を構成する単繊維群も単繊維の10〜70%
が独立した島成分として海島状断面を形成していること
を特徴とする樹脂含浸被覆繊維。
1. A resin-impregnated coated fiber in which a reinforcing fiber bundle is coated with a thermoplastic resin, wherein the reinforcing fiber bundle and the thermoplastic resin form a sea-island cross section in which the fiber cross section is dispersed. Constituent single fiber group is 10 ~ 70% of single fiber
Has a sea-island cross-section as an independent island component.
【請求項2】樹脂含浸被覆繊維の破断強力の40%荷重下
で1000時間経過時のクリープ歪が5%以下である請求項
(1)に記載の樹脂含浸被覆繊維。
2. The resin-impregnated coated fiber according to claim 1, wherein the creep strain of the resin-impregnated coated fiber after a lapse of 1000 hours under a load of 40% of the breaking strength is 5% or less.
【請求項3】請求項(1)の樹脂含浸被覆繊維を編成し
てなる高強力土木資材網。
3. A high-strength civil material net obtained by knitting the resin-impregnated coated fibers according to claim 1.
【請求項4】補強用繊維束を熱可塑性樹脂で被覆した樹
脂含浸被覆繊維の製造方法において、補強用繊維束を溶
融した熱可塑性樹脂で被覆する前に補強用繊維束を熱可
塑性樹脂の溶融温度以上であらかじめ加熱したのち成形
ノズルを通して25Kg/cm2以上の加圧下で補強用繊維束を
溶融した熱可塑性樹脂で覆うことを特徴とする樹脂含浸
被覆繊維の製造方法。
4. A method for producing a resin-impregnated coated fiber in which a reinforcing fiber bundle is coated with a thermoplastic resin, wherein the reinforcing fiber bundle is melted before the reinforcing fiber bundle is coated with the molten thermoplastic resin. A method for producing a resin-impregnated coated fiber, comprising heating a reinforcing fiber bundle with a molten thermoplastic resin under a pressure of 25 kg / cm 2 or more through a forming nozzle after preheating at a temperature or higher.
JP1907590A 1989-01-31 1990-01-31 Resin impregnated coated fiber Expired - Fee Related JP2862613B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69025225T DE69025225T2 (en) 1989-04-17 1990-04-12 Fiber-reinforced polymer resin composite material and process for its manufacture
US07/508,849 US5068142A (en) 1989-01-31 1990-04-12 Fiber-reinforced polymeric resin composite material and process for producing same
EP90107113A EP0393536B1 (en) 1989-04-17 1990-04-12 Fiber-reinforced polymeric resin composite material and process for producing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP1959189 1989-01-31
JP9538789 1989-04-17
JP1-19591 1989-04-17
JP1-95387 1989-04-17

Publications (2)

Publication Number Publication Date
JPH0347714A JPH0347714A (en) 1991-02-28
JP2862613B2 true JP2862613B2 (en) 1999-03-03

Family

ID=26356439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1907590A Expired - Fee Related JP2862613B2 (en) 1989-01-31 1990-01-31 Resin impregnated coated fiber

Country Status (1)

Country Link
JP (1) JP2862613B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3073988B1 (en) 1999-08-12 2000-08-07 株式会社神戸製鋼所 Manufacturing method of organic fiber reinforced resin pellets
JP2005040996A (en) * 2003-07-23 2005-02-17 Toyobo Co Ltd Organic fibre reinforced resin pellet, its manufacturing method and resin molded product
JP5119697B2 (en) * 2007-03-20 2013-01-16 東レ株式会社 Manufacturing method of fiber reinforced composite material
JP5783671B2 (en) * 2008-11-07 2015-09-24 ダイセルポリマー株式会社 Process for producing resin composition for sliding parts
JP2012056173A (en) * 2010-09-08 2012-03-22 Toyota Motor Corp Method for manufacturing fiber-reinforced resin material
JP2018016733A (en) * 2016-07-28 2018-02-01 宇部エクシモ株式会社 Long fiber reinforced thermoplastic resin linear article and manufacturing method therefor
US11192280B2 (en) * 2018-06-05 2021-12-07 Toray Industries, Inc. Coating-liquid-impregnated fiber-reinforced fabric, sheet-shaped integrated object, prepreg, prepreg tape, and method for manufacturing fiber-reinforced composite material

Also Published As

Publication number Publication date
JPH0347714A (en) 1991-02-28

Similar Documents

Publication Publication Date Title
DE69626275T2 (en) FLEXIBLE, LIGHT PRE-IMPREGNATED TAU
US5068142A (en) Fiber-reinforced polymeric resin composite material and process for producing same
US5520867A (en) Method of manufaturing a resin structure reinforced with long fibers
JPH07251437A (en) Method and device for manufacture of long fiber reinforced thermoplastic composite material
JP5919755B2 (en) Manufacturing method of fiber material
JPS62135537A (en) Flexible composite material and production thereof
KR20130081641A (en) Impregnation assembly and method for manufacturing a composite structure reinforced with long fibers
SK283876B6 (en) Process for the manufacture of a composite thread and composite products obtained from said thread
HU219953B (en) Method and apparatus for producing a composite yarn
EP1647616A1 (en) Process for making a monofilament-like product
JP2862613B2 (en) Resin impregnated coated fiber
CA2333126C (en) Continuous-strand pellets and method and device for preparing continuous-strand pellets
JP6083239B2 (en) Fiber-reinforced plastic and method for producing the same
DE3539185C2 (en)
JPH06114830A (en) Manufacture of continuous glass-fiber reinforced thermoplastic resin pellet
DE69205422T2 (en) SHIELDED THREADED FIBER YARN.
US3651195A (en) Process for producing composite filaments
JPH0768544A (en) Impregnation of fiber bundle with resin
RU2682627C1 (en) Process line forming unit for making nonmetallic fittings, technological line and method of creating rod for manufacturing of composite fittings
JP3569018B2 (en) Method for producing fiber reinforced thermoplastic resin material
DE10332645A1 (en) Device for melt spinning, cooling and winding
JP2662853B2 (en) Manufacturing method and manufacturing apparatus for long fiber reinforced thermoplastic resin molding material
JP3340540B2 (en) Reinforcement core material and fiber resin composite sheet
JPH07310287A (en) Production of fiber-reinforced thermoplastic resin
JP3027540B2 (en) Manufacturing method of long fiber reinforced thermoplastic resin composite

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071211

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20081211

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091211

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees