JP2021123026A - Strand and modeling - Google Patents

Strand and modeling Download PDF

Info

Publication number
JP2021123026A
JP2021123026A JP2020018263A JP2020018263A JP2021123026A JP 2021123026 A JP2021123026 A JP 2021123026A JP 2020018263 A JP2020018263 A JP 2020018263A JP 2020018263 A JP2020018263 A JP 2020018263A JP 2021123026 A JP2021123026 A JP 2021123026A
Authority
JP
Japan
Prior art keywords
strand
fiber
fibers
base material
impregnated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020018263A
Other languages
Japanese (ja)
Other versions
JP7451200B2 (en
Inventor
真 竹中
Makoto Takenaka
真 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2020018263A priority Critical patent/JP7451200B2/en
Priority to US17/135,763 priority patent/US11718015B2/en
Priority to EP20217356.3A priority patent/EP3862185A1/en
Priority to CN202110160608.0A priority patent/CN113211678A/en
Publication of JP2021123026A publication Critical patent/JP2021123026A/en
Application granted granted Critical
Publication of JP7451200B2 publication Critical patent/JP7451200B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • B29B15/122Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • B29B15/14Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length of filaments or wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/38Automated lay-up, e.g. using robots, laying filaments according to predetermined patterns
    • B29C70/382Automated fiber placement [AFP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/40Yarns in which fibres are united by adhesives; Impregnated yarns or threads
    • D02G3/404Yarns or threads coated with polymeric solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/02Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
    • D10B2101/08Ceramic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2922Nonlinear [e.g., crimped, coiled, etc.]

Abstract

To provide a strand that enables three-dimensional printers to easily form objects with excellent impact strength, and objects with excellent impact strength.SOLUTION: The strand of the present invention is a strand used as a molding raw material for a three-dimensional printer, and has a base material made mainly of thermoplastic resin, one or more fibers or fiber bundles impregnated in the base material and extending in the axial direction, and twisted along the above axial direction.SELECTED DRAWING: Figure 1

Description

本発明は、ストランド及び造形物に関する。 The present invention relates to strands and shaped objects.

立体的な形状を有する物体を成形する装置として、熱で可塑化状態にある樹脂を1層ずつ積み重ねていく熱融解積層方式を採用した3D(三次元)プリンタが知られている。この3Dプリンタは、金型、治具等を必要とすることなく三次元形状を成形することができる。加えて、従来の射出成形技術では形成が困難な三次元形状の物体を造形することもできる。 As an apparatus for molding an object having a three-dimensional shape, a 3D (three-dimensional) printer that employs a heat-melting lamination method in which resins in a thermoplastic state by heat are stacked one by one is known. This 3D printer can form a three-dimensional shape without the need for a mold, a jig, or the like. In addition, it is possible to form a three-dimensional object that is difficult to form by conventional injection molding technology.

このような3Dプリンタによる造形技術として、例えば樹脂を含む第1連続材料と炭素繊維等の繊維を含む第2連続材料とを別々に用い、これらをヘッドから供給することで、繊維により強化された成形物(造形物)を形成する技術が提案されている(国際公開第2015/182675号)。 As a modeling technique using such a 3D printer, for example, a first continuous material containing resin and a second continuous material containing fibers such as carbon fibers are used separately, and these are supplied from a head to be reinforced by fibers. A technique for forming a molded product (modeled product) has been proposed (International Publication No. 2015/182675).

国際公開第2015/182675号International Publication No. 2015/182675

上記特許文献1の技術は、2種の連続材料を供給する必要があるため、造形が簡便であるとはいい難い。 Since the technique of Patent Document 1 needs to supply two kinds of continuous materials, it cannot be said that the modeling is simple.

一方、3Dプリンタの用途が広範に拡大するにつれ、立体構造物(造形物)に更なる機械的強度が求められる可能性がある。 On the other hand, as the use of 3D printers expands widely, there is a possibility that a three-dimensional structure (modeled object) is required to have further mechanical strength.

本発明はこのような事情に鑑みてなされたものであり、衝撃強度に優れた造形物を簡便に3Dプリンタで造形することを可能とするストランド、及び衝撃強度に優れた造形物を提供することを課題とする。 The present invention has been made in view of such circumstances, and provides a strand capable of easily modeling a modeled object having excellent impact strength with a 3D printer, and a modeled object having excellent impact strength. Is the subject.

上記課題を解決すべく本発明者らが鋭意研究したところ、以下の知見を得た。
すなわち、本発明者らは、3Dプリンタに適した造形原料として、特許文献1の第1連続材料及び第2連続材料に代えて、炭素繊維等の無機材料によって形成された連続繊維を融解状態にある熱可塑性樹脂に含浸させることを考えた。しかし、この含浸で得られた含浸物は、剛直であり、容易に座屈し易いため、巻き取り時に折れ曲がり易く、巻き取り難い等、取り扱い性に優れるとはいい難いことが判明した。
上記知見に基づいて本発明者らがさらに鋭意研究したところ、融解状態の熱可塑性樹脂に繊維を含浸させ又は含浸させながら撚ることで、得られたストランドが、座屈し難くなり、取り扱い性に優れることを見出した。しかも、特に複数本の繊維、及び繊維束を用いる場合、得られたストランドでは、含浸後に撚ることで熱可塑性樹脂成分がストランドの中心側よりも表面側により多く分布すること、繊維の破断折れが抑制されること、及び繊維間の摩擦が増大することを見出した。そして、このストランドを用いて熱融解積層方式の3Dプリンタで造形を行うと、上記熱可塑性樹脂成分の分布、繊維破断折れの抑制、繊維間の摩擦の増大等の寄与により、造形物が衝撃強度に優れることを見出して、本発明を完成させるに至った。
As a result of diligent research by the present inventors to solve the above problems, the following findings were obtained.
That is, the present inventors put continuous fibers formed of an inorganic material such as carbon fiber into a molten state instead of the first continuous material and the second continuous material of Patent Document 1 as a modeling raw material suitable for a 3D printer. I thought about impregnating a certain thermoplastic resin. However, it has been found that the impregnated material obtained by this impregnation is rigid and easily buckled, so that it is easily bent at the time of winding and difficult to wind, and it is difficult to say that it is excellent in handleability.
As a result of further diligent research by the present inventors based on the above findings, by impregnating the molten thermoplastic resin with fibers or twisting the resin while impregnating the fibers, the obtained strands are less likely to buckle and become easier to handle. Found to be excellent. Moreover, especially when a plurality of fibers and fiber bundles are used, in the obtained strand, the thermoplastic resin component is distributed more on the surface side than on the center side of the strand by twisting after impregnation, and the fiber breaks and breaks. Was suppressed, and the friction between the fibers was found to increase. Then, when modeling is performed using this strand with a heat-melting lamination type 3D printer, the impact strength of the modeled object is increased due to contributions such as distribution of the thermoplastic resin component, suppression of fiber breakage, and increase in friction between fibers. We have found that it is excellent in the above, and have completed the present invention.

すなわち、上記課題を解決するためになされた発明は、3Dプリンタの造形原料として用いられるストランドであって、熱可塑性樹脂を主成分とする基材と、この基材中に含浸され、軸方向に延在する1本又は複数本の繊維又は繊維束とを備え、上記軸方向に沿って撚りが付与されているストランドである。 That is, the invention made to solve the above problems is a strand used as a molding raw material for a 3D printer, which is a base material containing a thermoplastic resin as a main component and impregnated in the base material in the axial direction. A strand that includes one or more extending fibers or fiber bundles and is twisted along the axial direction.

当該ストランドは、上記繊維又は繊維束が上記基材に含浸され、撚られていることで、座屈し難くなり、取り扱い性に優れる。加えて、上記撚られていることにより、当該ストランドを用いて3Dプリンタで造形した造形物が衝撃強度に優れる。従って、当該ストランドは、衝撃強度に優れた造形物を簡便に3Dプリンタで形成することを可能とする。 Since the fibers or fiber bundles are impregnated in the base material and twisted, the strands are less likely to buckle and are excellent in handleability. In addition, due to the twisting, the modeled object formed by the 3D printer using the strand has excellent impact strength. Therefore, the strand makes it possible to easily form a modeled object having excellent impact strength with a 3D printer.

上記軸方向の長さ1m当たりの上記撚りの回数としては、10回/m以上200回/m以下が好ましい。 The number of twists per 1 m of axial length is preferably 10 times / m or more and 200 times / m or less.

このように、上記撚りの回数が上記範囲内であることで、当該ストランドがより確実に座屈し難くなり、より取り扱い性に優れる。加えて、当該ストランドを用いて3Dプリンタで造形した造形物がより確実に衝撃強度に優れる。 As described above, when the number of twists is within the above range, the strand is less likely to buckle more reliably, and the handleability is improved. In addition, a modeled object formed by a 3D printer using the strand is more reliably excellent in impact strength.

上記軸方向に対する上記撚りの角度としては、3°以上50°以下が好ましい。 The twist angle with respect to the axial direction is preferably 3 ° or more and 50 ° or less.

このように、上記撚りの角度が上記範囲内であることで、当該ストランドがより確実に座屈し難くなり、より取り扱い性に優れる。加えて、当該ストランドを用いて3Dプリンタで造形した造形物がより確実に衝撃強度に優れる。 As described above, when the twist angle is within the above range, the strand is less likely to buckle more reliably, and the handleability is improved. In addition, a modeled object formed by a 3D printer using the strand is more reliably excellent in impact strength.

上記繊維又は繊維束としては、炭素繊維又は炭素束が好ましい。 As the fiber or fiber bundle, carbon fiber or carbon bundle is preferable.

このように、上記繊維又は繊維束が炭素繊維又は炭素繊維束であることで、繊維材料の中でも比較的剛直な種類である炭素繊維又は炭素繊維束を用いた当該ストランドが座屈し難くなり、取り扱い性に優れるため、当該ストランドの優位性がより高まる。加えて、繊維又は繊維束の中でも比較的強度が高い炭素繊維又は炭素繊維束を用いることで、当該ストランドを用いて3Dプリンタで造形した造形物が、より衝撃強度に優れる。 As described above, when the fiber or the fiber bundle is a carbon fiber or a carbon fiber bundle, the strand using the carbon fiber or the carbon fiber bundle, which is a relatively rigid type among the fiber materials, is less likely to buckle and is handled. Since it is excellent in properties, the superiority of the strand is further enhanced. In addition, by using the carbon fiber or the carbon fiber bundle having a relatively high strength among the fibers or the fiber bundle, the modeled product formed by the 3D printer using the strand has more excellent impact strength.

上記課題を解決するためになされた別の発明は、3Dプリンタによる造形物であって、熱可塑性樹脂を主成分とする基体と、この基体中に含有され、軸方向に沿って撚りが付与されている1本又は複数本の繊維又は繊維束とを備える造形物である。 Another invention made to solve the above problems is a modeled product by a 3D printer, which is a substrate containing a thermoplastic resin as a main component and a substrate contained in the substrate, which is twisted along the axial direction. It is a modeled product including one or more fibers or fiber bundles.

当該造形物は、上記繊維又は繊維束が上記基体中に含有され、撚られていることで、衝撃強度に優れる。 The modeled object is excellent in impact strength because the fibers or fiber bundles are contained in the substrate and twisted.

ここで、「主成分」とは、最も含有量の多い成分を意味し、例えば含有量が50質量%以上の成分をいう。 Here, the "main component" means a component having the highest content, for example, a component having a content of 50% by mass or more.

以上説明したように、本発明のストランドによれば、衝撃強度に優れた造形物を簡便に3Dプリンタで造形することができる。本発明の造形物は、衝撃強度に優れる。 As described above, according to the strand of the present invention, a modeled object having excellent impact strength can be easily modeled by a 3D printer. The modeled object of the present invention has excellent impact strength.

図1は、本発明の一実施形態のストランドの横断面を模式的に示す概略断面図である。FIG. 1 is a schematic cross-sectional view schematically showing a cross section of a strand according to an embodiment of the present invention. 図2は、本実施形態のストランドの製造装置を示す概略斜視図である。FIG. 2 is a schematic perspective view showing a strand manufacturing apparatus of this embodiment.

以下、本発明のストランド及び造形物の実施形態について詳説する。なお、本明細書では、任意の事項について記載された複数の上限値のうちの1つと複数の下限値のうちの1つとを適宜組み合わせることができる。このように組み合わせることで、組み合わされた上限値と下限値との間の数値範囲が上記任意の事項の好適な数値範囲として本明細書中に記載されているものとする。ここで、上記した上限値と下限値との間の数値範囲は上限値から下限値までの数値範囲、及び下限値から上限値までの数値範囲を含む。 Hereinafter, embodiments of the strand and the modeled object of the present invention will be described in detail. In this specification, one of the plurality of upper limit values described for any matter and one of the plurality of lower limit values can be appropriately combined. By combining in this way, it is assumed that the numerical range between the combined upper limit value and the lower limit value is described in the present specification as a suitable numerical range of any of the above items. Here, the numerical range between the upper limit value and the lower limit value described above includes a numerical range from the upper limit value to the lower limit value and a numerical range from the lower limit value to the upper limit value.

[第1実施形態]
まず、本実施形態のストランドについて説明する。
[First Embodiment]
First, the strand of the present embodiment will be described.

<ストランド>
当該ストランドは、3Dプリンタの造形原料として用いられるストランドであって、熱可塑性樹脂を主成分とする基材と、この基材中に含浸され、軸方向に延在する1本又は複数本の繊維又は繊維束とを備え、上記軸方向に沿って撚りが付与されている。以下、繊維又は繊維束を、まとめて「繊維材料」ともいう。基材中に1本又は複数本の繊維又は繊維束が含浸されたものを、「複合体」ともいう。
<Strand>
The strand is a strand used as a modeling raw material for a 3D printer, and is a base material containing a thermoplastic resin as a main component and one or a plurality of fibers impregnated in the base material and extending in the axial direction. Alternatively, it is provided with a fiber bundle and twisted along the axial direction. Hereinafter, fibers or fiber bundles are also collectively referred to as "fiber material". A base material impregnated with one or more fibers or fiber bundles is also referred to as a "composite".

例えば図1に示す態様では、ストランド1は、熱可塑性樹脂を主成分とする基材3と、この基材3中に含浸され、軸方向として一方向(図1の紙面と垂直な方向)に延在する複数本(図1では3本)の繊維材料5を備え、上記軸方向に沿って撚りが付与されている。このように、ストランド1が複数本の繊維材料5を備える態様の他、ストランド1が1本の繊維材料5を備える態様を採用してもよい。 For example, in the embodiment shown in FIG. 1, the strand 1 is impregnated with a base material 3 containing a thermoplastic resin as a main component and the base material 3, and is axially oriented in one direction (perpendicular to the paper surface of FIG. 1). A plurality of extending fiber materials 5 (three in FIG. 1) are provided, and twists are imparted along the axial direction. As described above, in addition to the embodiment in which the strand 1 includes a plurality of fiber materials 5, the embodiment in which the strand 1 includes one fiber material 5 may be adopted.

(3Dプリンタ)
上記3Dプリンタは、熱可塑性樹脂成分を熱で融解した当該ストランドを少しずつ積み重ねていくことで三次元形状の造形物を形成する、すなわち、熱融解積層方式を採用するものである。この熱融解積層方式では、一層ずつ、先に形成した層と次の層とを半固形(軟化)状態で接着させながら造形を行う。この3Dプリンタは、熱で可塑化状態にある樹脂を少しずつ積み重ねていくことで造形物を形成することができるものであれば、特に限定されない。例えば3Dプリンタとしては、上下、左右及び前後方向に自在に移動可能な支持板と、当該ストランドの熱可塑性樹脂成分を可塑化しながら上記支持板に供給する供給部とを備えるものが挙げられる。
(3D printer)
The above-mentioned 3D printer adopts a heat-melting lamination method in which a three-dimensional shaped object is formed by gradually stacking the strands obtained by melting the thermoplastic resin component by heat. In this heat-melting lamination method, modeling is performed while adhering the previously formed layer and the next layer one by one in a semi-solid (softened) state. This 3D printer is not particularly limited as long as it can form a modeled object by gradually stacking resins in a state of being plasticized by heat. For example, a 3D printer includes a support plate that can be freely moved in the vertical, horizontal, and front-rear directions, and a supply unit that supplies the support plate while plasticizing the thermoplastic resin component of the strand.

(基材)
上記基材は、熱可塑性樹脂を主成分とする。上記基材は、融解状態で上記繊維又は繊維束を含浸させ得るものである。上記熱可塑性樹脂としては、ポリプロピレン、ポリエチレン等のポリオレフィン系樹脂、ナイロン等のポリアミド系樹脂、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等のポリエステル系樹脂、ポリエチレンイミド(PEI)等のポリイミド系樹脂、ナイロン等のポリアミド系樹脂、ポリカーボネート系樹脂、ポリエーテルエーテルケトン(PEEK)、ポリアセタール、ポリフェニレンサルファイド等が挙げられる。
(Base material)
The base material contains a thermoplastic resin as a main component. The base material can be impregnated with the fibers or fiber bundles in a molten state. Examples of the thermoplastic resin include polyolefin resins such as polypropylene and polyethylene, polyamide resins such as nylon, polyester resins such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT), and polyimide resins such as polyethyleneimide (PEI). Examples thereof include resins, polyamide resins such as nylon, polycarbonate resins, polyether ether ketone (PEEK), polyacetal, and polyphenylene sulfide.

当該ストランド(100質量%)中における上記基材の含有量(含浸量)の下限としては、2質量%が好ましく、5質量%がより好ましい。上記含有量が上記下限に満たないと、当該ストランドの衝撃強度が低下するおそれがある。一方、上記含有量の上限としては、98質量%が好ましく、95重量%がより好ましい。上記含有量が上記上限を超えると、ストランドの取り扱い性が低下するおそれがある。 The lower limit of the content (impregnation amount) of the base material in the strand (100% by mass) is preferably 2% by mass, more preferably 5% by mass. If the content does not reach the lower limit, the impact strength of the strand may decrease. On the other hand, as the upper limit of the content, 98% by mass is preferable, and 95% by weight is more preferable. If the content exceeds the upper limit, the handleability of the strand may be deteriorated.

(繊維又は繊維束)
当該ストランドは、1又は複数本の繊維又は繊維束を備える。すなわち、当該ストランドは、1本の繊維、複数本の繊維、1本の繊維束、又は複数本の繊維束を備える。
(Fiber or fiber bundle)
The strand comprises one or more fibers or fiber bundles. That is, the strand comprises one fiber, a plurality of fibers, one fiber bundle, or a plurality of fiber bundles.

上記繊維は、長繊維、すなわち連続繊維である。上記繊維の平均長さは、2mm以上であれば特に限定されない。上記繊維の平均長さの下限としては、2mmが好ましく、5mmがより好ましい。一方、上記繊維の平均長さの上限は、特に限定されない。この上限としては、例えば、1000m、500mといった長さに適宜設定することができる。 The fibers are long fibers, that is, continuous fibers. The average length of the fibers is not particularly limited as long as it is 2 mm or more. The lower limit of the average length of the fibers is preferably 2 mm, more preferably 5 mm. On the other hand, the upper limit of the average length of the fibers is not particularly limited. The upper limit can be appropriately set to, for example, a length of 1000 m or 500 m.

上記繊維束は、複数本の繊維が束ねられて連続した線状に形成されたものである。上記繊維束の平均長さは、2mm以上であれば特に限定されない。上記繊維束の平均長さの下限としては、2mmが好ましく、5mmがより好ましい。一方、上記繊維の平均長さの上限は、特に限定されない。この上限としては、例えば、1000m、500mといった長さに適宜設定することができる。 The fiber bundle is formed by bundling a plurality of fibers into a continuous linear shape. The average length of the fiber bundle is not particularly limited as long as it is 2 mm or more. The lower limit of the average length of the fiber bundle is preferably 2 mm, more preferably 5 mm. On the other hand, the upper limit of the average length of the fibers is not particularly limited. The upper limit can be appropriately set to, for example, a length of 1000 m or 500 m.

上記繊維の平均直径の下限としては、1μmが好ましく、10μmがより好ましい。上記太さが上記下限に満たないと、ストランド及び造形物の衝撃強度を十分に大きくし難いおそれがある。一方、上記平均直径の上限としては、30mmが好ましく、10mmがより好ましい。上記平均直径が上記上限を超えると、ストランドを屈曲させることが困難になり、また、造形物を造形し難くなるおそれがある。 The lower limit of the average diameter of the fibers is preferably 1 μm, more preferably 10 μm. If the thickness is less than the lower limit, it may be difficult to sufficiently increase the impact strength of the strand and the modeled object. On the other hand, the upper limit of the average diameter is preferably 30 mm, more preferably 10 mm. If the average diameter exceeds the upper limit, it becomes difficult to bend the strand, and it may be difficult to form a modeled object.

上記繊維束の平均太さの下限としては、500texが好ましく、1000texがより好ましく、5000texがさらに好ましい。上記平均太さが上記下限に満たないと、ストランド及び造形物の衝撃強度を十分に大きくし難いおそれがある。一方、上記平均太さの上限としては、100000texが好ましく、60000texがより好ましく、40000texがさらに好ましい。上記平均太さが上記上限を超えると、ストランドを屈曲させることが困難になり、また、造形物を造形し難くなるおそれがある。 As the lower limit of the average thickness of the fiber bundle, 500 tex is preferable, 1000 tex is more preferable, and 5000 tex is further preferable. If the average thickness does not reach the lower limit, it may be difficult to sufficiently increase the impact strength of the strand and the modeled object. On the other hand, as the upper limit of the average thickness, 100,000 tex is preferable, 60,000 tex is more preferable, and 40,000 tex is further preferable. If the average thickness exceeds the upper limit, it becomes difficult to bend the strand, and it may be difficult to form a modeled object.

上記繊維としては、例えば炭素繊維、ガラス繊維、アラミド等の有機合成樹脂、鋼線などの金属繊維等が挙げられる。上記繊維としては、炭素繊維が好ましい。上記繊維束としては、例えば炭素繊維束、ガラス繊維束等が挙げられる。上記繊維束としては、炭素繊維束が好ましい。ここで、炭素繊維は、繊維材料の中でも比較的強度が高い。よって、上記繊維が炭素繊維であることで、また、上記繊維束が炭素繊維束であることで、当該ストランドが座屈し難くなり、取り扱い性に優れる。従って、当該ストランドの優位性がより高まる。加えて、繊維の中でも比較的強度が高い炭素繊維又は炭素繊維束を用いることで、当該ストランドを用いて3Dプリンタで造形した造形物が、より衝撃強度に優れる。 Examples of the fibers include carbon fibers, glass fibers, organic synthetic resins such as aramid, and metal fibers such as steel wire. As the fiber, carbon fiber is preferable. Examples of the fiber bundle include a carbon fiber bundle and a glass fiber bundle. As the fiber bundle, a carbon fiber bundle is preferable. Here, carbon fiber has relatively high strength among fiber materials. Therefore, since the fiber is a carbon fiber and the fiber bundle is a carbon fiber bundle, the strand is less likely to buckle and is excellent in handleability. Therefore, the superiority of the strand is further enhanced. In addition, by using carbon fibers or carbon fiber bundles having relatively high strength among the fibers, a modeled product formed by a 3D printer using the strands has more excellent impact strength.

(撚り)
当該ストランドにおいては、上記基材に上記繊維材料が含浸された複合体が、上記軸方向に撚られている。上記軸方向の長さ1m当たりの上記撚りの回数の下限としては、10回/mが好ましく、20回/mがより好ましく、50回/mがさらに好ましく、70回/mが特に好ましい。上記撚りの回数が上記下限に満たないと、当該ストランドが座屈し易くなり、取り扱い性に劣るおそれがある。加えて、当該ストランドを用いて3Dプリンタで形成した造形物が衝撃強度に劣るおそれがある。一方、上記撚りの回数の上限としては、200回/mが好ましく、150回/mがより好ましく、100回/mがさらに好ましい。上記撚りの回数が上記上限を超えると、当該ストランドの製造時に樹脂材料の量に比して繊維材料の量が相対的に小さくなり、当該ストランドを用いて3Dプリンタで造形した造形物が衝撃強度に劣るおそれがある。
(Torsion)
In the strand, the composite in which the base material is impregnated with the fiber material is twisted in the axial direction. The lower limit of the number of twists per 1 m of axial length is preferably 10 times / m, more preferably 20 times / m, further preferably 50 times / m, and particularly preferably 70 times / m. If the number of twists does not reach the lower limit, the strands tend to buckle, which may result in poor handleability. In addition, a model formed by a 3D printer using the strand may be inferior in impact strength. On the other hand, the upper limit of the number of twists is preferably 200 times / m, more preferably 150 times / m, and even more preferably 100 times / m. When the number of twists exceeds the above upper limit, the amount of the fiber material becomes relatively small compared to the amount of the resin material at the time of manufacturing the strand, and the modeled object formed by the 3D printer using the strand has impact strength. May be inferior to.

上記軸方向に対する撚りの角度は、繊維材料の平均太さ及び平均直径と、撚りの回数とによって決定される。この撚りの角度の下限としては、例えば3°が好ましく、10°がより好ましく、15°がさらに好ましい。上記撚りの角度が上記下限に満たないと、当該ストランドが座屈し易くなり、取り扱い性に劣るおそれがある。加えて、当該ストランドを用いて3Dプリンタで造形した造形物が衝撃強度に劣るおそれがある。一方、上記撚りの角度の上限としては、50°が好ましく、35°がより好ましく、25°がさらに好ましい。上記撚りの角度が上記上限を超えると、樹脂材料の量に比して繊維材料の量が相対的に小さくなり、当該ストランドを用いて3Dプリンタで造形した造形物が衝撃強度に劣るおそれがある。 The twist angle with respect to the axial direction is determined by the average thickness and diameter of the fiber material and the number of twists. As the lower limit of the twist angle, for example, 3 ° is preferable, 10 ° is more preferable, and 15 ° is further preferable. If the twist angle does not reach the lower limit, the strand tends to buckle, which may result in poor handleability. In addition, a modeled object formed by a 3D printer using the strand may be inferior in impact strength. On the other hand, the upper limit of the twist angle is preferably 50 °, more preferably 35 °, and even more preferably 25 °. If the twist angle exceeds the upper limit, the amount of the fiber material becomes relatively small compared to the amount of the resin material, and the modeled object formed by the 3D printer using the strand may be inferior in impact strength. ..

特に、当該ストランドが複数本の繊維、又は1本若しくは複数本の繊維束を備える場合、上記のように撚りを付与することで、当該ストランド中の熱可塑性樹脂成分を当該ストランドの中心側よりも外表面側に多く分布させることができるため、造形物の衝撃強度をより高めることができる。 In particular, when the strand includes a plurality of fibers or one or a plurality of fiber bundles, by imparting twist as described above, the thermoplastic resin component in the strand is more than the center side of the strand. Since a large amount can be distributed on the outer surface side, the impact strength of the modeled object can be further increased.

(ストランドの製造方法)
本実施形態のストランドの製造方法は、融解状態の上記基材に上記繊維又は繊維束を含浸させる工程(含浸工程)と、含浸させた上記繊維又は繊維束を撚られている状態にする工程(撚り工程)とを備える。当該製造方法は、例えば図2に示す製造装置1を用いて行うことができる。
(Strand manufacturing method)
The method for producing a strand of the present embodiment includes a step of impregnating the melted base material with the fiber or the fiber bundle (impregnation step) and a step of bringing the impregnated fiber or the fiber bundle into a twisted state (a step of making the impregnated fiber or the fiber bundle twisted). It is equipped with a twisting process). The manufacturing method can be performed using, for example, the manufacturing apparatus 1 shown in FIG.

(製造装置)
図2に示すように、製造装置1は、コイル状に巻かれた繊維材料5を所定速度で送り出す複数(図2では3つ)の繊維材料供給部11と、基材3を混練溶融させる混練押出機25と、繊維材料供給部11から送り出された繊維材料5に混練押出機25で可塑化された基材3を含浸させる樹脂浴部27とを備える。
(manufacturing device)
As shown in FIG. 2, the manufacturing apparatus 1 kneads and melts a plurality of (three in FIG. 2) fiber material supply units 11 for feeding the coiled fiber material 5 at a predetermined speed and the base material 3. The extruder 25 and the resin bath portion 27 for impregnating the fiber material 5 sent out from the fiber material supply unit 11 with the base material 3 plasticized by the kneading extruder 25 are provided.

この製造装置10は、樹脂浴部27の下流側に配設されて樹脂浴部27から送り出された含浸後の繊維材料5を冷却する冷却部31と、この冷却部31の下流側に配設されて、主として冷却前の繊維材料5に軸中心周りの撚りを付与させる撚り部41とを備える。 The manufacturing apparatus 10 is arranged on the downstream side of the resin bath portion 27 and is arranged on the downstream side of the cooling portion 31 and the cooling portion 31 for cooling the impregnated fiber material 5 sent out from the resin bath portion 27. The fiber material 5 before cooling is provided with a twisted portion 41 that imparts a twist around the center of the shaft.

混練押出機25は、内部が空洞とされたチャンバ26内に混練翼を有するスクリュシャフト(不図示)を回転自在に備えており、ホッパ23から投入された基材3を融解して可塑化する。 The kneading extruder 25 is rotatably provided with a screw shaft (not shown) having kneading blades in a chamber 26 having a hollow inside, and melts and plasticizes the base material 3 charged from the hopper 23. ..

樹脂浴部27は、筒軸方向を上下に向けた円筒状に形成されており、その筒内部には混練押出機25で可塑化された基材3が供給され貯留される。樹脂浴部27の上端部は開口しており、この上端開口から樹脂浴部27内に貯留された基材3に対して繊維材料5を引き入れることができるようになっている。 The resin bath portion 27 is formed in a cylindrical shape with the cylinder axis direction facing up and down, and the base material 3 plasticized by the kneading extruder 25 is supplied and stored inside the cylinder. The upper end of the resin bath portion 27 is open, and the fiber material 5 can be drawn into the base material 3 stored in the resin bath portion 27 from the upper end opening.

図示は省略するが、この樹脂浴部27の内部には、軸心を水平方向へ向けて回転自在に保持された複数本(例えば4本)の含浸ロールが、互いに平行で、且つ上下方向に所定か距離を空けて設けられる。樹脂浴部27の上端開口から導入された繊維材料5は、これらの含浸ロールを上から下へ向けて蛇行するように順番に架け渡される。少なくともこれら複数の含浸ロールのうち最下方の含浸ロールよりも下流側において、繊維材料5に撚りが付与される。 Although not shown, a plurality of (for example, four) impregnated rolls, which are rotatably held with their axes oriented in the horizontal direction, are parallel to each other and in the vertical direction inside the resin bath portion 27. It is provided at a predetermined or distance. The fiber material 5 introduced from the upper end opening of the resin bath portion 27 is sequentially spanned so as to meander these impregnated rolls from top to bottom. Twisting is imparted to the fiber material 5 at least on the downstream side of the lowermost impregnated roll among these plurality of impregnated rolls.

樹脂浴部27の下端部には、含浸後の繊維材料5を外部に引き出すための出口部28が設けられる。この出口部28には、繊維材料5を被覆状態にしている基材3を整形して、断面形状を形作るためのダイス29が設けられる。 At the lower end of the resin bath 27, an outlet 28 for pulling out the impregnated fiber material 5 to the outside is provided. The outlet portion 28 is provided with a die 29 for shaping the base material 3 coated with the fiber material 5 to form a cross-sectional shape.

冷却部31は、樹脂浴部27から含浸後の繊維材料5が引き出される方向に沿って長い水槽とされており、槽内に冷却水32を貯留するようになっている。樹脂浴部27の出口部28(ダイス29)に最も近接して対向する槽壁に、含浸後の繊維材料5を導入するための入口部が設けられ、この入口部から最も離れた槽壁に含浸後の繊維材料5を排出するための出口部が設けられる。従って、この冷却部31では、繊維材料5に含浸及び被覆状態となっている基材3を冷却水32中で冷却し、硬化させることができる。 The cooling unit 31 is a long water tank along the direction in which the impregnated fiber material 5 is drawn out from the resin bath portion 27, and the cooling water 32 is stored in the tank. An inlet portion for introducing the impregnated fiber material 5 is provided on the tank wall closest to and opposed to the outlet portion 28 (die 29) of the resin bath portion 27, and the tank wall farthest from this inlet portion is provided. An outlet portion for discharging the impregnated fiber material 5 is provided. Therefore, in the cooling unit 31, the base material 3 in which the fiber material 5 is impregnated and coated can be cooled in the cooling water 32 and cured.

冷却部31の下流側に配設される撚り部41としては、様々な機構等を採用可能である。例えば撚り部41として、図示を省略するが、ストランド1を巻き取るボビンをストランド1の軸心周りに回転させる機構を採用してもよい。一方、図2に示すように、例えば撚り部41として、互いの外周面を接触させた上下一対の引取ロール43及び引取ロール45を有する構成を採用してもよい。これら引取ロール43及び引取ロール45は、冷却部31から送り出された含浸後の繊維材料5を対向状に挟んで、さらに下流側に送り出せるように、互いに異なる回転方向に回転可能である。 Various mechanisms or the like can be adopted as the twisted portion 41 arranged on the downstream side of the cooling portion 31. For example, as the twisted portion 41, although not shown, a mechanism for rotating the bobbin that winds up the strand 1 around the axis of the strand 1 may be adopted. On the other hand, as shown in FIG. 2, for example, as the twisted portion 41, a configuration having a pair of upper and lower take-up rolls 43 and take-up rolls 45 in which the outer peripheral surfaces of the twisted portions are in contact with each other may be adopted. The take-up roll 43 and the take-up roll 45 can rotate in different rotation directions so that the impregnated fiber material 5 sent out from the cooling unit 31 is sandwiched in a facing manner and can be sent out further to the downstream side.

すなわち、この撚り部41が備える上下一対の引取ロール43及び引取ロール45は、繊維材料供給部11から樹脂浴部27へと繊維材料5を引き込み、さらに樹脂浴部27から冷却部31及び撚り部41へと含浸後の繊維材料5を引き出す機能を兼ね備えており、製造装置1のなかでは、繊維材料5及びストランド1に対する引取部を構成するものとなっている。なお、撚り部41の下流側に、別途、巻取部(不図示)を設けて、得られたストランド1をボビンなどに巻き取るようにすればよい。 That is, the pair of upper and lower take-up rolls 43 and take-up rolls 45 included in the twisted portion 41 draws the fiber material 5 from the fiber material supply portion 11 into the resin bath portion 27, and further draws the fiber material 5 from the resin bath portion 27 into the cooling portion 31 and the twisted portion. It also has a function of pulling out the fiber material 5 after impregnation into 41, and in the manufacturing apparatus 1, it constitutes a take-up portion for the fiber material 5 and the strand 1. A winding portion (not shown) may be separately provided on the downstream side of the twisted portion 41 so that the obtained strand 1 can be wound on a bobbin or the like.

上記上下一対の引取ロール43及び引取ロール45は、いずれも、含浸後の繊維材料5の引き取り方向に対して傾斜した方向を向くように配設されており、両引取ロール43及び引取ロール45同士が互いに等しい角度で且つ異なる方向を向くようになっている。すなわち、上側の引取ロール45の回転軸心と下側の引取ロール43の回転軸心とが、含浸後の繊維材料5の引き取り軸線を中心とする上面視対称形のX形に交差している。 The pair of upper and lower take-up rolls 43 and 45 are arranged so as to face an inclined direction with respect to the take-up direction of the impregnated fiber material 5, and both take-back rolls 43 and take-back rolls 45 are arranged with each other. Are oriented at equal angles to each other and in different directions. That is, the rotation axis of the upper take-up roll 45 and the rotation axis of the lower take-up roll 43 intersect with each other in a symmetrical X-shape centered on the take-back axis of the impregnated fiber material 5. ..

次に、製造装置1を用いた当該ストランド1の製造方法の一例について説明する。 Next, an example of a method for manufacturing the strand 1 using the manufacturing apparatus 1 will be described.

(含浸工程)
含浸工程は、製造装置1の樹脂浴部27によって行う。具体的には、ホッパ23から供給された基材3を混錬押出機25で混練し、融解状態の基材3を樹脂浴部27に貯留する。この樹脂浴部27に繊維材料供給部11から繊維材料5を供給する。樹脂浴部27内で、融解状態の基材3に繊維材料5を含浸させ、出口部28に配置されたダイス29を通過させて含浸量を調整する。この含浸により、各繊維材料5内の隙間、各繊維材料5の周囲、及び各繊維材料5同士の間に基材3が存在している状態となる。このようにして得られた基材3と繊維材料5との複合体(含浸後の繊維材料)を冷却部31で冷却する。
(Immersion process)
The impregnation step is performed by the resin bath portion 27 of the manufacturing apparatus 1. Specifically, the base material 3 supplied from the hopper 23 is kneaded by the kneading extruder 25, and the base material 3 in the molten state is stored in the resin bath portion 27. The fiber material 5 is supplied from the fiber material supply unit 11 to the resin bath portion 27. In the resin bath portion 27, the base material 3 in the molten state is impregnated with the fiber material 5, and the impregnation amount is adjusted by passing through the die 29 arranged at the outlet portion 28. By this impregnation, the base material 3 is present in the gaps in each fiber material 5, around each fiber material 5, and between the fiber materials 5. The composite (fiber material after impregnation) of the base material 3 and the fiber material 5 thus obtained is cooled by the cooling unit 31.

(撚り工程) (Twisting process)

撚り工程では、樹脂浴部27で基材3が含浸された状態の繊維材料5に、撚り部41によって撚りを付与する。具体的には、冷却部31を通過した含浸後の繊維材料5を、撚り部41の引取ロール43及び引取ロール45を回転させながらこれらのニップを通過させる。これにより、上述したように、少なくとも樹脂浴部27内の最下方の含浸ロール(不図示)よりも下流側にて上記含浸後の(すなわち含浸状態にある)繊維材料5に撚りを付与する。上記引取ロール43及び引取ロール45の引き取り方向に対する傾斜角度を調整することで、撚り回数及び撚り角度を調整することができる。このように撚りを付与することにより、特に繊維材料5として複数本の繊維、又は1本若しくは複数本の繊維束を用いる場合、ストランド1中の熱可塑性樹脂成分をストランド1の中心側よりも外表面側に多く分布させることができる。 In the twisting step, the twisting portion 41 imparts twist to the fiber material 5 in which the base material 3 is impregnated in the resin bath portion 27. Specifically, the impregnated fiber material 5 that has passed through the cooling portion 31 is passed through these nips while rotating the take-up roll 43 and the take-up roll 45 of the twisted portion 41. As a result, as described above, the fiber material 5 after impregnation (that is, in the impregnated state) is twisted at least on the downstream side of the lowermost impregnated roll (not shown) in the resin bath portion 27. By adjusting the inclination angle of the take-up roll 43 and the take-up roll 45 with respect to the take-up direction, the number of twists and the twist angle can be adjusted. By imparting the twist in this way, particularly when a plurality of fibers or one or a plurality of fiber bundles are used as the fiber material 5, the thermoplastic resin component in the strand 1 is outside the center side of the strand 1. Many can be distributed on the surface side.

このようにして、熱可塑性樹脂を含む基材に繊維材料が含浸され、軸方向に撚りが付されているストランドを製造することができる。 In this way, the base material containing the thermoplastic resin is impregnated with the fiber material, and the strands twisted in the axial direction can be produced.

<利点>
当該ストランドは、上記繊維又は繊維束が上記基材に含浸され、撚られていることで、座屈し難くなり、取り扱い性に優れる。加えて、上記撚られていることにより、当該ストランドを用いて3Dプリンタで造形した造形物が衝撃強度に優れる。従って、当該ストランドは、衝撃強度に優れた造形物を簡便に3Dプリンタで造形することを可能とする。
<Advantage>
Since the fibers or fiber bundles are impregnated in the base material and twisted, the strands are less likely to buckle and are excellent in handleability. In addition, due to the twisting, the modeled object formed by the 3D printer using the strand has excellent impact strength. Therefore, the strand makes it possible to easily model a modeled object having excellent impact strength with a 3D printer.

[第2実施形態]
次いで、本実施形態の造形物について説明する。
[Second Embodiment]
Next, the modeled object of this embodiment will be described.

本実施形態の造形物は、3Dプリンタによる造形物であって、熱可塑性樹脂を主成分とする基体と、この基体中に含有され、軸方向に沿って撚りが付与されている1本又は複数本の繊維又は繊維束とを備える。 The modeled object of the present embodiment is a modeled object by a 3D printer, and is a substrate containing a thermoplastic resin as a main component, and one or a plurality of substrates contained in the substrate and twisted along the axial direction. It includes a book fiber or a fiber bundle.

(3Dプリンタ)
本実施形態の造形物における3Dプリンタとしては、上述した第1実施形態のストランドにおける3Dプリンタと同様の3Dプリンタと同様のものが挙げられる。
(3D printer)
Examples of the 3D printer in the modeled object of the present embodiment include the same 3D printer as the 3D printer in the strand of the first embodiment described above.

(繊維又は繊維束)
本実施形態の造形物における1本又は複数本の繊維又は繊維束としては、上述した第1実施形態のストランドにおける1本又は複数本の繊維又は繊維束と同様のものが挙げられる。また、上述したように、繊維又は繊維束を、まとめて「繊維材料」ともいう。
(Fiber or fiber bundle)
Examples of the one or more fibers or fiber bundles in the modeled object of the present embodiment include those similar to the one or more fibers or fiber bundles in the strand of the first embodiment described above. Further, as described above, the fibers or fiber bundles are also collectively referred to as "fiber material".

(基体)
上記基体は、熱可塑性樹脂を主成分とする。上記基体は、この基体内に上記繊維又は繊維束を含有させ得るものである。上記熱可塑性樹脂としては、上述した第1実施形態の熱可塑性樹脂と同様のものが挙げられる。
(Hypokeimenon)
The substrate contains a thermoplastic resin as a main component. The substrate can contain the fibers or fiber bundles in the substrate. Examples of the thermoplastic resin include the same ones as those of the thermoplastic resin of the first embodiment described above.

(造形物の製造方法)
本実施形態の造形物の製造方法としては、例えば上述した本実施形態のストランドを造形材料として用いて3Dプリンタによって造形する工程を備える。具体的には、上述した本実施形態のストランドを用い、3Dプリンタによって、熱で可塑化状態にある当該ストランドを1層ずつ積み重ねていく熱融解積層法方式で造形物を造形する工程を備える。この造形物では、上記基材が融解した後、冷却されて再び固化することで、基体が形成される。この基体内に、上記のように撚られている繊維材料が存在している。
(Manufacturing method of modeled object)
A method for manufacturing a modeled object of the present embodiment includes, for example, a step of modeling with a 3D printer using the strand of the present embodiment described above as a modeling material. Specifically, it comprises a step of forming a modeled object by a fused deposition modeling method in which the strands of the present embodiment described above are used and the strands in a thermoplastic state by heat are stacked one by one by a 3D printer. In this model, the base material is melted, then cooled and solidified again to form the base material. In this substrate, there is a fiber material twisted as described above.

<利点>
当該造形物は、上記繊維又は繊維束が熱可塑性樹脂を主成分とする基体中に含有され、撚られていることで、上述したように、衝撃強度に優れる。
<Advantage>
As described above, the modeled product is excellent in impact strength because the fibers or fiber bundles are contained in a substrate containing a thermoplastic resin as a main component and twisted.

[その他の実施形態]
なお、本発明は、上記実施形態に限定されるものではない。
例えば、上記実施形態のストランドでは、上記した一対の引取ロールを有する撚り部によって、融解した熱可塑性樹脂に含浸させた複合体に撚りを付与した。しかし、その他、撚りの付与として、含浸後、上述したように、冷却した複合体を巻き取りながら撚るように構成された巻取部(ボビン)を採用することもできる。この場合、例えば巻取部が、上記複合体を巻き取るロールと、このロールを支持する支持部材とを有し、上記ロールが上記複合体を巻き取るよう上記複合体の引き取り方向と垂直な第1軸心周りに上記支持部材に対して回転しながら、上記支持部材が上記引き取り方向の第2軸心周りに上記ロールと共に回転するように構成された態様を採用することができる。
[Other Embodiments]
The present invention is not limited to the above embodiment.
For example, in the strand of the above embodiment, the twisted portion having the pair of take-up rolls described above imparts a twist to the composite impregnated with the molten thermoplastic resin. However, in addition, as a twisting addition, as described above, after impregnation, a winding portion (bobbin) configured to be twisted while winding the cooled composite can also be adopted. In this case, for example, the winding portion has a roll for winding the composite and a support member for supporting the roll, and the roll is perpendicular to the taking direction of the composite so that the roll winds the composite. It is possible to adopt an embodiment in which the support member is configured to rotate together with the roll around the second axis in the take-up direction while rotating with respect to the support member around one axis.

上記実施形態の図1では、基材に複数本の繊維が含浸されている態様を示したが、その他、基材に1本の繊維が含浸される態様、基材に1本の繊維束が含浸される態様、及び基材に複数本の繊維束が含浸される態様を採用することもできる。 In FIG. 1 of the above embodiment, the base material is impregnated with a plurality of fibers, but in addition, the base material is impregnated with one fiber, and the base material is impregnated with one fiber bundle. It is also possible to adopt a mode in which the base material is impregnated and a mode in which a plurality of fiber bundles are impregnated in the base material.

以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

繊維材料の撚り回数がストランドの屈曲性、及び造形物の衝撃強度に及ぼす影響を検討するため、以下に示す実施例1〜実施例4、及び比較例1を用意した。 In order to examine the influence of the number of twists of the fiber material on the flexibility of the strand and the impact strength of the modeled object, Examples 1 to 4 and Comparative Example 1 shown below were prepared.

(実施例1)
繊維材料として、1本の12000texの炭素繊維束を用いた。基体である熱可塑性樹脂として、ポリプロピレンを用いた。図2に示すような製造装置を用い、融解状態の熱可塑性樹脂に繊維材料を含浸させ、複合体を撚り部の一対の引取ロールの引き取り方向に対する傾斜角度を調整して撚ることで、上記複合体に対して、表1に示すように撚り角度が5°、1m当たりの撚り回数が22回/mとなるように撚りを付与した。これにより、実施例1のストランドを形成した。得られたストランドの平均直径(外径)は1.5mmであった。
(Example 1)
As a fiber material, one 12000 tex carbon fiber bundle was used. Polypropylene was used as the thermoplastic resin as the substrate. The above-mentioned As shown in Table 1, the composite was twisted so that the twist angle was 5 ° and the number of twists per 1 m was 22 times / m. As a result, the strand of Example 1 was formed. The average diameter (outer diameter) of the obtained strands was 1.5 mm.

(実施例2〜4、比較例1)
表1に示す撚り角度及び撚り回数となるよう上記一対の引取ロールの引き取り方向に対する傾斜角度を変更したこと以外は実施例1と同様にして、実施例2〜4及び比較例1のストランドを形成した。実施例2〜4及び比較例1のストランドの平均直径(外径)は、いずれも1.5mmであった。
(Examples 2 to 4, Comparative Example 1)
Strands of Examples 2 to 4 and Comparative Example 1 were formed in the same manner as in Example 1 except that the inclination angle of the pair of take-up rolls with respect to the take-up direction was changed so as to have the twist angle and the number of twists shown in Table 1. bottom. The average diameter (outer diameter) of the strands of Examples 2 to 4 and Comparative Example 1 was 1.5 mm.

(円筒への巻き付け性(屈曲性)の評価)
得られた実施例1〜4及び比較例1のストランドを、直径の異なる円筒に巻き付けたとき、座屈せずに巻き付けることができる最大の直径を測定した。結果を表1に示す。表1においては、巻き付ける際、ストランドが屈曲せずに巻ける場合、良好であるとして「G」と表した。巻き付ける際、屈曲が発生した場合、「屈曲」と表した。また、円筒への巻き付けが可能であった場合、「可」と表し、紙管に巻き付けることができなかった場合、「不可」と表した。
(Evaluation of wrapability (flexibility) around a cylinder)
When the obtained strands of Examples 1 to 4 and Comparative Example 1 were wound around cylinders having different diameters, the maximum diameter that could be wound without buckling was measured. The results are shown in Table 1. In Table 1, when the strands can be wound without bending at the time of winding, they are represented as "G" as good. When bending occurs during winding, it is expressed as "bending". In addition, when it was possible to wind it around a cylinder, it was expressed as "OK", and when it could not be wound around a paper tube, it was expressed as "impossible".

(耐衝撃特性の評価)
得られた実施例2〜4及び比較例1のストランドをそれぞれ長さ100mmに切断し、測定試料とした。実施例2〜4及び比較例1のそれぞれについて、内側の長さが100mm、幅が100mm、厚さが2mmの金枠内に複数本の測定試料を敷き詰め、180℃にて加熱プレスを行うことによって造形物を得た。これは、3Dプリントの多層を模したものである。得られた造形物の繊維含有率は50質量%であった。この造形物を10mm幅となるよう切断し、シャルビー衝撃試験を測定した。結果を表1に示す。
(Evaluation of impact resistance)
The obtained strands of Examples 2 to 4 and Comparative Example 1 were cut to a length of 100 mm, respectively, and used as a measurement sample. For each of Examples 2 to 4 and Comparative Example 1, a plurality of measurement samples are spread in a metal frame having an inner length of 100 mm, a width of 100 mm, and a thickness of 2 mm, and heat-pressed at 180 ° C. Obtained a model. This mimics the multi-layered nature of 3D printing. The fiber content of the obtained model was 50% by mass. This model was cut to a width of 10 mm and the Sharby impact test was measured. The results are shown in Table 1.

Figure 2021123026
Figure 2021123026

表1に示すように、熱可塑性樹脂を主成分とする基材に繊維材料を含浸させ、撚りを付与することで、座屈せず、衝撃強度に優れる造形物を造形し得るストランドが得られることが、示された。なお、比較例1を用いる場合、上記のようにストランドを切断して使用すれば層を重ねて造形物を造形することができるものの、このストランドが屈曲性に劣るため、連続して層を重ねて造形物を造形することは困難であることが示された。 As shown in Table 1, by impregnating a base material containing a thermoplastic resin as a main component with a fiber material and imparting a twist, a strand that does not buckle and can form a modeled object having excellent impact strength can be obtained. It has been shown. When Comparative Example 1 is used, if the strands are cut and used as described above, the layers can be stacked to form a modeled object, but since the strands are inferior in flexibility, the layers are continuously stacked. It has been shown that it is difficult to model a modeled object.

以上説明したように、当該ストランドは、熱可塑性樹脂を主成分とする基材と、この基材中に含浸され、軸方向に延在する1本又は複数本の繊維又は繊維束とを備え、上記軸方向に沿って撚りが付与されていることで、座屈し難くなり、取り扱い性に優れる。加えて、上記撚られていることにより、当該ストランドを用いて3Dプリンタで造形した造形物が衝撃強度に優れる。従って、当該ストランドは、衝撃強度に優れた造形物を簡便に3Dプリンタで造形することを可能とする。当該造形物は、熱可塑性樹脂を主成分とする基体と、この基体中に含有され、軸方向に沿って撚りが付与されている1本又は複数本の繊維又は繊維束とを備えることで、衝撃強度に優れる。従って、当該ストランドを用いて造形物を造形することで、3Dプリンタによる複雑かつ繊細で、衝撃強度に優れる造形物を造形するという今後ますます要望されることが予想される造形を実行することが可能となる。 As described above, the strand comprises a base material containing a thermoplastic resin as a main component and one or more fibers or fiber bundles impregnated in the base material and extending in the axial direction. Since the twist is applied along the axial direction, it becomes difficult to buckle and the handleability is excellent. In addition, due to the twisting, the modeled object formed by the 3D printer using the strand has excellent impact strength. Therefore, the strand makes it possible to easily model a modeled object having excellent impact strength with a 3D printer. The modeled product includes a substrate containing a thermoplastic resin as a main component and one or a plurality of fibers or fiber bundles contained in the substrate and twisted along the axial direction. Excellent impact strength. Therefore, by modeling a modeled object using the strands, it is possible to perform modeling that is expected to be increasingly required in the future to create a complex, delicate, and excellent impact strength modeled object with a 3D printer. It will be possible.

1 ストランド
3 基材
5 繊維材料(繊維又は繊維束)
10 製造装置
11 繊維材料供給部
23 ホッパ
25 押出混練機
26 チャンバ
27 樹脂浴部
28 出口部
29 ダイス
31 冷却部
32 冷却水
41 撚り部
43、45 引取ロール
1 Strand 3 Base material 5 Fiber material (fiber or fiber bundle)
10 Manufacturing equipment 11 Fiber material supply part 23 Hopper 25 Extrusion kneader 26 Chamber 27 Resin bath part 28 Outlet part 29 Die 31 Cooling part 32 Cooling water 41 Twisting part 43, 45 Take-up roll

Claims (5)

3Dプリンタの造形原料として用いられるストランドであって、
熱可塑性樹脂を主成分とする基材と、
この基材中に含浸され、軸方向に延在する1本又は複数本の繊維又は繊維束とを備え、
上記軸方向に沿って撚りが付与されているストランド。
A strand used as a raw material for modeling 3D printers.
A base material containing a thermoplastic resin as the main component and
The substrate is impregnated with one or more fibers or fiber bundles extending in the axial direction.
A strand that is twisted along the axial direction.
上記軸方向の長さ1m当たりの上記撚りの回数が10回/m以上200回/m以下である請求項1に記載のストランド。 The strand according to claim 1, wherein the number of twists per 1 m of axial length is 10 times / m or more and 200 times / m or less. 上記軸方向に対する上記撚りの角度が3°以上50°以下である請求項1又は請求項2に記載のストランド。 The strand according to claim 1 or 2, wherein the twist angle with respect to the axial direction is 3 ° or more and 50 ° or less. 上記繊維又は繊維束が炭素繊維を含む請求項1、請求項2又は請求項3に記載のストランド。 The strand according to claim 1, claim 2 or claim 3, wherein the fiber or fiber bundle contains carbon fiber. 3Dプリンタによる造形物であって、
熱可塑性樹脂を主成分とする基体と、
この基体中に含有され、軸方向に沿って撚りが付与されている1本又は複数本の繊維又は繊維束とを備える造形物。
It is a modeled object by a 3D printer,
A substrate containing a thermoplastic resin as the main component and
A modeled object including one or more fibers or fiber bundles contained in the substrate and twisted along the axial direction.
JP2020018263A 2020-02-05 2020-02-05 strand Active JP7451200B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020018263A JP7451200B2 (en) 2020-02-05 2020-02-05 strand
US17/135,763 US11718015B2 (en) 2020-02-05 2020-12-28 Strand and modeled object
EP20217356.3A EP3862185A1 (en) 2020-02-05 2020-12-28 Strand and modeled object
CN202110160608.0A CN113211678A (en) 2020-02-05 2021-02-05 Stranded wire and shaped article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020018263A JP7451200B2 (en) 2020-02-05 2020-02-05 strand

Publications (2)

Publication Number Publication Date
JP2021123026A true JP2021123026A (en) 2021-08-30
JP7451200B2 JP7451200B2 (en) 2024-03-18

Family

ID=73943245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020018263A Active JP7451200B2 (en) 2020-02-05 2020-02-05 strand

Country Status (4)

Country Link
US (1) US11718015B2 (en)
EP (1) EP3862185A1 (en)
JP (1) JP7451200B2 (en)
CN (1) CN113211678A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238546A1 (en) * 2022-06-10 2023-12-14 株式会社神戸製鋼所 Additive manufacturing method, additive manufacturing equipment, and program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3121624B1 (en) * 2021-04-07 2023-11-17 Safran Aircraft Engines Adjustment of twisting to optimize molds and shaping of textile architectures
WO2023218398A1 (en) * 2022-05-13 2023-11-16 Universita' Della Calabria Extrusion device and 3d printer

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0375896B1 (en) * 1988-12-28 1994-06-01 Ube-Nitto Kasei Co. Ltd. Twisted FRP structure and process for manufacturing the same
JPH06285855A (en) * 1993-04-07 1994-10-11 Kobe Steel Ltd Strand for molding of long fiber reinforced synthetic resin product and its pellet
JP4189409B2 (en) * 2006-03-10 2008-12-03 株式会社神戸製鋼所 Manufacturing apparatus and manufacturing method of long fiber reinforced thermoplastic resin strand
WO2007105497A1 (en) * 2006-03-13 2007-09-20 Asahi Kasei Chemicals Corporation Process for production of glass fiber-reinforced polyamide resin composition
JP4038521B2 (en) * 2006-04-28 2008-01-30 株式会社神戸製鋼所 Long fiber reinforced resin strand production equipment
GB2451136B (en) * 2007-07-20 2012-11-28 Umeco Structural Materials Derby Ltd Thermoset resin fibres
US20090065965A1 (en) * 2007-09-07 2009-03-12 Plasticomp, Llc reinforced thermoplastic resin and device and method for producing very long fiber reinforced thermoplastic resins
JP5713685B2 (en) 2011-01-04 2015-05-07 株式会社神戸製鋼所 Manufacturing method of fiber reinforced strand
JP6009368B2 (en) * 2013-02-05 2016-10-19 株式会社神戸製鋼所 Manufacturing apparatus and manufacturing method of long fiber reinforced thermoplastic resin strand
US11104120B2 (en) 2014-05-27 2021-08-31 Nihon University Three-dimensional printing system, three-dimensional printing method, molding device, fiber-containing object, and production method thereof
WO2016129613A1 (en) 2015-02-10 2016-08-18 ユニチカ株式会社 Molding material
US11292190B2 (en) * 2017-12-26 2022-04-05 Arevo, Inc. Depositing arced portions of fiber-reinforced thermoplastic filament
US10046511B1 (en) * 2017-12-26 2018-08-14 Arevo, Inc. Alleviating torsional forces on fiber-reinforced thermoplastic filament

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238546A1 (en) * 2022-06-10 2023-12-14 株式会社神戸製鋼所 Additive manufacturing method, additive manufacturing equipment, and program

Also Published As

Publication number Publication date
JP7451200B2 (en) 2024-03-18
US20210237339A1 (en) 2021-08-05
EP3862185A1 (en) 2021-08-11
CN113211678A (en) 2021-08-06
US11718015B2 (en) 2023-08-08

Similar Documents

Publication Publication Date Title
JP2021123026A (en) Strand and modeling
JP5713685B2 (en) Manufacturing method of fiber reinforced strand
JP5592775B2 (en) Carbon fiber wound tape and manufacturing method thereof
US20200207030A1 (en) Method for manufacturing molded article and manufacturing device
JP2008221574A (en) Long fiber-reinforced thermoplastic resin pellet and its manufacturing method
US20210362406A1 (en) Continuous Fiber Reinforced Thermoplastic Resin Composite Material and Method for Producing Same
CN111976141A (en) Preparation method and device of one-way continuous carbon fiber reinforced thermoplastic 3D printing supplies
US20220220641A1 (en) Modeling material for 3d printers and shaped article
JP5467828B2 (en) Manufacturing method of long fiber reinforced thermoplastic resin pellets
CN116323129A (en) Fiber-reinforced resin drawn molded article and method for producing same
JP2018016733A (en) Long fiber reinforced thermoplastic resin linear article and manufacturing method therefor
JP5225260B2 (en) Manufacturing apparatus and manufacturing method of long fiber reinforced thermoplastic resin strand
Aburaia et al. A production method for standardized continuous fiber reinforced FFF filament
JP6009368B2 (en) Manufacturing apparatus and manufacturing method of long fiber reinforced thermoplastic resin strand
JP3368642B2 (en) Single groove spiral slot and method for manufacturing the same
JP2023069315A (en) Strand manufacturing method, strand manufacturing apparatus, and fiber-reinforced resin strand
JP2015160857A (en) Method of producing thermoplastic prepreg
WO2023233884A1 (en) Filament and shaped-object manufacturing method
JP2024040739A (en) Fiber reinforced resin strand and additive manufacturing method
JPH0852814A (en) Composite article and its production
JP2020023069A (en) Shaping device
JP6677392B2 (en) Long fiber reinforced thermoplastic resin wire for vehicle seats
JP6972764B2 (en) Manufacturing method of glass fiber reinforced thermosetting resin molded body and glass fiber reinforced thermosetting resin molded body
WO1998043807A1 (en) Long fiber-reinforced thermoplastic resin composite body
CN116472164A (en) Strand wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240306

R150 Certificate of patent or registration of utility model

Ref document number: 7451200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150