US20210362406A1 - Continuous Fiber Reinforced Thermoplastic Resin Composite Material and Method for Producing Same - Google Patents
Continuous Fiber Reinforced Thermoplastic Resin Composite Material and Method for Producing Same Download PDFInfo
- Publication number
- US20210362406A1 US20210362406A1 US16/768,139 US201816768139A US2021362406A1 US 20210362406 A1 US20210362406 A1 US 20210362406A1 US 201816768139 A US201816768139 A US 201816768139A US 2021362406 A1 US2021362406 A1 US 2021362406A1
- Authority
- US
- United States
- Prior art keywords
- composite material
- continuous fiber
- fiber reinforced
- thermoplastic resin
- reinforced thermoplastic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000463 material Substances 0.000 title claims abstract description 119
- 229920005992 thermoplastic resin Polymers 0.000 title claims abstract description 74
- 239000011199 continuous fiber reinforced thermoplastic Substances 0.000 title claims abstract description 65
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 47
- 239000000805 composite resin Substances 0.000 title claims abstract description 42
- 239000002131 composite material Substances 0.000 claims abstract description 61
- 238000000034 method Methods 0.000 claims abstract description 39
- 239000000835 fiber Substances 0.000 claims abstract description 33
- 238000010438 heat treatment Methods 0.000 claims description 47
- 238000002844 melting Methods 0.000 claims description 12
- 230000008018 melting Effects 0.000 claims description 12
- 239000003365 glass fiber Substances 0.000 claims description 5
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 4
- 239000004917 carbon fiber Substances 0.000 claims description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 3
- 238000002347 injection Methods 0.000 abstract description 11
- 239000007924 injection Substances 0.000 abstract description 11
- 229920001169 thermoplastic Polymers 0.000 abstract description 11
- 239000004416 thermosoftening plastic Substances 0.000 abstract description 8
- 239000012779 reinforcing material Substances 0.000 abstract description 6
- 238000010146 3D printing Methods 0.000 abstract description 4
- 239000000543 intermediate Substances 0.000 description 62
- 230000008569 process Effects 0.000 description 26
- 229920005989 resin Polymers 0.000 description 14
- 239000011347 resin Substances 0.000 description 14
- -1 polypropylene Polymers 0.000 description 10
- 239000004743 Polypropylene Substances 0.000 description 8
- 229920001155 polypropylene Polymers 0.000 description 8
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 6
- 239000011151 fibre-reinforced plastic Substances 0.000 description 6
- 238000005056 compaction Methods 0.000 description 5
- 230000009467 reduction Effects 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 238000010923 batch production Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229920006026 co-polymeric resin Polymers 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003733 fiber-reinforced composite Substances 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 239000012783 reinforcing fiber Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009954 braiding Methods 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 235000012149 noodles Nutrition 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920005633 polypropylene homopolymer resin Polymers 0.000 description 1
- 229920005653 propylene-ethylene copolymer Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
- B33Y70/10—Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/165—Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/047—Reinforcing macromolecular compounds with loose or coherent fibrous material with mixed fibrous material
- C08J5/048—Macromolecular compound to be reinforced also in fibrous form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/205—Means for applying layers
- B29C64/209—Heads; Nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/307—Handling of material to be used in additive manufacturing
- B29C64/321—Feeding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
- B29C70/50—Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
- B29C70/504—Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC] using rollers or pressure bands
- B29C70/506—Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC] using rollers or pressure bands and impregnating by melting a solid material, e.g. sheet, powder, fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
- B29C70/50—Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
- B29C70/52—Pultrusion, i.e. forming and compressing by continuously pulling through a die
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/26—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/0405—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
- C08J5/042—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/0405—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
- C08J5/043—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/88—Adding charges, i.e. additives
- B29B7/90—Fillers or reinforcements, e.g. fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/118—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2101/00—Use of unspecified macromolecular compounds as moulding material
- B29K2101/12—Thermoplastic materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2307/00—Use of elements other than metals as reinforcement
- B29K2307/04—Carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2309/00—Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
- B29K2309/08—Glass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/02—Composition of the impregnated, bonded or embedded layer
- B32B2260/021—Fibrous or filamentary layer
- B32B2260/023—Two or more layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/04—Impregnation, embedding, or binder material
- B32B2260/046—Synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/101—Glass fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/106—Carbon fibres, e.g. graphite fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2300/00—Characterised by the use of unspecified polymers
- C08J2300/22—Thermoplastic resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/10—Homopolymers or copolymers of propene
- C08J2323/12—Polypropene
Definitions
- the present invention relates to a continuous fiber reinforced thermoplastic resin composite material and a method for producing the same, and more specifically, to a continuous fiber reinforced thermoplastic resin composite material which can be used as a reinforcing material of a thermoplastic resin injection product and a method for producing the same.
- the continuous fiber reinforced polymer rod has been used for various purposes as a structural reinforcing material.
- the continuous fiber reinforced polymer rod has been used as a rebar which is inserted into concrete instead of a steel bar, and recently, has been introduced into an insert injection process and used as a reinforcing insert which is inserted into an injection molded part, thereby improving mechanical properties of various injection parts and reducing weight.
- the continuous fiber reinforced polymer rod has been also introduced into 3D printing equipment, and thus, an attempt has been made to manufacture a product having high mechanical properties by adding continuous fiber into a resin and stacking a string or rod-shaped composite material reinforced with the continuous fiber, thereby manufacturing a structure, from the existing method of manufacturing a stacked structure using only a thermoplastic resin.
- the most conventional method of manufacturing a continuous fiber reinforced polymer in a rod or string shape is a pultrusion method, in which glass fibers or carbon fibers are impregnated in a molten resin, a drawing force is applied thereto, and the resultant resin is passed through a nozzle, thereby manufacturing a rod having a circular cross section or other various cross sections.
- the pultrusion is capable of implementing high productivity and excellent quality, but is suitable for mass production and thus requires a large and expensive pultrusion machine and can secure economical production costs only in mass production. Therefore, this process is not suitable for a product group requiring a small quantity batch production.
- Korean Patent Laid-open Publication No. 2016-0054661 discloses a uni-directional continuous fiber reinforced thermoplastic composite material characterized by using pre-impregnated thermoplastic composites.
- thermoplastic resin is impregnated into reinforcing fibers having a continuous fiber reinforced film shape.
- the process of rolling a thermoplastic composite material having a thin film shape which is generally produced by rolling the thermoplastic composite material to form the thermoplastic resin composite material into a rod shape, induces defects in which the film is not rolled but crushed or crumpled, and the reinforcing fiber is broken during the process.
- Korean Patent No. 0766954 relates to a fiber-reinforced polymer rebar having a self-impregnated protrusion and a manufacturing method thereof, which uses a typical pultrusion process as a method for manufacturing a fiber-reinforced polymer rebar.
- the above-mentioned patent discloses a technique of manufacturing a rod having a circular cross section by impregnating continuous fibers in a resin and then passing the continuous fibers through a nozzle by applying a drawing force, and winding a second fiber and a third fiber along the outer circumferential surface of a first fiber in order to form protrusions on a surface, but other expensive equipment is required since a process for braiding fibers should be further interlocked in a pultrusion process.
- the pultrusion machine is a large equipment, which can secure economical product costs only when mass production is maintained, and an added equipment is also a large expensive equipment, which requires great initial investment.
- Korean Patent No. 1714772 relates to a 3D object-manufacturing robot for manufacturing a 3D object using a formable plastic material, and although strands, yarns, tows, bundles, bands or tapes are exemplified as the material which is used, there is no mention of any method for a molding process, such as compaction of an input material, and there is no presentation of examples with respect to an actual product application, so that it is impossible to identify whether a quality, which can be used as a reinforcing material for strength, rigidity, uniformity of cross-section and surface, and the like, is implemented.
- R. Matsuzak et al. discloses a method of using a continuous fiber reinforced composite material in a 3D printer, which increases the strength and rigidity of a product, but a process, in which a continuous fiber bundle and a resin are separately supplied to be instantaneously impregnated, is used, and the method, in which a supplied thermoplastic resin is dissolved by heating at a nozzle of the 3D printer and instantaneously impregnated in a continuous fiber separately supplied, further includes a impregnating process, and thus there is a problem in that a 3D printer device becomes large and it is difficult to increase the production speed.
- thermoplastic resin determines the strength and rigidity of the composite material, it is necessary to maintain an excellent impregnation state by maintaining a high temperature and high pressure state for a long time, and mounting a device for forming a high temperature and high pressure state in the 3D printer device makes it difficult to maintain and use the 3D printer device and achieve fast productivity, increases the unit cost of production, and causes a low quality.
- the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a scheme which produces a continuous fiber reinforced thermoplastic resin composite material applicable to production of a reinforcing material for various thermoplastic injection products and manufacture of a fiber reinforced thermoplastic plastic part using 3D printing by a simple method so as to have an excellent mechanical property.
- the present invention provides a continuous fiber reinforced thermoplastic composite material in which a plurality of yarns or tape intermediate materials are combined together to form a rod shape.
- thermoplastic composite material characterized in that the composite material may have a porosity of 1-10 vol %.
- thermoplastic composite material characterized in that the composite material may satisfy Expression 1 below on the basis of the cross-section of the composite material:
- P and A may be a cross-sectional circumference length and a cross-sectional area of the composite material, respectively.
- a continuous fiber reinforced thermoplastic composite material characterized in that the tape may have a thickness of 0.1-1.0 mm and a width of 3-30 mm.
- thermoplastic composite material characterized in that the combining may be performed by introducing 2-10 yarns or tapes.
- thermoplastic composite material characterized in that the continuous fiber may be a glass fiber or a carbon fiber.
- the present invention also provides a method for producing a continuous fiber reinforced thermoplastic resin composite material, the method including the steps of: (a) continuously introducing a plurality of yarns or tape-type intermediate materials into a heating unit; (b) heating the intermediate materials to a temperature equal to or higher than the melting point of a thermoplastic resin contained in the intermediate materials to melt at least a portion of the thermoplastic resin on the surface of the intermediate material; and (c) passing at least two of the molten intermediate materials through a nozzle to be combined together to form a rod shape.
- thermoplastic resin composite material characterized in that the intermediate material may have a continuous fiber content of 30-60 wt % and a thermoplastic resin content of 40-70 wt %.
- thermoplastic resin composite material characterized in that the heating in step (b) may be performed at a temperature higher than the melting point of the thermoplastic resin by 20-40° C.
- a method for producing a continuous fiber reinforced thermoplastic resin composite material characterized in that the nozzle may have a cross-sectional shape in which a bend is not formed, or one or more recess and protrusion are formed.
- a method for producing a continuous fiber reinforced thermoplastic resin composite material characterized in that the rod discharged through the nozzle may be rotated to form a spiral shape.
- a method for producing a continuous fiber reinforced thermoplastic resin composite material characterized in that the nozzle may have a diameter ratio of the inlet end to the diameter of the outlet end of 1.5-5 and a length ratio of the outlet end to the diameter of the outlet end of 2-10.
- a method for producing a continuous fiber reinforced thermoplastic resin composite material characterized in that the nozzle may be formed in multiple stages and has a reduced diameter toward the outlet.
- thermoplastic resin composite material and a method for producing the same, which can achieve high productivity and excellent quality only with a simple combining process without having a pultrusion device and a thermoplastic resin impregnating device by using a process for combining together using a yarn or tape-type intermediate material in which a continuous fiber is impregnated in a thermoplastic resin in advance.
- the method for producing a continuous fiber reinforced thermoplastic resin composite material according to the present invention can allow the continuous fiber reinforced thermoplastic resin composite material to have various sizes and cross-sectional shapes only by the injection amount of combined intermediate materials and the change of a nozzle shape.
- FIGS. 1 and 2 are a flow chart and a schematic diagram, respectively, showing a process of producing a continuous fiber reinforced thermoplastic composite material according to the present invention.
- FIG. 3 is a photograph showing a state in which intermediate materials used in the present invention are put into a heating device according to each form of the intermediate materials.
- FIG. 4 is a picture illustrating a nozzle having various inner diameter, length and cross-sectional shape in the present invention.
- FIG. 5 is a photograph showing various shapes of the continuous fiber reinforced thermoplastic resin composite material prepared according to the present invention.
- FIG. 6 is a schematic cross-sectional view inside the nozzle according to an embodiment of the present invention.
- FIG. 7 is a view illustrating a shape of a nozzle according to an embodiment of the present invention.
- FIG. 8 is a photograph showing a state in which flexural strength is measured in Test Example of the present invention.
- FIGS. 9 and 10 are cross-sectional photographs of the intermediate material and the rod-shaped composite material according to Example 10 of the present invention, respectively.
- the present inventors have made research on a method of making a continuous fiber reinforced thermoplastic resin composite material, which can be applied to the production of reinforcing materials of various thermoplastic injection products and the production of fiber reinforced thermoplastic plastic parts using 3D printing, have excellent mechanical properties with a simple manner. As a result, it was observed that only a simple combining process can achieve high productivity and excellent quality without having a pultrusion machine and a thermoplastic resin impregnating device by using a process for combining together using a yarn or tape-type intermediate material in which a continuous fiber is impregnated in a thermoplastic resin in advance, and the present invention was achieved.
- the present invention discloses a continuous fiber reinforced thermoplastic composite material in which a plurality of yarns or tape intermediate materials are combined together to form a rod shape.
- the production of the continuous fiber reinforced thermoplastic composite material can be performed by including the steps of: (a) continuously introducing a plurality of yarns or tape-type intermediate materials into a heating unit; (b) heating the intermediate materials to a temperature equal to or higher than the melting point of a thermoplastic resin contained in the intermediate materials to melt at least a portion of the thermoplastic resin on the surface of the intermediate material; and (c) passing at least two of the molten intermediate materials through a nozzle to be combined together to form a rod shape.
- FIGS. 1 and 2 are a flow chart and a schematic diagram, respectively, showing a process of producing the continuous fiber reinforced thermoplastic composite material according to the present invention.
- the method for producing the continuous fiber reinforced thermoplastic composite material according to the present invention includes the steps of: (a) introducing intermediate materials into a heating unit of the heating device (S 100 ); (b) melting the intermediate materials (S 200 ); and (c) passing the melted intermediate materials through the nozzle (S 300 ).
- an intermediate material 200 which is introduced into a heating device 100 , is a continuous fiber reinforced thermoplastic composite resin
- the thermoplastic resin may include, but is not particularly limited to, for example, a polypropylene resin, a polyethylene terephthalate resin, a polycarbonate resin, a polyamide resin, or the like, and preferably, a polypropylene resin. Therefore, the intermediate material can be beneficial and cost-effective to improve both strength and shock absorption performance.
- the polypropylene resin may include polypropylene alone or a resin copolymerized with polypropylene and a different kind of monomer, and for example, one selected from the group consisting of a polypropylene homopolymer resin, a propylene-ethylene copolymer resin, a propylene-butene copolymer resin, an ethylene-propylene-butene copolymer resin, and a combination thereof.
- the continuous fiber may be a material conventionally used in the art in producing a fiber-reinforced composite material to improve strength and rigidity of a resin, and preferably may be a glass fiber or a carbon fiber.
- the continuous fiber constituting the continuous fiber reinforced thermoplastic resin composite intermediate material 200 means a fiber which is not broken but continuously present therein.
- the continuous fibers may be produced by a continuous process. Therefore, the intermediate material may be a continuous fiber reinforced thermoplastic resin composite intermediate material produced by continuously supplying continuous fibers to the continuous process.
- FIG. 3 is a photograph showing a state in which intermediate materials used in the present invention are introduced into the heating device according to each form of the intermediate materials.
- the intermediate material in the present invention is in the form of a yarn ( FIG. 2A ) or a tape ( FIG. 2B ).
- the yarn generally means a thermoplastic composite material in the form of a noodle reinforced with continuous fibers in the art of composite materials, and a composite material which is drawn-molded and sold may be generally used.
- the yarn is an intermediate material produced during the production of the long-fiber composite material (LFT) which is commonly sold in the market of the thermoplastic composite material, and in the present invention, the yarn having a diameter of 1-3 mm may be preferably used.
- LFT long-fiber composite material
- the tape type is formed by, for example, slitting a composite material in a sheet form, and the present invention may preferably use the tape having a thickness of 0.1-1.0 mm and a width of 3-30 mm, more preferably a thickness of 0.2-0.8 mm and a width of 5-25 mm, even more preferably a thickness of 0.3-0.7 mm and a width of 5-20 mm, and most preferably a thickness of 0.4-0.6 mm and a width of 5-15 mm.
- the composite material may be crumpled when being introduced into the heating device or the fiber may be broken during the process.
- a pultrusion device and a thermoplastic resin impregnating device is not separately provided by using a process for combining together using a yarn or tape-type intermediate material in which the continuous fiber is impregnated in the thermoplastic resin in advance.
- 2 to 10 yarns or tapes may be simultaneously introduced into the heating device within the range of the diameter of the yarn or the thickness and width of the tape, preferably 3 to 8 yarns or tapes, and more preferably 3 to 6 yarns or tapes.
- the injection amount (the number of yarns or tapes) of the intermediate material which is combined together increases, the flexural strength tends to decrease, and the combining efficiency may decrease, however, in the present invention, as a result of an experiment to be described below, it was confirmed that a glass fiber-reinforced polypropylene rod, in which 3 to 6 intermediate materials are introduced and combined together, exhibits a high flexural strength of 300 MPa or more within the injection amount range, and thus can be sufficiently used as a rebar for a structure.
- the intermediate material 200 may be formed with a content ratio of a continuous fiber of 30-60 wt % and a thermoplastic resin of 40-70 wt %.
- a content ratio of a continuous fiber of 30-60 wt % and a thermoplastic resin of 40-70 wt % When the content of the continuous fiber does not reach a predetermined range, it may be difficult to achieve a rigidity reinforcing effect, and when the content is excessive, viscosity of the resin may increase during a process of combining and nozzle-discharging, and thus molding may be difficult.
- the yarn or tape-type intermediate material 200 may be continuously unwound from a plurality of bobbin reels 300 while being wound around the plurality of bobbin creels 300 so that the yarn or tape-type intermediate material 200 may be introduced into the heating unit of the heating device 100 without being entangled.
- the intermediate material 200 introduced into the heating unit of the heating device 100 is heated and melted in the heating unit. That is, the intermediate material 200 is heated to a temperature equal to or higher than the melting point of the thermoplastic resin contained in the intermediate material 200 to melt at least a portion of the thermoplastic resin on the surface of the intermediate material 200 , and thus several intermediate materials 200 are pre-combined together.
- the temperature of the heating unit 100 may be set to be equal to or higher than the melting point of the thermoplastic resin constituting the intermediate material 200 , but may be preferably 20-40° C. higher than the melting point of the thermoplastic resin.
- the temperature of the heating unit 100 may be set to 180-220° C.
- the thermoplastic resin on the surface of the composite material may be introduced into the nozzle without being completely melted, and thus the combining performance may be deteriorated and the mechanical properties may be deteriorated, and when the temperature of the heating unit 100 is set to be too high, the effect of increasing the mechanical properties may not be great as compared to increasing the process cost.
- the heating source of the heating unit 100 may include, but is not particularly limited to, for example, a halogen lamp, a hot air heater, and a laser heater.
- the intermediate materials which are melted in the heating unit 100 and pre-combined, pass through the nozzle 400 to be finally combined together to form a rod shape. That is, the intermediate materials, in which the thermoplastic resins at least on the surface of the intermediate materials are melted while passing through the heating unit 100 , are introduced into the nozzle 400 , and are combined together by being pressured while the cross-sectional area of the inside of the nozzle is getting smaller than that of the heating unit, thereby forming a rod shape.
- a material of the nozzle 400 may include, but is not particularly limited to, for example, a phosphor bronze material containing 0.05-0.5 wt % of phosphorus (P), which is processed and has excellent heat resistance, corrosion resistance, and abrasion resistance (hardness of 100HB or more).
- the nozzle may be used in which the inner surface of the nozzle 400 may be polished to be precisely refined to an average surface roughness Ra of 1 ⁇ m or less, and in this case, when the composite material passing through the nozzle 400 is compressed inside the nozzle 400 , damage to the material due to friction in slipping between the composite material and the nozzle surface may be minimized.
- the nozzle 400 may be mounted on or detached from the heating device 100 , and may be manufactured in various inner diameter, length, and cross-sectional shapes to change the cross-sectional size of the rod-shaped continuous fiber reinforced thermoplastic resin composite material 500 formed according to the injection amount of the intermediate material 200 by applying various outlet diameters.
- FIGS. 4D and 41 show a shape in which the inner cross-section of the nozzle becomes narrower from the inlet end to the outlet end.
- the cross-sectional shape of the inner diameter is a simple shape (see FIGS. 5A and 5D ) such as a circular shape without a bend, or when the rod is rotated and pulled out, a thread shape or a twist shape may be formed on the surface of the formed rod (see FIGS. 5B and 5C ).
- the composite material finally produced according to the various shapes of the nozzle 400 may satisfy the following Expression 1 as a cross-sectional reference.
- P and A may be a cross-sectional circumference length and a cross-sectional area of the composite material, respectively.
- the inner cross-section of the nozzle 400 may have a shape which becomes narrower from the inlet end to the outlet end, and considering the combining efficiency of a yarn or tape-type intermediate material according to the present invention, preferably, the ratio of the inlet end diameter (L 2 ) to the outlet end diameter (L 1 ) may be 1.5 to 5 and the ratio of the length (L 3 ) to the outlet end diameter (L 1 ) may be 2 to 10 (see FIG. 6 ).
- a nozzle system may be considered, which may improve a reduction in productivity due to a load caused by compaction of the composite material when passing through the nozzle 400 and a reduction in mechanical properties due to an increase in porosity caused by insufficient compaction. That is, in the present invention, the nozzle 400 is formed in multiple stages and has a diameter reduced toward the outlet, so that the compaction is smoothly performed by controlling the compaction time of the composite material, thereby further improving mechanical properties (see FIG. 7 ).
- the continuous fiber reinforced thermoplastic composite material 500 produced according to the present invention may have a porosity of about 1 vol % to about 10 vol %, preferably about 1 vol % to about 5 vol %.
- a porosity of less than 1 vol % heating is required at a temperature higher than necessary, which may lead to a reduction in productivity without an additional strength improvement in the finally produced rod-shaped composite material 500 .
- productivity may be improved, but it may be difficult to satisfy required mechanical properties.
- the continuous fiber reinforced thermoplastic composite material produced according to the present invention can achieve high productivity and excellent quality only with a simple combining process without having a pultrusion device and a thermoplastic resin impregnating device by using a process for combining together using a yarn or tape-type intermediate material employing a nozzle without using a plurality of roll forming machines having a high defect rate in the related art.
- the composite material according to the present invention is produced by a process of combining together using a yarn or tape-type intermediate material in which the continuous fiber is impregnated in the thermoplastic resin in advance, thereby producing a rod-shaped composite material product suitable for various uses such as a material for a rebar and a material for a 3D printer in a product group requiring a small quantity batch production with high productivity and low costs.
- Continuous fiber-reinforced thermoplastic resin composite intermediate materials (glass fiber-reinforced polypropylene, glass fiber content: 50 wt %) were prepared in the form of a yarn (diameter: 1.2 mm), and six intermediate materials were introduced to a heating unit of a heating device (see FIG. 3A ), and then were heated to pass through a nozzle to be combined and molded, thereby producing a rod-shaped continuous fiber-reinforced thermoplastic resin composite material (diameter: about 7 mm).
- the heating unit temperature was set to 180° C. and the production rate was set to 0.5 m/s.
- a rod-shaped continuous fiber reinforced thermoplastic resin composite material was produced in the same manner as in Example 1 except that the intermediate materials were prepared in the form of a tape (thickness: 0.5 mm, width: 12 mm) and three intermediate materials were introduced to the heating unit of the heating device.
- a rod-shaped continuous fiber reinforced thermoplastic resin composite material was produced in the same manner as in Example 2 except that four intermediate materials were introduced thereto.
- a rod-shaped continuous fiber reinforced thermoplastic resin composite material was produced in the same manner as in Example 2 except that five intermediate materials were introduced thereto.
- a rod-shaped continuous fiber reinforced thermoplastic resin composite material was produced in the same manner as in Example 2 except that six intermediate materials were introduced thereto (see FIG. 3B ).
- a rod-shaped continuous fiber reinforced thermoplastic resin composite material was produced in the same manner as in Example 3 except that the temperature of the heating unit was set to 170° C.
- a rod-shaped continuous fiber reinforced thermoplastic resin composite material was produced in the same manner as in Example 3 except that the temperature of the heating unit was set to 190° C.
- a rod-shaped continuous fiber reinforced thermoplastic resin composite material was produced in the same manner as in Example 3 except that the temperature of the heating unit was set to 200° C.
- a rod-shaped continuous fiber reinforced thermoplastic resin composite material was produced in the same manner as in Example 3 except that the temperature of the heating unit was set to 210° C.
- a rod-shaped continuous fiber reinforced thermoplastic resin composite material was produced in the same manner as in Example 3 except that the temperature of the heating unit was set to 220° C.
- the flexural strength was measured in accordance with ASTM D4474 standard, and the maximum load point was measured by applying a three-point bending load to the rod-shaped continuous fiber reinforced thermoplastic resin composite material produced as shown in FIG. 8 .
- a porosity was measured in accordance with ASTM D2734 standard and calculated according to Expression 2 below.
- the theoretical ideal density of the composite material is compared with the experimentally measured actual density, and thus the porosity is calculated by Expression 2 below.
- the porosity was calculated as an average value after three or more measurements using different samples.
- Porosity ⁇ ( % ) ( 1 - Actual ⁇ ⁇ density Ideal ⁇ ⁇ density ) ⁇ 1 ⁇ 0 ⁇ 0 [ Expression ⁇ ⁇ 2 ]
- FIG. 9 , and FIG. 10 it can be seen that in the case of the composite material produced by combining three to six yarns of an intermediate material having a diameter of about 1.2 mm or three to six tapes of an intermediate material having a thickness of about 0.5 mm and a width of about 12 mm, the composite material showed good porosity of about 5 vol % or less and excellent mechanical properties having a flexural strength of about 300 MPa or more.
- the flexural strength is relatively deteriorated, and when the temperature of the heating unit is above a predetermined level, the degree of the flexural strength increase compared to the temperature increase is not large, and thus it can be confirmed that the preferable heating temperature range is present in the combining process according to the present invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Polymers & Plastics (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Ceramic Engineering (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Moulding By Coating Moulds (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
Description
- The present invention relates to a continuous fiber reinforced thermoplastic resin composite material and a method for producing the same, and more specifically, to a continuous fiber reinforced thermoplastic resin composite material which can be used as a reinforcing material of a thermoplastic resin injection product and a method for producing the same.
- The continuous fiber reinforced polymer rod has been used for various purposes as a structural reinforcing material. Typically, the continuous fiber reinforced polymer rod has been used as a rebar which is inserted into concrete instead of a steel bar, and recently, has been introduced into an insert injection process and used as a reinforcing insert which is inserted into an injection molded part, thereby improving mechanical properties of various injection parts and reducing weight. In addition, the continuous fiber reinforced polymer rod has been also introduced into 3D printing equipment, and thus, an attempt has been made to manufacture a product having high mechanical properties by adding continuous fiber into a resin and stacking a string or rod-shaped composite material reinforced with the continuous fiber, thereby manufacturing a structure, from the existing method of manufacturing a stacked structure using only a thermoplastic resin.
- In general, the most conventional method of manufacturing a continuous fiber reinforced polymer in a rod or string shape is a pultrusion method, in which glass fibers or carbon fibers are impregnated in a molten resin, a drawing force is applied thereto, and the resultant resin is passed through a nozzle, thereby manufacturing a rod having a circular cross section or other various cross sections. The pultrusion is capable of implementing high productivity and excellent quality, but is suitable for mass production and thus requires a large and expensive pultrusion machine and can secure economical production costs only in mass production. Therefore, this process is not suitable for a product group requiring a small quantity batch production.
- Korean Patent Laid-open Publication No. 2016-0054661 discloses a uni-directional continuous fiber reinforced thermoplastic composite material characterized by using pre-impregnated thermoplastic composites. In the pre-impregnated composite, thermoplastic resin is impregnated into reinforcing fibers having a continuous fiber reinforced film shape. Rolling the resultant composite to form a circular section rod, and then cutting the rod to a predetermined length. However, the process of rolling a thermoplastic composite material having a thin film shape, which is generally produced by rolling the thermoplastic composite material to form the thermoplastic resin composite material into a rod shape, induces defects in which the film is not rolled but crushed or crumpled, and the reinforcing fiber is broken during the process. In order to solve this problem, a plurality of roll forming machines are required, and a somewhat complicated process is required, for example, an inlet and an outlet of the roll forming machine need to be maintained at a predetermined ratio, and temperatures of the plurality of roll forming machines need to be individually controlled.
- Korean Patent No. 0766954 relates to a fiber-reinforced polymer rebar having a self-impregnated protrusion and a manufacturing method thereof, which uses a typical pultrusion process as a method for manufacturing a fiber-reinforced polymer rebar. The above-mentioned patent discloses a technique of manufacturing a rod having a circular cross section by impregnating continuous fibers in a resin and then passing the continuous fibers through a nozzle by applying a drawing force, and winding a second fiber and a third fiber along the outer circumferential surface of a first fiber in order to form protrusions on a surface, but other expensive equipment is required since a process for braiding fibers should be further interlocked in a pultrusion process. The pultrusion machine is a large equipment, which can secure economical product costs only when mass production is maintained, and an added equipment is also a large expensive equipment, which requires great initial investment.
- Korean Patent No. 1714772 relates to a 3D object-manufacturing robot for manufacturing a 3D object using a formable plastic material, and although strands, yarns, tows, bundles, bands or tapes are exemplified as the material which is used, there is no mention of any method for a molding process, such as compaction of an input material, and there is no presentation of examples with respect to an actual product application, so that it is impossible to identify whether a quality, which can be used as a reinforcing material for strength, rigidity, uniformity of cross-section and surface, and the like, is implemented.
- R. Matsuzak et al. (R. Matsuzak et al., Scientific Reports (Nature), Vol. 6 (2016) 23058) discloses a method of using a continuous fiber reinforced composite material in a 3D printer, which increases the strength and rigidity of a product, but a process, in which a continuous fiber bundle and a resin are separately supplied to be instantaneously impregnated, is used, and the method, in which a supplied thermoplastic resin is dissolved by heating at a nozzle of the 3D printer and instantaneously impregnated in a continuous fiber separately supplied, further includes a impregnating process, and thus there is a problem in that a 3D printer device becomes large and it is difficult to increase the production speed. Since the impregnation state of the thermoplastic resin determines the strength and rigidity of the composite material, it is necessary to maintain an excellent impregnation state by maintaining a high temperature and high pressure state for a long time, and mounting a device for forming a high temperature and high pressure state in the 3D printer device makes it difficult to maintain and use the 3D printer device and achieve fast productivity, increases the unit cost of production, and causes a low quality.
- Accordingly, the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a scheme which produces a continuous fiber reinforced thermoplastic resin composite material applicable to production of a reinforcing material for various thermoplastic injection products and manufacture of a fiber reinforced thermoplastic plastic part using 3D printing by a simple method so as to have an excellent mechanical property.
- To solve the above problem, the present invention provides a continuous fiber reinforced thermoplastic composite material in which a plurality of yarns or tape intermediate materials are combined together to form a rod shape.
- In addition, there is provided a continuous fiber reinforced thermoplastic composite material characterized in that the composite material may have a porosity of 1-10 vol %.
- In addition, there is provided a continuous fiber reinforced thermoplastic composite material characterized in that the composite material may satisfy Expression 1 below on the basis of the cross-section of the composite material:
-
0.2 mm−1 ≤P/A≤5 mm−1 [Expression 1] - In Expression 1, P and A may be a cross-sectional circumference length and a cross-sectional area of the composite material, respectively.
- In addition, there is provided a continuous fiber reinforced thermoplastic composite material characterized in that the tape may have a thickness of 0.1-1.0 mm and a width of 3-30 mm.
- In addition, there is provided a continuous fiber reinforced thermoplastic composite material characterized in that the combining may be performed by introducing 2-10 yarns or tapes.
- In addition, there is provided a continuous fiber reinforced thermoplastic composite material characterized in that the continuous fiber may be a glass fiber or a carbon fiber.
- To solve the above another problem, the present invention also provides a method for producing a continuous fiber reinforced thermoplastic resin composite material, the method including the steps of: (a) continuously introducing a plurality of yarns or tape-type intermediate materials into a heating unit; (b) heating the intermediate materials to a temperature equal to or higher than the melting point of a thermoplastic resin contained in the intermediate materials to melt at least a portion of the thermoplastic resin on the surface of the intermediate material; and (c) passing at least two of the molten intermediate materials through a nozzle to be combined together to form a rod shape.
- In addition, there is provided a method for producing a continuous fiber reinforced thermoplastic resin composite material characterized in that the intermediate material may have a continuous fiber content of 30-60 wt % and a thermoplastic resin content of 40-70 wt %.
- Furthermore, there is provided a method for producing a continuous fiber reinforced thermoplastic resin composite material characterized in that the heating in step (b) may be performed at a temperature higher than the melting point of the thermoplastic resin by 20-40° C.
- In addition, there is provided a method for producing a continuous fiber reinforced thermoplastic resin composite material characterized in that the nozzle may have a cross-sectional shape in which a bend is not formed, or one or more recess and protrusion are formed.
- Also, there is provided a method for producing a continuous fiber reinforced thermoplastic resin composite material characterized in that the rod discharged through the nozzle may be rotated to form a spiral shape.
- Additionally, there is provided a method for producing a continuous fiber reinforced thermoplastic resin composite material characterized in that the nozzle may have a diameter ratio of the inlet end to the diameter of the outlet end of 1.5-5 and a length ratio of the outlet end to the diameter of the outlet end of 2-10.
- In addition, there is provided a method for producing a continuous fiber reinforced thermoplastic resin composite material characterized in that the nozzle may be formed in multiple stages and has a reduced diameter toward the outlet.
- According to the present invention, provided are a continuous fiber reinforced thermoplastic resin composite material and a method for producing the same, which can achieve high productivity and excellent quality only with a simple combining process without having a pultrusion device and a thermoplastic resin impregnating device by using a process for combining together using a yarn or tape-type intermediate material in which a continuous fiber is impregnated in a thermoplastic resin in advance.
- In addition, the method for producing a continuous fiber reinforced thermoplastic resin composite material according to the present invention can allow the continuous fiber reinforced thermoplastic resin composite material to have various sizes and cross-sectional shapes only by the injection amount of combined intermediate materials and the change of a nozzle shape.
-
FIGS. 1 and 2 are a flow chart and a schematic diagram, respectively, showing a process of producing a continuous fiber reinforced thermoplastic composite material according to the present invention. -
FIG. 3 is a photograph showing a state in which intermediate materials used in the present invention are put into a heating device according to each form of the intermediate materials. -
FIG. 4 is a picture illustrating a nozzle having various inner diameter, length and cross-sectional shape in the present invention. -
FIG. 5 is a photograph showing various shapes of the continuous fiber reinforced thermoplastic resin composite material prepared according to the present invention. -
FIG. 6 is a schematic cross-sectional view inside the nozzle according to an embodiment of the present invention. -
FIG. 7 is a view illustrating a shape of a nozzle according to an embodiment of the present invention. -
FIG. 8 is a photograph showing a state in which flexural strength is measured in Test Example of the present invention. -
FIGS. 9 and 10 are cross-sectional photographs of the intermediate material and the rod-shaped composite material according to Example 10 of the present invention, respectively. - Hereinafter, preferred embodiments of the present invention will be described in detail. In describing the present invention, if a detailed description relating to well-known technology is considered to obscure the subject matter of the present invention, the detailed description may be omitted. Throughout the specification, a part is referred to “include” an element, the part does not exclude other elements but may further include other elements unless otherwise indicated.
- The present inventors have made research on a method of making a continuous fiber reinforced thermoplastic resin composite material, which can be applied to the production of reinforcing materials of various thermoplastic injection products and the production of fiber reinforced thermoplastic plastic parts using 3D printing, have excellent mechanical properties with a simple manner. As a result, it was observed that only a simple combining process can achieve high productivity and excellent quality without having a pultrusion machine and a thermoplastic resin impregnating device by using a process for combining together using a yarn or tape-type intermediate material in which a continuous fiber is impregnated in a thermoplastic resin in advance, and the present invention was achieved.
- Therefore, the present invention discloses a continuous fiber reinforced thermoplastic composite material in which a plurality of yarns or tape intermediate materials are combined together to form a rod shape.
- According to the present invention, the production of the continuous fiber reinforced thermoplastic composite material can be performed by including the steps of: (a) continuously introducing a plurality of yarns or tape-type intermediate materials into a heating unit; (b) heating the intermediate materials to a temperature equal to or higher than the melting point of a thermoplastic resin contained in the intermediate materials to melt at least a portion of the thermoplastic resin on the surface of the intermediate material; and (c) passing at least two of the molten intermediate materials through a nozzle to be combined together to form a rod shape.
- Hereinafter, the present invention will be described in detail through a process of producing the continuous fiber reinforced thermoplastic composite material according to the present invention.
-
FIGS. 1 and 2 are a flow chart and a schematic diagram, respectively, showing a process of producing the continuous fiber reinforced thermoplastic composite material according to the present invention. - Referring to
FIGS. 1 and 2 , the method for producing the continuous fiber reinforced thermoplastic composite material according to the present invention, which uses a heating device having a nozzle, includes the steps of: (a) introducing intermediate materials into a heating unit of the heating device (S100); (b) melting the intermediate materials (S200); and (c) passing the melted intermediate materials through the nozzle (S300). - In the present invention, an
intermediate material 200, which is introduced into aheating device 100, is a continuous fiber reinforced thermoplastic composite resin, and the thermoplastic resin may include, but is not particularly limited to, for example, a polypropylene resin, a polyethylene terephthalate resin, a polycarbonate resin, a polyamide resin, or the like, and preferably, a polypropylene resin. Therefore, the intermediate material can be beneficial and cost-effective to improve both strength and shock absorption performance. The polypropylene resin may include polypropylene alone or a resin copolymerized with polypropylene and a different kind of monomer, and for example, one selected from the group consisting of a polypropylene homopolymer resin, a propylene-ethylene copolymer resin, a propylene-butene copolymer resin, an ethylene-propylene-butene copolymer resin, and a combination thereof. - In addition, the continuous fiber may be a material conventionally used in the art in producing a fiber-reinforced composite material to improve strength and rigidity of a resin, and preferably may be a glass fiber or a carbon fiber.
- The continuous fiber constituting the continuous fiber reinforced thermoplastic resin composite
intermediate material 200 means a fiber which is not broken but continuously present therein. For example, like continuous fibers in a unidirectional (UD) sheet, the continuous fibers may be produced by a continuous process. Therefore, the intermediate material may be a continuous fiber reinforced thermoplastic resin composite intermediate material produced by continuously supplying continuous fibers to the continuous process. -
FIG. 3 is a photograph showing a state in which intermediate materials used in the present invention are introduced into the heating device according to each form of the intermediate materials. - Referring to
FIG. 3 , the intermediate material in the present invention is in the form of a yarn (FIG. 2A ) or a tape (FIG. 2B ). - The yarn generally means a thermoplastic composite material in the form of a noodle reinforced with continuous fibers in the art of composite materials, and a composite material which is drawn-molded and sold may be generally used. For example, the yarn is an intermediate material produced during the production of the long-fiber composite material (LFT) which is commonly sold in the market of the thermoplastic composite material, and in the present invention, the yarn having a diameter of 1-3 mm may be preferably used.
- The tape type is formed by, for example, slitting a composite material in a sheet form, and the present invention may preferably use the tape having a thickness of 0.1-1.0 mm and a width of 3-30 mm, more preferably a thickness of 0.2-0.8 mm and a width of 5-25 mm, even more preferably a thickness of 0.3-0.7 mm and a width of 5-20 mm, and most preferably a thickness of 0.4-0.6 mm and a width of 5-15 mm. When the width of the tape-type intermediate material is too large, the composite material may be crumpled when being introduced into the heating device or the fiber may be broken during the process.
- In the present invention, a pultrusion device and a thermoplastic resin impregnating device is not separately provided by using a process for combining together using a yarn or tape-type intermediate material in which the continuous fiber is impregnated in the thermoplastic resin in advance.
- Here, 2 to 10 yarns or tapes may be simultaneously introduced into the heating device within the range of the diameter of the yarn or the thickness and width of the tape, preferably 3 to 8 yarns or tapes, and more preferably 3 to 6 yarns or tapes. As the injection amount (the number of yarns or tapes) of the intermediate material which is combined together increases, the flexural strength tends to decrease, and the combining efficiency may decrease, however, in the present invention, as a result of an experiment to be described below, it was confirmed that a glass fiber-reinforced polypropylene rod, in which 3 to 6 intermediate materials are introduced and combined together, exhibits a high flexural strength of 300 MPa or more within the injection amount range, and thus can be sufficiently used as a rebar for a structure.
- Meanwhile, the
intermediate material 200 may be formed with a content ratio of a continuous fiber of 30-60 wt % and a thermoplastic resin of 40-70 wt %. When the content of the continuous fiber does not reach a predetermined range, it may be difficult to achieve a rigidity reinforcing effect, and when the content is excessive, viscosity of the resin may increase during a process of combining and nozzle-discharging, and thus molding may be difficult. - The yarn or tape-type
intermediate material 200 may be continuously unwound from a plurality ofbobbin reels 300 while being wound around the plurality ofbobbin creels 300 so that the yarn or tape-typeintermediate material 200 may be introduced into the heating unit of theheating device 100 without being entangled. - The
intermediate material 200 introduced into the heating unit of theheating device 100 is heated and melted in the heating unit. That is, theintermediate material 200 is heated to a temperature equal to or higher than the melting point of the thermoplastic resin contained in theintermediate material 200 to melt at least a portion of the thermoplastic resin on the surface of theintermediate material 200, and thus severalintermediate materials 200 are pre-combined together. - At this time, the temperature of the
heating unit 100 may be set to be equal to or higher than the melting point of the thermoplastic resin constituting theintermediate material 200, but may be preferably 20-40° C. higher than the melting point of the thermoplastic resin. For example, when the thermoplastic resin is a polypropylene resin having a melting point of 160° C., the temperature of theheating unit 100 may be set to 180-220° C. When the temperature of theheating unit 100 is set to be less than or too close to the melting point, the thermoplastic resin on the surface of the composite material may be introduced into the nozzle without being completely melted, and thus the combining performance may be deteriorated and the mechanical properties may be deteriorated, and when the temperature of theheating unit 100 is set to be too high, the effect of increasing the mechanical properties may not be great as compared to increasing the process cost. - The heating source of the
heating unit 100 may include, but is not particularly limited to, for example, a halogen lamp, a hot air heater, and a laser heater. - The intermediate materials, which are melted in the
heating unit 100 and pre-combined, pass through thenozzle 400 to be finally combined together to form a rod shape. That is, the intermediate materials, in which the thermoplastic resins at least on the surface of the intermediate materials are melted while passing through theheating unit 100, are introduced into thenozzle 400, and are combined together by being pressured while the cross-sectional area of the inside of the nozzle is getting smaller than that of the heating unit, thereby forming a rod shape. - A material of the
nozzle 400 may include, but is not particularly limited to, for example, a phosphor bronze material containing 0.05-0.5 wt % of phosphorus (P), which is processed and has excellent heat resistance, corrosion resistance, and abrasion resistance (hardness of 100HB or more). In addition, the nozzle may be used in which the inner surface of thenozzle 400 may be polished to be precisely refined to an average surface roughness Ra of 1 μm or less, and in this case, when the composite material passing through thenozzle 400 is compressed inside thenozzle 400, damage to the material due to friction in slipping between the composite material and the nozzle surface may be minimized. - In the present invention, as shown in
FIG. 4 , thenozzle 400 may be mounted on or detached from theheating device 100, and may be manufactured in various inner diameter, length, and cross-sectional shapes to change the cross-sectional size of the rod-shaped continuous fiber reinforced thermoplasticresin composite material 500 formed according to the injection amount of theintermediate material 200 by applying various outlet diameters. Meanwhile,FIGS. 4D and 41 show a shape in which the inner cross-section of the nozzle becomes narrower from the inlet end to the outlet end. - In addition, when a nozzle, in which recess and protrusion, such as ribs or grooves are formed around the circle, is applied in the
nozzle 400, except that the cross-sectional shape of the inner diameter is a simple shape (seeFIGS. 5A and 5D ) such as a circular shape without a bend, or when the rod is rotated and pulled out, a thread shape or a twist shape may be formed on the surface of the formed rod (seeFIGS. 5B and 5C ). - The composite material finally produced according to the various shapes of the
nozzle 400 may satisfy the following Expression 1 as a cross-sectional reference. -
0.2 mm−1 ≤P/A≤5 mm−1 [Expression 1] - In Equation 1, P and A may be a cross-sectional circumference length and a cross-sectional area of the composite material, respectively.
- Meanwhile, in the present invention, the inner cross-section of the
nozzle 400 may have a shape which becomes narrower from the inlet end to the outlet end, and considering the combining efficiency of a yarn or tape-type intermediate material according to the present invention, preferably, the ratio of the inlet end diameter (L2) to the outlet end diameter (L1) may be 1.5 to 5 and the ratio of the length (L3) to the outlet end diameter (L1) may be 2 to 10 (seeFIG. 6 ). - Meanwhile, a nozzle system may be considered, which may improve a reduction in productivity due to a load caused by compaction of the composite material when passing through the
nozzle 400 and a reduction in mechanical properties due to an increase in porosity caused by insufficient compaction. That is, in the present invention, thenozzle 400 is formed in multiple stages and has a diameter reduced toward the outlet, so that the compaction is smoothly performed by controlling the compaction time of the composite material, thereby further improving mechanical properties (seeFIG. 7 ). - The continuous fiber reinforced thermoplastic
composite material 500 produced according to the present invention may have a porosity of about 1 vol % to about 10 vol %, preferably about 1 vol % to about 5 vol %. When the continuous fiber reinforced thermoplasticcomposite material 500 is produced to have a porosity of less than 1 vol %, heating is required at a temperature higher than necessary, which may lead to a reduction in productivity without an additional strength improvement in the finally produced rod-shapedcomposite material 500. In addition, When the continuous fiber reinforced thermoplasticcomposite material 500 is produced to have a porosity of more than 10 vol %, productivity may be improved, but it may be difficult to satisfy required mechanical properties. - The continuous fiber reinforced thermoplastic composite material produced according to the present invention can achieve high productivity and excellent quality only with a simple combining process without having a pultrusion device and a thermoplastic resin impregnating device by using a process for combining together using a yarn or tape-type intermediate material employing a nozzle without using a plurality of roll forming machines having a high defect rate in the related art.
- In addition, the composite material according to the present invention is produced by a process of combining together using a yarn or tape-type intermediate material in which the continuous fiber is impregnated in the thermoplastic resin in advance, thereby producing a rod-shaped composite material product suitable for various uses such as a material for a rebar and a material for a 3D printer in a product group requiring a small quantity batch production with high productivity and low costs.
- Hereinafter, the present invention will be described in more detail with reference to Examples of the present invention.
- Continuous fiber-reinforced thermoplastic resin composite intermediate materials (glass fiber-reinforced polypropylene, glass fiber content: 50 wt %) were prepared in the form of a yarn (diameter: 1.2 mm), and six intermediate materials were introduced to a heating unit of a heating device (see
FIG. 3A ), and then were heated to pass through a nozzle to be combined and molded, thereby producing a rod-shaped continuous fiber-reinforced thermoplastic resin composite material (diameter: about 7 mm). The heating unit temperature was set to 180° C. and the production rate was set to 0.5 m/s. - A rod-shaped continuous fiber reinforced thermoplastic resin composite material was produced in the same manner as in Example 1 except that the intermediate materials were prepared in the form of a tape (thickness: 0.5 mm, width: 12 mm) and three intermediate materials were introduced to the heating unit of the heating device.
- A rod-shaped continuous fiber reinforced thermoplastic resin composite material was produced in the same manner as in Example 2 except that four intermediate materials were introduced thereto.
- A rod-shaped continuous fiber reinforced thermoplastic resin composite material was produced in the same manner as in Example 2 except that five intermediate materials were introduced thereto.
- A rod-shaped continuous fiber reinforced thermoplastic resin composite material was produced in the same manner as in Example 2 except that six intermediate materials were introduced thereto (see
FIG. 3B ). - A rod-shaped continuous fiber reinforced thermoplastic resin composite material was produced in the same manner as in Example 3 except that the temperature of the heating unit was set to 170° C.
- A rod-shaped continuous fiber reinforced thermoplastic resin composite material was produced in the same manner as in Example 3 except that the temperature of the heating unit was set to 190° C.
- A rod-shaped continuous fiber reinforced thermoplastic resin composite material was produced in the same manner as in Example 3 except that the temperature of the heating unit was set to 200° C.
- A rod-shaped continuous fiber reinforced thermoplastic resin composite material was produced in the same manner as in Example 3 except that the temperature of the heating unit was set to 210° C.
- A rod-shaped continuous fiber reinforced thermoplastic resin composite material was produced in the same manner as in Example 3 except that the temperature of the heating unit was set to 220° C.
- Flexural strength (see
FIG. 8 ) and a porosity of the rod-shaped continuous fiber reinforced thermoplastic resin composite materials produced according to Examples 1 to 10 above were measured according to the following method, and the results are shown in Table 1 below. The cross-sectional photograph of the intermediate material and the cross-sectional photograph of the rod-shaped composite material according to Example 5 are shown inFIGS. 9 and 10 , respectively. - [Method of Measuring Flexural Strength]
- The flexural strength was measured in accordance with ASTM D4474 standard, and the maximum load point was measured by applying a three-point bending load to the rod-shaped continuous fiber reinforced thermoplastic resin composite material produced as shown in
FIG. 8 . - [Method of Measuring Porosity]
- A porosity was measured in accordance with ASTM D2734 standard and calculated according to Expression 2 below. The theoretical ideal density of the composite material is compared with the experimentally measured actual density, and thus the porosity is calculated by Expression 2 below. The porosity was calculated as an average value after three or more measurements using different samples.
-
-
TABLE 1 Interme- diate Number Heating unit Flexural material of temperature strength Porosity Division Form strands (° C.) (Mpa) (vol %) Example 1 Yarn 6 180 415 ± 17 2.5 ± 0.1 Example 2 Tape 3 180 376 ± 39 3.1 ± 0.7 Example 3 Tape 4 180 362 ± 19 4.9 ± 0.3 Example 4 Tape 5 180 337 ± 38 4.6 ± 0.6 Example 5 Tape 6 180 312 ± 39 4.3 ± 0.5 Example 6 Tape 4 170 278 ± 23 5.4 ± 0.9 Example 7 Tape 4 190 358 ± 34 4.5 ± 0.7 Example 8 Tape 4 200 373 ± 40 3.1 ± 0.1 Example 9 Tape 4 210 365 ± 42 4.8 ± 0.7 Example 10 Tape 4 220 386 ± 24 3.3 ± 0.1 - Referring to Table 1,
FIG. 9 , andFIG. 10 , it can be seen that in the case of the composite material produced by combining three to six yarns of an intermediate material having a diameter of about 1.2 mm or three to six tapes of an intermediate material having a thickness of about 0.5 mm and a width of about 12 mm, the composite material showed good porosity of about 5 vol % or less and excellent mechanical properties having a flexural strength of about 300 MPa or more. However, when the temperature of the heating unit is close to the melting point of the thermoplastic resin (see Example 6), the flexural strength is relatively deteriorated, and when the temperature of the heating unit is above a predetermined level, the degree of the flexural strength increase compared to the temperature increase is not large, and thus it can be confirmed that the preferable heating temperature range is present in the combining process according to the present invention. - Hitherto, the preferred examples of the present invention have been described in detail. The description of the present invention is only for illustration, and it could be understood that particular embodiment could be easily changed without changing the technical spirit or essential features of the present invention by one of ordinary skilled in the art.
- Accordingly, it should be interpreted that the scope of the present invention is represented by claims hereinafter rather than the detailed description, and all changes or modifications derived from the meaning, range and equivalent concept of claims are included in the scope of the present invention.
Claims (13)
0.2 mm−1 ≤P/A≤5 mm−1 [Expression 1]
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2017-0161580 | 2017-11-29 | ||
KR1020170161580A KR102334459B1 (en) | 2017-11-29 | 2017-11-29 | Continuous fiber reinforced thermoplastic polymer composite and manufacturing method thereof |
PCT/KR2018/015006 WO2019107991A1 (en) | 2017-11-29 | 2018-11-29 | Continuous fiber reinforced thermoplastic resin composite material and method for producing same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/015006 A-371-Of-International WO2019107991A1 (en) | 2017-11-29 | 2018-11-29 | Continuous fiber reinforced thermoplastic resin composite material and method for producing same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/133,663 Division US20230241837A1 (en) | 2017-11-29 | 2023-04-12 | Continuous Fiber Reinforced Thermoplastic Resin Composite Material and Method for Producing Same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20210362406A1 true US20210362406A1 (en) | 2021-11-25 |
Family
ID=66665249
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/768,139 Abandoned US20210362406A1 (en) | 2017-11-29 | 2018-11-29 | Continuous Fiber Reinforced Thermoplastic Resin Composite Material and Method for Producing Same |
US18/133,663 Pending US20230241837A1 (en) | 2017-11-29 | 2023-04-12 | Continuous Fiber Reinforced Thermoplastic Resin Composite Material and Method for Producing Same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/133,663 Pending US20230241837A1 (en) | 2017-11-29 | 2023-04-12 | Continuous Fiber Reinforced Thermoplastic Resin Composite Material and Method for Producing Same |
Country Status (5)
Country | Link |
---|---|
US (2) | US20210362406A1 (en) |
JP (1) | JP7340521B2 (en) |
KR (1) | KR102334459B1 (en) |
CN (1) | CN111417675A (en) |
WO (1) | WO2019107991A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11420382B2 (en) | 2013-03-22 | 2022-08-23 | Markforged, Inc. | Apparatus for fiber reinforced additive manufacturing |
US11504892B2 (en) | 2013-03-22 | 2022-11-22 | Markforged, Inc. | Impregnation system for composite filament fabrication in three dimensional printing |
CN115972572A (en) * | 2023-01-06 | 2023-04-18 | 华中科技大学 | Robot-assisted laser additive manufacturing system for interlayer reinforcement of continuous fiber composite material |
US11759990B2 (en) | 2013-03-22 | 2023-09-19 | Markforged, Inc. | Three dimensional printing |
WO2023186656A1 (en) | 2022-03-28 | 2023-10-05 | Signify Holding B.V. | A method for printing a 3d object using fiber bundles |
US11787104B2 (en) | 2013-03-22 | 2023-10-17 | Markforged, Inc. | Methods for fiber reinforced additive manufacturing |
DE102022107856A1 (en) | 2022-04-01 | 2023-10-19 | Technische Universität Dresden, Körperschaft des öffentlichen Rechts | Process for the in-situ production of hybrid, continuously fiber-reinforced and highly oriented thermoplastic fiber composite structures with high fiber volume content and strong geometric curvatures |
US11981069B2 (en) * | 2013-03-22 | 2024-05-14 | Markforged, Inc. | Three dimensional printing of composite reinforced structures |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210187825A1 (en) * | 2019-12-20 | 2021-06-24 | Universal Fibers, Inc. | Multifilament feedstocks for fused deposition modeling |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010048175A1 (en) * | 2000-01-13 | 2001-12-06 | Edwards Christopher M. | Process for in-line forming of pultruded composites |
US20130136891A1 (en) * | 2010-06-11 | 2013-05-30 | Ticona Llc | Structural Member Formed From A Solid Lineal Profile |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2610864B1 (en) * | 1987-02-18 | 1989-06-16 | Atochem | PROCESS FOR PRODUCING THERMOPLASTIC POLYMER PROFILES BY PULTRUSION - APPARATUS - PRODUCTS OBTAINED |
JP3317357B2 (en) * | 1992-04-02 | 2002-08-26 | 東洋紡績株式会社 | Fiber reinforced thermoplastic resin molding material |
JPH0978998A (en) * | 1995-09-08 | 1997-03-25 | Nippon Glass Fiber Co Ltd | Tensile structure member, method of manufacturing tensile structure member, and molding apparatus |
US6797220B2 (en) * | 2000-12-04 | 2004-09-28 | Advanced Ceramics Research, Inc. | Methods for preparation of three-dimensional bodies |
US7703906B2 (en) * | 2006-10-11 | 2010-04-27 | Xerox Corporation | Solid ink stick fabrication by fiber extrusion |
KR101213272B1 (en) * | 2010-09-02 | 2012-12-18 | 이영삼 | Apparatus for manufacturing suture and Suture manufactured by its apparatus |
WO2012037265A2 (en) * | 2010-09-17 | 2012-03-22 | 3M Innovative Properties Company | Fiber-reinforced nanoparticle-loaded thermoset polymer composite wires and cables, and methods |
EP2697043A1 (en) | 2011-04-12 | 2014-02-19 | Ticona LLC | Continious fiber reinforced thermoplastic rod and pultrusion method for its manufacture |
KR20140027252A (en) | 2011-04-12 | 2014-03-06 | 티코나 엘엘씨 | Composite core for electrical transmission cables |
CN103660308B (en) * | 2012-08-30 | 2018-02-27 | 上海杰事杰新材料(集团)股份有限公司 | Continuous-filament woven fabric enhancing thermoplas tic resin composite and preparation method thereof |
-
2017
- 2017-11-29 KR KR1020170161580A patent/KR102334459B1/en active Active
-
2018
- 2018-11-29 CN CN201880076639.4A patent/CN111417675A/en active Pending
- 2018-11-29 US US16/768,139 patent/US20210362406A1/en not_active Abandoned
- 2018-11-29 JP JP2020527101A patent/JP7340521B2/en active Active
- 2018-11-29 WO PCT/KR2018/015006 patent/WO2019107991A1/en active Application Filing
-
2023
- 2023-04-12 US US18/133,663 patent/US20230241837A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010048175A1 (en) * | 2000-01-13 | 2001-12-06 | Edwards Christopher M. | Process for in-line forming of pultruded composites |
US20130136891A1 (en) * | 2010-06-11 | 2013-05-30 | Ticona Llc | Structural Member Formed From A Solid Lineal Profile |
Non-Patent Citations (1)
Title |
---|
Ali, Zulfigaqr, "Yarn Manufacturing" July 2016, De Gruyter, Physical Sciences Reviews, Volume 1, Issue 7, Page 1-16 (Year: 2016) * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11420382B2 (en) | 2013-03-22 | 2022-08-23 | Markforged, Inc. | Apparatus for fiber reinforced additive manufacturing |
US11504892B2 (en) | 2013-03-22 | 2022-11-22 | Markforged, Inc. | Impregnation system for composite filament fabrication in three dimensional printing |
US11759990B2 (en) | 2013-03-22 | 2023-09-19 | Markforged, Inc. | Three dimensional printing |
US11787104B2 (en) | 2013-03-22 | 2023-10-17 | Markforged, Inc. | Methods for fiber reinforced additive manufacturing |
US11981069B2 (en) * | 2013-03-22 | 2024-05-14 | Markforged, Inc. | Three dimensional printing of composite reinforced structures |
WO2023186656A1 (en) | 2022-03-28 | 2023-10-05 | Signify Holding B.V. | A method for printing a 3d object using fiber bundles |
DE102022107856A1 (en) | 2022-04-01 | 2023-10-19 | Technische Universität Dresden, Körperschaft des öffentlichen Rechts | Process for the in-situ production of hybrid, continuously fiber-reinforced and highly oriented thermoplastic fiber composite structures with high fiber volume content and strong geometric curvatures |
DE102022107856B4 (en) | 2022-04-01 | 2025-03-20 | Technische Universität Dresden, Körperschaft des öffentlichen Rechts | Apparatus and method for the in-situ production of hybrid, continuously fiber-reinforced and highly oriented thermoplastic fiber composite structures with high fiber volume content and strong geometric curvatures |
CN115972572A (en) * | 2023-01-06 | 2023-04-18 | 华中科技大学 | Robot-assisted laser additive manufacturing system for interlayer reinforcement of continuous fiber composite material |
Also Published As
Publication number | Publication date |
---|---|
KR20190062911A (en) | 2019-06-07 |
WO2019107991A1 (en) | 2019-06-06 |
US20230241837A1 (en) | 2023-08-03 |
CN111417675A (en) | 2020-07-14 |
JP7340521B2 (en) | 2023-09-07 |
KR102334459B1 (en) | 2021-12-08 |
JP2021504500A (en) | 2021-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230241837A1 (en) | Continuous Fiber Reinforced Thermoplastic Resin Composite Material and Method for Producing Same | |
US11718015B2 (en) | Strand and modeled object | |
CN100482452C (en) | Glass fibre reinforced thermoplastic resin granule material and its production process | |
JP6863581B2 (en) | Method for manufacturing long fiber reinforced thermoplastic resin linear material | |
KR20130112710A (en) | Reinforced hollow profiles | |
TW202120304A (en) | Modeling material for 3d printers and shaped article | |
CN107405798A (en) | Method and apparatus for preparing fibrous composite | |
RU112664U1 (en) | TECHNOLOGICAL COMPLEX FOR PRODUCTION OF COMPLEXLY REINFORCED ARTICLES FROM POLYMERIC COMPOSITE MATERIALS | |
WO2011034187A1 (en) | Method for producing long-fiber-reinforced thermoplastic resin pellets | |
CN116323129A (en) | Fiber-reinforced resin drawn molded body and method for producing the same | |
KR20160054661A (en) | Complex materials with unidirectional continuous fiber reinforced thermoplasticity resins, apparatus and method for manufacturing the same | |
JP2009172995A (en) | Thermoplastic resin-coated FRP filament and method for producing the same | |
JP7129434B2 (en) | Fibrous tapes and composites containing said tapes | |
JP4906522B2 (en) | Method and apparatus for manufacturing thermoplastic resin-coated FRP filaments | |
CN102094273A (en) | Method and equipment for manufacturing composite fiber containing continuous glass fiber | |
CN1329330C (en) | Fiber glass product incorporating string binders | |
JP7609742B2 (en) | Strand and method for manufacturing strand | |
RU2738529C1 (en) | Production line for composite long products and bent reinforcement elements | |
JPH10305490A (en) | Method and apparatus for manufacturing unidirectionally reinforced thermoplastic resin sheet | |
JP2018016733A (en) | Long fiber reinforced thermoplastic resin linear article and manufacturing method therefor | |
JP3237717B2 (en) | Method for producing thermoplastic composite material | |
EP0950504B1 (en) | Thermoplastic resin-combined glass fiber base material, process for its production and its use | |
JP5431827B2 (en) | Manufacturing method of substantially rectangular thermoplastic resin-coated FRP filament, and drop optical fiber cable using the FRP filament | |
JP4477925B2 (en) | Manufacturing method of long fiber reinforced resin molding material and impregnation die for molding | |
JP6677392B2 (en) | Long fiber reinforced thermoplastic resin wire for vehicle seats |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LOTTE CHEMICAL CORPORATION, KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, WON SEOCK;LEE, JONG WOOK;LEE, YOU JUNG;SIGNING DATES FROM 20201120 TO 20201130;REEL/FRAME:054500/0939 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |