JP3317357B2 - Fiber reinforced thermoplastic resin molding material - Google Patents

Fiber reinforced thermoplastic resin molding material

Info

Publication number
JP3317357B2
JP3317357B2 JP08076892A JP8076892A JP3317357B2 JP 3317357 B2 JP3317357 B2 JP 3317357B2 JP 08076892 A JP08076892 A JP 08076892A JP 8076892 A JP8076892 A JP 8076892A JP 3317357 B2 JP3317357 B2 JP 3317357B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
tape
fiber
reinforced thermoplastic
resin molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08076892A
Other languages
Japanese (ja)
Other versions
JPH05278126A (en
Inventor
武 土井田
俊明 北洞
良誠 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP08076892A priority Critical patent/JP3317357B2/en
Publication of JPH05278126A publication Critical patent/JPH05278126A/en
Application granted granted Critical
Publication of JP3317357B2 publication Critical patent/JP3317357B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は熱可塑性樹脂をマトリッ
クスとする繊維強化樹脂成形材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber-reinforced resin molding having a thermoplastic resin matrix.

【0002】[0002]

【従来の技術】熱可塑性樹脂を強化繊維間に含浸した繊
維強化樹脂成形材が種々市販されている。しかし、これ
らは一般的に含浸工程と賦形工程が連続している場合が
多い。このような場合では成形できる成形品の形状が限
定され、生産性効率の面より好ましくなく、また、一般
に熱可塑性樹脂の溶融粘度が高いため必ずしも良好な含
浸性が得られていない。繊維強化樹脂成形材を連続させ
ずに新たな成形品を成形する際においては現在のところ
複雑な含浸・賦形装置が必要となる。また、複雑な含浸
・賦形装置を用いても熱可塑性樹脂の溶融粘度が高いこ
とから必ずしも良好な含浸性が得られていないのが現状
であり、これらは得られる成形品の品質面からまた、生
産性効率の面からも好ましいことではない。
2. Description of the Related Art Various fiber-reinforced resin moldings in which a thermoplastic resin is impregnated between reinforcing fibers are commercially available. However, in many cases, the impregnation step and the shaping step are generally continuous. In such a case, the shape of a molded product that can be molded is limited, which is not preferable from the viewpoint of productivity efficiency. In addition, since the melt viscosity of a thermoplastic resin is generally high, good impregnation is not necessarily obtained. At the time of forming a new molded product without continuous fiber-reinforced resin molding material, a complicated impregnation / shaping apparatus is required at present. In addition, even if a complicated impregnation / shaping apparatus is used, good impregnation properties are not always obtained because the melt viscosity of the thermoplastic resin is high. However, this is not preferable in terms of productivity efficiency.

【0003】[0003]

【発明が解決しようとする課題】本発明は前記事情を考
慮してなされたものであり、その目的は予め良好な含浸
性を有するテープ状物を用いることにより更に含浸性を
上げ、且つ様々な形状への適用が可能な柔軟性に富んだ
加工性を有する繊維強化熱可塑性樹脂成形材を提供する
ことにある。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to use a tape-like material having a good impregnating property in advance to further improve the impregnating property and to improve various properties. An object of the present invention is to provide a fiber-reinforced thermoplastic resin molding material having high flexibility and processability applicable to shapes.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
の本発明の構成は、実質的にテープ状物の軸方向に沿っ
て一方向に配列した強化繊維を下記に定義する空隙率8
%以下にまで熱可塑性樹脂で含浸されてなるテープ状物
を1ないし複数本用いて該テープ状物を加熱溶融させた
後、下記の収束比にて該テープ状物を収束して得られる
繊維強化熱可塑性樹脂成形材である。 R≦0.98 R=S1/(S2×N) ここで、R :収束比(−) S1 :繊維強化熱可塑性樹脂成形材の断面積(mm2) S2:テープ状物一本当りの断面積(mm2) N :テープ状物供給本数(−) また、このようにして得られる繊維強化熱可塑性樹脂成
形材の空隙率は5%以下であり、これを用いて棒状、球
状、管状等の形状に賦形し該成形材を直接成形品として
用いることも可能である。また、該成形材をアスペクト
比1.5〜600にカットして他の成形に用いることも
可能である。尚、空隙率は、下記の方法により測定した
ものであり、つまり、テープ状物もしくは繊維強化熱可
塑性樹脂成形材をカットした後水に浸漬しその前後での
重量変化より算出した値である。 測定方法: テープ状物もしくはテープ状物から成形した繊維強化
熱可塑性樹脂成形材を所定の長さ(20〜30mm)に
カットし、まず、水に浸漬する前の重量を測定する(2
〜3g分採取)。次に、ビーカー等に水を入れてお
き、それに上記材料を漬け、真空乾燥機に入れ、常温で
10分真空状態に保つ。もし、テープ状物やテープ状物
から成形した繊維強化熱可塑性樹脂成形材の中に空隙が
あれば、真空に保たれることにより、空隙に水が浸透す
る。その後、水から測定物を取り出し、すみやかに表
面に付着した水分をふき取り、重量を測定する。これ
が、水浸漬後の重量となる。水浸漬後の重量から、水
浸漬前の重量を差し引きく。この重量が、空隙に入った
水の重量である。下記式により空隙率を求める。 空隙率(%)=(水浸漬後の材料の重量−水浸漬前の材料の重量)×100/水 浸漬前のテープ重量
SUMMARY OF THE INVENTION In order to achieve the above object, the structure of the present invention is substantially along the axial direction of the tape.
Porosity of the reinforcing fibers arranged in one direction by
% Or less by heating and melting the tape-shaped material using one or more tape-shaped materials impregnated with a thermoplastic resin to a concentration of not more than 1%, and converging the tape-shaped material at the following convergence ratio. It is a reinforced thermoplastic resin molding material. R ≦ 0.98 R = S 1 / (S 2 × N) where R: convergence ratio (−) S 1 : cross-sectional area (mm 2 ) of the fiber-reinforced thermoplastic resin molding material S 2 : tape-like material Cross-sectional area per unit (mm 2 ) N: Number of tape-shaped materials supplied (-) Further, the porosity of the fiber-reinforced thermoplastic resin molding obtained in this way is 5% or less. It is also possible to shape the product into a shape such as a sphere or a tube and use the molded material directly as a molded product. It is also possible to cut the molded material into an aspect ratio of 1.5 to 600 and use it for another molding. The porosity was measured by the following method.
That is, it is a value calculated from the weight change before and after immersing in water after cutting a tape-shaped material or a fiber-reinforced thermoplastic resin molding material. Measurement method: A tape-shaped material or a fiber-reinforced thermoplastic resin molded material molded from the tape-shaped material is cut into a predetermined length (20 to 30 mm), and first, the weight before immersion in water is measured (2).
~ 3g). Next, water is put in a beaker or the like, and the above-mentioned material is immersed in the beaker, put into a vacuum dryer, and kept in a vacuum state at room temperature for 10 minutes. If there is a void in the tape-like material or the fiber-reinforced thermoplastic resin molded material molded from the tape-like material, water is permeated into the void by maintaining the vacuum. Thereafter, the object to be measured is taken out of the water, the moisture adhering to the surface is immediately wiped off, and the weight is measured. This is the weight after immersion in water. The weight before water immersion is subtracted from the weight after water immersion. This weight is the weight of the water entering the void. The porosity is determined by the following equation. Porosity (%) = (weight of material after immersion in water−weight of material before immersion in water) × 100 / weight of tape before immersion in water

【0005】以下本発明について図面に基づいて詳細に
説明するが、下記図面は本発明を何ら限定するものでは
ない。本発明で用いるテープ状物の構成として、その強
化繊維はガラス繊維、炭素繊維、アラミド繊維、ポリベ
ンゾチアゾールやポリベンゾオキサゾールなどから成る
複素環含有ポリマーから得られる繊維等の連続繊維が挙
げられる。また、熱可塑性樹脂としては、ナイロン6、
ナイロン6.6等のポリアミド樹脂、ポリエチレンテレ
フタレート、ポリブチレンテレフタレート等のポリエス
テル樹脂、ポリプロピレン、ポリエチレン等のポリオレ
フィン樹脂、また、ポリカーボネート、ポリエーテルイ
ミド、ポリフェニレンスルフィド、ポリエーテルケトン
等が挙げられる。強化繊維および熱可塑性樹脂は特に限
定されるものではない。
Hereinafter, the present invention will be described in detail with reference to the drawings, but the following drawings do not limit the present invention in any way. As the configuration of the tape-like material used in the present invention, the reinforcing fibers include continuous fibers such as glass fibers, carbon fibers, aramid fibers, and fibers obtained from a heterocyclic-containing polymer such as polybenzothiazole or polybenzoxazole. As the thermoplastic resin, nylon 6,
Examples include polyamide resins such as nylon 6.6, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyolefin resins such as polypropylene and polyethylene, and polycarbonate, polyetherimide, polyphenylene sulfide, and polyether ketone. The reinforcing fibers and the thermoplastic resin are not particularly limited.

【0006】テープ状物中の強化繊維の含有率は20〜
80容量%が好ましい。強化繊維が20容量%以下の場
合には強化効果が有効に発揮できず、また80容量%を
越えると強化繊維に樹脂が十分に含浸せず、所望の空隙
率以下にならず好ましくない。
[0006] The content of the reinforcing fibers in the tape-like material is 20 to
80% by volume is preferred. If the reinforcing fiber content is less than 20% by volume, the reinforcing effect cannot be exhibited effectively, and if it exceeds 80% by volume, the reinforcing fiber is not sufficiently impregnated with the resin, and the porosity is not less than the desired porosity.

【0007】また、テープ状物空隙率は8%以下であ
り、6%以下が更に好ましい。空隙率が8%より大きい
場合ではテープ状物中の空気が抜け難く、溶融収束後に
得られる繊維強化熱可塑性樹脂成形材中の空隙率が下が
り難く、そのまま成形品として用いる場合や再度他の成
形に用いる場合において物性の低下が発生し好ましくな
い。また、該テープ状物はその断面形状、寸法により何
ら制限されるものではない。
Further, the porosity of the tape-shaped material is 8% or less, more preferably 6% or less. When the porosity is larger than 8%, the air in the tape-shaped material hardly escapes, and the porosity in the fiber-reinforced thermoplastic resin molded material obtained after the convergence of the melt is hardly reduced. When used for, it is not preferable because physical properties decrease. Further, the tape-shaped material is not limited at all by its cross-sectional shape and dimensions.

【0008】本発明の繊維強化熱可塑性樹脂成形材を得
るための方法の一例としての概略図を図1に示した。こ
れはクリールからテープ状物を供給し、加熱装置として
赤外線ヒーターによる輻射加熱にてテープ状物を溶融さ
せ、水中で収束・賦形させるものである。この際の加熱
方法としては輻射加熱の代わりに接触加熱、対流加熱を
用いることも可能である。その後適切な簡易な収束・賦
形ダイを用いて賦形する。この際収束・賦形ダイの代わ
りにロールを用いてもよい。
FIG. 1 is a schematic view showing one example of a method for obtaining a fiber-reinforced thermoplastic resin molded material of the present invention. In this method, a tape-like material is supplied from a creel, and the tape-like material is melted by radiant heating using an infrared heater as a heating device and converged and shaped in water. As a heating method at this time, contact heating and convection heating can be used instead of radiation heating. Then, it is shaped using an appropriate simple convergence / shaping die. At this time, a roll may be used instead of the converging / shaping die.

【0009】この際、テープ状物を収束させる際の収束
比が重要となる。その収束比は用いるテープ状物断面積
の総計に対する溶融収束後の繊維強化熱可塑性樹脂成形
材の断面積比で規定され、この比が0.98以上ではテ
ープ状物中もしくはテープ状物間の空気を除去すること
が難しく好ましくない。収束比の調整は例えば図1に示
される収束・賦形ダイ5の入口および出口のノズル系を
適宜設計することにより容易に行うことができる。尚、
収束比の下限は特に限定されないが実用上は0.5程度
以上である。この収束比が1よりも小さいと言うこと
は、前述のようにテープ状物間の空気を除去するだけで
なく、テープ状物中に含まれるボイド(空気)をも除去
する効果があることを示し、テープ状物の空隙率が8%
程度であっても最終的に得られる繊維強化熱可塑性樹脂
成型物の空隙率が5%以下になるという効果を生み出
す。この効果のメカニズムの詳細は不明であるが、もと
もとボイドの少ない物を溶融し、上述のようなノズル等
で絞ることによりノズルの中で樹脂に圧力がかかり、更
にボイドを除去するためと考えられる。また、収束比の
下限が実用上0.5以上であるというのは、テープ状物
が事実上完全な矩形ではなく、楕円、もしくはこれに類
する形状であるため、幅をノギス、厚みをマイクロメー
ターで測定し、矩形を仮定して求めた断面積と異なるた
めと考えられる。
At this time, the convergence ratio when the tape-shaped object is converged is important. The convergence ratio is defined by the cross-sectional area ratio of the fiber-reinforced thermoplastic resin molding material after fusion with respect to the total cross-sectional area of the tape-like material to be used. It is difficult and undesirable to remove air. The convergence ratio can be easily adjusted by, for example, appropriately designing the inlet and outlet nozzle systems of the converging / shaping die 5 shown in FIG. still,
The lower limit of the convergence ratio is not particularly limited, but is practically about 0.5 or more. The fact that the convergence ratio is smaller than 1 means that not only the air between the tapes is removed as described above, but also the void (air) contained in the tape is removed. As shown, the porosity of the tape is 8%
Even if it is about the same degree, the effect that the porosity of the finally obtained fiber-reinforced thermoplastic resin molded product is 5% or less is produced. Although the details of the mechanism of this effect are unknown, it is considered that the resin with a small amount of voids is originally melted and pressure is applied to the resin in the nozzle by squeezing with the nozzle or the like as described above, and further the void is removed. . In addition, the fact that the lower limit of the convergence ratio is practically 0.5 or more means that the tape-shaped object is not a perfect rectangle but an ellipse or a shape similar thereto, so that the width has a caliper and the thickness has a micrometer. It is considered that this is different from the cross-sectional area measured by assuming a rectangle.

【0010】このようにして溶融収束させたテープ状物
を図1中においては水中にて収束・賦形しているが、こ
の収束・賦形工程は空気中にても可能である。また、図
1のようにして得られた繊維強化熱可塑性樹脂成形材は
そのまま棒状物として用いることが可能であり、また、
得られた棒状物を一定長さにカットし他の成形方法、例
えば射出成形、圧縮成形などに用いることが可能であ
る。
Although the tape-shaped material melted and converged in this way is converged and shaped in water in FIG. 1, the converging and shaping step can be performed in air. In addition, the fiber-reinforced thermoplastic resin molding obtained as shown in FIG. 1 can be used as a rod as it is,
The obtained rod-like material can be cut into a certain length and used in other molding methods, for example, injection molding, compression molding and the like.

【0011】この際のアスペクト比としては1.5〜6
00が好ましい。1.5以下ではカット時に繊維強化熱
可塑性樹脂成形材の端部が乱れ、例えば射出成形に用い
ると強化繊維の破損が大きく物性低下が発生するため好
ましくない。また、600以上では他の成形法例えば圧
縮成形などに用いる際、金型内への投入時等の取扱性が
低下し好ましくない。
The aspect ratio at this time is 1.5 to 6
00 is preferred. If it is less than 1.5, the end of the fiber-reinforced thermoplastic resin molding material will be disturbed at the time of cutting, and if it is used for injection molding, for example, the reinforcing fibers will be greatly damaged and physical properties will be deteriorated. On the other hand, if it is 600 or more, when used in other molding methods, for example, compression molding, the handleability at the time of being put into a mold or the like is undesirably reduced.

【0012】また、賦形ダイを交換することにより複雑
断面形状のものを作製することも可能である。得られる
繊維強化熱可塑性樹脂成形材の空隙率は5%以下が好ま
しい。5%以上ではそのまま成形品として用いることは
可能ではあるが欠陥等による物性の低下が生じるため好
ましくない。また、再度他の成形に用いる場合において
も強化繊維の破損による物性低下を招くため好ましくな
い。
It is also possible to manufacture a product having a complicated cross-sectional shape by exchanging a shaping die. The porosity of the obtained fiber-reinforced thermoplastic resin molding material is preferably 5% or less. If it is 5% or more, it can be used as a molded product as it is, but it is not preferable because physical properties are deteriorated due to defects and the like. Further, it is not preferable to use again for another molding, because the physical properties decrease due to the breakage of the reinforcing fiber.

【0013】また、本発明はフィラメントワインディン
グ、テープレーイング等に適用することも可能である。
この際にはテープ状物を溶融・収束後に適切なマンドレ
ルを設置、もしくはテープレイヤーを設置することによ
り可能となる。
The present invention can also be applied to filament winding, tape laying and the like.
In this case, it becomes possible by setting an appropriate mandrel or a tape layer after melting and converging the tape-shaped material.

【0014】[0014]

【発明の効果】本発明は以上のような構成からなり、予
め含浸されたテープ状物を用いるため含浸性が良好で且
つその賦形は極めてシンプルに行うことができる。更に
その用途も幅広く、様々な形状に適用することが可能で
ある。
According to the present invention, the tape-like material impregnated in advance has a good impregnating property and can be formed in a very simple manner. Further, it has a wide range of uses and can be applied to various shapes.

【0015】[0015]

【実施例】以下に本発明を実施例により説明するが本発
明はこれらに何ら限定されるものではない。 実施例1 単糸直径13μmで1600本のモノフィラメントから
なるE−ガラス繊維に40容量%のポリプロピレンを溶
融含浸法により含浸させた空隙率5%、幅3mm、厚み
0.3mmのテープ状物を用いた。このテープ状物を図1
のように5本供給し15m/min の速度にて上下より赤
外線ヒーターで輻射加熱し溶融させたのち収束比0.8
5となるように水中にて収束・賦形ロールを用いて収束
・賦形し、これを引き取ることにより直径2mmのロッド
状繊維強化熱可塑性樹脂成形材を得た。該棒状物の空隙
率は1.3%であり且つ曲げ強度は105kg/mm2と良
好であった。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. Example 1 A tape-shaped material having a porosity of 5%, a width of 3 mm, and a thickness of 0.3 mm obtained by impregnating E-glass fiber having a single yarn diameter of 13 μm and comprising 1600 monofilaments with 40% by volume of polypropylene by a melt impregnation method was used. Was. Fig. 1
And then irradiate them with infrared heaters from above and below at a speed of 15 m / min and melt them.
The sample was converged and shaped in water using a converging / shaping roll so as to obtain a rod-shaped fiber-reinforced thermoplastic resin molded material having a diameter of 2 mm. The porosity of the rod was 1.3%, and the bending strength was as good as 105 kg / mm 2 .

【0016】実施例2 実施例1と同様のテープ状物および溶融方法にて収束比
0.90にて賦形ダイをT字型に変更しT字の各辺の幅
1mm、縦横各々1.35mmの繊維強化熱可塑性樹脂成形
材を作製した。得られたT字型棒状物の空隙率は0.2
%と低く、含浸性や賦形性も良好であった。
Example 2 The shaping die was changed to a T-shape at a convergence ratio of 0.90 by the same tape-like material and melting method as in Example 1, and the width of each side of the T-shape was 1 mm, and the length and width were 1. A 35 mm fiber reinforced thermoplastic resin molding was produced. The porosity of the obtained T-shaped rod is 0.2
%, And the impregnation property and the shapeability were also good.

【0017】実施例3 実施例1と同様の条件にて得られた棒状物を10mmにカ
ットしポリプロピレンペレットと混ぜ、強化繊維容量含
有率を40%とし射出成形した。得られた成形品の曲げ
強度は1900kg/mm2 、アイゾット衝撃値は28.1
kg・cm/cmと良好な機械特性を示した。
Example 3 A rod-like material obtained under the same conditions as in Example 1 was cut into 10 mm, mixed with polypropylene pellets, and injection-molded with a reinforcing fiber volume content of 40%. The bending strength of the obtained molded product was 1900 kg / mm 2 , and the Izod impact value was 28.1.
It showed good mechanical properties of kg · cm / cm.

【0018】実施例4 実施例1と同様の条件にて得られた棒状物2本を300
mmにカットしマッチドダイ中に供給後プレス機により圧
力を負荷することにより幅10mm、厚み2.5mmの棒を
圧縮成形にて作製した。このときの金型の温度は210
℃、加えた圧力は2kg/cm2 であった。この棒の曲げ強
度は115kg/mm2 と極めて良好であった。
Example 4 Two rods obtained under the same conditions as in Example 1 were
After being cut into mm and fed into a matched die, pressure was applied by a press machine to produce a rod having a width of 10 mm and a thickness of 2.5 mm by compression molding. The temperature of the mold at this time is 210
° C and the applied pressure was 2 kg / cm 2 . The bending strength of this rod was extremely good at 115 kg / mm 2 .

【0019】実施例5 実施例1と同様のテープ状物を用いて図2に示すような
フィラメントワインディングを行い収束比0.95にて
5m/min の速度で巻取った。加熱空気10の温度は2
80℃、マンドレル9および圧力ローラ8に最初に接触
する部分の表面材料温度は210℃であった。なおマン
ドレルは160℃に加熱されている。こうして表面が平
坦で且つ空隙率0.1%と、よく含浸された直径20m
m、長さ100mm、厚み3mmの管状物を得た。
Example 5 The same tape-shaped material as in Example 1 was used to perform filament winding as shown in FIG. 2 and wind at a convergence ratio of 0.95 at a speed of 5 m / min. The temperature of the heated air 10 is 2
At 80 ° C., the temperature of the surface material in the area where the mandrel 9 and the pressure roller 8 were first contacted was 210 ° C. The mandrel was heated to 160 ° C. Thus, the surface is flat and the porosity is 0.1%, and the well impregnated diameter 20m
m, a length of 100 mm and a thickness of 3 mm were obtained.

【0020】比較例1 実施例1と同サイズのテープ状物で空隙率のみ10%の
ものを実施例1と同様の方法にて直径2mmの棒状繊維強
化熱可塑性樹脂成形材を得た。該棒状物の空隙率は9.
5%であり且つ曲げ強度は62kg/mm2 と低い物性であ
った。
Comparative Example 1 A rod-shaped fiber-reinforced thermoplastic resin molding material having a diameter of 2 mm was obtained in the same manner as in Example 1 except that a tape-shaped material having the same size as that of Example 1 and having a porosity of only 10% was obtained. The porosity of the rod is 9.
5% and the bending strength was as low as 62 kg / mm 2 .

【0021】比較例2 実施例1と同様のテープ状物および供給本数、溶融方法
・条件にて収束比1.0となるよう賦形ダイを直径約
2.4mmとし棒状物を作製した。得られた棒状物の空隙
率は10.9%であり且つ該ロッド状物の曲げ強度は5
9kg/mm2 と低い物性であった。
COMPARATIVE EXAMPLE 2 A rod-shaped material having a diameter of about 2.4 mm was formed so that the convergence ratio was 1.0 under the same tape-shaped material as in Example 1, the number of the supplied materials, and the melting method and conditions. The porosity of the obtained rod is 10.9% and the bending strength of the rod is 5%.
The physical properties were as low as 9 kg / mm 2 .

【図面の簡単な説明】[Brief description of the drawings]

【図1】繊維強化熱可塑性樹脂成形材の作製装置概略図
の一例である。
FIG. 1 is an example of a schematic view of an apparatus for producing a fiber-reinforced thermoplastic resin molding material.

【図2】フィラメントワインディング装置の概略図の一
例である。
FIG. 2 is an example of a schematic view of a filament winding device.

【符号の説明】[Explanation of symbols]

1 クリール 2 テープ状物 3 ガイド 4 加熱装置 5 収束・賦形ダイ 6 水 浴 7 引き取り機 8 繊維強化熱可塑性樹脂成形材 9 圧力ローラ 10 マンドレル 11 加熱空気 REFERENCE SIGNS LIST 1 creel 2 tape-like material 3 guide 4 heating device 5 convergence / shaping die 6 water bath 7 take-off machine 8 fiber-reinforced thermoplastic resin molding material 9 pressure roller 10 mandrel 11 heated air

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B29C 70/00 - 70/88 B29B 11/00 - 11/16 B29B 15/00 - 15/14 C08J 5/00 - 5/24 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) B29C 70/00-70/88 B29B 11/00-11/16 B29B 15/00-15/14 C08J 5 / 00-5/24

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】実質的にテープ状物の軸方向に沿って一方
向に配列した強化繊維が本文中に定義する空隙率8%以
下にまで熱可塑性樹脂で含浸されてなるテープ状物を1
ないし複数本用いて該テープ状物を加熱溶融させた後、
下記の収束比にて該テープ状物を収束して得られること
を特徴とする繊維強化熱可塑性樹脂成形材。 R≦0.98 R=S1 /(S2×N) ここで、R :収束比(−) S1 :繊維強化熱可塑性樹脂成形材の断面積(mm2) S2 :テープ状物一本当りの断面積(mm2) N :テープ状物供給本数(−)
1. A method according to claim 1, wherein the first portion is substantially along the axial direction of the tape.
A tape-like material obtained by impregnating a reinforcing fiber arranged in a direction to a porosity of 8% or less as defined in the text with a thermoplastic resin is used.
Or after heating and melting the tape-shaped material using a plurality of
A fiber-reinforced thermoplastic resin molding obtained by converging the tape-like material at the following convergence ratio. R ≦ 0.98 R = S 1 / (S 2 × N) where R: convergence ratio (−) S 1 : cross-sectional area (mm 2 ) of the fiber-reinforced thermoplastic resin molding material S 2 : tape-like material Cross-sectional area per unit (mm 2 ) N: Number of tape-like objects supplied (-)
【請求項2】 繊維強化熱可塑性樹脂成形材の空隙率が
5%以下であることを特徴とする請求項1記載の繊維強
化熱可塑性樹脂成形材。
2. The fiber-reinforced thermoplastic resin molding according to claim 1, wherein the porosity of the fiber-reinforced thermoplastic resin molding is 5% or less.
【請求項3】 繊維強化熱可塑性樹脂成形材が板状、棒
状、球状、管状等の形状を有することを特徴とする請求
項1ないし2記載の繊維強化熱可塑性樹脂成形材。
3. The fiber-reinforced thermoplastic resin molding material according to claim 1, wherein the fiber-reinforced thermoplastic resin molding material has a shape of a plate, a rod, a sphere, a tube, or the like.
【請求項4】 繊維強化熱可塑性樹脂成形材をアスペク
ト比1.5〜600にカットして得られることを特徴と
する請求項1ないし2記載の繊維強化熱可塑性樹脂成形
材。
4. The fiber-reinforced thermoplastic resin molding according to claim 1, which is obtained by cutting the fiber-reinforced thermoplastic resin molding into an aspect ratio of 1.5 to 600.
JP08076892A 1992-04-02 1992-04-02 Fiber reinforced thermoplastic resin molding material Expired - Fee Related JP3317357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08076892A JP3317357B2 (en) 1992-04-02 1992-04-02 Fiber reinforced thermoplastic resin molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08076892A JP3317357B2 (en) 1992-04-02 1992-04-02 Fiber reinforced thermoplastic resin molding material

Publications (2)

Publication Number Publication Date
JPH05278126A JPH05278126A (en) 1993-10-26
JP3317357B2 true JP3317357B2 (en) 2002-08-26

Family

ID=13727603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08076892A Expired - Fee Related JP3317357B2 (en) 1992-04-02 1992-04-02 Fiber reinforced thermoplastic resin molding material

Country Status (1)

Country Link
JP (1) JP3317357B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017057A1 (en) 2017-07-18 2019-01-24 東レ株式会社 Unidirectionally-oriented tape-shaped prepreg, and molded article thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005040996A (en) * 2003-07-23 2005-02-17 Toyobo Co Ltd Organic fibre reinforced resin pellet, its manufacturing method and resin molded product
US8043669B2 (en) 2006-11-09 2011-10-25 Teijin Chemicals Ltd. Composite material and process for the production thereof
US10603821B2 (en) * 2012-01-23 2020-03-31 The Boeing Company Narrow flake composite fiber material compression molding
CN102615840A (en) * 2012-04-09 2012-08-01 华东理工大学 Production equipment and using method for thermoplastic pultrusion product
ES2551631B1 (en) * 2014-05-19 2016-06-16 Manuel Torres Martínez Machine for the manufacture of bands of fiber composite materials
KR102334459B1 (en) * 2017-11-29 2021-12-08 롯데케미칼 주식회사 Continuous fiber reinforced thermoplastic polymer composite and manufacturing method thereof
US20220001630A1 (en) * 2018-12-28 2022-01-06 Ihi Aerospace Co., Ltd. Frp continuous molding apparatus and frp continuous molding method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017057A1 (en) 2017-07-18 2019-01-24 東レ株式会社 Unidirectionally-oriented tape-shaped prepreg, and molded article thereof
KR20200031604A (en) 2017-07-18 2020-03-24 도레이 카부시키가이샤 Prepreg on tape oriented in one direction and molded products thereof

Also Published As

Publication number Publication date
JPH05278126A (en) 1993-10-26

Similar Documents

Publication Publication Date Title
JP2634184B2 (en) Method for producing thermoplastic polymer profiled section by pultrusion molding, apparatus for carrying out this method and product obtained thereby
US4680224A (en) Reinforced plastic
CA1331733C (en) Process for continuously forming reinforced articles
US5401154A (en) Apparatus for compounding a fiber reinforced thermoplastic material and forming parts therefrom
EP0814916B1 (en) Flexible low bulk pre-impregnated tow
US20170341300A1 (en) Additive Manufacturing Process Continuous Reinforcement Fibers And High Fiber Volume Content
US7402268B2 (en) Method for making a composite extruded profile formed with thermoplastic organic material reinforced with reinforcing fibres
EP0271026A2 (en) Pultrasion apparatus, process and product
US10626235B2 (en) Flexible composite prepreg materials
US20100075144A1 (en) Flexible composite prepreg materials
EP0383290A1 (en) Thermoplastic pultrusion
EP0125472B1 (en) Process for preparing shaped objects of poly(arylene sulfide) and product thereof
JPH07216104A (en) Preparation of long filament-reinforced resin structure
JP2866963B2 (en) In-line consolidation of braided structures
JP3317357B2 (en) Fiber reinforced thermoplastic resin molding material
JPH0825200B2 (en) FRTP continuous prepreg manufacturing method and manufacturing apparatus
US6114000A (en) Material for FRTP molded objects and FRTP tubular molded object
JP3386158B2 (en) Molding materials and filament wound moldings
JPH01229867A (en) Apparatus and method for impregnating multifilament and multifiber structure having continuous length
JP2847918B2 (en) Extruded product manufacturing method
EP1022112B1 (en) High temperature wet filament winding arrangement
JP3317358B2 (en) Composite reinforcing fiber material impregnated with thermoplastic resin
JP3210694B2 (en) Method for producing fiber-reinforced composite material
JPH1119998A (en) Composite molding
JP3289783B2 (en) Composite reinforcing fiber material impregnated with thermoplastic resin

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees