WO1998043807A1 - Long fiber-reinforced thermoplastic resin composite body - Google Patents

Long fiber-reinforced thermoplastic resin composite body Download PDF

Info

Publication number
WO1998043807A1
WO1998043807A1 PCT/JP1998/001316 JP9801316W WO9843807A1 WO 1998043807 A1 WO1998043807 A1 WO 1998043807A1 JP 9801316 W JP9801316 W JP 9801316W WO 9843807 A1 WO9843807 A1 WO 9843807A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite
thermoplastic resin
fiber
resin
diameter
Prior art date
Application number
PCT/JP1998/001316
Other languages
French (fr)
Japanese (ja)
Inventor
Rikio Yonaiyama
Masanori Ishikawa
Koichi Saito
Susumu Arase
Hiroyoshi Asakuno
Takashi Shimpuku
Yasuhiro Sakai
Original Assignee
Chisso Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP9101088A external-priority patent/JPH10278092A/en
Application filed by Chisso Corporation filed Critical Chisso Corporation
Priority to DE19882262T priority Critical patent/DE19882262T1/en
Priority to AU65172/98A priority patent/AU6517298A/en
Publication of WO1998043807A1 publication Critical patent/WO1998043807A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • B29B15/122Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex
    • B29B15/125Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • B29C70/525Component parts, details or accessories; Auxiliary operations
    • B29C70/528Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/08Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer the fibres or filaments of a layer being of different substances, e.g. conjugate fibres, mixture of different fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin

Definitions

  • the present invention relates to a thermoplastic resin composite reinforced with continuous reinforcing fibers (hereinafter, referred to as a composite), using the composite as a core material, and forming a peripheral surface of the composite using a thermoplastic resin.
  • the present invention relates to a long-fiber-reinforced thermoplastic resin-coated composite covered with a covered portion (hereinafter, referred to as a coated composite) and a method for producing the same.
  • FRP rods Various types of industrial rods use FRP rods.
  • this FRP rod has problems such as difficulty in bending and difficult processing. Therefore, rods that are easy to be added (and easy to bend) are required:
  • Japanese Patent Publication No. 1-38668 discloses “Material for forming coated FRP products”: The FRP core material part, a thermoplastic resin covering the core material part, and an intermediate layer straddling both of them, are obtained by shaping before the core material part is hardened. In addition to the limited shaping time, it has the drawback that reshaping is not possible, and the resulting molded article is difficult to bend.
  • Japanese Patent Publication No. 63-36964 discloses “Fiber Reinforced Structure and Method for Producing the Same”.
  • the content of reinforcing fibers in it is As it increases, it is necessary to bend and break the composite
  • the stress (bending resistance) increases, it has the disadvantage that the composite becomes difficult to bend.
  • the composite material that constitutes the core material of the coated composite material is generally difficult to become a product by itself.-Because the composite material is difficult to mold, it is a high-quality composite material with good shape accuracy. Therefore, it was difficult to produce a stable product: Therefore, in order to make it a practical product, the obtained composite was cut into berets, and injection molding was performed. At present, it was not possible to make full use of the inherent properties of continuous reinforcing fibers: In such a situation, it was used in a continuous, long shape and within a practical range. A composite having the shape accuracy as possible was desired.
  • Japanese Patent Publication No. Sho 63-376694 discloses such a composite and a method for producing the same, but has such a shape accuracy that it can be used within a practical range. At present, no complex was obtained:
  • An object of the present invention is to provide a coated composite which is easy to bend and has excellent resistance to bending fracture, a composite whose shape accuracy is remarkably improved, a method for producing the same, and a large number of composites which can be simultaneously coated.
  • An object of the present invention is to provide a method for producing a coated composite which is easy to maintain and a production apparatus having a simple structure suitable for the production method:
  • the coated composite according to one aspect of the present invention is a coated composite comprising a core material, which is a composite reinforced in the longitudinal direction with reinforcing fibers, and a thermoplastic resin coating that covers the peripheral surface of the core material.
  • the core material has a reinforcing fiber content of at least 10% by weight, the core material has an average diameter or average thickness of 3 mm or more, and the coating has an average thickness of 0.3 mir. ! ⁇ 1.5 mm, it is a coated composite.
  • a composite according to one aspect of the present invention is a composite reinforced in the longitudinal direction with reinforcing fibers, wherein the content of the reinforcing fiber is 10 to 80% by weight, and the composite is formed in the longitudinal direction.
  • the reinforcing fiber is introduced into the fiber-opening impregnation tank, and is impregnated with the molten mature resin.
  • the reinforcing fiber impregnated with the thermoplastic resin obtained by pulling it out of the chair is cooled so that the surface temperature is within the crystallization temperature range of the thermoplastic resin, and at least within the temperature range.
  • One aspect of the present invention is a method for producing a coated composite, comprising: a molten resin tank for coating a composite reinforced in a longitudinal direction with reinforcing fibers; an inlet nozzle into which the composite is introduced; and a molten resin tank.
  • the outlet nozzle from which the coated composite coated with the molten resin filled in is sent out is on a straight line, and the resin pressure in the molten resin tank is about the same as the liquid head pressure of the molten resin. Without forced pressurization, the thickness of the coating is regulated by the size of the outlet nozzle.
  • the method of making the overlying composite is:
  • one or more inlet nozzles are located horizontally on the side surface of a box-shaped molten resin tank having an open upper part, It is a coated composite manufacturing device with one or more outlet nozzles on its opposite face and in line with the inlet nozzle:
  • FIG. 1 is a cross-sectional view of the coated composite cut at right angles to the longitudinal direction, in which FIG. 1A is a schematic perspective view of the coated composite of the present invention, and FIG. IB is a core material.
  • FIG. 4 is a schematic enlarged cross-sectional view showing a unit area and a verification area set in a cross section of a part (composite).
  • FIG. 2 is an explanatory view of a manufacturing apparatus for obtaining the composite described in the example.
  • FIG. 3 is an external view of a manufacturing apparatus of the coated composite of the present invention.
  • FIG. 4 is an explanatory cross-sectional view of a coated composite manufacturing apparatus according to the present invention.
  • the composite of the present invention, the coated composite and the method for producing them will be specifically described.First, the coated composite of the present invention will be described with reference to FIG. 1-.
  • (1) is the coated composite of the present invention, (11) is its coating, (1 2) is its core, and (1 2 ⁇ ′) is reinforcing material penetrating the core.
  • (Tzl), (Tz2) and (Tz3) represent three unit areas randomly set in the core section (1 2), respectively.
  • (Dzll) and (Dzl2) are two test areas randomly provided in (Tzl)
  • (Dz21) and (Dz22) are two test areas randomly provided in (Tz2)
  • (Dz31) and (Dz32) represent the two test areas randomly set in (Tz3):
  • the plurality of unit areas are congruent with each other, but have the same unit area (for example, (
  • test areas (Dzll) and test area (Dzl2) has size similar shapes are different, if usually the former is a 0. 1 mm 2 the latter 1 mm 2 : Of course, vice versa:
  • the content C11 of the reinforcing fiber penetrating through this test area (for example, (Dzll)) (the area occupied by the reinforcing fiber Z and the area of the Z test range) is measured by cross-sectional photography, and this procedure is carried out by another test.
  • the content C12 of the reinforcing fiber is repeatedly obtained for the region (for example, (Dzl2)), and applied to the test region (for example, (Dz21)) in another unit region (for example, (Tz2)).
  • the coated composite of the present invention is excellent in bending fracture resistance because the core is composed of the reinforcing fiber having a high content, and the coating existing on the peripheral surface of the core is relatively soft. Since it is composed of a thermoplastic resin with a large elongation, it is excellent in bendability and cracking resistance: Such bending resistance and bending resistance are contradictory characteristics. In order to maintain a good balance, the following configuration is particularly desirable:
  • test areas Dzl, Dz2
  • C1, C2 the content of the reinforcing fiber penetrating each test area. This is performed for three unit areas (Tzl, ⁇ 2, and ⁇ 3).
  • the calculated six content rates (C1 and C12, C21, C22, C31 and C32) are all Mc ⁇ 3 o [Mc: arithmetic mean, ⁇ : standard deviation], preferably Mc ⁇ 2 Desired to be in the range of a,-
  • the effective balance between bendability and bending fracture resistance referred to in the present invention is a value measured by a bending fracture stress test described below, which is a test for examining bending fracture resistance.
  • the value of the coated composite is 1.2 times or more the value of the composite (core material), and the value measured by the 1% radius stress test described below, which is a test for examining the bendability. However, the value of the coated composite is 1.2 times or less the value of the composite (core part).
  • the content of the reinforcing fiber in the core portion is at least 10% by weight, the average diameter or the average thickness of the core portion is 3 mm or more, and the average thickness of the coated portion.
  • the reinforcing fiber content of the core material is considerably less than 10% by weight and the average diameter or average thickness of the core material is significantly less than 3 mm, the bending resistance of the obtained coated composite is reduced. Extremely destructive and impractical. Also, the cladding does not perform as expected:
  • the average thickness of the coated portion is considerably less than 0.3 mm, even if the core portion is coated with a thermoplastic resin, the bending resistance of the coated composite is improved only to a small extent.
  • the average thickness of the portion is considerably larger than 1.5 mm, the obtained coated composite has improved bending fracture resistance, but is hardly bent.
  • the shape of the core material constituting the coating composite of the present invention is not particularly limited: a circle, a triangle, a square, or a hexagon. Any polygon (including not only regular polygons but also inequilateral polygons) can be used.
  • the thermoplastic resin constituting the core part (12) used in the present invention includes a polyolefin resin, a polyamide resin, a polyester resin, a polycarbonate resin, and an acrylic resin.
  • Resin, polysulfone resin, polyethylene resin, polyurethane resin examples of the resin include a resin, a polyether resin, and a polyacetal resin.
  • the term “resin” is not limited to a crystalline polymer, but is generally used in the polymer processing industry for polymer materials. The concept encompasses resinous materials that are traded as such and are subjected to molding or processing:
  • thermoplastic resins may be a single resin or a composition in which two or more thermoplastic resins are combined. It is difficult to obtain various properties (properties) with a single thermoplastic resin, but it can be solved by combining two or more thermoplastic resins.
  • composition of a polyphenylene ether resin and a polystyrene resin there may be mentioned a composition of a polyphenylene ether resin and a polystyrene resin:
  • the polyphenylene ether resin has a melting point and a decomposition point.
  • the moldability is poor due to the close proximity, but good moldability can be maintained by combining with the low-melting resin, polystyrene resin:
  • thermoplastic resin having compatibility with both thermoplastic resins is blended into both or at least one of them so that the thermoplastic resin can be fused, or the third thermoplastic resin is formed into a layer. And intervene between them:
  • thermoplastic resin polyolefin resin
  • the core portion is provided with excellent flexural fracture resistance by the reinforcing fiber contained therein, but this performance is effectively used. This is because Bolbropyrene resin is generally dominant:
  • the one with the highest rigidity is crystalline poly (vinylene) obtained by homopolymerization of propylene:
  • the propylene single weight is used. It is preferable to use a (crystalline) polypropylene copolymer composed of at least one kind of ⁇ -olefin such as ethylene instead of coalescing.
  • ⁇ -olefin such as ethylene
  • the reinforcing fibers constituting the core part (12) used in the present invention single fibers having an average diameter of 3 to 21 zra, preferably 9 to 21 / zm, are preferably 500 to 500.
  • a bundle of about 4.00 bundles (hereinafter sometimes referred to as roving) is desirable.
  • the average diameter of the reinforcing fibers is 1 ⁇ m or less, it is difficult to form a composite. The fibers are easily broken, and the impact strength of the molded article tends to be insufficient. If the average diameter of the continuous fibers is 25 ⁇ m or more, the appearance of the composite becomes poor and the mechanical strength tends to deteriorate.
  • the average length of the fiber reinforcement is preferably substantially equal to the average length of the composite: obtained by reinforcing fibers reinforcing a continuous body such as a composite.
  • the tensile strength in the longitudinal direction of the composite and the flexural fracture resistance of the composite are improved:
  • Examples of the above reinforcing fibers include inorganic fibers and organic fibers.
  • Examples of the inorganic fibers include artificial fibers such as glass fiber, carbon fiber and metal fiber.
  • glass fibers are preferably used because of their excellent physical properties and economy: Hard glass is preferred as the glass fiber, and in particular, in addition to E-glass, which is alkali-free glass, Borosilicate glass (porosilicate glass) is preferably used.
  • the inorganic fibers may be, for example, a silane-based cutting agent, a titanium-based cutting agent, a boron-based cutting agent, an aluminum-based cutting agent, and a zirco-aluminum-based cutting agent.
  • the inorganic fiber may be used after being subjected to a surface treatment with at least one of surface treatment agents: When the inorganic fiber is subjected to a surface treatment, it has an affinity for a hydrophobic mature plastic resin such as polystyrene or pyrene. Strength is enhanced and the thermoplastic resin is more likely to be impregnated between the reinforcing fiber spreads:
  • organic fibers examples include polyolefin fibers, such as polyethylene fibers, polystyrene fibers and poly-4-methyl-tribenten fibers, and polyamide fibers such as 6-polyamide (6- Nylon), 7-polyamide, U-polyamide, 12-polyamide, 6,6-polyamide, 6,7-polyamide, 6,10- Polyamide, 6, 12-Polyamide, Semi-aromatic Polyamide
  • Thermoplastic fiber such as nylon fiber MXD 6 (co-condensate of m-xylylene diamine and adipic acid), wholly aromatic polyamide fiber [aramid fiber (trade name: Kepler)], etc.
  • Polyester fibers for example, PET (polyethylene terephthalate) fibers, PBT (poly-1,4-butylene terephthalate) fibers, and wholly aromatic polyester fibers, etc .: Preferred because of its high melting point and excellent mechanical strength:
  • the above-mentioned inorganic fibers and organic fibers may be used alone or in combination of two or more. Include two or more combinations in inorganic fibers or two or more combinations in organic fibers.
  • the coating part constituting the coating composite of the present invention is preferably one whose inner wall surface is firmly adhered to the outer wall surface of the core part, or one which is slidably contacted. : Therefore, the thermoplastic resin used for the core part and the mature resin used for the coating part are those which show mutual adhesion, affinity or compatibility, etc., but do not show Combinations of materials are desirable: In addition, it is important that the composite does not adversely affect the flexural failure resistance of the composite
  • polyolefin resin is preferred for both the thermoplastic resin used for the covering part and the mature plastic resin used for the core part.-
  • the covering part impairs the bending fracture resistance of the core part.
  • the propylene copolymer occupies at least 80 mol%, preferably 85 to 97 mol%, more preferably 90 to 95 mol%, of the propylene unit in the polypropylene copolymer.
  • the remaining amount is usually 20 mol% or less, preferably 15 to 3 mol%, more preferably 1 () to 5 mol%, in other ⁇ -olefin units.
  • Ethylene is preferred as a comonomer to form this ⁇ -olefin unit:
  • the role of the coating in addition to the above, also includes the role of protecting the core against contamination, moisturizing and other undesirable effects: ⁇ this role, but also polyolefin. Fat is useful.
  • the composite of the present invention also corresponds to the core part of the coated composite of the present invention. That is, it can be used even without the covering portion.
  • thermoplastic resin and the reinforcing fibers that constitute the composite of the present invention are as described above in the ⁇ core part (
  • the reinforcing fiber is contained in the range of 10 to 80% by weight:
  • the content of the reinforcing fiber is less than 10% by weight, the amount of the ripened resin becomes too large, control of the shape becomes difficult, and it becomes difficult to obtain a product having a smooth surface and a high commercial value. If the content of the fibers for use exceeds 80% by weight, the impregnated fibers are liable to generate fluff at the exit of the die and become unstable in shape, so that not only the external appearance is deteriorated, but also stable continuous production cannot be performed.
  • the composite of the present invention has an average cross-sectional diameter of 3 mm or more when cut at a right angle to the longitudinal direction.
  • the shape accuracy does not improve even if the impregnated fiber is shaped, and only products with low commercial value can be obtained.
  • the composite of the present invention has an average deviation of the cross-sectional diameter when cut at a right angle to the longitudinal direction in a range of 0.10 or less-when the average deviation exceeds 0.10, the composite obtained is obtained.
  • the body has poor shape accuracy: preferably less than 0.05, particularly preferably less than 0.02:
  • the composite of the present invention has excellent shape accuracy, it is useful for columns for tunnel houses, side guides for automobiles, handrails on boules, and the like.
  • the method for producing a composite of the present invention comprises the steps of: 3807 PT / JP98 / 01316
  • the impregnated fiber in the shaped cooling slit is At the inlet (opening impregnation tank side entrance), a pool of molten thermoplastic resin will form, making shape control difficult and eventually impossible to manufacture:
  • the crystallization temperature range referred to here is the extrapolated crystallization onset temperature (T ic) obtained by differential scanning calorimetry (DSC) of a thermoplastic resin based on JISK-7121-1987. ) And the extrapolated crystallization end temperature (T ec), and in the case of helium at the horizon, about 90 C to 130-C is a guideline.
  • T ic extrapolated crystallization onset temperature obtained by differential scanning calorimetry (DSC) of a thermoplastic resin based on JISK-7121-1987.
  • T ec extrapolated crystallization end temperature
  • about 90 C to 130-C is a guideline.
  • a plurality of shaped cooling slits are used, and the diameter of the shaped cooling slit closest to the spread impregnation tank is farthest from the spread impregnation tank. It is desirable that the diameter of the slit is larger than the diameter of the shaped cooling slit.-The diameter of the slit should be determined in consideration of the degree of shrinkage of the thermoplastic resin used.
  • the molten resin tank (36) used in the present invention has a box shape with an open top, and one or more inlet nozzles (31) are located horizontally on the side surface. It has one or more exit nozzles (32) on its opposite surface.
  • the molten resin (35) is stored in the molten resin tank (36). 807
  • the resin (35) is supplied from the existing extruder: the molten resin (35) is marginally separated from the extrusion pressure from the extruder and is almost free of pressure.
  • the molten resin is stored in the molten resin tank (36):
  • the molten resin is basically the same as the ripened resin described in the above ⁇ Coating part (11)>.
  • the molten resin tank (36) is heated by a heater (not shown), so that the internal molten resin (35) can be maintained at the set temperature.
  • the upper part is open to prevent the resin pressure from being applied to the molten resin tank (36). If the structure is capable of releasing the pressure, the lid may be attached. Peni
  • the positional relationship between the inlet nozzle (31) located on the side surface of the molten resin tank (36) and the outlet nozzle (32) located on the opposite surface of the molten resin tank (36) is such that the composite is broken by both nozzles. It is desirable to connect them with one straight line so that the music does not stick
  • the center of the inlet nozzle (31) and the center of the outlet nozzle (32) are positioned so that they are aligned in a straight line in the axial direction of both nozzles.
  • the thickness of the part can be made uniform and uneven thickness can be reduced:
  • the complex (33) is not placed without completely removing the moisture attached to the surface, the molten resin (35) that has been ripened and melted to about 27O0C in the molten resin tank (36) can be obtained. ) Is present, which causes the attached water to boil and roughen the surface of the coated composite (34):
  • the present invention is an improvement on a conventional coating device such as a cross head die, it is possible to replace the composite (33) with a metal wire such as a copper wire, an iron wire, or an aluminum wire.
  • a metal wire such as a copper wire, an iron wire, or an aluminum wire.
  • the composite (33) may be covered with a monofilament such as resin or polyvinyl chloride resin. The time required for the complex (33) to pass through the molten resin tank (36) is also important.
  • the coating will be insufficient, and if the length is too long, the composite (33) will melt and the shape will not be maintained: the temperature (resin viscosity) of the molten resin (35), the coating thickness and the line Depending on the speed, such defects can be adjusted.
  • the inlet nozzle (31) located on the side of the molten resin tank (36) facilitates the passage of the complex, and the molten resin (35) in the molten resin tank (36) is filled with the inlet nozzle (3). It must be slightly larger than the cross section of the complex so that it does not seep out of 1): For example, if the complex has a substantially circular cross section, the It is good to make it about 0.2 mm larger
  • the coating thickness coated on the composite (33) can be adjusted by considering the size of the exit nozzle (32):
  • the composite (33) is In the case of a substantially circular shape, the thickness of the coating is generally obtained by subtracting the radius of the composite (33) from the radius of the exit nozzle (32) and considering the shrinkage of the molten resin (35).
  • the coated composite of the present invention has significantly improved flexural fracture resistance of the core, while preserving the flexibility of the coated composite at the same level as that of the core. Almost no fluff is generated, the surface appearance is extremely smooth, and post-processing such as bending is easy.
  • the composite of the present invention is very close to a perfect circle, has very good shape accuracy, and is practical and of high commercial value.
  • the method for producing a composite of the present invention can stably produce the composite of the present invention with a shape very close to a perfect circle and with extremely excellent shape accuracy:
  • a plurality of composites can be simultaneously coated in one molten resin tank, and the thickness of the coated portion can be controlled relatively easily. Variations in volume can also be reduced:
  • the apparatus for producing a coated composite of the present invention can carry out the method for producing a coated composite with an apparatus having an extremely simple structure.
  • the coating composite of the present invention will be specifically described based on examples and sometimes with reference to useful comparative examples. However, the present invention is not limited to these examples. Not subject to any restrictions :.
  • the diameter of each composite and the coated composite was measured according to JIS K69U-1979.
  • a glass fiber orifice is introduced into the open fiber impregnation tank from the reinforcing fiber introduction port of the tank:
  • a thermoplastic resin is introduced into the tank from the molten resin inlet port formed in the bottom plate of the tank. This thermoplastic resin is usually melt-kneaded in an extruder and then charged into the tank via a pipe or directly.
  • All of the reinforcing fibers introduced into the above-mentioned opening and impregnating tank have an average single fiber diameter of 17 ⁇ ! And are used as a mouthpiece having a fiber count of 115 g / km. :
  • a pair of two open fiber fins are formed between the left side wall and the right side wall forming the left and right long sides with the flow path of the thermoplastic resin and the reinforcing fiber therebetween.
  • the vertical spacing (H) between the two opened fibers constituting each pair is set within the range expressed by the following relational expression with respect to the average diameter (D) of the reinforcing fibers.
  • the vertical interval (H) is defined to include the case where the line passing through the center axis of the upper and lower opening bins is inclined with respect to the vertical line. If the line connecting the center of the opening fiber and the center of the lower opening pin is not on the vertical line, one of the opening bins is slid parallel to the flow direction of the reinforcing fiber,
  • the vertical interval (H) is the interval when the center of is on the vertical line:
  • Fiber reinforcement inlet located upstream of the fiber impregnation tank (perforated on the upstream end wall or upstream end 3807
  • the reinforcing fibers are introduced from the top plate, and are passed through the gap between the first opening bin pair at the upstream end in a non-contact manner, and then opened, and then the second opening adjacent to the downstream side is opened.
  • the fiber was opened by passing through the pin gap of the bin pair in a non-contact manner, and finally opened by passing through the pin gap of the third spreading bin pair located downstream of the bin in a non-contact manner.
  • the molten thermoplastic resin is impregnated between the reinforcing fibers of the spread.
  • the composite obtained from the reinforcing fiber and the thermoplastic resin that has passed through the third opening pin is shaped through a shaping nozzle (inside diameter 5.7 O ram) formed in the downstream end wall of the opening and impregnating tank. Cooling after shaping results in a composite (average diameter 5.63 mm) containing longitudinally aligned reinforcing fibers. The content of the reinforcing fiber in this composite was 18.2% by weight. The results of measuring its properties are shown in Table 1.
  • the test region was also determined for the other two unit regions ((T z2) and (T z3)).
  • the coated composite was obtained basically in the same manner as in Example 1. However, the method of producing the composite, the diameter of the circular die, and the diameter of the coated composite were changed according to each experimental example and comparative example. As a result, the results are different from those in Example 1.
  • the content of the reinforcing fiber in the cross-section of the core material of the obtained coated composite such as the conditions in each experimental example and the comparative examples, C mn, and their arithmetic mean values
  • Tables 1 and 2 show the deviation ⁇ mn of the difference (M c-C ran) between Mc, ⁇ c and the content C mn of each reinforcing fiber, the standard deviation calculated therefrom, and the property values of the composite. Show. Table 2
  • Diameter The diameter of the obtained composite was measured in accordance with JIS K 6911-1979. That is, the diameter of the cross section of the composite when cut at a right angle to the longitudinal direction was measured on the same plane. Four points were measured at intervals of ° (Dll, D12, D13, D14)-This operation was also determined for other sections set for the same complex (D21, D22, D23, D24), and the arithmetic mean ( The MD obtained by measuring the average deviation (roundness MD) from the average diameter Dm) is derived from the following equation. The smaller the MD value, the closer to a perfect circle and the higher the shape accuracy. Do:
  • Example 8 a composite was formed by using an apparatus as shown in FIG. 2-that is, 20 gussets (21) of glass fibers as reinforcing fibers were used to form a thermoplastic resin. Opening in which maleic anhydride-modified polyfluorophenyl FR (230-C; 21.18N) 100 g / lOmin] is filled with a melt adjusted to a temperature of 270 ° C Impregnation tank (2
  • roving (21) As the roving (21), an average single fiber diameter of 17 ⁇ and a tex number of 1150gZkm was used-and the roving (21) was provided in the opening impregnation tank (22). Opened with fine fiber (23) and impregnated with the melted modified polybrohillene ⁇ Next, roving impregnated with the melted modified polybrohillen ( 2 1) passes through a die (24) with an inner diameter of 6.0 mm provided at the outlet of the opening and impregnating tank (22), and then an air cooling tank ( After passing through 25), the surface temperature is adjusted to 125 : C. ⁇
  • the impregnated rovings (21) are made of a 10 mm wide steel, controlled at a temperature of 30 : C, and have an inner diameter of 6 lmm, spaced at 40 mni intervals.
  • a composite having an average diameter of 5.85 mm was obtained by sequentially passing through the shaped cooling slit (26) and the second shaped cooling slit (27) with an inner diameter of 5.9 ram. .:
  • Table 3 shows the evaluation results of the obtained composites based on the following measurement tests:
  • Example 9 is substantially the same as Example 8, but differs in that the number of orifices (21) is different and that three shaped cooling slits are provided. :.
  • the impregnated rovings (21) are made of steel with a width of 1 Omra, controlled at a temperature of 30 C, arranged at intervals of 40 mm and 20 mm and having an inner diameter of 6.1 mm.
  • Example 10 This example 10 is substantially the same as example 8, except that the number of mouths per bing (2 1) is different, and four shaped cooling slits are provided. In other words, in the same manner as in Example 8, four glass fiber orifices (21) were used, and maleic anhydride-modified polypropylene copolymer having a temperature of 270 : C was used. The fiber was fed to a fiber impregnation tank (22), which was filled with the molten material, and was continuously impregnated at a take-off speed of lOOcra / min:
  • the orifice (21) impregnated with the molten modified polypropylene is passed through a die (24) with an inner diameter of 6.0 mm provided at the outlet of the fiber impregnation tank (22). Passing through the air cooling tank (25), the surface temperature is adjusted to 125C:
  • one impregnating port bing (21) is made of steel 10 mm in width, controlled at a temperature of 30 : C, and has inner diameters arranged at intervals of 10 mm, 20 mm and 20 mm. 6 ⁇ lmm first shaped cooling slit (26), inner diameter 5.9mm second shaped cooling slit (27), inner diameter 5.8mm third shaped cooling slit (28) and a fourth shaped cooling slit (29) having an inner diameter of 5.7 mra, a composite having an average diameter of 5.65 mm was obtained.
  • the obtained composite had extremely small variation in shape.
  • the glass fiber content was 18% by weight.
  • the evaluation result of the obtained composite based on the following measurement test was obtained. Table 3 shows:
  • Example 11 is substantially the same as Example 8, except that the number of the orifices (21), the dies (24) and the diameter of the first shaped cooling slit (26) are smaller.
  • the diameter of the second shaped cooling slit (27) is different:
  • the impregnating port one bing (21) is made of steel with a width of 10 mm, is controlled at a temperature of 30 : C, and has an inner diameter of 3.6 mm, which is arranged at intervals of 20 mm.
  • a composite having an average diameter of 3.46 mm was obtained by sequentially passing through the first shaped cooling slit (26) and the second shaped cooling slit (27) having an inner diameter of 3.5 mm.
  • the obtained composite had a very small variation in shape: the glass fiber content was 73% by weight: The evaluation results of the obtained composite based on the following measurement test were shown. 3 Show:
  • the roving (21) impregnated with the molten modified polypropylene is passed through a 6. Omrn die (24) having an inner diameter of 6. Omrn provided at the outlet of the fiber impregnation tank (22). After passing through the air cooling tank (25), the surface temperature is adjusted to 125C-.
  • the impregnated rovings (2 1) can be made to have an average diameter without using a shaped cooling slit.
  • the orifice (21) impregnated with the molten modified polypropylene passes through a die (24) with an inner diameter of 6. Omm provided at the outlet of the fiber impregnation tank (22). After passing through the air cooling bath (25), the surface temperature is adjusted to 14 OC:
  • the impregnating port one bing (2 1) is made of 1 Omm wide steel, controlled at a temperature of 30 C, and has a 6.2 mm inner diameter first shaping cooling slit. (26), a molten pool of propylene resin was formed at the slit inlet, the line stopped, and no composite was obtained.
  • the evaluation results are shown in Table 3.
  • the roving (21) impregnated with the molten modified polypropylene is opened. 6. After passing through the Omra dice (24 :;) at the outlet of the fiber impregnation tank (22), it passes through the air cooling tank (25), and the surface temperature is adjusted to 60 : C. RU:
  • the impregnating port one bing (21) is made of a 10mm-wide steel, controlled at a temperature of 30C, and has a 6.2mm inner diameter first shaped cooling slit (21). After passing through 26), the solidified polypropylene resin at the slit entrance caught the entrance and could not be shaped, the line stopped, and no composite was obtained .: Evaluation results Table 3 shows:
  • This Example 12 formed a coated composite using an apparatus as shown in FIGS. 3 and 4.
  • the melted reforming port The three rovings impregnated with pyrene pass through an inside die with an internal diameter of 2 and Omni, which is provided at the outlet of the fiber opening impregnation tank, and then pass through an air-cooled tank, where the surface temperature rises. Is adjusted below 1 25 : C:
  • the three rovings are made of steel with an inner diameter of 2.2mni and 2.0mm, respectively, and a width of Omm, controlled at a temperature of 30 : C, and arranged at intervals of 40mni. By sequentially passing through each of the shaped cooling slits, three composites (33) were obtained.
  • a molten resin tank (36) was set up on that line, and three of the obtained composites (33) were passed through a 2.2mm ⁇ inlet nozzle (31), respectively, and heated and melted at 270C.
  • the melted resin (35) [Vitrocene 352 (MI 30g / 10min)] was attached to the periphery of the composite (33), and a 3.5mra ⁇ outlet nozzle (32) was attached at 15m / After passing through at a speed of min, the mixture was passed through a cooling bath to obtain a coated composite (34) of 3 ⁇ ⁇ .
  • the molten resin tank (36) has a size of 200mmW x 80mm LX lOOmmH, and has 2.2mm ⁇ inlet nozzles (31) on the opposing sides and 3 3.5mm ⁇ outlet nozzles (32) It has three holes and the upper part is opened to prevent resin pressure .: A heater is attached around the molten resin tank (36) so that the resin temperature can be secured. Natsu is—
  • the resin supply to the molten resin tank (36) is based on the fact that the liquid level of the molten resin (35) The molten resin (35) was dropped from the open upper part so that it would not be lower than lOmra above (33).
  • the obtained coated composite (34) was cut to a fixed size, weighed, and the adhesion amount of the molten resin (35) was determined. As a result, the variation in the coating amount among the three composites (33) was excellent within 5%:
  • the composite (33) of Example 12 was replaced with a linear product made of a pyrene resin (33) having a diameter of 4 mm and passed through an inlet nozzle (31) having a diameter of 4.2 ⁇ , and each of the composites (33) was 270 °. While adhering the molten resin (35) [Petrocene 35 2 ( ⁇ . 30 g / 10min)], which was heated and melted, to the periphery of the linear object (33), the outlet nozzle of 5.5 ⁇ (32) ) At a speed of 15 m / min, and then passed through a cooling bath to obtain a coated linear object (34) of Omra ⁇ -The obtained coated linear object (34) was reduced to a fixed size. After cutting, the weight was measured, and the adhesion amount of the molten resin (35) was determined. As a result, the variation in the coating amount among the three linear objects (33) was excellent within 5%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

A long fiber-reinforced thermoplastic resin covered composite body comprising a core portion which is a thermoplastic resin composite body reinforced in a longitudinal direction by reinforcing fibers and a covering portion made of a thermoplastic resin and covering the peripheral surface of the core portion, wherein the content of the reinforcing fibers is at least 10 weight %, the mean diameter or the mean thickness of the core portion is 3 mm or more and the mean thickness of the covering portion is 0.3 to 1.5 mm. Particularly when this composite body has a reinforcing fiber content of l0 to 80 weight %, a mean diameter of the section when the composite body is cut perpendicularly to the longitudinal direction is 3 mm or more and a mean deviation of the diameter is 0.10 or less, the shape accuracy of the composite body is excellent, and the composite body can be used alone as a product. Such a composite body can be obtained by passing the resin through at least two shaping/cooling slits within a specific temperature range. Further, the covered composite body can be easily obtained by using a production apparatus including a box-shaped molten resin bath whose top is open, and which is equipped with one or a plurality of inlet nozzles arranged horizontally on a side surface thereof and with one or a plurality of outlet nozzles on the opposed surface aligned with the inlet nozzles.

Description

明細書  Specification
長繊維強化熱可塑性樹脂複合体 技術分野 Long Fiber Reinforced Thermoplastic Composite Technical Field
本発明は、 連続した強化用繊維で強化された熱可塑性樹脂製の複合体 (以下、 複合体と言う) 、 該複合体を芯材部と して用い、 その周面を熱可塑性樹脂製の被 覆部で覆った長繊維強化熱可塑性樹脂被覆複合体 (以下、 被覆複合体と言う) お よびそれらの製造方法に関する。 背景技術  The present invention relates to a thermoplastic resin composite reinforced with continuous reinforcing fibers (hereinafter, referred to as a composite), using the composite as a core material, and forming a peripheral surface of the composite using a thermoplastic resin. The present invention relates to a long-fiber-reinforced thermoplastic resin-coated composite covered with a covered portion (hereinafter, referred to as a coated composite) and a method for producing the same. Background art
各種産業用ロ ッ ド等には、 F R P製ロ ッ ドが用レ、られている: しかるに、 この F R P製ロ ッ ドは、 曲げにく く加工しにく い等の問題を残しているこ とから、 加 ェし易い (曲げ易い) ロ ッ ド等が求められている:  Various types of industrial rods use FRP rods. However, this FRP rod has problems such as difficulty in bending and difficult processing. Therefore, rods that are easy to be added (and easy to bend) are required:
F R P製ロ ッ ドの加工性を改良した成形品と して、 例えば特公平 1 — 3 8 6 6 8号公報に、 「被覆 F R P製品形成用素材」 が開示されている: これは、 未硬化 の F R P芯材部と この芯材部を被覆する熱可塑性樹脂及びこの両者に跨る中間層 とからなり 、 芯材部が硬化する前に賦形して得るものである しかし、 この成形 品は、 賦形時間が制限されているこ とに加えて再賦形ができないとい う欠点を有 しており、 得られた成形品は曲げにく いものでもあった:,  As a molded product with improved workability of FRP rods, for example, Japanese Patent Publication No. 1-38668 discloses “Material for forming coated FRP products”: The FRP core material part, a thermoplastic resin covering the core material part, and an intermediate layer straddling both of them, are obtained by shaping before the core material part is hardened. In addition to the limited shaping time, it has the drawback that reshaping is not possible, and the resulting molded article is difficult to bend.
このよ うな F R Pの欠点を改良したものと して、 例えば特公昭 6 3 - 3 7 6 9 4号公報に、 「繊維強化構造物及びその製造法」 が開示されている: これは、 連 続した強化用繊維で強化された熱可塑性樹脂からなる熱成形可能な複合体である : しかし、 得られる複合体の直径が固定されている場合には、 その中における強 化用繊維の含有率が増加するに伴って、 その複合体を曲げて破壊するのに要すろ 応力 (耐曲げ破壊性) が大き く なる反面、 複合体が曲げにく く なつてゆく という 欠点を有している。 As an improvement over such a drawback of FRP, for example, Japanese Patent Publication No. 63-36964 discloses “Fiber Reinforced Structure and Method for Producing the Same”. Is a thermoformable composite made of a thermoplastic resin reinforced with modified reinforcing fibers: However, if the resulting composite has a fixed diameter, the content of reinforcing fibers in it is As it increases, it is necessary to bend and break the composite Although the stress (bending resistance) increases, it has the disadvantage that the composite becomes difficult to bend.
上記の事実に基づけば、 得られる複合体の直径も しく は厚みが同一の場合には 、 その中に含有される強化用繊維の含有率を低くすれば、 曲げ易く なり 、 複合体 を曲げて加工し易く なるが、 耐曲げ破壊性を十分に備えたものが得られない: ま た逆に、 複合体の強化用繊維の含有率を高く し、 耐曲げ破壊性を向上させる と、 得られる複合体が曲げ難く なり 、 曲げ加工等の後加工性が悪化する,:. そこで、 曲 げ易さ と耐曲げ破壊性という相反する特性を効果的なバランスで有する成形品が 望まれている:  Based on the above facts, if the diameter or thickness of the obtained composite is the same, if the content of the reinforcing fiber contained therein is reduced, it becomes easier to bend, and the composite is bent. It is easy to process, but it is not possible to obtain one with sufficient bending fracture resistance: Conversely, it is obtained by increasing the content of reinforcing fibers in the composite and improving the bending fracture resistance. The composite becomes difficult to bend, and the post-workability, such as bending, deteriorates .: Therefore, a molded article having an effective balance of the opposing properties of bendability and bending fracture resistance is desired:
また、 被覆複合体の芯材部を構成している複合体は、 一般にそれ単独では製品 となり にく レ、 - というのは、 複合体は成形が難しいため、 形状精度の良い高品質の複合体を安 定生産するこ とが困難であったからである: 従って、 実用的な製品とするために は、 得られた複合体を切断してベレッ ト状にした後、 射出成形等を行って製品と する方法を用いなければならず、 連続した強化用繊維本来の持ち味を生かしきれ ていないのが現状であった:. このよ うなことから、 連続した長い形状で、 しかも 実用的な範囲で使用できる程の形状精度を有する複合体が望まれていた.  In addition, the composite material that constitutes the core material of the coated composite material is generally difficult to become a product by itself.-Because the composite material is difficult to mold, it is a high-quality composite material with good shape accuracy. Therefore, it was difficult to produce a stable product: Therefore, in order to make it a practical product, the obtained composite was cut into berets, and injection molding was performed. At present, it was not possible to make full use of the inherent properties of continuous reinforcing fibers: In such a situation, it was used in a continuous, long shape and within a practical range. A composite having the shape accuracy as possible was desired.
この様な複合体およびその製造方法を開示するものと しては、 例えば特公昭 6 3 - 3 7 6 9 4号公報があるが、 実用的な範囲で使用できる程の形状精度を有す る複合体は得られていないのが現状であった.:  Japanese Patent Publication No. Sho 63-376694 discloses such a composite and a method for producing the same, but has such a shape accuracy that it can be used within a practical range. At present, no complex was obtained:
さ らに、 従来連続した複合体を連続で被覆するには、 ク ロスヘッ ドダイの中心 部に複合体を通し、 押出機よ り熟可塑性樹脂をク ロ スへッ ドダイに押し込み複合 体の周 り に樹脂膜を形成して被覆するのが極く 一般的であった しかし、 この方 法では、 生産性が悪く 、 製造し難いものであった: 発明の開示 In addition, in order to continuously coat a conventionally continuous composite, the composite is passed through the center of the crosshead die, and the extruder is used to push the mature plastic resin into the crosshead die, and the surroundings of the composite are extruded. It was very common to form a resin film on the surface and coat it, however, this method was poor in productivity and difficult to manufacture: Disclosure of the invention
本発明の目的は、 曲げ易く 、 耐曲げ破壊性にも優れた被覆複合体、 形状精度が 著しく 改善された複合体およびその製造方法ならびに多数本の複合体を同時に被 覆する事ができ、 メ ンテナンスの容易な被覆複合体の製造方法およびその製造方 法に適した簡単な構造を有する製造装置を提供するこ とにある:  An object of the present invention is to provide a coated composite which is easy to bend and has excellent resistance to bending fracture, a composite whose shape accuracy is remarkably improved, a method for producing the same, and a large number of composites which can be simultaneously coated. An object of the present invention is to provide a method for producing a coated composite which is easy to maintain and a production apparatus having a simple structure suitable for the production method:
本発明の 1 つである被覆複合体は、 強化用繊維で長手方向が強化された複合体 である芯材部と芯材部周面を被覆する熱可塑性樹脂製の被覆部とからなる被覆複 合体であって、 芯材部の強化用繊維含有率が少なく と も 1 0重量%、 芯材部の平 均直径も しく は平均厚みが 3 m m以上、 被覆部の平均厚みが 0 . 3 mir!〜 1 . 5 mmであ ろ被覆複合体である-—  The coated composite according to one aspect of the present invention is a coated composite comprising a core material, which is a composite reinforced in the longitudinal direction with reinforcing fibers, and a thermoplastic resin coating that covers the peripheral surface of the core material. The core material has a reinforcing fiber content of at least 10% by weight, the core material has an average diameter or average thickness of 3 mm or more, and the coating has an average thickness of 0.3 mir. ! ~ 1.5 mm, it is a coated composite.
本発明の 1 つである複合体は、 強化用繊維で長手方向が強化された複合体にお いて、 強化用繊維含有率が 1 0 〜 8 0重量%、 該複合体を長手方向に対して直角 に切断した時の断面の平均直径が 3 mm以上およびその直径の平均偏差が 0 . 1 0 以下である複合体である:  A composite according to one aspect of the present invention is a composite reinforced in the longitudinal direction with reinforcing fibers, wherein the content of the reinforcing fiber is 10 to 80% by weight, and the composite is formed in the longitudinal direction. A composite with an average cross-sectional diameter of at least 3 mm when cut at right angles and an average deviation of its diameter of less than 0.10:
また、 本発明の 1 つである複合体の製造方法は、 強化用繊維を開繊含浸槽内に 導入し、 溶融した熟可塑性樹脂を含浸させたのち、 開繊含浸槽の出口部であるダ イスから引く抜いて得た熱可塑性樹脂が含浸された強化用繊維を、 その表面温度 が該熱可塑性樹脂の結晶化温度範囲内になるよ う に冷却しながら、 その温度範囲 内で少なく と も 2つ以上の賦形冷却ス リ ッ トを通過させる強化用繊維含有率が 1 0〜 8 0重量%で平均直径が 3 mm以上の複合体の製造方法である:  In addition, in the method for producing a composite according to one embodiment of the present invention, the reinforcing fiber is introduced into the fiber-opening impregnation tank, and is impregnated with the molten mature resin. The reinforcing fiber impregnated with the thermoplastic resin obtained by pulling it out of the chair is cooled so that the surface temperature is within the crystallization temperature range of the thermoplastic resin, and at least within the temperature range. This is a method for producing a composite having a reinforcing fiber content of 10 to 80% by weight and an average diameter of 3 mm or more through two or more shaped cooling slits:
本発明の 1 つである被覆複合体の製造方法は、 強化用繊維で長手方向が強化さ れた複合体を被覆する溶融樹脂槽において、 複合体が導入される入口 ノ ズルと溶 融樹脂槽内に充填された溶融樹脂で被覆された被覆複合体が送り 出される出口 ノ ズルとが直線上に有り 、 溶融樹脂槽内の樹脂圧力は溶融樹脂の液面へッ ド圧と同 程度で、 強制的な加圧をせず、 被覆部の肉厚は出口 ノ ズルの大き さで規制すろ被 覆複合体の製造方法である: One aspect of the present invention is a method for producing a coated composite, comprising: a molten resin tank for coating a composite reinforced in a longitudinal direction with reinforcing fibers; an inlet nozzle into which the composite is introduced; and a molten resin tank. The outlet nozzle from which the coated composite coated with the molten resin filled in is sent out is on a straight line, and the resin pressure in the molten resin tank is about the same as the liquid head pressure of the molten resin. Without forced pressurization, the thickness of the coating is regulated by the size of the outlet nozzle. The method of making the overlying composite is:
また、 本発明の 1 つである被覆複合体の製造装置は、 上部が開放された箱形の 溶融樹脂槽の側面に、 1 ケ も しく は複数ケの入口 ノズルが水平に位置しており 、 その対向面に 1 ケも しく は複数ケの出口 ノ ズルが入口 ノ ズルと 1 直線上に位置し ている被覆複合体の製造装置である: 図面の簡単な説明  Further, in the coated composite manufacturing apparatus according to one aspect of the present invention, one or more inlet nozzles are located horizontally on the side surface of a box-shaped molten resin tank having an open upper part, It is a coated composite manufacturing device with one or more outlet nozzles on its opposite face and in line with the inlet nozzle: Brief description of the drawings
図 1 は、 被覆複合体を長手方向に対して直角に切断した断面図であり 、 その中 で図 1 Aは、 本発明の被覆複合体の模式的斜視図であり 、 図 I Bは、 芯材部 (複 合体) の断面に設定された単位領域及び検定領域を示すための模式的拡大断面図 である。  FIG. 1 is a cross-sectional view of the coated composite cut at right angles to the longitudinal direction, in which FIG. 1A is a schematic perspective view of the coated composite of the present invention, and FIG. IB is a core material. FIG. 4 is a schematic enlarged cross-sectional view showing a unit area and a verification area set in a cross section of a part (composite).
図 2は、 実施例に記載される複合体を得るための製造装置の説明図である.. 図 3は、 本発明の被覆複合体の製造装置の外観図である  FIG. 2 is an explanatory view of a manufacturing apparatus for obtaining the composite described in the example. FIG. 3 is an external view of a manufacturing apparatus of the coated composite of the present invention.
図 4は、 本発明の被覆複合体の製造装置の横断面説明図である: 発明を実施するための最良の形態  FIG. 4 is an explanatory cross-sectional view of a coated composite manufacturing apparatus according to the present invention.
本発明の複合体、 被覆複合体およびそれらの製造方法を具体的に説明する まず、 本発明の被覆複合体を図 1 に沿って説明する -.  The composite of the present invention, the coated composite and the method for producing them will be specifically described.First, the coated composite of the present invention will be described with reference to FIG. 1-.
図 1 Aにおいて、 ( 1 ) は本発明の被覆複合体、 ( 1 1 ) はその被覆部、 ( 1 2 ) はその芯材部、 ( 1 2 ί') は芯材部を貫通する強化用繊維を示すものである. また、 図 1 Bにおいて (Tzl) 、 ( T z2) 及び (Tz3) はそれぞれ芯材部断面 ( 1 2 ) 内に無作為に設定される 3個の単位領域、 (Dzll) 及び (Dzl2) は ( Tzl) 内に無作為に設けられる 2個の検定領域であり 、 (Dz21) 及び (Dz22) は (Tz2) 内に無作為に設けられる 2個の検定領域並びに (Dz31) 及び (Dz32 ) は (Tz3) 内に無作為に設けられる 2個の検定領域を表すものである: こ こで、 複数個の単位領域は、 相互に合同であるが、 同一の単位領域(例えば (In FIG. 1A, (1) is the coated composite of the present invention, (11) is its coating, (1 2) is its core, and (1 2 ί ′) is reinforcing material penetrating the core. In FIG. 1B, (Tzl), (Tz2) and (Tz3) represent three unit areas randomly set in the core section (1 2), respectively. (Dzll) and (Dzl2) are two test areas randomly provided in (Tzl), and (Dz21) and (Dz22) are two test areas randomly provided in (Tz2) and ( (Dz31) and (Dz32) represent the two test areas randomly set in (Tz3): Here, the plurality of unit areas are congruent with each other, but have the same unit area (for example, (
T zl) )内の複数個の検定領域、 例えば検定領域(Dzll)及び検定領域(Dzl2)は、 相似形で大き さが異なっており 、 通常は前者が 0. 1 mm2であれば後者は 1 mm2となる : 勿論、 その逆でも差支え無い: T zl)) a plurality of test regions in, for example, test areas (Dzll) and test area (Dzl2) has size similar shapes are different, if usually the former is a 0. 1 mm 2 the latter 1 mm 2 : Of course, vice versa:
この検定領域(例えば (Dzll) )内を貫通する強化用繊維の含有率 C 11 (強化用 繊維の占有面積 Z検定範囲の面積)を、 断面写真撮影によって測定して、 この手続 を他の検定領域(例えば (Dzl2) )にも繰り返して強化用繊維の含有率 C 12を求め 、 更に他の単位領域(例えば、 (Tz2) )中の検定領域(例えば、 (Dz21) )にも適 用 して強化用繊維の含有率 C 21を求め、 更に別の検定領域(例えば、 (Dz22) )に も適用 して強化用繊維の含有率 C22を求めて、 それらの相加平均値(算術平均 X c )を算出してから、 各含有率 C と相加平均値 Mcからの偏差 δ を算出する:  The content C11 of the reinforcing fiber penetrating through this test area (for example, (Dzll)) (the area occupied by the reinforcing fiber Z and the area of the Z test range) is measured by cross-sectional photography, and this procedure is carried out by another test. The content C12 of the reinforcing fiber is repeatedly obtained for the region (for example, (Dzl2)), and applied to the test region (for example, (Dz21)) in another unit region (for example, (Tz2)). To obtain the reinforcing fiber content C22 by applying it to another test area (for example, (Dz22)) to obtain the arithmetic mean value (arithmetic mean X c) and then calculate the deviation δ from each content C and the arithmetic mean Mc:
そして、 この各偏差 δ を用いて標準偏差 σ を算出し、 強化用繊維の断面内にお ける分散度合いを得る:  Then, the standard deviation σ is calculated using the respective deviations δ to obtain the degree of dispersion in the cross section of the reinforcing fiber:
本発明の被覆複合体は、 芯材部が高含有率の強化用繊維で構成されているため 耐曲げ破壊性に優れており 、 芯材部の周面に存在する被覆部が比較的軟質で大き な伸び率を備えている熱可塑性樹脂で構成されているため曲げ易さ及び割れ難さ に優れている: この様な耐曲げ破壊性と曲げ易さ とは相反する特性であり 、 これ らをバランス良く保っためには、 特に以下の構成が望ま しい:  The coated composite of the present invention is excellent in bending fracture resistance because the core is composed of the reinforcing fiber having a high content, and the coating existing on the peripheral surface of the core is relatively soft. Since it is composed of a thermoplastic resin with a large elongation, it is excellent in bendability and cracking resistance: Such bending resistance and bending resistance are contradictory characteristics. In order to maintain a good balance, the following configuration is particularly desirable:
つま り、 被覆複合体を長軸に対して垂直の平面で切断して現われる芯材部断面 内に無作為に設定された単位領域(Τζ)内に、 相似形で大き さの異なる 2種の検定 領域(Dzl、 Dz2)を画定し、 それぞれの検定領域を貫通する強化用繊維の含有率 (C l、 C2)を求め、 これを 3個の単位領域(Tzl、 Τζ2及び Τζ3)について行い、 求めた 6個の含有率(C 1し C 12, C 21、 C22、 C31及び C32)が全て、 Mc± 3 o [Mc : 相加平均値、 σ :標準偏差] 、 好ま しく は Mc± 2 a の範囲內であるのが望 ま しレ、 - こ こで、 本発明で言う曲げ易さ と耐曲げ破壊性との効果的なバラ ンスは、 耐曲 げ破壊性を調べるための試験である後述の曲げ破壊応力試験によって測定された 値において、 被覆複合体の値が複合体 (芯材部) の値に対して 1 . 2倍以上であり 、 曲げ易さを調べるための試験である後述の 1 %橈み応力試験によって測定され た値において、 被覆複合体の値が複合体 (芯材部) の値に対して 1 . 2倍以下であ る。 In other words, two kinds of similar and different sizes are placed in a randomly set unit area (無) in the core material cross section that appears when the coated composite is cut along a plane perpendicular to the long axis. The test areas (Dzl, Dz2) are defined, and the content (C1, C2) of the reinforcing fiber penetrating each test area is determined. This is performed for three unit areas (Tzl, Τζ2, and Τζ3). The calculated six content rates (C1 and C12, C21, C22, C31 and C32) are all Mc ± 3 o [Mc: arithmetic mean, σ: standard deviation], preferably Mc ± 2 Desired to be in the range of a,- Here, the effective balance between bendability and bending fracture resistance referred to in the present invention is a value measured by a bending fracture stress test described below, which is a test for examining bending fracture resistance. The value of the coated composite is 1.2 times or more the value of the composite (core material), and the value measured by the 1% radius stress test described below, which is a test for examining the bendability. However, the value of the coated composite is 1.2 times or less the value of the composite (core part).
また、 本発明の被覆複合体は、 芯材部の強化用繊維含有率が少なく と も 1 0重 量%、 芯材部の平均直径も しく は平均厚みが 3 mm以上、 被覆部の平均厚みが 0 . 3 mn!〜 1 . 5 mmである:  In the coated composite of the present invention, the content of the reinforcing fiber in the core portion is at least 10% by weight, the average diameter or the average thickness of the core portion is 3 mm or more, and the average thickness of the coated portion. 0.3 mn! Is ~ 1.5 mm:
芯材部の強化用繊維含有率が 1 0重量%を相当に下回り 、 しかも芯材部の平均 直径も しく は平均厚みが 3 mmを相当に下回る場合には、 得られる被覆複合体の耐 曲げ破壊性が極端に低下し、 実用的でなく なる。 また、 被覆部が期待された程の 効果を示さなく なる:  If the reinforcing fiber content of the core material is considerably less than 10% by weight and the average diameter or average thickness of the core material is significantly less than 3 mm, the bending resistance of the obtained coated composite is reduced. Extremely destructive and impractical. Also, the cladding does not perform as expected:
また、 被覆部の平均厚みが 0 . 3 mmを相当に下回る場合には、 芯材部が熟可塑性 樹脂で被覆されても、 被覆複合体の耐曲げ破壊性が小幅にしか向上せず、 被覆部 の平均厚が 1 . 5 mmを相当に越える場合には、 得られた被覆複合体の耐曲げ破壊性 は向上するが、 曲げ難く なる .  In addition, when the average thickness of the coated portion is considerably less than 0.3 mm, even if the core portion is coated with a thermoplastic resin, the bending resistance of the coated composite is improved only to a small extent. When the average thickness of the portion is considerably larger than 1.5 mm, the obtained coated composite has improved bending fracture resistance, but is hardly bent.
<芯材部( 1 2 ) > <Core part (1 2)>
本発明の被覆複合体を構成する芯材部の形状、 つま り被覆複合体を長手方向に 対して直角に切断したときの芯材部断面形状は特に限定されない: 円形、 三角形 、 四角形または六角形等の多角形 (正多角形に限らず不等辺多角形も包含) のい ずれの形状であつても良レ、:  The shape of the core material constituting the coating composite of the present invention, that is, the cross-sectional shape of the core material when the coating composite is cut at a right angle to the longitudinal direction is not particularly limited: a circle, a triangle, a square, or a hexagon. Any polygon (including not only regular polygons but also inequilateral polygons) can be used.
また、 本発明に用いられる芯材部( 1 2 )を構成する熱可塑性樹脂と しては、 ホ リ オレフィ ン樹脂、 ホ リ ア ミ ド樹脂、 ボリエステル榭脂、 ホリ カーボネ一 ト樹脂 、 アク リ ル樹脂、 ホ リ スルホン樹脂、 ボ リ フエ二レンェ一テル樹脂、 ボ リ ウ レタ ン榭脂、 ボリエーテル樹脂、 ポリ アセタール樹脂等を挙げるこ とができる: ここで、 本発明においては 「樹脂」 とは、 結晶性重合体に限らず、 高分子物質 の成形加工業界で一般に榭脂と して取引 され、 成形又は加工等を施される樹脂状 物を包含する概念である.: The thermoplastic resin constituting the core part (12) used in the present invention includes a polyolefin resin, a polyamide resin, a polyester resin, a polycarbonate resin, and an acrylic resin. Resin, polysulfone resin, polyethylene resin, polyurethane resin Examples of the resin include a resin, a polyether resin, and a polyacetal resin. In the present invention, the term “resin” is not limited to a crystalline polymer, but is generally used in the polymer processing industry for polymer materials. The concept encompasses resinous materials that are traded as such and are subjected to molding or processing:
これらの熱可塑性榭脂は単一でも良く 、 2種類以上の熱可塑性樹脂を組み合わ せた組成物でも良い。 単一の熱可塑性樹脂ではどう しても多様な性質 (性状) を 得るこ とは難しいが、 2種類以上の熱可塑性樹脂を組合せた組成物とするこ とに よ り解決するこ とができる:  These thermoplastic resins may be a single resin or a composition in which two or more thermoplastic resins are combined. It is difficult to obtain various properties (properties) with a single thermoplastic resin, but it can be solved by combining two or more thermoplastic resins. :
この様な組成物の具体例と して、 ポリ フエ二 レンエーテル樹脂とボ リ スチレン 樹脂との組成物を挙げるこ とができ る: ポリ フエ二レンェ一テル樹脂は、 融点と 分解点とが接近しているこ とよ り成形性が悪いが、 低融点樹脂であるホ リ スチレ ン樹脂と組み合わせることによ り成形性を良好に保つこ とができ る:  As a specific example of such a composition, there may be mentioned a composition of a polyphenylene ether resin and a polystyrene resin: The polyphenylene ether resin has a melting point and a decomposition point. The moldability is poor due to the close proximity, but good moldability can be maintained by combining with the low-melting resin, polystyrene resin:
また別の例と して、 2種類の熱可塑性樹脂の間に相溶性 (親和性) が欠如して いる結果と して、 巧く 熱接着 (融着) できない弱点を解決する手段と して、 双方 の熱可塑性樹脂に対して相溶性を備えている第三の熱可塑性樹脂を双方又は少な く と も片方へ配合して融着可能にする改良又はこの第三の熱可塑性樹脂を層状に して双方の中間に介在させる様な対策を挙げるこ とができる:  As another example, the lack of compatibility (affinity) between two types of thermoplastics results in a means of solving weaknesses that do not allow for successful thermal bonding (fusion). An improvement in which a third thermoplastic resin having compatibility with both thermoplastic resins is blended into both or at least one of them so that the thermoplastic resin can be fused, or the third thermoplastic resin is formed into a layer. And intervene between them:
熱可塑性樹脂と しては、 ポリ オレフイ ン樹脂が優れている: 芯材部は、 含有さ れている強化用繊維によって優れた耐曲げ破壊性が付与されるが、 この性能を効 果的に保つには、 ボリ ブロ ピレン樹脂が一般に優位だからである.:  As the thermoplastic resin, polyolefin resin is excellent: The core portion is provided with excellent flexural fracture resistance by the reinforcing fiber contained therein, but this performance is effectively used. This is because Bolbropyrene resin is generally dominant:
ポリ プロ ピレン樹脂の中でも最大の剛性を備えているものはブロ ピ レンの単独 重合による結晶性ボリ ブロ ビレンである: 尤も、 低温環境で主と して用いられる 用途においては、 ポリ ブロ ピレン単独重合体に代えてエチレン等の α -ォレフィ ン の 1 種以上とからなる(結晶性)ポリ プロ ピレン共重合体を用いるこ とが好ま しい 本発明に用いられる芯材部( 1 2 )を構成する強化用繊維と しては、 平均直径が 3 〜 2 1 z ra、 好ましく は 9 〜 2 1 /z m の単一繊維が 5 0 0 〜 4 .0 0 0本程度集束 された集束体(以下、 ロ ービングという こ とがある)が望ま しレ、: 強化用繊維の平 均直径が 1 μ m以下であると、 複合体の成形時に繊維が破損し易く 、 成形品の衝擊 強度が不足し勝ちであり、 連続繊維の平均直径が 2 5 μ m 以上では、 複合体の外 観低下や機械的強度が悪化を来たし易く なる,: Among the propylene resins, the one with the highest rigidity is crystalline poly (vinylene) obtained by homopolymerization of propylene: However, in applications mainly used in a low-temperature environment, the propylene single weight is used. It is preferable to use a (crystalline) polypropylene copolymer composed of at least one kind of α-olefin such as ethylene instead of coalescing. As the reinforcing fibers constituting the core part (12) used in the present invention, single fibers having an average diameter of 3 to 21 zra, preferably 9 to 21 / zm, are preferably 500 to 500. A bundle of about 4.00 bundles (hereinafter sometimes referred to as roving) is desirable. If the average diameter of the reinforcing fibers is 1 μm or less, it is difficult to form a composite. The fibers are easily broken, and the impact strength of the molded article tends to be insufficient. If the average diameter of the continuous fibers is 25 μm or more, the appearance of the composite becomes poor and the mechanical strength tends to deteriorate.
また、 繊維強化材の平均長は、 複合体の平均長と略同等の長さにするこ とが好 ま しい: 強化用繊維が複合体の様な連続体を強化するこ とによって、 得られる複 合体の長手方向への引張強さ及び複合体の耐曲げ破壊性が向上する:  The average length of the fiber reinforcement is preferably substantially equal to the average length of the composite: obtained by reinforcing fibers reinforcing a continuous body such as a composite. The tensile strength in the longitudinal direction of the composite and the flexural fracture resistance of the composite are improved:
上記の強化用繊維の例と しては、 無機繊維又は有機繊維を挙げるこ とができ る : 無機繊維と しては、 例えばガラス繊維、 炭素繊維及び金属繊維の様な人工繊維 を挙げることができる これらのう ちではガラス繊維が物性、 経済性に優れてい るので好ましく用いられる: このガラス繊維と しては、 硬質ガラスが好ま しく 、 特に、 無アルカ リ ガラスである Eガラスの外に、 硼珪酸ガラス (ポロシリ ケー ト ガラス) が好ま しく 用いられる。  Examples of the above reinforcing fibers include inorganic fibers and organic fibers. Examples of the inorganic fibers include artificial fibers such as glass fiber, carbon fiber and metal fiber. Of these, glass fibers are preferably used because of their excellent physical properties and economy: Hard glass is preferred as the glass fiber, and in particular, in addition to E-glass, which is alkali-free glass, Borosilicate glass (porosilicate glass) is preferably used.
また、 この無機繊維は例えば、 シラン系カ ツブリ ング剤、 チタネー ト系カ ツブ リ ング剤、 ボロン系カ ツブリ ング剤、 アルミネ一 ト系カ ツブリ ング剤及びジルコ アルミネ一 ト系カ ツブ リ ング剤の少なく と も何れかの様な表面処理剤で表面処理 された状態で用いられてもよい: この無機繊維に表面処理が施されると、 ボリ ブ 口 ピレン等の疎水性熟可塑性樹脂に対する親和性が高められ、 強化用繊維の開繊 物の間に熱可塑性樹脂が含浸され易く なる:  The inorganic fibers may be, for example, a silane-based cutting agent, a titanium-based cutting agent, a boron-based cutting agent, an aluminum-based cutting agent, and a zirco-aluminum-based cutting agent. The inorganic fiber may be used after being subjected to a surface treatment with at least one of surface treatment agents: When the inorganic fiber is subjected to a surface treatment, it has an affinity for a hydrophobic mature plastic resin such as polystyrene or pyrene. Strength is enhanced and the thermoplastic resin is more likely to be impregnated between the reinforcing fiber spreads:
有機繊維と しては、 ポリ オレフイ ン繊維、 例えばポリ エチレン繊維、 ホ リ ブ口 ピレン繊維及びポリ - 4-メチル -卜ベンテン繊維、 ポリ ア ミ ド繊維例えば 6-ホ リ ア ミ ド(6 -ナイ ロン)、 7-ボリ ア ミ ド、 U -ボ リ ア ミ ド、 12 -ポリ ア ミ ド、 6, 6-ポ リ ァ ミ ド、 6, 7 -ホ リ ア ミ ド、 6, 10-ボリ ア ミ ド、 6 , 12 -ボリ ア ミ ド、 半芳香族ポ リ ア ミ ド繊維例えばナイ 口ン M X D 6 (m -キシリ レンジァ ミ ンとアジピン酸との共縮合体 )、 全芳香族ボリ ア ミ ド繊維 [ァラ ミ ド繊維 (商品名 : ケプラー) ] 等、 熱可塑性 ボリ エステル繊維例えば、 P E T (ポ リ エチレンテ レフタ レ一 ト)繊維、 P B T ( ボリ - 1 , 4 -プチレンテ レフタ レー ト) 繊維及び全芳香族ボリ エステル繊維等を挙げ ることができる:. これらは、 高融点及び機械的強度に優れている点で好ま しい: 上記の無機繊維及び有機繊維は単独で用いてもよく 、 また 2種以上を組み合わせ て用いてもよい: こ こで単独とは例えば、 無機繊維の中における 2種以上の組合 せ又は有機繊維の中における 2種以上の組合せをもそれぞれ単独に含める . Examples of the organic fibers include polyolefin fibers, such as polyethylene fibers, polystyrene fibers and poly-4-methyl-tribenten fibers, and polyamide fibers such as 6-polyamide (6- Nylon), 7-polyamide, U-polyamide, 12-polyamide, 6,6-polyamide, 6,7-polyamide, 6,10- Polyamide, 6, 12-Polyamide, Semi-aromatic Polyamide Thermoplastic fiber such as nylon fiber MXD 6 (co-condensate of m-xylylene diamine and adipic acid), wholly aromatic polyamide fiber [aramid fiber (trade name: Kepler)], etc. Polyester fibers, for example, PET (polyethylene terephthalate) fibers, PBT (poly-1,4-butylene terephthalate) fibers, and wholly aromatic polyester fibers, etc .: Preferred because of its high melting point and excellent mechanical strength: The above-mentioned inorganic fibers and organic fibers may be used alone or in combination of two or more. Include two or more combinations in inorganic fibers or two or more combinations in organic fibers.
く被覆部 ( 1 1 ) > Cover part (1 1)>
本発明の被覆複合体を構成する被覆部は、 その内壁面が芯材部の外壁面に対し て強固に接着されているもの、 も しく は滑動可能に接触している もののいずれか が好ま しい: 従って、 芯材部に用いられている熱可塑性樹脂と被覆部に用いられ ている熟可塑性樹脂とは、 相互に接着性、 親和性又は相溶性等を示すものどう し 、 も しく は示さないものど う しの組み合わせが望ま しい: それに加えて、 被覆複 合体の耐曲げ破壊性に悪影響を及ぼさない様にするこ と も重要である  The coating part constituting the coating composite of the present invention is preferably one whose inner wall surface is firmly adhered to the outer wall surface of the core part, or one which is slidably contacted. : Therefore, the thermoplastic resin used for the core part and the mature resin used for the coating part are those which show mutual adhesion, affinity or compatibility, etc., but do not show Combinations of materials are desirable: In addition, it is important that the composite does not adversely affect the flexural failure resistance of the composite
具体的には、 被覆部に用いられる熱可塑性樹脂も芯材部に用いられる熟可塑性 樹脂もホ リ オレフィ ン樹脂が好ま しレ、 - なお、 被覆部が芯材部の耐曲げ破壊性を損なわない様にする為には、 ボリ プロ ピレン樹脂と して、 プロ ピレンとエチレンも しく はその他の α -ォレフィ ンとのホ リ プロ ピレン共重合体を用いるこ とが好ま しレ、 -.  More specifically, polyolefin resin is preferred for both the thermoplastic resin used for the covering part and the mature plastic resin used for the core part.- The covering part impairs the bending fracture resistance of the core part. In order to avoid this, it is preferable to use a polypropylene copolymer of propylene and ethylene or other α-olefin as the propylene resin.
特に、 該ポリ プロ ヒ レン共重合体は、 その通常 8 0モル%以上、 好ま しく は 8 5 〜 9 7モル%、 更に好ま しく は 9 0 〜 9 5 モル%がプロ ピレン単位で占められ ると共に、 その残余の通常 2 0 モル%以下、 好ま しく は 1 5 〜 3 モル%、 更に好 ましく は 1 () 〜 5 モル%が他の α -ォレフィ ン単位で占められるものが良レ、. _ この α -ォレフィ ン単位を形成するコモノマーと しては、 エチレンが望ま しレ、: 被覆部の役割は上記の役割に加えて、 芯材部を汚染、 水分そめ他の好ま しく な い影響に対して保護する役割をも包含する: こ の役割を果たす ±でも、 ポリ オレ フィ ン榭脂が有用である。 In particular, the propylene copolymer occupies at least 80 mol%, preferably 85 to 97 mol%, more preferably 90 to 95 mol%, of the propylene unit in the polypropylene copolymer. In addition, it is preferable that the remaining amount is usually 20 mol% or less, preferably 15 to 3 mol%, more preferably 1 () to 5 mol%, in other α-olefin units. _ Ethylene is preferred as a comonomer to form this α-olefin unit: The role of the coating, in addition to the above, also includes the role of protecting the core against contamination, moisturizing and other undesirable effects: ± this role, but also polyolefin. Fat is useful.
次に、 本発明の複合体を説明する: 本発明の複合体は、 本発明の被覆複合体の 芯材部にも相当するものであるが、 形状精度が極めて高いものであるため、 それ 単独、 すなわち被覆部を有さない状態でも使用するこ とができる。  Next, the composite of the present invention will be described: The composite of the present invention also corresponds to the core part of the coated composite of the present invention. That is, it can be used even without the covering portion.
本発明の複合体を構成する熱可塑性樹脂および強化用繊維は、 前記 <芯材部 ( The thermoplastic resin and the reinforcing fibers that constitute the composite of the present invention are as described above in the <core part (
1 2 ) >と同等のものを用いて何ら差し支えないが、 本発明の複合体では、 強化 用繊維が 1 0 〜 8 0重量%の範囲で含有される: 1 2)> It is possible to use the same as the above, but in the composite of the present invention, the reinforcing fiber is contained in the range of 10 to 80% by weight:
強化用繊維の含有率が 1 0重量%未満では、 熟可塑性樹脂部が多く なり過ぎ、 形状のコン トロールが困難となり、 表面が平滑で商品価値の高い製品が得られな く なる: 一方、 強化用繊維の含有率が 8 0重量%を越える と、 含浸繊維がダイス 出口で毛羽を発生しやすく なり 、 形状不安定となるため、 外観が悪化するばかり でなく連続的に安定生産できなく なる。  When the content of the reinforcing fiber is less than 10% by weight, the amount of the ripened resin becomes too large, control of the shape becomes difficult, and it becomes difficult to obtain a product having a smooth surface and a high commercial value. If the content of the fibers for use exceeds 80% by weight, the impregnated fibers are liable to generate fluff at the exit of the die and become unstable in shape, so that not only the external appearance is deteriorated, but also stable continuous production cannot be performed.
また、 本発明の複合体は、 長手方向に対して直角に切断した時の断面の平均直 径が 3 mm以上の範囲のものである  The composite of the present invention has an average cross-sectional diameter of 3 mm or more when cut at a right angle to the longitudinal direction.
断面の平均直径が 3 m m未満であると、 含浸繊維を賦形しても形状精度が向上せ ず、 商品価値が低い製品しか得られなく なる  If the average diameter of the cross section is less than 3 mm, the shape accuracy does not improve even if the impregnated fiber is shaped, and only products with low commercial value can be obtained.
本発明の複合体は、 長手方向に対して直角に切断した時の断面直径の平均偏差 が 0 . 1 0以下の範囲のものである - 平均偏差が 0 . 1 0 を越える と、 得られる複合体は形状精度に乏しい: 0 . 0 5以下が好ま しく 、 0 . 0 2以下が特に好ま しく :  The composite of the present invention has an average deviation of the cross-sectional diameter when cut at a right angle to the longitudinal direction in a range of 0.10 or less-when the average deviation exceeds 0.10, the composite obtained is obtained. The body has poor shape accuracy: preferably less than 0.05, particularly preferably less than 0.02:
本発明の複合体は、 形状精度が優れているため、 ト ンネルハウス用支柱、 自動 車用サイ ドガ一 ド、 ブールの壁面手すり などに有用である.:  Since the composite of the present invention has excellent shape accuracy, it is useful for columns for tunnel houses, side guides for automobiles, handrails on boules, and the like.
また、 本発明の複合体の製造方法は、 開繊含浸槽から引き抜かれた含浸繊維の 3807 P T/JP98/01316 Further, the method for producing a composite of the present invention comprises the steps of: 3807 PT / JP98 / 01316
11  11
表面温度が、 該熱可塑性樹脂の結晶化温度範囲内になるよ う に^却しながら、 そ の温度範囲内で少なく と も 2つ以上の賦形冷却ス リ ッ トを通過させる方法である 含浸繊維の表面温度が熱可塑性樹脂の結晶化温度範囲を大き く 下回る温度で、 含浸繊維を賦形冷却ス リ ッ トに通過させると、 複合体が賦形冷却ス リ ッ トに入る 前に、 含浸繊維表面が固化してしま うので、 含新繊維の賦形が困難になり 、 遂に は製造不能となる: This is a method in which at least two or more shaped cooling slits are passed within the temperature range while controlling the surface temperature to be within the crystallization temperature range of the thermoplastic resin. If the impregnated fiber is passed through the shaped cooling slit at a temperature where the surface temperature of the impregnated fiber is significantly below the crystallization temperature range of the thermoplastic resin, the composite will enter the shaped cooling slit before entering. However, since the surface of the impregnated fiber is solidified, the shaping of the impregnated fiber becomes difficult, and finally the production becomes impossible:
反面、 含浸繊維の表面温度が熱可塑性樹脂の結晶化温度範囲を大き く 上回る温 度で、 含浸繊維を賦形冷却ス リ ッ トに通過させると 、 賦形冷却ス リ ッ トの含浸繊 維導入口 (開繊含浸槽側入口部) で、 溶融した熱可塑性樹脂の溜り が生じて しま う ので、 形状コ ン ト ロールが困難になり 、 遂には製造不能となる:  On the other hand, when the impregnated fiber is passed through the shaped cooling slit at a temperature that greatly exceeds the crystallization temperature range of the thermoplastic resin, the impregnated fiber in the shaped cooling slit is At the inlet (opening impregnation tank side entrance), a pool of molten thermoplastic resin will form, making shape control difficult and eventually impossible to manufacture:
こ こで言う結晶化温度範囲とは、 J I S K— 7 1 2 1 -1987に基づいて、 熱可 塑性樹脂を示差走査熱量測定 (D S C ) したと きに得られる補外結晶化開始温度 (T i c ) と補外結晶化終了温度 ( T e c ) との範囲を指し、 ホ リ ブ口 ヒ レンの 場合は、 おおよそ 9 0 C〜 1 3 0 -Cが目安となる  The crystallization temperature range referred to here is the extrapolated crystallization onset temperature (T ic) obtained by differential scanning calorimetry (DSC) of a thermoplastic resin based on JISK-7121-1987. ) And the extrapolated crystallization end temperature (T ec), and in the case of helium at the horizon, about 90 C to 130-C is a guideline.
また、 本発明の製造方法においては、 複数の賦形冷却ス リ ッ トを用いるが、 開 繊含浸槽に最も近い側の賦形冷却ス リ ッ トの径が開繊含浸槽から最も遠い側の賦 形冷却ス リ ッ トの径よ り大きいものであるこ とが望ま しレ、 - ス リ ッ トの径は、 用いる熱可塑性樹脂の収縮度合いを考慮して決めると良い: さ らに、 本発明の被覆複合体の製造方法および製造装置を、 図 3および図 4 に 沿つて説明する:  In the production method of the present invention, a plurality of shaped cooling slits are used, and the diameter of the shaped cooling slit closest to the spread impregnation tank is farthest from the spread impregnation tank. It is desirable that the diameter of the slit is larger than the diameter of the shaped cooling slit.-The diameter of the slit should be determined in consideration of the degree of shrinkage of the thermoplastic resin used. The method and apparatus for producing the coated composite of the present invention will be described with reference to FIGS. 3 and 4:
本発明で用いる溶融樹脂槽 ( 3 6 ) は、 上部が開放された箱形のものであり 、 側面に、 1 ケ も しく は複数ケの入口 ノズル ( 3 1 ) が水平に位置しており 、 その 対向面に 1 ケも しく は複数ケの出口 ノ ズル ( 3 2 ) を有するものである  The molten resin tank (36) used in the present invention has a box shape with an open top, and one or more inlet nozzles (31) are located horizontally on the side surface. It has one or more exit nozzles (32) on its opposite surface.
また、 溶融樹脂槽 ( 3 6 ) には、 溶融樹脂 ( 3 5 ) が溜められるが、 この溶融 807 The molten resin (35) is stored in the molten resin tank (36). 807
12  12
樹脂 ( 3 5 ) は既存の押出機よ り供給されるものである:. ただじ、 溶融樹脂 ( 3 5 ) は、 押出機からの押出圧力とは縁切 り され、 ほとんど無圧の状態で溶融樹脂 槽 ( 3 6 ) に溜められる: 溶融樹脂は、 基本的には前記 <被覆部 ( 1 1 ) >に記 載されている熟可塑性樹脂と同じものである。 The resin (35) is supplied from the existing extruder: the molten resin (35) is marginally separated from the extrusion pressure from the extruder and is almost free of pressure. The molten resin is stored in the molten resin tank (36): The molten resin is basically the same as the ripened resin described in the above <Coating part (11)>.
溶融榭脂槽 ( 3 6 ) は、 ヒーター (図示せず) で加熱されており 、 内部の溶融 樹脂 ( 3 5 ) を設定温度に保てる様になつている  The molten resin tank (36) is heated by a heater (not shown), so that the internal molten resin (35) can be maintained at the set temperature.
上部が開放されているのは、 溶融樹脂槽 ( 3 6 ) 内に樹脂圧力が掛からない様 にするためで、 圧力を開放でき る構造を有していれば蓋は取り付けてあっても良 レヽニ  The upper part is open to prevent the resin pressure from being applied to the molten resin tank (36). If the structure is capable of releasing the pressure, the lid may be attached. Peni
複合体 ( 3 ) は、 溶融樹脂槽 ( 3 6 ) が有する入口 ノ ズル ( 3 1 ) と出口 ノ ズ ノレ ( 3 2 ) と の間を潜り抜ける際に、 溶融樹脂 ( 3 5 ) によ り その周囲に被覆さ れる:  When the composite (3) passes through between the inlet nozzle (31) and the outlet nozzle (32) of the molten resin tank (36), the composite (3) is formed by the molten resin (35). Coated around it:
溶融樹脂槽 ( 3 6 ) の側面に位置する入口 ノ ズル ( 3 1 ) と該側面の対向面に 位置する出口 ノ ズル ( 3 2 ) との位置関係は、 複合体が両ノ ズルで折れたり 曲が つたり しない様に、 1 直線で結ばれていろのが望ま しい  The positional relationship between the inlet nozzle (31) located on the side surface of the molten resin tank (36) and the outlet nozzle (32) located on the opposite surface of the molten resin tank (36) is such that the composite is broken by both nozzles. It is desirable to connect them with one straight line so that the music does not stick
入口 ノズル ( 3 1 ) の中心と出口 ノ ズル ( 3 2 ) の中心とが両ノ ズルの軸方向 に 1 直線になるよ う に位置しており 、 ずれを極力抑えるこ とによ り 、 被覆部の肉 厚を均一にし、 偏肉を抑えるこ とができ る:  The center of the inlet nozzle (31) and the center of the outlet nozzle (32) are positioned so that they are aligned in a straight line in the axial direction of both nozzles. The thickness of the part can be made uniform and uneven thickness can be reduced:
また、 複合体 ( 3 3 ) は、 表面の水分付着を完全に取り除いて置かないと 、 溶 融樹脂槽 ( 3 6 ) 内では、 2 7 0 C程度に加熟溶融された溶融樹脂 ( 3 5 ) が存 在するので、 付着している水分が沸騰し被覆複合体 ( 3 4 ) の表面を荒らす原因 となる:.  In addition, if the complex (33) is not placed without completely removing the moisture attached to the surface, the molten resin (35) that has been ripened and melted to about 27O0C in the molten resin tank (36) can be obtained. ) Is present, which causes the attached water to boil and roughen the surface of the coated composite (34):
本発明は従来のク ロ スへッ ドダイのよ うな被覆装置を改善したものであるため 、 複合体 ( 3 3 ) の代替物と して、 銅線、 鉄線、 アルミ線等の金属製の針金とか ガラス繊維、 力一ボン繊維 (炭素繊維) やポ リ エステル繊維、 ホ リ ア ミ ド繊維 ( ナイ ロ ン) 、 ポ リ ウ レタ ン繊維等の有機繊維ゃポ リ エステル樹脂—、 ポ リ ア ミ ド ( ナイ ロ ン) 樹脂、 ボリ ウ レタ ン樹脂、 ポ リ プロ ピ レン樹脂、 ポ リ エチレン樹脂、 ポリ塩化ビニール樹脂等のモノ フィ ラメ ン トを使用して被覆しても差し支えない 複合体 ( 3 3 ) が溶融樹脂槽 ( 3 6 ) 内を通過する時間も重要であり 、 通過時 間が短すぎると被覆が不十分となり 、 長すぎる と複合体 ( 3 3 ) が溶融され、 形 状が保たれなく なる: 溶融樹脂 ( 3 5 ) の温度 (樹脂粘度) や被覆肉厚やライ ン 速度によって、 このよ う な不具合を調整するこ とができる . Since the present invention is an improvement on a conventional coating device such as a cross head die, it is possible to replace the composite (33) with a metal wire such as a copper wire, an iron wire, or an aluminum wire. Toka Glass fiber, carbon fiber (carbon fiber), polyester fiber, and polyamide fiber ( Nylon), organic fibers such as polyurethane fiber, etc. Polyester resin—, Polyamide (Nylon) resin, Polyurethane resin, Polypropylene resin, Polyethylene The composite (33) may be covered with a monofilament such as resin or polyvinyl chloride resin. The time required for the complex (33) to pass through the molten resin tank (36) is also important. If the length is too short, the coating will be insufficient, and if the length is too long, the composite (33) will melt and the shape will not be maintained: the temperature (resin viscosity) of the molten resin (35), the coating thickness and the line Depending on the speed, such defects can be adjusted.
溶融樹脂槽 ( 3 6 ) の側面に位置する入口 ノ ズル ( 3 1 ) は、 複合体の通過を 円滑にし、 溶融樹脂槽 ( 3 6 ) 内の溶融樹脂 ( 3 5 ) が入口 ノ ズル ( 3 1 ) から 浸み出さないよ う に、 複合体の断面よ り少し大き 目に設定しておく 必要がある: 例えば、 複合体が断面略円形のものである場合は、 複合体の直径よ り 0 . 2 m m Ψ程大き く しておく と良い  The inlet nozzle (31) located on the side of the molten resin tank (36) facilitates the passage of the complex, and the molten resin (35) in the molten resin tank (36) is filled with the inlet nozzle (3). It must be slightly larger than the cross section of the complex so that it does not seep out of 1): For example, if the complex has a substantially circular cross section, the It is good to make it about 0.2 mm larger
また、 溶融樹脂槽 ( 3 6 ) 内で被覆された複合体 ( 3 3 ) は、 出口 ノ ズル ( 3 2 ) を通過する際、 ノ ズル径で目標とする被覆量以上の溶融榭脂 ( 3 5 ) を絞り 取るため、 複合体 ( 3 3 ) に被覆される被膜厚は、 出口 ノ ズル ( 3 2 ) の大き さ を考慮するこ とによって調整できる: 例えば、 複合体 ( 3 3 ) が断面略円形のも のである場合は、 出口 ノ ズル ( 3 2 ) の半径から複合体 ( 3 3 ) の半径を差し引 き、 溶融樹脂 ( 3 5 ) の収縮率を考慮すれば、 おおむね被膜の厚みを推測するこ とができる  When the composite (33) coated in the molten resin tank (36) passes through the outlet nozzle (32), the molten resin (3 To squeeze 5), the coating thickness coated on the composite (33) can be adjusted by considering the size of the exit nozzle (32): For example, the composite (33) is In the case of a substantially circular shape, the thickness of the coating is generally obtained by subtracting the radius of the composite (33) from the radius of the exit nozzle (32) and considering the shrinkage of the molten resin (35). Can be inferred
溶融樹脂 ( 3 5 ) は、 複合体 ( 3 3 ) の周囲に付着して消費されるので、 溶融 樹脂槽 ( 3 6 ) に溶融樹脂 ( 3 5 ) を補給する必要がある · 何れの方向から補給 しても構わないが、 注意点と して樹脂圧が掛からない方法を採用 しなければなら ない- W / 3807 Since the molten resin (35) adheres to the periphery of the composite (33) and is consumed, it is necessary to supply the molten resin (35) to the molten resin tank (36). It may be replenished, but as a precaution, a method that does not apply resin pressure must be adopted- W / 3807
14  14
発明の効果 "  The invention's effect "
本発明の被覆複合体は、 被覆複合体の曲げ易さを芯材部と同水準に温存しなが らも、 芯材部の耐曲げ破壊性が著しく改善されており 、 被覆複合体表面に毛羽が 殆ど発生せず、 表面外観が極めて平滑であり 、 折り 曲げ加工のよ う な後加工が容 易である,  The coated composite of the present invention has significantly improved flexural fracture resistance of the core, while preserving the flexibility of the coated composite at the same level as that of the core. Almost no fluff is generated, the surface appearance is extremely smooth, and post-processing such as bending is easy.
本発明の複合体は、 真円に極めて近く 、 形状精度の非常に優れた複合体であり 、 実用的で商品価値の高いものである。  The composite of the present invention is very close to a perfect circle, has very good shape accuracy, and is practical and of high commercial value.
また、 本発明の複合体の製造方法は、 本発明の複合体を真円に極めて近く 、 し かも形状精度の非常に優れた状態で安定生産するこ とができる:  Further, the method for producing a composite of the present invention can stably produce the composite of the present invention with a shape very close to a perfect circle and with extremely excellent shape accuracy:
本発明の被覆複合体の製造方法は、 一つの溶融樹脂槽で複数本の複合体を同時 に被覆するこ とができ、 被覆部の厚みも比較的容易にコ ン ト ロ ールでき、 被覆量 のバラツキも少なくするこ とができ る:  According to the method for producing a coated composite of the present invention, a plurality of composites can be simultaneously coated in one molten resin tank, and the thickness of the coated portion can be controlled relatively easily. Variations in volume can also be reduced:
また、 本発明の被覆複合体の製造装置は、 被覆複合体の製造方法を極めて簡単 な構造を有する装置で実施できる: 実施例  In addition, the apparatus for producing a coated composite of the present invention can carry out the method for producing a coated composite with an apparatus having an extremely simple structure.
以下、 本発明の被覆複合体を実施例に基づいて、 場合によっては有用な比較例 を参照しながら本発明の被覆複合体を具体的に説明する: しかし、 本発明はこれ らの実施例によって何らの制約を受けない:.  Hereinafter, the coating composite of the present invention will be specifically described based on examples and sometimes with reference to useful comparative examples. However, the present invention is not limited to these examples. Not subject to any restrictions :.
<被覆複合体の評価方法 > <Evaluation method of coated composite>
参考例 1 〜 5によって得られた各複合体 (芯材部) 、 実施例 1 〜 7および比較 例 1 〜 2によって得られた各被覆複合体の曲げ破壊応力および 1 %撓み応力を J I S K7203 - 1982に準じて測定した: この際、 試験速度は 1 . 5mmZ m i n、 支点間距離は 100 ± 0. 5mm (固定) で行なった.:  Each of the composites (core part) obtained in Reference Examples 1 to 5 and the bending fracture stress and the 1% flexural stress of each of the coated composites obtained in Examples 1 to 7 and Comparative Examples 1 to 2 were measured according to JIS K7203- Measured according to 1982: At this time, the test speed was 1.5 mmZ min, and the distance between supports was 100 ± 0.5 mm (fixed):
曲げ破壊応力は、 数値が大きいほど耐曲げ破壊性が優れているこ とを表わす- また、 1 %撓み応力は、 数値が小さレ、ほど曲げ易いものであるこ とを表す: また、 各複合体および被覆複合体の直径は、 JIS K69U-1979に準じて測定した The larger the value of the flexural fracture stress, the better the flexural fracture resistance. In addition, the 1% flexural stress has a smaller value, indicating that it is more bendable. The diameter of each composite and the coated composite was measured according to JIS K69U-1979.
[参考例 1 ] [Reference Example 1]
下掲の強化用繊維の束であるガラス繊維の口一ビング 4本を温度 2 7 0 に調 整された無水マ レイ ン酸改質ボ リ ブロ ピレン [M F R (230:C ;21.18N) 1 0 0 g/10 min] の溶融物で満たされている開繊含浸槽に供給しながら連続的に含浸を行なつ た.:. この開繊含浸槽は細長い箱形のもので、 開繊含浸槽の強化用繊維導入口から ガラス繊維の口一ビングは開繊含浸槽中に導入される: また、 該槽の底板に穿設 された溶融樹脂導入口から熱可塑性樹脂が該槽内へ導入される この熱可塑性樹 脂は通常、 押出機中で溶融混練された後に管路を介して又は直接に該槽内へ装入 される Maleic anhydride-modified poly (propylene) [MFR (230 : C; 21.18N) 1, with four orifices of glass fiber, the bundle of reinforcing fibers shown below, adjusted to a temperature of 270 [0 0 g / 10 min], and the impregnation was continuously carried out while supplying the melt to the opening impregnation tank. A glass fiber orifice is introduced into the open fiber impregnation tank from the reinforcing fiber introduction port of the tank: Also, a thermoplastic resin is introduced into the tank from the molten resin inlet port formed in the bottom plate of the tank. This thermoplastic resin is usually melt-kneaded in an extruder and then charged into the tank via a pipe or directly.
上記の開繊含浸槽へ導入される強化用繊維は、 何れも平均単繊維径 1 7 μ π!であ り 、 テ ックス番手 1 1 5 0 g/kmの口一ビングと して使用される:  All of the reinforcing fibers introduced into the above-mentioned opening and impregnating tank have an average single fiber diameter of 17 μπ! And are used as a mouthpiece having a fiber count of 115 g / km. :
該槽内においては、 熱可塑性樹脂及び強化用繊維の流通路を挟んで左右の長辺 を形成する左側壁と右側壁との間に、 上下で 1 対の 2本の開繊ヒ ン 3対が架装さ れており 、 各対を構成する 2本の開繊ビ ンの上下間隔(H)は強化用繊維の平均径 (D)に対して下記の関係式で表わされる範囲内に設定されている:  In the tank, a pair of two open fiber fins, one pair above and below, are formed between the left side wall and the right side wall forming the left and right long sides with the flow path of the thermoplastic resin and the reinforcing fiber therebetween. The vertical spacing (H) between the two opened fibers constituting each pair is set within the range expressed by the following relational expression with respect to the average diameter (D) of the reinforcing fibers. Has been:
1 0 D≤ H≤ 5 0 0 D: 1 0 D≤ H≤ 5 0 0 D :
ここで上下間隔( H )は、 上下の開繊ビンの中心軸を通る線が鉛直線に対して傾 斜している場合をも包含する様に定義されている .. 即ち、 上段開繊ビンの中心と 下段開繊ピンの中心とを結んだ線が鉛直線上にない場合は、 いずれか一方の開繊 ビンを強化用繊維の流れ方向に対して平行にスライ ドさせ、 両開繊ヒ ンの中心が 鉛直線上になった時の間隔を上下間隔 (H) とする:  Here, the vertical interval (H) is defined to include the case where the line passing through the center axis of the upper and lower opening bins is inclined with respect to the vertical line. If the line connecting the center of the opening fiber and the center of the lower opening pin is not on the vertical line, one of the opening bins is slid parallel to the flow direction of the reinforcing fiber, The vertical interval (H) is the interval when the center of is on the vertical line:
開繊含浸槽の上流側に位置すろ強化用繊維導入口 (上流端壁に穿設又は上流端 3807 Fiber reinforcement inlet located upstream of the fiber impregnation tank (perforated on the upstream end wall or upstream end 3807
16  16
の天板に穿設) から強化用繊維が導入され、 上流端の第 1 開繊ビン対のビン間隙 を非接触で通過して開繊され、 次にその下流側に隣接する第 2開繊ビン対のピン 間隙を非接触で通過して開繊され、 最後にその下流側に位置する第 3開繊ビン対 のピン間隙を非接触で通過して開繊されながら、 開繊によって生じた開繊物の強 化用繊維間に溶融熱可塑性樹脂が含浸される: The reinforcing fibers are introduced from the top plate, and are passed through the gap between the first opening bin pair at the upstream end in a non-contact manner, and then opened, and then the second opening adjacent to the downstream side is opened. The fiber was opened by passing through the pin gap of the bin pair in a non-contact manner, and finally opened by passing through the pin gap of the third spreading bin pair located downstream of the bin in a non-contact manner. The molten thermoplastic resin is impregnated between the reinforcing fibers of the spread.
第 3開繊ピンを通過した強化用繊維と熱可塑性樹脂とから得られる複合体は、 開繊含浸槽の下流端壁に穿設された賦形ノ ズル (内径 5 . 7 O ram ) を通して賦形さ れた後に冷却された結果、 長手方向に整列された強化用繊維を包含した複合体 ( 平均直径 5 . 6 3 mm ) が得られる。 この複合体における強化用繊維の含有率は 1 8 . 2重量%であった その性状値を測定した結果を表 1 に示す.  The composite obtained from the reinforcing fiber and the thermoplastic resin that has passed through the third opening pin is shaped through a shaping nozzle (inside diameter 5.7 O ram) formed in the downstream end wall of the opening and impregnating tank. Cooling after shaping results in a composite (average diameter 5.63 mm) containing longitudinally aligned reinforcing fibers. The content of the reinforcing fiber in this composite was 18.2% by weight.The results of measuring its properties are shown in Table 1.
[参考例 2 〜 5 ]  [Reference Examples 2 to 5]
参考例 2〜 5においても基本的には参考例 1 と同様にして芯材部となる複合体 を得た: 尤も、 その製造に用いられた強化用繊維のロービング本数及び開繊含浸 装置の賦形ノズル径、 得られた複合体の強化用繊維の含有率はそれぞれ参考例 1 とは異なる: その性状値測定結果を表 1 に示す: In Reference Examples 2 to 5, a composite serving as a core material was obtained basically in the same manner as in Reference Example 1. However, the number of roving fibers for reinforcing fibers used in the production and the installation of an opening and impregnating apparatus were used. The shape nozzle diameter and the content of reinforcing fibers in the obtained composite are different from those in Reference Example 1, respectively. The measurement results of the properties are shown in Table 1:
\ mm π― ノズル 複合体 複合体の 芯材部の断面を貫通する強化用繊維の含有率 曲 げ 1 % ビン の の 強化川繊 zl Τζ2 Tz:i ψ均 標準 破 壊 撓み グの 內径 平均直径 維含有率 C11 C12 C21 C22 C31 C32 値 偏差 応 力 応 力 本数 (.mm (wt%) (%) (%) (%) (%) (%) (%) (Mc) (σ) (Ν) (Ν)\ mm π-Nozzle composite Composite fiber content of reinforcing fiber penetrating the cross section of the core of the composite Curved 1% Reinforced fiber in a bottle zl Τζ2 Tz: i Average Standard Deflection deflection Diameter average Diameter fiber content C11 C12 C21 C22 C31 C32 value Deviation Stress Stress Stress number (.mm (wt%) (%) (%) (%) (%) (%) (%) (Mc) (σ) (Ν ) (Ν)
1 4 5. 7 5. 63 1 8. 2 β. 4 6. 8 7. 8 9. 9 6. 2 8. 4 7.6 1. 1 5 5 23 参 2 2 3. 4 3. 2 1 2 6. 3 1 3. 6 ] . 9 8. 1 7. 5 1 0. 8 1 5. 2 11.7 3.1 3 1 3 1 4 5.7 5.63 18.2 β.4 6.8 7.8 9.9 6.2 8.4 7.6 1.15 5 23 Reference 2 2 3.4 3.2 1 2 6. 3 1 3. 6]. 9 8. 1 7.5 1 0. 8 1 5. 2 11.7 3.1 3 1 3
8 4. 5 4. 3 2 48. 2 20. 4 1 8. 8 29. 1 2 Η . Η 26. 3 2 7. 7 24.8 3.8 1 () 2 1 5 例 4 8 5. 7 5. 6 8 3 2. 1 1 6. 8 1 8. 1 1 . 1 1 2. 5 1 5. 9 1 . 4 14.8 2.3 1 8 6 3 2 8 4. 5 4. 3 2 48. 2 20. 4 1 8. 8 29. 1 2 Η Η 26. 3 2 7. 7 24.8 3.8 1 () 2 1 5 Example 4 8 5. 7 5. 6 8 3 2.11.6.8 18.1.11.1 1.2.5 15.9.1.4 14.8 2.3 1 8 6 3 2
5 20 6. 0 5. 84 59. 2 3 1. 2 30. 1 3 5. 8 3 2. 9 3 5. 1 3 7. 0 33.6 2.5 28 7 63 5 20 6.0 5.84 59.2 3 1.2 30.1 3 5.8 3 2.93 3 5.1 3 7.0 0 33.6 2.5 28 7 63
[実施例 1 ] _ [Example 1] _
参考例 1 で得られた複合体をク ロ スヘッ ドダイ ( 2 4 0 :Cに調整された) に導 入しながらポリ プロ ピレン [M F R (230 ;21.18N) 5 g Omin] を円形ダイ (直径 6. 9 mm) 中で複合体表面に供給しながらその円形ダイを通して被覆成形し、 被覆 部 (平均厚さ 0. 5 5 mm) を有する被覆複合体 (平均直径 6. 7 3 mm) を得た: 前 記被覆複合体の性状値測定結果を表 2に示す: While introducing the composite obtained in Reference Example 1 into a crosshead die (adjusted to 240 : C), polypropylene (MFR (230; 21.18N) 5 g Omin) was placed in a circular die (diameter: (6.9 mm) in the form of coating on the surface of the composite while supplying it to the composite surface to obtain a coated composite (average diameter 6.73 mm) having a coating (average thickness 0.55 mm). The results of measurements of the properties of the coated composite are shown in Table 2:
また、 得られた被覆複合体の芯材部断面に設定された単位領域(T zl)内の検定 領域(D zll: 0. 1 mm')を貫通する強化用繊維の含有率 C 11及び検定領域( D ζ 12: 1 ram2)を貫通する強化用繊維の含有率 C 12を求めると共に、 他の 2個の単位領域((T z2)及び(T z3))に対してもそれぞれ検定領域((D z21)及び(D z22))並びに検定領 域((D z31)及び(D z32))を設定し、 それぞれを貫通する 4個の強化用繊維の含有 率(C 21及び C 22並びに C 31及び C 32)を求めて、 これら 6個の強化用繊維の含有 率(C 11及び C 12、 C 21及び C 22並びに C 31及び C 32)と相加平均値 Mcとの差(M c— C mn;m及び nはそれぞれ 1 〜 3の整数)の形で 6個の偏差 δ ran (m及び ηは前記に おける と同様; δ 11及び δ 12、 δ 21及び δ 22並びに δ 31及び δ 32)を求める と共に、 δ ηιηを用いて標準偏差 σ を算出した 前記の相加平均値 Mc及び標準偏差 σ及び複 合体の性状値測定結果を表 1 に示す In addition, the content C11 of the reinforcing fiber penetrating the test area (D zll: 0.1 mm ') in the unit area (T zl) set in the core section of the obtained coated composite and the test In addition to obtaining the content C12 of the reinforcing fiber penetrating the region (Dζ12: 1 ram 2 ), the test region was also determined for the other two unit regions ((T z2) and (T z3)). ((D z21) and (D z22)) and the test area ((D z31) and (D z32)) are set, and the content of four reinforcing fibers penetrating each (C 21 and C 22 and C31 and C32), and the difference between the content of these six reinforcing fibers (C11 and C12, C21 and C22 and C31 and C32) and the arithmetic mean Mc c—C mn; m and n are each an integer of 1 to 3 and 6 deviations δ ran (m and η are the same as above); δ 11 and δ 12, δ 21 and δ 22 and δ 31 And δ32) and standard deviation using δηηη Table 1 shows the arithmetic mean value Mc and standard deviation σ for which σ was calculated, and the property value measurement results of the complex.
[実施例 2 〜 7及び比較例 1 〜 2 ]  [Examples 2 to 7 and Comparative Examples 1 and 2]
実施例 1 と基本的には同様にして被覆複合体を得た: 尤も、 それを構成する複 合体の製造方法、 円形ダイ直径及び被覆複合体直径は、 実験各例および比較各例 によって変更させた結果、 実施例 1 におけるものと異なる: 実験各例および比較 各例における条件等、 得られた被覆複合体の芯材部断面における強化用繊維の含 有率 C mn、 それらの相加平均値 Mc、 \ cと各強化用繊維の含有率 C mnとの差(M c 一 C ran)の偏差 δ mn及びそれから算出された標準偏差ひ並びに前記複合体の性状値 を表 1 および表 2 に示す. 表 2 The coated composite was obtained basically in the same manner as in Example 1. However, the method of producing the composite, the diameter of the circular die, and the diameter of the coated composite were changed according to each experimental example and comparative example. As a result, the results are different from those in Example 1. The content of the reinforcing fiber in the cross-section of the core material of the obtained coated composite, such as the conditions in each experimental example and the comparative examples, C mn, and their arithmetic mean values Tables 1 and 2 show the deviation δ mn of the difference (M c-C ran) between Mc, \ c and the content C mn of each reinforcing fiber, the standard deviation calculated therefrom, and the property values of the composite. Show. Table 2
\実験 複合体の 円形ダイス 被¾¾H- 麵部の 複合体の強化 Ιιげ破 1 %撓み\ Experiment Circular dies of composites Reinforcement of composites on H-head
' '
製造方法 の内径 の ': 均 it!): WJ- 川繊維含^率 1, 力 応力 番 、、、 (,mm (mm) (mm) (wt%) (N) (Ν)  Production method's inner diameter ': average it!): WJ- river fiber content 1, force stress number,, (, mm (mm) (mm) (wt%) (N) (Ν)
1 参考例 1 6. 9 6. 7 3 0. 5 5 1 8. 2 2 1 2 3 実 2 参考例 2 4. 5 4. 2 9 0. 5 4 2 6. 3 5 7 4 1 Reference example 1 6. 9 6. 7 3 0.5 5 1 8.2 2 1 2 3 Actual 2 Reference example 2 4. 5 4. 2 9 0.5 5 4 2 6. 3 5 7 4
3 参考例 3 5. 7 5. 5 6 0. β 2 4 8. 2 1 6 9 1 β 施 4 参考例 4 7. 2 β . 9 2 0. 6 5 3 2. 1 2 8 2 3 53 Reference example 3 5. 7 5.5 6 0.β 2 4 8.2 1 69 1 β application 4 Reference example 4 7.2 β. 9 2 0.6 .5 3 2. 1 2 8 2 3 5
5 参考例 5 6. 6 6. 5 0 0. 3 ;¾ 5 9. 2 3 6 7 6 7 例 6 参考例 5 7. 2 6. 9 ti 0. 5 6 5 9. 2 4 0 8 β 75 Reference Example 5 6. 6 6. 5 0 0.3; ¾ 5 9.2 3 6 7 6 7 Example 6 Reference Example 5 7. 2 6. 9 ti 0.5. 6 5 9.2 4 0 8 β 7
7 参考例 5 8. 5 8. 4 5 1 . 0 5 9. 2 5 9 5 7 4 比 1 参考例 5 K. 3 H. 2 B 0. 2 1 5 9. 2 ;3 2 9 6 4 較 2 参考例 5 9. 5 9. 4 (i 1 . 8 1 5 9. 2 6 1 β 8 1 例 7 Reference Example 5 8.5 5 8.5 4 1 0 5 9. 2 5 9 5 7 4 Ratio 1 Reference Example 5 K. 3 H. 2 B 0.2 1 5 9. 2; 3 9 6 4 Compare 2 Reference example 5 9. 5 9. 4 (i 1.8 1 5 9. 26 1 β 8 1 example
以下、 本発明の複合体およびその製造方法を実施例に基づいて、 場合によって は有用な比較例を参照しながら本発明の複合体およびその製造方法を具体的に説 明する: しかし、 本発明はこれらの実施例によって何らの制約を受けないぐ複合体の評価方法 > Hereinafter, the composite of the present invention and the method for producing the same will be described in detail with reference to Examples and, where necessary, with reference to useful Comparative Examples. Is a method of evaluating a complex without any restrictions by these examples>
*直径 : 得られた複合体の直径を J I S K 6 9 1 1 -1979に準拠して測定した すなわち、 長手方向に対して直角に切断した時の複合体断面の直径を、 同一平 面上で 45°間隔で 4ケ所測定 (Dll、 D12、 D13、 D14) した- この操作を同一の複合 体に設定された他の断面においても求め (D21、 D22、 D23、 D24) 、 その相加平均 値 (平均径 D m) からの平均偏差 (真円度 M D ) を測定した M Dは、 下記式に よ り導き出されるものであり、 M Dの値が小さいほど真円に近づき形状精度が高 いこ とを意味する:  * Diameter: The diameter of the obtained composite was measured in accordance with JIS K 6911-1979. That is, the diameter of the cross section of the composite when cut at a right angle to the longitudinal direction was measured on the same plane. Four points were measured at intervals of ° (Dll, D12, D13, D14)-This operation was also determined for other sections set for the same complex (D21, D22, D23, D24), and the arithmetic mean ( The MD obtained by measuring the average deviation (roundness MD) from the average diameter Dm) is derived from the following equation.The smaller the MD value, the closer to a perfect circle and the higher the shape accuracy. Do:
8  8
D = ∑ : Dm-Di : I 8  D = ∑: Dm-Di: I 8
i =l  i = l
[実施例 8 ]  [Example 8]
こ の実施例 8は、 図 2に示すよ う な装置を用いて複合体を成形した- すなわち、 強化用繊維であるガラス繊維の口一ビング ( 2 1 ) 2 0本を、 熱可 塑性樹脂であろ無水マ レイ ン酸改質ホ リ フ ロ ビ レ ン F R (230— C ; 21. 18N) 100 g/lOmin] が温度 2 7 0 Cに調整された溶融物で満たされている開繊含浸槽 ( 2 In Example 8, a composite was formed by using an apparatus as shown in FIG. 2-that is, 20 gussets (21) of glass fibers as reinforcing fibers were used to form a thermoplastic resin. Opening in which maleic anhydride-modified polyfluorophenyl FR (230-C; 21.18N) 100 g / lOmin] is filled with a melt adjusted to a temperature of 270 ° C Impregnation tank (2
2 ) に供給し、 引取速度 lOOcniZminで連続的に含浸を行った 2) and continuously impregnated at a take-off speed of lOOcniZmin
ロービング ( 2 1 ) と しては、 平均単繊維径 17μ 、 テックス番手 1150gZkmのも のを用いた- そして、 ロ ービング ( 2 1 ) は、 開繊含浸槽 ( 2 2 ) 内に設けられた開繊ヒ ン ( 2 3 ) で開繊され、 溶融した該改質ホ リ ブ ロ ビ レ ンで含浸される · 次いで、 溶 融した該改質ポリ ブ ロ ヒ レ ンで含浸されたロ ービング ( 2 1 ) は、 開繊含浸槽 ( 2 2 ) の出口に設けられた内径 6.0mmのダイス ( 2 4 ) 内を通過した後、 空冷槽 ( 2 5 ) 内を通過し、 表面温度が 1 2 5 :Cに調節される。 ― As the roving (21), an average single fiber diameter of 17μ and a tex number of 1150gZkm was used-and the roving (21) was provided in the opening impregnation tank (22). Opened with fine fiber (23) and impregnated with the melted modified polybrohillene · Next, roving impregnated with the melted modified polybrohillen ( 2 1) passes through a die (24) with an inner diameter of 6.0 mm provided at the outlet of the opening and impregnating tank (22), and then an air cooling tank ( After passing through 25), the surface temperature is adjusted to 125 : C. ―
さ らに、 含浸ロービング ( 2 1 ) を、 幅が 10mmのスチール製であり 、 3 0 :Cの 温度にコ ン ト ロールされ、 40mniの間隔で配置されている内径が 6. lmmの第 1 賦形冷 却ス リ ッ ト ( 2 6 ) および内径が 5.9ramの第 2賦形冷却ス リ ッ ト ( 2 7 ) に順次通 過させるこ とで、 平均直径 5.85mmの複合体を得た.: In addition, the impregnated rovings (21) are made of a 10 mm wide steel, controlled at a temperature of 30 : C, and have an inner diameter of 6 lmm, spaced at 40 mni intervals. A composite having an average diameter of 5.85 mm was obtained by sequentially passing through the shaped cooling slit (26) and the second shaped cooling slit (27) with an inner diameter of 5.9 ram. .:
得られた複合体は、 形状のバラツキが極めて小さいものであった- また、 ガラ ス繊維含有率は、 5 9重量%であった。 得られた複合体の下記測定試験に基づく 評価結果を表 3示す:  The obtained composite had extremely small variation in shape-and the glass fiber content was 59% by weight. Table 3 shows the evaluation results of the obtained composites based on the following measurement tests:
[実施例 9 ]  [Example 9]
この実施例 9は、 実施例 8 と略同様であるが、 口一ビング ( 2 1 ) の本数が異 なると共に、 賦形冷却ス リ ッ トが 3つ設けられている点で異なっている.:.  Example 9 is substantially the same as Example 8, but differs in that the number of orifices (21) is different and that three shaped cooling slits are provided. :.
すなわち、 実施例 8 と同様にして、 ガラス繊維のロービング ( 2 1 ) 1 0本を 、 温度 2 7 0 :Cの無水マレイ ン酸改質ポ リ プロ ピレンの溶融物で満たされている 開繊含浸槽 ( 2 2 ) に供給し、 引取速度 lOOcm/minで連続的に含浸を行った: そして、 溶融した改質ボリ プロ ピ レンで含浸されたロービング ( 2 1 ) は、 開 繊含浸槽 ( 2 2 ) の出口に設けられた内径 6.0mmのダイ ス ( 2 4 ) を通過した後、 空冷槽 ( 2 5 ) 内を通過し、 表面温度が 1 2 5 Cに調節される: That is, in the same manner as in Example 8, 10 glass fiber rovings (21) were filled with a melt of maleic anhydride-modified polypropylene at a temperature of 270 : C. It was fed to the impregnation tank (22) and continuously impregnated at a take-off speed of lOOcm / min: and the roving (21) impregnated with the molten modified polypropylene was sent to the open fiber impregnation tank (22). After passing through a 6.0 mm inner diameter die (24) provided at the outlet of 22), the air passes through an air cooling tank (25) and the surface temperature is adjusted to 125C:
さ らに、 含浸ロービング ( 2 1 ) を、 幅 1 Omraのスチール製であり 、 3 0 Cの温 度にコン トロールされ、 40mmおよび 20mniの間隔で配置されてレヽる内径が 6· 1mmの第 1 賦形冷却ス リ ッ ト ( 2 6 ) 、 内径が 5.9匪の第 2賦形冷却ス リ ッ ト ( 2 7 ) およ び内径が 5.8 の第 3賦形冷却ス リ ッ ト ( 2 8 ) に順次通過させるこ とによ り 、 平 均直径 5.75mmの複合体を得た:  In addition, the impregnated rovings (21) are made of steel with a width of 1 Omra, controlled at a temperature of 30 C, arranged at intervals of 40 mm and 20 mm and having an inner diameter of 6.1 mm. 1 shaped cooling slit (26), 2nd shaped cooling slit (27) with an inner diameter of 5.9, and 3rd shaped cooling slit (28) with an inner diameter of 5.8 ) To give a composite with an average diameter of 5.75 mm:
得られた複合体は、 形状のバラツキが極めて小さいものであった: また、 ガラ ス繊維含有率は、 3 7重量。/。であった: 得られた複合体の下記測定試験に基づく 評価結果を表 3示す [実施例 1 0 ] - こ の実施例 1 0は、 実施例 8 と略同様であるが、 口 一ビング .( 2 1 ) の本数が 異なると共に、 賦形冷却ス リ ッ 卜が 4つ設けられている点で異なっている: すなわち、 実施例 8 と同様にして、 ガラス繊維の口一ビング ( 2 1 ) 4本を、 温度 2 7 0 :Cの無水マ レイ ン酸改質ボリ プロ ピレ ンの溶融物で満たされている開 繊含浸槽 ( 2 2 ) に供給し、 引取速度 lOOcra/minで連続的に含浸を行った:. The composite obtained had very little variation in shape: the glass fiber content was 37% by weight. /. Table 3 shows the evaluation results of the obtained composite based on the following measurement tests. [Example 10]-This example 10 is substantially the same as example 8, except that the number of mouths per bing (2 1) is different, and four shaped cooling slits are provided. In other words, in the same manner as in Example 8, four glass fiber orifices (21) were used, and maleic anhydride-modified polypropylene copolymer having a temperature of 270 : C was used. The fiber was fed to a fiber impregnation tank (22), which was filled with the molten material, and was continuously impregnated at a take-off speed of lOOcra / min:
そして、 溶融した改質ポ リ プロ ピレンで含浸された口 一ビング ( 2 1 ) は、 開 繊含浸槽 ( 2 2 ) の出口に設けられた内径 6.0mmのダイス ( 2 4 ) を通過した後、 空冷槽 ( 2 5 ) 内を通過し、 表面温度が 1 2 5 Cに調整される:  The orifice (21) impregnated with the molten modified polypropylene is passed through a die (24) with an inner diameter of 6.0 mm provided at the outlet of the fiber impregnation tank (22). Passing through the air cooling tank (25), the surface temperature is adjusted to 125C:
さ らに、 含浸口 一ビング ( 2 1 ) を、 幅 10mmのスチール製であり 、 3 0 :Cの温 度にコ ン ト ロールされ、 10mm、 20mmおよび 20mmの間隔で配置されている内径が 6· lmmの第 1賦形冷却ス リ ッ ト ( 2 6 ) 、 内径が 5.9mmの第 2賦形冷却ス リ ッ ト ( 2 7 ) 、 内径が 5.8mmの第 3賦形冷却ス リ ッ ト ( 2 8 ) および内径が 5· 7mraの第 4賦 形冷却ス リ ッ ト ( 2 9 ) に順次通過させるこ とによ り 、 平均直径 5.65mmの複合体 を得た Furthermore, one impregnating port bing (21) is made of steel 10 mm in width, controlled at a temperature of 30 : C, and has inner diameters arranged at intervals of 10 mm, 20 mm and 20 mm. 6 · lmm first shaped cooling slit (26), inner diameter 5.9mm second shaped cooling slit (27), inner diameter 5.8mm third shaped cooling slit (28) and a fourth shaped cooling slit (29) having an inner diameter of 5.7 mra, a composite having an average diameter of 5.65 mm was obtained.
得られた複合体は、 形状のバラツキが極めて小さいものであった .· また、 ガラ ス繊維含有率は、 1 8重量%であった、 得られた複合体の下記測定試験に基づく 評価結果を表 3示す:  The obtained composite had extremely small variation in shape. The glass fiber content was 18% by weight. The evaluation result of the obtained composite based on the following measurement test was obtained. Table 3 shows:
[実施例 1 1 ]  [Example 11]
この実施例 1 1 は、 実施例 8 と略同様であるが、 口一ビング ( 2 1 ) の本数、 ダイス ( 2 4 ) 、 第 1 賦形冷却ス リ ッ ト ( 2 6 ) の径ぉよび第 2賦形冷却ス リ ッ ト ( 2 7 ) の径が異なっている:  Example 11 is substantially the same as Example 8, except that the number of the orifices (21), the dies (24) and the diameter of the first shaped cooling slit (26) are smaller. The diameter of the second shaped cooling slit (27) is different:
すなわち、 実施例 8 と同様にして、 ガラス繊維の 口 一 ビング ( 2 1 ) 1 0本を 、 温度 2 7 0 Cの無水マ レイ ン酸改質ボリ ブ口 ビ レ ンの溶融物で満たされている 開繊含浸槽 ( 2 2 ) に供給し、 引取速度 lOOcm/minで連続的に含浸を行った: そして、 溶融した改質ポリ ブロ ピレンで含浸された口一ビング- ( 2 1 ) は、 開 繊含浸槽 ( 2 2 ) の出口に設けられた内径 3.5 のダイス ( 2 4 ) を通過した後、 空冷槽 ( 2 5 ) 内を通過し、 表面温度が 1 2 5 :Cに調整される: That is, in the same manner as in Example 8, 10 orifices (21) of orifices of glass fiber were filled with a melt of maleic anhydride-modified orifice at a temperature of 270 ° C. Was fed to the open impregnation tank (22), and was continuously impregnated at a take-off speed of lOOcm / min: The orifice (21) impregnated with the molten modified polypropylene passes through a die (24) having an inner diameter of 3.5 provided at the outlet of the fiber impregnation tank (22). After passing through the air cooling bath (25), the surface temperature is adjusted to 125 : C:
さ らに、 含浸口一ビング ( 2 1 ) を、 幅 10mmのスチール製であり 、 3 0 :Cの温 度にコ ン ト ロールされ、 20mmの間隔で配置されている内径が 3· 6mmの第 1 賦形冷却 ス リ ッ ト ( 2 6 ) および内径が 3.5mmの第 2賦形冷却ス リ ッ ト ( 2 7 ) に順次通過 させることによ り、 平均直径 3.46mmの複合体を得た: In addition, the impregnating port one bing (21) is made of steel with a width of 10 mm, is controlled at a temperature of 30 : C, and has an inner diameter of 3.6 mm, which is arranged at intervals of 20 mm. A composite having an average diameter of 3.46 mm was obtained by sequentially passing through the first shaped cooling slit (26) and the second shaped cooling slit (27) having an inner diameter of 3.5 mm. Was:
得られた複合体は、 形状のバラツキが極めて小さいものであった: また、 ガラ ス繊維含有率は、 7 3重量%であった: 得られた複合体の下記測定試験に基づく 評価結果を表 3示す:  The obtained composite had a very small variation in shape: the glass fiber content was 73% by weight: The evaluation results of the obtained composite based on the following measurement test were shown. 3 Show:
[比較例 3 ]  [Comparative Example 3]
実施例 8 と同様にして、 ガラス繊維の口一ビング ( 2 1 ) 2 0本を、 温度 2 7 0 :Cの無水マレイ ン酸改質ボリ プロ ピレンの溶融物で満たされている開繊含浸槽 ( 2 2 ) に供給し、 引取速度 lOOcDiZrainで連続的に含浸を行った: In the same manner as in Example 8, the opening impregnation in which 20 (2 1) glass fiber orifices are filled with a melt of maleic anhydride-modified polypropylene at a temperature of 2700 : C. It was fed to the tank (2 2) and was continuously impregnated at a take-off speed of lOOcDiZrain:
そして、 溶融した改質ボリ ブロ ピレンで含浸されたロービング ( 2 1 ) は、 開 繊含浸槽 ( 2 2 ) の出口に設けられた内径 6. Omrnのダイ ス ( 2 4 ) を通過した後、 空冷槽 ( 2 5 ) 内を通過し、 表面温度が 1 2 5 Cに調整される -.  The roving (21) impregnated with the molten modified polypropylene is passed through a 6. Omrn die (24) having an inner diameter of 6. Omrn provided at the outlet of the fiber impregnation tank (22). After passing through the air cooling tank (25), the surface temperature is adjusted to 125C-.
そして、 含浸口一ビング ( 2 1 ) を、 賦形冷却ス リ ッ トを使用せず、 平均直径 5.87mmの複合体を得た:  Then, the impregnating port bing (2 1) was used without using a shaped cooling slit to obtain a composite having an average diameter of 5.87 mm:
しかしながら、 このよ う にして得られた複合体は、 形状のバラツキが大きいも のであった: また、 ガラス繊維含有率は、 5 9重量%であった: 得られた複合体 の下記測定試験に基づく評価結果を表 3示す:  However, the composites obtained in this way had a large variation in shape: the glass fiber content was 59% by weight: Table 3 shows the evaluation results based on:
[比較例 4 ]  [Comparative Example 4]
実施例 8 と同様にして、 ガラス繊維の口一ビング ( 2 1 ) 1 0本を、 温度 2 7 0 :Cの無水マレイ ン酸改質ポリ ブロ ビレンの溶融物で満たされている開繊含浸槽 ( 2 2 ) に供給し、 引取速度 lOOcmZrainで連続的に含浸を行つ / "こ.: そして、 溶融した改質ポリ プロ ピレンで含浸されたロービング ( 2 1 ) は、 開 繊含浸槽 ( 2 2 ) の出口に設けられた内径 3.5匪のダイス ( 2 4 ) を通過した後、 空冷槽 ( 2 5 ) 内を通過し、 表面温度が 1 2 5 :Cに調整される: In the same manner as in Example 8, opening and impregnating 10 glass fiber orifices (21) with a melt of maleic anhydride-modified poly (vinylene) at a temperature of 270 : C. Tank (2 2), and continuously impregnated at a take-off speed of lOOcmZrain / "This: And the roving (2 1) impregnated with the molten modified polypropylene is sent to the open fiber impregnation tank (2 After passing through the dice (24) of 3.5 inner diameter provided at the exit of 2), it passes through the air cooling tank (25), and the surface temperature is adjusted to 125 : C:
そして、 含浸ロービング ( 2 1 ) を、 賦形冷却ス リ ッ トを使用せず、 平均直径 Then, the impregnated rovings (2 1) can be made to have an average diameter without using a shaped cooling slit.
3.44mmの複合体を得た:. 3.44mm composite was obtained:
しかしながら、 このよ う にして得られた複合体は、 形状のバラツキが大きいも のであった.: また、 ガラス繊維含有率は、 7 3重量%であった: 得られた複合体 の下記測定試験に基づく評価結果を表 3示す:  However, the composite thus obtained had a large variation in shape. The glass fiber content was 73% by weight: The following measurement test of the obtained composite Table 3 shows the evaluation results based on the following:
[比較例 5 ]  [Comparative Example 5]
実施例 8 と同様にして、 ガラス繊維の口一ビング ( 2 1 ) 2 0本を、 温度 2 7 0 :Cの無水マ レイ ン酸改質ボリ プロ ピレンの溶融物で満たされている開繊含浸槽 ( 2 2 ) に供給し、 引取速度 lOOcmZminで連続的に含浸を行った: In the same manner as in Example 8, 20 glass fiber orifices (21) are filled with a melt of maleic anhydride-modified polypropylene having a temperature of 270 : C. It was fed into the impregnation tank (2 2) and continuously impregnated at a take-off speed of lOOcmZmin:
そして、 溶融した改質ポ リ プロ ピ レンで含浸された口一ビング ( 2 1 ) は、 開 繊含浸槽 ( 2 2 ) の出口に設けられた内径 6. Ommのダイス ( 2 4 ) を通過した後、 空冷槽 ( 2 5 ) 内を通過し、 表面温度が 1 4 O Cに調整される:  The orifice (21) impregnated with the molten modified polypropylene passes through a die (24) with an inner diameter of 6. Omm provided at the outlet of the fiber impregnation tank (22). After passing through the air cooling bath (25), the surface temperature is adjusted to 14 OC:
さ らに、 含浸口一ビング ( 2 1 ) を、 幅 1 Ommのスチール製であり 、 3 0 Cの温 度にコ ン ト ロールされた内径が 6· 2mmの第 1賦形冷却ス リ ッ ト ( 2 6 ) に通過させ たと ころ、 ス リ ッ ト入口にボリ プロ ピレン樹脂溶融溜ま り が発生して、 ライ ンが 停止し複合体は得られなかった, その評価結果を表 3示す:  In addition, the impregnating port one bing (2 1) is made of 1 Omm wide steel, controlled at a temperature of 30 C, and has a 6.2 mm inner diameter first shaping cooling slit. (26), a molten pool of propylene resin was formed at the slit inlet, the line stopped, and no composite was obtained. The evaluation results are shown in Table 3.
[比較例 6 ]  [Comparative Example 6]
実施例 8 と同様にして、 ガラス繊維の口一ビング ( 2 1 ) 2 0本を、 温度 2 7 0 :Cの無水マレィン酸改質ポリ プロ ビレンの溶融物で満たされている開繊含浸槽 ( 2 2 ) に供給し、 引取速度 lOOcmZminで連続的に含浸を行った.: In the same manner as in Example 8, an opening impregnation tank in which 20 glass fiber orifices (21) are filled with a melt of maleic anhydride-modified polypropylene at a temperature of 270 : C. (22) and continuously impregnated at a take-off speed of lOOcmZmin:
そ して、 溶融した改質ポ リ ブロ ピ レンで含浸されたロービング ( 2 1 ) は、 開 繊含浸槽 ( 2 2 ) の出口に設けられた内径 6. Omraのダイス ( 2 4:; を通過した後、 空冷槽 ( 2 5 ) 内を通過し、 表面温度が 6 0 :Cに調整される: . Then, the roving (21) impregnated with the molten modified polypropylene is opened. 6. After passing through the Omra dice (24 :;) at the outlet of the fiber impregnation tank (22), it passes through the air cooling tank (25), and the surface temperature is adjusted to 60 : C. RU:
さ らに、 含浸口一ビング ( 2 1 ) を、 幅 10mmのスチール製であり 、 3 0 Cの温 度にコ ン ト ロールされた内径が 6.2mmの第 1賦形冷却ス リ ッ ト ( 2 6 ) に通過させ たと ころ、 ス リ ッ ト入口で固化したポリ プロ ピレン樹脂が入り 口に引つかかり賦 形できず、 ライ ンが停止し複合体は得られなかった.: その評価結果を表 3示す: 表 3  In addition, the impregnating port one bing (21) is made of a 10mm-wide steel, controlled at a temperature of 30C, and has a 6.2mm inner diameter first shaped cooling slit (21). After passing through 26), the solidified polypropylene resin at the slit entrance caught the entrance and could not be shaped, the line stopped, and no composite was obtained .: Evaluation results Table 3 shows:
Figure imgf000027_0001
以下、 本発明の被覆複合体の製造方法および製造装置を実施例に基づいて、 場 合によっては有用な比較例を参照しながら本発明の被覆複合体の製造方法および 製造装置を具体的に説明する: しかし、 本発明はこれらの実施例によって何らの 制約を受けない: 7
Figure imgf000027_0001
Hereinafter, the method and apparatus for producing a coated composite of the present invention will be specifically described based on examples and referring to a useful comparative example as the case may be. However, the present invention is not limited in any way by these examples: 7
26  26
[実施例 1 2 ] ―  [Example 12]-
この実施例 1 2は、 図 3および図 4に示すよ うな装置を用いて被覆複合体を成 形した:.  This Example 12 formed a coated composite using an apparatus as shown in FIGS. 3 and 4.
ガラス繊維の口一ビングを 3本、 温度 2 7 0 :Cに調整された無水マ レイ ン酸改 質ポリ プロ ピレン [MFR (230Ϊ ;21. 18N ) 100g/10min] の溶融物で満たされている 開繊含浸槽に供給し、 引取速度 15m/minで連続的に含浸した: 口一ビングと しては 、 平均単繊維径 17μ 、 テッ クス番手 2300g/kniのものを用いた: Three glass fiber orifices filled with molten maleic anhydride modified polypropylene [MFR (230R; 21.18N) 100g / 10min] adjusted to a temperature of 270: C The fiber was fed into an open fiber impregnation tank and was continuously impregnated at a take-off speed of 15 m / min: As a single bing, an average single fiber diameter of 17 μm and a tex number of 2300 g / kni was used:
溶融した改質ボリ ブ口 ピレンで含浸された 3本のロービングは、 開繊含浸槽の 出口に設けられた内径 2· Omniのダイ内を通過したのち、 空冷槽内を通過し、 表面温 度が 1 2 5 :C以下に調節される: The melted reforming port The three rovings impregnated with pyrene pass through an inside die with an internal diameter of 2 and Omni, which is provided at the outlet of the fiber opening impregnation tank, and then pass through an air-cooled tank, where the surface temperature rises. Is adjusted below 1 25 : C:
さ らに、 3本の該ロ一ビングを、 内径力;それぞれ 2· 2mniと 2.0mmで、 幅力 Ommの スチール製であり、 3 0 :Cの温度にコン トロールされ、 40mniの間隔で配置されて いるそれぞれの賦形冷却ス リ ッ トを順次通過させることで複合体 ( 3 3 ) を 3本 得た。 In addition, the three rovings are made of steel with an inner diameter of 2.2mni and 2.0mm, respectively, and a width of Omm, controlled at a temperature of 30 : C, and arranged at intervals of 40mni. By sequentially passing through each of the shaped cooling slits, three composites (33) were obtained.
次に、 そのライン上に溶融樹脂槽 ( 3 6 ) を設置し、 得られた複合体 ( 3 3 ) 3本を 2.2mm φ の入口 ノ ズル ( 3 1 ) にそれぞれ通し、 270 Cで加熱溶融された溶 融樹脂 ( 3 5 ) [ベ ト ロセン 3 5 2 (M. I. 30g/10min)] を、 複合体 ( 3 3 ) の周 辺に付着さながら 3.5mra φ の出口 ノズル ( 3 2 ) を 15m/m i nの速度で通過させたの ち、 冷却槽に通し 3· Ο φ の被覆複合体 ( 3 4 ) を得た..  Next, a molten resin tank (36) was set up on that line, and three of the obtained composites (33) were passed through a 2.2mm φ inlet nozzle (31), respectively, and heated and melted at 270C. The melted resin (35) [Vitrocene 352 (MI 30g / 10min)] was attached to the periphery of the composite (33), and a 3.5mra φ outlet nozzle (32) was attached at 15m / After passing through at a speed of min, the mixture was passed through a cooling bath to obtain a coated composite (34) of 3 の φ.
溶融樹脂槽 ( 3 6 ) は、 200mmW X 80mm L X lOOmmHの大き さで、 相対する側面 には 2.2mm φ の入口 ノ ズル ( 3 1 ) 穴 3 ケ と 3.5mm φ の出口 ノ ズル ( 3 2 ) 穴 3 ケ を有し、 上部を開放し樹脂圧が掛からないよ う にしてある : また、 溶融樹脂槽 ( 3 6 ) の周囲にはヒータ一が取付けられており樹脂温度を確保できるよ う になつ ている—  The molten resin tank (36) has a size of 200mmW x 80mm LX lOOmmH, and has 2.2mm φ inlet nozzles (31) on the opposing sides and 3 3.5mm φ outlet nozzles (32) It has three holes and the upper part is opened to prevent resin pressure .: A heater is attached around the molten resin tank (36) so that the resin temperature can be secured. Natsu is—
また、 溶融樹脂槽 ( 3 6 ) への樹脂補給は、 溶融樹脂 ( 3 5 ) の液面が複合体 ( 3 3 ) よ り上部 lOmra以下にならないよ う に、 開放された上部よ り溶融樹脂 ( 3 5 ) を落と し込んだ.:. In addition, the resin supply to the molten resin tank (36) is based on the fact that the liquid level of the molten resin (35) The molten resin (35) was dropped from the open upper part so that it would not be lower than lOmra above (33).
得られた被覆複合体 ( 3 4 ) を、 定尺に切断し重量を測定し、 溶融樹脂 ( 3 5 ) の付着量を調べた。 その結果、 複合体 ( 3 3 ) 3本の間での被覆量のバラツキ は 5 %内に入る優れたものであった:  The obtained coated composite (34) was cut to a fixed size, weighed, and the adhesion amount of the molten resin (35) was determined. As a result, the variation in the coating amount among the three composites (33) was excellent within 5%:
[実施例 1 3 ]  [Example 13]
実施例 1 2の複合体 ( 3 3 ) を直径 4 mmのポリ プ口 ピレン樹脂製線状物 ( 3 3 ) に代え、 4· 2πιιη φの入口 ノ ズル ( 3 1 ) にそれぞれ通し、 270¾で加熱溶融され た溶融樹脂 ( 3 5 ) [ペ ト ロセン 3 5 2 (Μ· Ι. 30g/10min)] を、 線状物 ( 3 3 ) の周辺に付着さながら 5.5πιπιφ の出口 ノ ズル ( 3 2 ) を 15m/minの速度で通過させ たのち、 冷却槽に通し 5. Omra φの被覆線状物 ( 3 4 ) を得た- 得られた被覆線状物 ( 3 4 ) を、 定尺に切断し重量を測定し、 溶融樹脂 ( 3 5 ) の付着量を調べた。 その結果、 線状物 ( 3 3 ) 3本の間での被覆量のバラツキ は 5 %内に入る優れたものであった。  The composite (33) of Example 12 was replaced with a linear product made of a pyrene resin (33) having a diameter of 4 mm and passed through an inlet nozzle (31) having a diameter of 4.2πιηη, and each of the composites (33) was 270 °. While adhering the molten resin (35) [Petrocene 35 2 (Μ. 30 g / 10min)], which was heated and melted, to the periphery of the linear object (33), the outlet nozzle of 5.5πιπιφ (32) ) At a speed of 15 m / min, and then passed through a cooling bath to obtain a coated linear object (34) of Omra φ-The obtained coated linear object (34) was reduced to a fixed size. After cutting, the weight was measured, and the adhesion amount of the molten resin (35) was determined. As a result, the variation in the coating amount among the three linear objects (33) was excellent within 5%.

Claims

請求の範囲 _ The scope of the claims _
1 . 強化用繊維で長手方向が強化された熱可塑性樹脂複合体である芯材部と芯 材部周面を被覆する熱可塑性樹脂製の被覆部とからなる長繊維強化熱可塑性樹脂 被覆複合体であって、 芯材部の強化用繊維含有率が少なく と も 1 0重量%、 芯材 部の平均直径も しく は平均厚みが 3 mm以上、 被覆部の平均厚みが 0. 3 mm〜 1 . 5 mmである長繊維強化熱可塑性樹脂被覆複合体: 1. A long-fiber-reinforced thermoplastic resin-coated composite consisting of a core material, which is a thermoplastic resin composite reinforced in the longitudinal direction with reinforcing fibers, and a thermoplastic resin coating that covers the peripheral surface of the core material. The core material has a reinforcing fiber content of at least 10% by weight, the core material has an average diameter or average thickness of 3 mm or more, and the coating has an average thickness of 0.3 mm to 1 mm. .5 mm long fiber reinforced thermoplastic coated composite:
2. 芯材部の断面に無作為に設定された単位領域(Tz)内に、 相似形で大き さの 異なる 2種の検定領域(D zl、 Dz2)を画定し、 それぞれの検定領域を貫通する強 化用繊維の含有率(C l、 C2)を求め、 これを 3個の単位領域(T zl、 Tz2及び Tz 3)について行い、 求めた 6個の含有率(C 11、 C 12, C21、 C22、 C31及び C32) が全て、 Mc± 3 a [Mc : 相加平均値、 σ :標準偏差] の範囲内である請求項 1記 載の長繊維強化熱可塑性樹脂被覆複合体: 2. Define two similar and different test areas (Dzl, Dz2) in a unit area (Tz) randomly set in the cross section of the core material, and penetrate each test area. The content (Cl, C2) of the reinforcing fibers to be obtained is calculated for the three unit regions (Tzl, Tz2, and Tz3), and the obtained content (C11, C12, C12) is determined. C21, C22, C31 and C32) are all within the range of Mc ± 3a [Mc: arithmetic mean value, σ: standard deviation]. The long fiber reinforced thermoplastic resin-coated composite according to claim 1, wherein:
3. 単位領域(Tz)内に画定される検定領域の中の一方の面積(Dzl)が 0. l mm3. One area (Dzl) of the test area defined in the unit area (Tz) is 0.1 mm
2であり 、 他方の面積(Dz2)が 1 πιπτ'である請求項 1 または請求項 2 に記載の長繊維 強化熱可塑性樹脂被覆複合体, 3. The long fiber reinforced thermoplastic resin-coated composite according to claim 1 or 2 , wherein the other area (Dz2) is 1πιπτ ′.
4. 被覆部の熱可塑性樹脂が、 プロ ピ レン単位 8 0モル%以上と、 エチレン、4. When the thermoplastic resin in the coating part is 80 mol% or more of propylene unit, ethylene,
1 -ブテン、 4-メチル -卜ペンテン、 1-ォクテン及び卜デセンから選ばれる 1 種以上 の α -ォレフィ ン単位 2 () モル0 /0以下とで形成された結晶性ポリ ブ口 ヒ レ ン樹脂で ある請求項 1 乃至請求項 3の何れかに記載の長繊維強化熱可塑性樹脂被覆複合体 1 - butene, 4-methyl - Bok pentene, 1-Okuten the least one and selected from Bok decene alpha - Orefi emission unit 2 () mol 0/0 below the crystalline polybutenyl port arsenide les emissions formed by The long fiber reinforced thermoplastic resin-coated composite according to any one of claims 1 to 3, which is a resin.
5 . 芯材部の外壁面と被覆部の内壁面とが実質的に滑動自在に接触している請 求項 1 乃至請求項 4の何れかに記載の長繊維強化熱可塑性樹脂被覆複合体: 5. The long fiber reinforced thermoplastic resin-coated composite according to any one of claims 1 to 4, wherein the outer wall surface of the core portion and the inner wall surface of the coating portion are substantially slidably in contact with each other.
6 . 強化用繊維で長手方向が強化された長繊維強化熱可塑性樹脂複合体におい て、 強化用繊維含有率が 1 0 〜 8 0重量%、 該複合体を長手方向に対して直角に 切断した時の断面の平均直径が 3 mm以上およびその直径の平均偏差が 0 . 1 0以 下である長繊維強化熟可塑性樹脂複合体: 6. In the long fiber reinforced thermoplastic resin composite reinforced in the longitudinal direction with the reinforcing fiber, the content of the reinforcing fiber was 10 to 80% by weight, and the composite was cut at right angles to the longitudinal direction. The long fiber-reinforced matured plastic composite having an average cross-sectional diameter of 3 mm or more and an average deviation of the diameter of 0.10 or less:
7 . 芯材部の強化用繊維含有率が 1 () 〜 8 0重量。/。で、 芯材部を長手方向に対 して直角に切断した時の断面の平均直径が 3 m m以上およびその直径の平均偏差が 0 . 1 0以下である請求項 1記載の長繊維強化熱可塑性榭脂被覆複合体: 7. The content of reinforcing fibers in the core is 1 () to 80% by weight. /. The long fiber reinforced thermoplastic according to claim 1, wherein an average diameter of a cross section when the core material is cut at a right angle to a longitudinal direction is 3 mm or more and an average deviation of the diameter is 0.10 or less.榭 Resin-coated composite:
8 . 強化用繊維を開繊含浸槽内に導入し、 溶融した熱可塑性樹脂を含浸させた のち、 開繊含浸槽の出口部であるダイスから引く 抜いて得た熱可塑性樹脂が含浸 された強化用繊維を、 その表面温度が該熱可塑性樹脂の結晶化温度範囲内になる よ う に冷却しながら、 その温度範囲内で少なく と も 2つ以上の賦形冷却ス リ ッ ト を通過させる強化用繊維含有率が 1 0〜 8 0重量%で平均直径が 3 mm以上の長繊 維強化熱可塑性樹脂複合体の製造方法。 8. Introduce the reinforcing fiber into the open fiber impregnation tank, impregnate it with the molten thermoplastic resin, and then pull it out of the die at the outlet of the open fiber impregnation tank. While cooling the fibers for use so that the surface temperature is within the crystallization temperature range of the thermoplastic resin, the fibers are passed through at least two or more shaped cooling slits within the temperature range. A method for producing a long fiber-reinforced thermoplastic resin composite having a fiber content of 10 to 80% by weight and an average diameter of 3 mm or more.
9 . 前記複数の賦形冷却ス リ ッ トを通過して賦形冷却する際、 開繊含浸槽に最 も近い側の賦形冷却ス リ ッ トの径が開繊含浸槽から最も遠い側の賦形冷却ス リ ッ トの径よ り大きい請求項 8記載の長繊維強化熱可塑性樹脂複合体の製造方法- 9. When shaping and cooling by passing through the plurality of shaping cooling slits, the diameter of the shaping cooling slit closest to the opening and impregnating tank is farthest from the opening and impregnating tank. 9. The method for producing a long-fiber-reinforced thermoplastic resin composite according to claim 8, wherein the diameter is larger than the diameter of the shaped cooling slit.
1 0 . 強化用繊維で長手方向が強化された熱可塑性樹脂複合体を被覆する溶融 樹脂槽において、 該複合体が導入される入口 ノ ズルと該溶融樹脂-槽内に充填され た溶融樹脂で被覆された被覆複合体が送り 出される出口 ノズルとが直線上に有り 、 該溶融樹脂槽内の樹脂圧力は溶融樹脂の液面ヘッ ド圧と同程度で、 強制的な加 圧をせず、 被覆部の肉厚は出口 ノズルの大きさで規制する長繊維熱可塑性樹脂被 覆複合体の製造方法。 10. Melting to cover thermoplastic resin composite reinforced in the longitudinal direction with reinforcing fibers In the resin tank, an inlet nozzle into which the composite is introduced and an outlet nozzle through which the coated composite coated with the molten resin and the molten resin filled in the tank are sent out are linear. The resin pressure in the tank is about the same as the liquid level head pressure of the molten resin, no forcible pressure is applied, and the thickness of the coating is regulated by the size of the outlet nozzle. How to make the body.
1 1 . 1 ケ の溶融樹脂槽で少なく とも 2本以上の複合体を同時に被覆する請求 項 1 0記載の長繊維熱可塑性樹脂被覆複合体の製造方法: 11. The method for producing a long-fiber thermoplastic resin-coated composite according to claim 10, wherein at least two or more composites are simultaneously coated in 1 1.1 molten resin tanks.
1 2 . 上部が開放された箱形の溶融樹脂槽の側面に、 1 ケ も しく は複数ケ の入 口 ノズルが位置しており、 その対向面に 1 ケも しく は複数ケの出口 ノズルが入口 ノズルと 1 直線上に位置している長繊維熱可塑性樹脂被覆複合体の製造装置。 1 2. One or more inlet nozzles are located on the side of a box-shaped molten resin tank with an open top, and one or more outlet nozzles are located on the opposite surface. Equipment for manufacturing long-fiber thermoplastic resin-coated composites located on one straight line with the inlet nozzle.
PCT/JP1998/001316 1997-04-02 1998-03-25 Long fiber-reinforced thermoplastic resin composite body WO1998043807A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE19882262T DE19882262T1 (en) 1997-04-02 1998-03-25 Long fiber reinforced thermoplastic resin composite
AU65172/98A AU6517298A (en) 1997-04-02 1998-03-25 Long fiber-reinforced thermoplastic resin composite body

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP9/99716 1997-04-02
JP9971697 1997-04-02
JP9/101088 1997-04-03
JP9101088A JPH10278092A (en) 1997-04-03 1997-04-03 Manufacture of covered wire material and covered rod
JP12146497 1997-04-25
JP9/121464 1997-04-25

Publications (1)

Publication Number Publication Date
WO1998043807A1 true WO1998043807A1 (en) 1998-10-08

Family

ID=27309027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/001316 WO1998043807A1 (en) 1997-04-02 1998-03-25 Long fiber-reinforced thermoplastic resin composite body

Country Status (4)

Country Link
AU (1) AU6517298A (en)
DE (1) DE19882262T1 (en)
TW (1) TW418226B (en)
WO (1) WO1998043807A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI458621B (en) * 2008-09-12 2014-11-01 Ehc Canada Inc Method and apparatus for extrusion of thermoplastic handrail
CN102774038A (en) * 2012-07-06 2012-11-14 上海复合材料科技有限公司 Pultruded special-shaped surface composite skin-core structure profile
TWI731107B (en) * 2017-06-23 2021-06-21 曾凱熙 Composite fiber, composite board and method for preparing the composite board
EP3703937B1 (en) 2017-10-31 2021-12-08 Basf Se Pultrusion process of forming multi-layered structures of dissimilar materials using a multi-die pultrusion device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120281A (en) * 1974-08-10 1976-02-18 Satsuki Kitani Senisokuseikeihinno renzokuseizohoho
JPS6081510A (en) * 1983-10-07 1985-05-09 積水化学工業株式会社 Fiber reinforced plastic bolt

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120281A (en) * 1974-08-10 1976-02-18 Satsuki Kitani Senisokuseikeihinno renzokuseizohoho
JPS6081510A (en) * 1983-10-07 1985-05-09 積水化学工業株式会社 Fiber reinforced plastic bolt

Also Published As

Publication number Publication date
DE19882262T1 (en) 2000-03-30
AU6517298A (en) 1998-10-22
TW418226B (en) 2001-01-11

Similar Documents

Publication Publication Date Title
JP4876377B2 (en) Method for producing flat glass fiber-containing pellets
US5268050A (en) Process for using an extruder die assembly for the production of fiber reinforced thermoplastic pellets, tapes and similar products
US9522483B2 (en) Methods for impregnating fiber rovings with polymer resin
JP3670294B2 (en) Manufacturing method of long fiber reinforced resin structure, manufacturing method of columnar body and manufacturing apparatus
EP1982814B1 (en) Process for producing pellets containing flat glass fibers
US11718015B2 (en) Strand and modeled object
KR20130088033A (en) Method for forming reinforced pultruded profiles
EP3578339A1 (en) Filament resin molded article
JP5467828B2 (en) Manufacturing method of long fiber reinforced thermoplastic resin pellets
JP2021535004A (en) Filament material for additional printing
WO1998043807A1 (en) Long fiber-reinforced thermoplastic resin composite body
Kim et al. High-performance continuous carbon fiber composite filament via solution process
US6251206B1 (en) Method for opening and resin-impregnation to produce continuous fiber-reinforced thermoplastic resin composite material
JP6652215B1 (en) Pellet manufacturing method
JPH10264152A (en) Manufacture of fiber reinforced resin pellet
JP5225260B2 (en) Manufacturing apparatus and manufacturing method of long fiber reinforced thermoplastic resin strand
CN105705306B (en) For producing the method for glass fibre-enhancing thermoplastic polymer composition
JP3241435B2 (en) Fiber-reinforced thermoplastic resin composite material and method for producing the same
JP2002086509A (en) Mold for molding resin composition containing fibrous filler, molding method using the same, and resin molded product
JPH0852814A (en) Composite article and its production
JP4096396B2 (en) Method for producing long fiber reinforced thermoplastic resin composite
WO1994007668A1 (en) Structure of fiber-reinforced thermoplastic resin and method of manufacturing the same
JP4332020B2 (en) DIE FOR PRODUCING LONG FIBER REINFORCED THERMOPLASTIC RESIN STRUCTURE AND METHOD FOR PRODUCING THE STRUCTURE
JP2001088223A (en) Apparatus for producing thermoplastic resin long object reinforced by long fibers
JPH11314291A (en) Filament reinforced thermoplastic resin coated composite

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09381646

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 19882262

Country of ref document: DE

Date of ref document: 20000330

WWE Wipo information: entry into national phase

Ref document number: 19882262

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA