JPH03243333A - Manufacture of fiber-reinforced thermoplastic resin pipe - Google Patents

Manufacture of fiber-reinforced thermoplastic resin pipe

Info

Publication number
JPH03243333A
JPH03243333A JP2040408A JP4040890A JPH03243333A JP H03243333 A JPH03243333 A JP H03243333A JP 2040408 A JP2040408 A JP 2040408A JP 4040890 A JP4040890 A JP 4040890A JP H03243333 A JPH03243333 A JP H03243333A
Authority
JP
Japan
Prior art keywords
fiber composite
vinyl chloride
chlorinated vinyl
chloride resin
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2040408A
Other languages
Japanese (ja)
Other versions
JPH074875B2 (en
Inventor
Hiroshi Sugawara
宏 菅原
Kiyoyasu Fujii
藤井 清康
Kazuo Shimomura
和夫 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2040408A priority Critical patent/JPH074875B2/en
Publication of JPH03243333A publication Critical patent/JPH03243333A/en
Publication of JPH074875B2 publication Critical patent/JPH074875B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To fuse an internal layer pipe and a fiber composite body excellently by using a chlorinated vinyl chloride resin having chlorine content lower than that forming the internal layer pipe as a thermoplastic resin constituting the fiber composite body. CONSTITUTION:A chlorinated vinyl chloride resin to which a heat stabilizer and a lubricant additional matter are added is melted and kneaded by an extruder 1, and an internal layer pipe 3 is extrusion-molded by a mold 2. A fiber composite body 4 is wound out on the outer circumference of the internal layer pipe 3 from a first winder 5, hot air is injected by a hot air type heating apparatus 6, and a chlorinated vinyl chloride resin in the fiber composite body 4 is heated and melted, and fused with the internal layer pipe 3, thus forming a first layer reinforcing layer. A second layer reinforcing layer is wound in the opposite direction to the first layer by a second winder 5, thus similarly molding a tubular body 11. The chlorine content of the chlorinated vinyl chloride resin in the fiber composite body 4 is made lower than that of the chlorinated vinyl chloride resin of the internal layer pipe 3, and the chlorinated vinyl chloride resin in the fiber composite body 4 is melted even at a temperature lower than the melting point of the internal layer pipe 3, thus fusing the fiber composite body 4 and the internal layer pipe 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高温加圧下で好適に使用される繊維強化熱可
塑性樹脂管及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a fiber-reinforced thermoplastic resin pipe that is suitably used under high temperature and pressure conditions, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来から合成樹脂管は、金属製管と比較して軽量であっ
て錆びない等の優れた特性を有しており、広く用いられ
ている。しかし、この合成樹脂管は、金属製管に比較し
て耐圧性および耐衝撃性において劣っている。そこで、
これらの合成樹脂管に耐圧性および耐衝撃性を持たせた
ものとして、熱可塑性樹脂から成形された内層管の外周
に繊維で補強した繊維強化熱可塑性樹脂からなる強化層
を設け、更にこの強化層の外周に熱可塑性樹脂層を被覆
してなる繊維強化およびその製造方法が提案されている
(例えば特開昭63−152786号公報参照)。この
繊維強化の製造方法は、芯材となる内層管を表面が溶融
する温度まで加熱しながら内層管の外周にフィラメント
間に熱可塑性樹脂が含浸したストランド状の補強繊維を
巻回して融着する方法や、補強繊維を内層管の外周に巻
回した後、内層管を表面が溶融する温度まで加熱して融
着する等により、強化層を設けた後、この強化層の外周
に熱可塑性樹脂を押出して被覆し加熱するのである。
BACKGROUND ART Synthetic resin pipes have been widely used since they have superior properties such as being lighter and less rusty than metal pipes. However, this synthetic resin pipe is inferior to metal pipes in pressure resistance and impact resistance. Therefore,
In order to give these synthetic resin pipes pressure and impact resistance, a reinforcing layer made of fiber-reinforced thermoplastic resin is provided on the outer periphery of the inner pipe molded from thermoplastic resin, and this reinforcement layer is further reinforced with fibers. Fiber reinforcement in which the outer periphery of the layer is coated with a thermoplastic resin layer and a method for manufacturing the same have been proposed (see, for example, Japanese Patent Laid-Open No. 152786/1986). This fiber-reinforced manufacturing method involves heating the inner tube, which serves as the core material, to a temperature that melts the surface, and then winding and fusing strand-shaped reinforcing fibers impregnated with thermoplastic resin between filaments around the outer circumference of the inner tube. After forming a reinforcing layer by winding reinforcing fibers around the outer circumference of the inner tube, heating the inner tube to a temperature at which the surface melts and fusing it, etc., the outer circumference of this reinforcing layer is coated with thermoplastic resin. The material is extruded, coated, and heated.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし上記従来の製造方法では、熱可塑性樹脂から成形
された内層管の外周に補強繊維を融着させるためには、
内層管の表面が融着する温度になるまで管を加熱する必
要がある。その場合、加熱により軟化した内層管は、巻
回する補強繊維の張力によって変形し易く、そのため寸
法精度の高い繊維強化熱可塑性樹脂管を得ることが困難
であると言う問題がある。
However, in the conventional manufacturing method described above, in order to fuse the reinforcing fibers to the outer periphery of the inner layer pipe molded from thermoplastic resin,
It is necessary to heat the inner tube to a temperature at which the surface of the inner tube is fused. In that case, there is a problem in that the inner layer tube softened by heating is easily deformed by the tension of the reinforcing fibers wound around it, making it difficult to obtain a fiber-reinforced thermoplastic resin tube with high dimensional accuracy.

ところで、塩素化塩化ビニル樹脂管は、金属製管に比較
して耐蝕性に優れるとともに、50〜80°C程度の高
温度でもかなりの耐圧強度を有する上、耐熱変形性にも
優れ、軽量、施工が簡単、安価等の理由で、給水用は言
うまでもなく、給湯用にも広く用いられている。そこで
、塩素化塩化ビニル樹脂を内層管の素材とし、この外周
をガラス繊維補強熱硬化性樹脂の補強層で補強するよう
にすれば、所期のものを得る近道であると考えた。
By the way, chlorinated vinyl chloride resin pipes have superior corrosion resistance compared to metal pipes, have considerable pressure resistance even at high temperatures of about 50 to 80°C, have excellent heat deformation resistance, are lightweight, Because it is easy to construct and inexpensive, it is widely used not only for water supply but also for hot water supply. Therefore, we thought that using chlorinated vinyl chloride resin as the material for the inner pipe and reinforcing the outer periphery with a reinforcing layer of glass fiber-reinforced thermosetting resin would be a shortcut to achieving the desired result.

本発明は、上述した従来技術の問題点に鑑みてなされた
ものであり、その目的とするところは、塩素化塩化ビニ
ル樹脂製の内層管と繊維複合体との融着が良好で繊維補
強効果が優れ、しかも内層管の変形が起こらない、寸法
精度の高い繊維強化熱可塑性樹脂管を提供しようとする
ものである。
The present invention has been made in view of the problems of the prior art described above, and its purpose is to achieve good fusion between the inner layer pipe made of chlorinated vinyl chloride resin and the fiber composite, and to achieve a fiber reinforcing effect. The object of the present invention is to provide a fiber-reinforced thermoplastic resin pipe with high dimensional accuracy, which has excellent properties and which does not cause deformation of the inner layer pipe.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の繊維強化熱可塑性樹脂管の製造方法は、熱可塑
性樹脂を押出して内層管を成形し、該内層管の外面に多
数のフィラメントよりなる補強繊維に熱可塑性樹脂が保
持されてなる繊維複合体を巻回あるいは囲繞して融着せ
しめる繊維強化熱可塑性樹脂管の製造方法において、前
記内層管を塩素化塩化ビニル樹脂を用いて成形し、前記
繊維複合体を構成する熱可塑性樹脂として、前記内層管
を形成する塩素化塩化ビニル樹脂よりも塩素含有率が低
い塩素化塩化ビニル樹脂を用いることを特徴とするもの
である。
The method for producing a fiber-reinforced thermoplastic resin pipe of the present invention involves extruding a thermoplastic resin to form an inner layer tube, and forming a fiber composite in which the thermoplastic resin is held by reinforcing fibers made of a large number of filaments on the outer surface of the inner layer tube. In a method for manufacturing a fiber-reinforced thermoplastic resin pipe in which a body is wound or surrounded and fused, the inner layer pipe is molded using chlorinated vinyl chloride resin, and the thermoplastic resin constituting the fiber composite is It is characterized by using a chlorinated vinyl chloride resin that has a lower chlorine content than the chlorinated vinyl chloride resin that forms the inner layer pipe.

一般にこのような繊維強化管で高い補強効果を得るため
には、内層管と補強層との融着を良好にすることが必要
であり、このため内層と補強層とに用いられる樹脂が同
一か、あるいは相溶性の良好な樹脂とすることが好まし
く、熱可塑性樹脂性の内層管に対しては、熱可塑性樹脂
を用いた補強層を配するのが効果的である。従って塩素
化塩化ビニル樹脂製内層管に対しては、塩素化塩化ビニ
ル樹脂を用いた補強層とするのである。
Generally, in order to obtain a high reinforcing effect with such fiber-reinforced pipes, it is necessary to improve the fusion bond between the inner layer pipe and the reinforcing layer. Alternatively, it is preferable to use a resin with good compatibility, and it is effective to provide a reinforcing layer using a thermoplastic resin for an inner layer tube made of a thermoplastic resin. Therefore, for inner pipes made of chlorinated vinyl chloride resin, the reinforcing layer is made of chlorinated vinyl chloride resin.

本発明において内層管となる塩素化塩化ビニル樹脂管は
、塩素化塩化ビニル樹脂に、目的に応じて熱安定剤、滑
剤、可塑剤、顔料、充填材、加工助剤、改質剤等の添加
物を配合したm酸物を、スクリュー式押出機によって加
熱混練し、金型を通過させて成形する。なお塩素化塩化
ビニル樹脂は、目的に応して単独あるいはこれと相溶性
の良い樹脂(例えば塩化ビニル樹脂)との混合樹脂であ
ってもよい。
In the present invention, the chlorinated vinyl chloride resin pipe that becomes the inner layer pipe is made of chlorinated vinyl chloride resin with addition of heat stabilizers, lubricants, plasticizers, pigments, fillers, processing aids, modifiers, etc. according to the purpose. The m-acid compound is heated and kneaded using a screw extruder, and then passed through a mold to be molded. Note that the chlorinated vinyl chloride resin may be used alone or as a mixed resin with a resin having good compatibility with it (eg, vinyl chloride resin), depending on the purpose.

本発明において内層管の外周に巻回される繊維複合体は
、多数のフィラメントからなる補強繊維に、塩素化塩化
ビニル樹脂が含浸され、保持されてなるものである。繊
維複合体の厚さは、薄すぎると補強効果が充分でなく、
厚過ぎると巻回するのが困難となるので0.1〜2mm
の範囲、巾は5〜50皿のものが好適に用いられる。
In the present invention, the fiber composite wound around the outer periphery of the inner tube is made by reinforcing fibers made of a large number of filaments impregnated with chlorinated vinyl chloride resin and held therein. If the thickness of the fiber composite is too thin, the reinforcing effect will not be sufficient.
If it is too thick, it will be difficult to wind it, so 0.1 to 2 mm.
A range of 5 to 50 plates is preferably used.

本発明に使用される補強繊維としては、ガラス繊維、炭
素繊維、金属繊維等の無機繊維、アラミド繊維、ビニロ
ン繊維等の有機合成繊維等が挙げられ、直径1〜40μ
mのフィラメント数十〜数千本より構成されるロービン
グまたはヤーンから形成されたひも状、テープ状のもの
が一般的に使用される。
The reinforcing fibers used in the present invention include inorganic fibers such as glass fibers, carbon fibers, and metal fibers, and organic synthetic fibers such as aramid fibers and vinylon fibers, and have a diameter of 1 to 40 μm.
A string-like or tape-like material formed from a roving or yarn composed of tens to thousands of m filaments is generally used.

上記フィラメントに含浸される塩素化塩化ビニル樹脂は
、前記内層管の塩素化塩化ビニル樹脂よりも塩素含有率
が低く、従って内層管の樹脂よりも軟化温度および溶融
温度が低いものであれば特に制限されない。
The chlorinated vinyl chloride resin impregnated into the filament has a lower chlorine content than the chlorinated vinyl chloride resin of the inner tube, and therefore has a lower softening temperature and melting temperature than the resin of the inner tube. Not done.

補強繊維のフィラメントに塩素化塩化ビニル樹脂を含浸
させて繊維複合体を造るには、フィラメントからなるロ
ービングあるいはヤーン等のストランド状の補強繊維を
、 ■粉体状の塩素化塩化ビニル樹脂の流動床中を通過させ
て繊維に樹脂を付着させる、■粉体状の塩素化塩化ビニ
ル樹脂を分散した液体の槽中を通過させた後に乾燥する
、■溶融した塩素化塩化ビニル樹脂の槽中を通過させた
後乾燥し、そのまま繊維複合体とする、あるいは樹脂を
一旦加熱溶融させる、■更に、上記■■■で繊維に付着
した樹脂を、加熱ロールを通過させる等の方法で加熱加
圧して紐状あるいはテープ状に成形する、等の方法で行
うことができる。なお■■のままで使用することも可能
であるが、粉状の樹脂が繊維に「まふされている」状態
であり、脱落しやすいので■、もしくは■の方法によっ
て造ることが望ましい。
To make a fiber composite by impregnating reinforcing fiber filaments with chlorinated vinyl chloride resin, reinforcing fibers in the form of strands such as rovings or yarns made of filaments, ■ A fluidized bed of powdered chlorinated vinyl chloride resin. The resin is attached to the fibers by passing through it, ■ It is dried after passing through a liquid tank in which powdered chlorinated vinyl chloride resin is dispersed, ■ It is passed through a tank containing molten chlorinated vinyl chloride resin After drying, the fiber composite is made as it is, or the resin is once heated and melted.Furthermore, the resin attached to the fibers in the above step is heated and pressed by passing it through a heated roll, etc. to form a string. This can be done by forming it into a shape or a tape shape. Although it is possible to use it as it is, it is preferable to use the method (■) or (2) because the powdered resin is "muffed" by the fibers and easily falls off.

補強繊維の含有量、繊維複合体中に5〜80容量%とす
るのが好適である。補強繊維の量が5容量%未満では補
強効果が充分に得られ難く、80容量%を超えると内層
管の界面との融着が困難となる。なお、ここで言う融着
とは、双方の樹脂を溶融状態になるまで加熱し圧着した
ものが、冷却後にその界面から容易に切断されることの
ない状態を言う。
The content of reinforcing fibers in the fiber composite is preferably 5 to 80% by volume. If the amount of reinforcing fibers is less than 5% by volume, it is difficult to obtain a sufficient reinforcing effect, and if it exceeds 80% by volume, it becomes difficult to fuse with the interface of the inner layer pipe. Note that fusion as used herein refers to a state in which both resins are heated until they are in a molten state and are pressed together, and the two resins are not easily cut from the interface after cooling.

更に本発明の製造方法を図面によって説明する。Furthermore, the manufacturing method of the present invention will be explained with reference to the drawings.

第1図は、前記■のようにして形成したテープ状の繊維
複合体を用いて、本発明の繊維強化熱可塑性樹脂管を製
造するための製造装置の一例を示す概略説明図である。
FIG. 1 is a schematic explanatory diagram showing an example of a manufacturing apparatus for manufacturing the fiber-reinforced thermoplastic resin pipe of the present invention using the tape-shaped fiber composite formed as described in (2) above.

■は塩素化塩化ビニル樹脂を溶融混練して押出す押出機
である。押出機1の先端には、押出機1より押出した溶
融塩素化塩化ビニル樹脂を中空管状の内層管3に成形す
る金型2が取付けられ、金型2の前方には、金型2より
押出した内層管3の周囲を回転し、内層管3の外周にテ
ープ状の繊維複合体4を巻回する2組の巻回装置5,5
が設けられている。各巻回装置5,5上には繊維複合体
4を巻きつけたボビン状の巻出機5a、 5aがそれぞ
れ2個取り付けられていて、図示されていない駆動装置
により内層管3の周囲を回転し、各巻出機5a、 5a
からテープ状の繊維複合体4を巻き出して、内層管3の
外周にヘリカル状に巻回するように構成れている。なお
、2組の巻回装置5,5は互いに反対方向に回転するよ
うに構成されている。各巻回装置5の前方近傍には熱風
式加熱装置6.6が設けられていて、内層管3の外周に
巻回された繊維複合体4を加熱可能となされている。更
に前方には、内層管3の外周に繊維複合体4を2層に巻
回された管状体11の外周に、塩素化塩化ビニル樹脂を
被覆するためのクロスヘツド金型8が取り付けられた押
出機7、水槽等の冷却装置9、引取機10が設置されて
いる。
(2) is an extruder for melt-kneading and extruding chlorinated vinyl chloride resin. A mold 2 is attached to the tip of the extruder 1 to form the molten chlorinated vinyl chloride resin extruded from the extruder 1 into a hollow tubular inner tube 3. Two sets of winding devices 5, 5 rotate around the inner layer tube 3 and wind the tape-shaped fiber composite 4 around the outer circumference of the inner layer tube 3.
is provided. Two bobbin-shaped unwinding machines 5a, 5a for winding the fiber composite 4 are attached to each of the winding devices 5, 5, and are rotated around the inner layer tube 3 by a drive device (not shown). , each unwinding machine 5a, 5a
The tape-shaped fiber composite 4 is unwound from the inner tube 3 and wound helically around the outer periphery of the inner layer tube 3. Note that the two sets of winding devices 5, 5 are configured to rotate in mutually opposite directions. A hot air heating device 6.6 is provided near the front of each winding device 5, and is capable of heating the fiber composite 4 wound around the outer circumference of the inner tube 3. Further forward, there is an extruder equipped with a crosshead mold 8 for coating the outer periphery of a tubular body 11 in which the fiber composite 4 is wound in two layers around the outer periphery of the inner tube 3 with chlorinated vinyl chloride resin. 7, a cooling device 9 such as a water tank, and a collecting machine 10 are installed.

次に、上記装置を用いて本発明の繊維強化熱可塑性樹脂
管を製造する方法を説明する。
Next, a method for manufacturing the fiber-reinforced thermoplastic resin pipe of the present invention using the above-mentioned apparatus will be explained.

熱安定剤、滑剤、その他必要な添加物を加えた塩素化塩
化ビニル樹脂を押出機1で溶融混練し、金型2を通過さ
せて内層管3を押出成形する。
A chlorinated vinyl chloride resin to which a heat stabilizer, a lubricant, and other necessary additives have been added is melt-kneaded in an extruder 1 and passed through a mold 2 to form an inner pipe 3 by extrusion.

金型2から押出された内層管3の外周に、テープ状に形
成された繊維複合体4を第一の巻回装置5の巻出機5a
、 5aから巻き出して、隙間および重なりが発生しな
いようにヘリカル状に巻回し、熱風式加熱装置6により
熱風を繊維複合体4の周囲から噴射して繊維複合体4中
の塩素化塩化ビニル樹脂を加熱溶融し、内層管3と融着
させて、第一層目の補強層を形成する。続いて第二の巻
回装置5によって、第二層目の補強層を第−層と逆方向
にヘリカル状に巻回し、同様にして管状体11を成形す
る。このように、第一層目と第二層目の補強層を逆方向
に巻回することによって、同方向に巻回した場合に比べ
、管に応力が働いても繊維のズレが発生し難く、優れた
補強効果を発揮させることができる。
A tape-shaped fiber composite 4 is placed around the outer periphery of the inner tube 3 extruded from the mold 2 by an unwinding machine 5a of the first winding device 5.
, unrolled from 5a, wound in a helical shape so as to avoid gaps and overlaps, and sprayed hot air from around the fiber composite 4 using a hot air heating device 6 to dissolve the chlorinated vinyl chloride resin in the fiber composite 4. is heated and melted and fused to the inner layer tube 3 to form the first reinforcing layer. Subsequently, the second reinforcing layer is helically wound in the opposite direction to the second layer by the second winding device 5, and the tubular body 11 is formed in the same manner. In this way, by winding the first and second reinforcing layers in opposite directions, the fibers are less likely to shift even when stress is applied to the tube, compared to when they are wound in the same direction. , can exhibit excellent reinforcing effects.

内層管に繊維複合体を巻回、融着し、補強層を形成する
方法としては、円周方向に巻回する方法が簡単且つ合理
的であるが、管軸方向の強度、寸法精度が要求される場
合は、繊維複合体を管軸方向に沿って囲繞した状態で融
着してもよい。
As a method of winding and fusing the fiber composite around the inner layer pipe to form a reinforcing layer, winding it in the circumferential direction is simple and reasonable, but strength and dimensional accuracy in the pipe axis direction are required. In this case, the fiber composite may be fused while being surrounded along the tube axis direction.

なお、内層管3の外周に繊維複合体4を巻回、融着する
際、内層管3が変形するのを防止するためには、金型2
の押出方向に突出する延長コアを設け、この延長コア上
で繊維複合体4を巻回する、あるいは、金型2の先端よ
り内層管3の内部に冷却用の空気を吹き込み、内層管3
の内面を冷却しつつ繊維複合体4を巻回する等の変形防
止対策を講してもよい。
In addition, when winding and fusing the fiber composite 4 around the outer circumference of the inner layer tube 3, in order to prevent the inner layer tube 3 from being deformed, the mold 2 must be
An extension core protruding in the extrusion direction is provided, and the fiber composite 4 is wound on this extension core, or cooling air is blown into the inner layer tube 3 from the tip of the mold 2, and the inner layer tube 3 is
Measures to prevent deformation may be taken, such as winding the fiber composite 4 while cooling the inner surface of the fiber composite.

続いて管状体11を、押出機7に取り付けられたクロス
ヘツド金型8を通過させて、管状体11の外周に押出機
7によって加熱混練された塩素化塩化ビニル樹脂を被覆
して外層を形威し、冷却装置9で冷却し、引取機10で
引き取って繊維強化熱可塑性樹脂管12を得る。
Next, the tubular body 11 is passed through a crosshead mold 8 attached to an extruder 7, and the outer periphery of the tubular body 11 is coated with chlorinated vinyl chloride resin heated and kneaded by the extruder 7 to form an outer layer. Then, it is cooled by a cooling device 9 and taken by a taking machine 10 to obtain a fiber-reinforced thermoplastic resin pipe 12.

第2図は、本発明の繊維強化熱可塑性樹脂管を製造する
ための製造装置の他の例を示す概略説明図である。上記
第1図に示す繊維強化熱可塑性樹脂管の製造方法は、テ
ープ状の繊維複合体を用いるものであるが、第2図の製
造方法は、ロービングまたはヤーン等のストランド状の
繊維複合体を用いるものである。
FIG. 2 is a schematic explanatory diagram showing another example of the manufacturing apparatus for manufacturing the fiber-reinforced thermoplastic resin pipe of the present invention. The manufacturing method of the fiber-reinforced thermoplastic resin pipe shown in Figure 1 above uses a tape-shaped fiber composite, but the manufacturing method shown in Figure 2 uses a strand-shaped fiber composite such as roving or yarn. It is used.

第2図において、第1図と共通する設備については、同
一符号を付して説明を省略する。
In FIG. 2, the same equipment as in FIG. 1 is given the same reference numerals and the explanation thereof will be omitted.

第2図において、14はロービング状の繊維複合体13
を内層管3の周囲管軸方向に供給する巻出装置で、その
上には、繊維複合体13を巻きつけた複数のボビン状の
巻出機14a 、 14a  ・・・が取りつけられて
いて、繊維複合体13を、金型から押出される内層管3
上に供給する。15は巻出装置14のすぐ次に設置され
、繊維複合体13を加熱するための鼓形の加熱ロール、
16は繊維複合体13を内層管3の周囲に円周方向に巻
回する巻回装置で、その上には、同しく繊維複合体13
を巻きつけた複数のボビン状の巻出機16a 、 16
a ・・・が取りつけられていて、図示されていない駆
動装置によって内層管3の周囲を回転し、各巻出機16
a 、 16a  ・・・から繊維複合体13を巻き出
して、内層管3の外周に巻回するようになされている。
In FIG. 2, 14 is a roving-like fiber composite 13.
A plurality of bobbin-shaped unwinders 14a, 14a, . . . are installed on which the fiber composite 13 is wound. The fiber composite 13 is extruded from the inner layer tube 3 from the mold.
feed on top. 15 is a drum-shaped heating roll installed immediately after the unwinding device 14 for heating the fiber composite 13;
16 is a winding device for winding the fiber composite 13 around the inner layer tube 3 in the circumferential direction;
A plurality of bobbin-shaped unwinding machines 16a, 16 wound with
a ... are attached and rotate around the inner layer tube 3 by a drive device (not shown), and each unwinder 16
The fiber composite 13 is unwound from a, 16a, . . . and wound around the outer circumference of the inner layer tube 3.

上記第2図の装置を用いて本発明の繊維強化熱可塑性樹
脂管を製造する方法について説明する。
A method for manufacturing the fiber-reinforced thermoplastic resin pipe of the present invention using the apparatus shown in FIG. 2 will be described.

第1図の場合と同様にして押出成形した内層管3の周囲
管軸方向に、巻出装置14から巻き出したロービング状
等の繊維複合体13を供給し、続いて鼓形の加熱ロール
15を通して繊維複合体13と内層管3の外面とを加熱
融着させる。次に巻回装置16から繊維複合体13を巻
き出して、管軸方向に補強された内層管3上に、円周方
向に繊維複合体13を巻回し、熱風式加熱装置6によっ
て該繊維複合体13を加熱溶融させて、管状体17を得
る。更に、第1図の場合と同様にして管状体17の外周
に外層を形威し、繊維強化熱可塑性樹脂管18を得る。
A roving-like fiber composite 13 unwound from an unwinding device 14 is supplied to the circumferential tube axis direction of the inner layer tube 3 extruded in the same manner as in the case shown in FIG. The fiber composite 13 and the outer surface of the inner tube 3 are heated and fused together through the fiber composite 13 and the outer surface of the inner tube 3. Next, the fiber composite 13 is unwound from the winding device 16 and wound in the circumferential direction on the inner layer tube 3 reinforced in the tube axis direction. The body 13 is heated and melted to obtain a tubular body 17. Furthermore, an outer layer is formed around the outer periphery of the tubular body 17 in the same manner as in the case of FIG. 1 to obtain a fiber-reinforced thermoplastic resin tube 18.

巻回した繊維複合体を内層管に融着する方法としては、
金型より押出された直後の高温の内層管に、繊維複合体
を速やかに巻回して融着させてもよいし、あるいは、−
旦内層管を冷却し、その外面および繊維複合体を同時あ
るいは別個に、樹脂が溶融する程度に熱風、赤外線ヒー
ター等で加熱した後に、繊維複合体を内層管の周囲に巻
回、融着させてもよい。内層管の加熱に当たっては、そ
の外面のみが溶融し、管肉内部までは溶融しないように
、短時間に急速に行うことが好ましい。
The method for fusing the wound fiber composite to the inner layer pipe is as follows:
The fiber composite may be quickly wound and fused to the high-temperature inner layer tube immediately after being extruded from the mold, or -
First, the inner layer tube is cooled, and the outer surface and the fiber composite are heated simultaneously or separately with hot air, an infrared heater, etc. to the extent that the resin melts, and then the fiber composite is wound around the inner layer tube and fused. You can. When heating the inner layer tube, it is preferable to heat the inner layer tube rapidly in a short period of time so that only the outer surface thereof is melted and the inside of the tube wall is not melted.

また、上記第1図は、繊維複合体4による円周方向の補
強層が2層と、更にその上に塩素化塩化ビニル樹脂の外
層が1層の例、第2図は、繊維複合体13による管軸方
向の補強層が1層、円周方向の補強層が1層、更にその
上に塩素化塩化ビニル樹脂の外層が1層の例を示したが
、各層の数は特にこれらに限定されることはなく、用途
、要求される強度等に応して適宜決定することができる
Further, FIG. 1 shows an example in which there are two reinforcing layers in the circumferential direction of the fiber composite 4, and one outer layer of chlorinated vinyl chloride resin on top of that, and FIG. 2 shows an example in which the fiber composite 13 An example is shown in which there is one reinforcing layer in the tube axis direction, one reinforcing layer in the circumferential direction, and one outer layer of chlorinated vinyl chloride resin on top of that, but the number of each layer is particularly limited to these. It can be determined as appropriate depending on the application, required strength, etc.

上記の繊維強化熱可塑性樹脂管の製造方法においては、
別ラインでフィラメント間に塩素化塩化ビニル樹脂を含
浸させ、ボビン状の巻出機に巻き取って繊維複合体を製
造する繊維強化熱可塑性樹脂管の製造方法について述べ
たが、また更に、繊維複合体を形威しながら内層管の周
囲に連続的に巻回もしくは巻出し、融着させて補強層を
形威する製造方法であってもよい。
In the above method for manufacturing a fiber-reinforced thermoplastic resin pipe,
We have described a method for producing fiber reinforced thermoplastic resin pipes in which filaments are impregnated with chlorinated vinyl chloride resin between the filaments on a separate line, and wound up on a bobbin-shaped unwinding machine to produce a fiber composite. A manufacturing method may be used in which the reinforcing layer is continuously wound or unwound around the inner tube while maintaining its shape, and is fused to form the reinforcing layer.

〔作用] 加熱溶融した塩素化塩化ビニル樹脂を押出機から金型を
経て押出す等により内層管を成形し、巻回装置もしくは
巻出装置に設置された巻出機から繊維複合体を巻出して
繊維複合体を巻回しもしくは囲繞して、内層管および繊
維複合体を熱風式加熱装置により内層管の表面温度が繊
維複合体を構成する樹脂を融着可能な程度まで加熱し融
着させる。塩素化塩化ビニル樹脂はその塩素含有率、従
って塩素化度が高いほど熱変形温度、溶融温度が高くな
るという性質を有している。このため、繊維複合体中に
含浸させる塩素化塩化ビニル樹脂の塩素含有率を内層管
を構成する塩素化塩化ビニル樹脂の塩素含有率よりも低
くすることによって、内層管の融点あるいは熱変形温度
より低い表面温度であっても、繊維複合体中の塩素化塩
化ビニル樹脂が溶融し、繊維複合体と内層管を強固に融
着させることができる。
[Function] The inner layer tube is formed by extruding heated and melted chlorinated vinyl chloride resin from an extruder through a mold, and the fiber composite is unrolled from a winding device or an unwinding machine installed in an unwinding device. The inner layer tube and the fiber composite are heated and fused using a hot air heating device until the surface temperature of the inner layer tube is high enough to fuse the resin constituting the fiber composite. Chlorinated vinyl chloride resin has the property that the higher its chlorine content, and thus the degree of chlorination, the higher its heat distortion temperature and melting temperature. For this reason, by making the chlorine content of the chlorinated vinyl chloride resin impregnated into the fiber composite lower than the chlorine content of the chlorinated vinyl chloride resin constituting the inner layer pipe, it is possible to Even at a low surface temperature, the chlorinated vinyl chloride resin in the fiber composite melts, making it possible to firmly fuse the fiber composite and the inner pipe.

〔実施例] 本発明の実施例を、図面を参照しながら説明する。〔Example] Embodiments of the present invention will be described with reference to the drawings.

尖施閣上(第1図参照) 押出機1で、熱安定剤、滑剤等を配合した塩素含有率6
8重量%の塩素化塩化ビニル樹脂を溶融混練し、温度約
200″Cに熱した金型2によって内径23mm、肉厚
約3閣の内層管3を押出成形後、その外表面温度が下が
らないように熱風式加熱装置6で加熱しながら、巻回装
置5により第1層目の繊維複合体4をヘリカル状に巻回
、融着させ、次いで同様にして、第2N目の繊維複合体
4を、第1層目と逆方向にヘリカル状に巻回、融着させ
て、管状体11とした。
On Senshikaku (see Figure 1) In extruder 1, the chlorine content 6 is mixed with heat stabilizers, lubricants, etc.
After melting and kneading 8% by weight of chlorinated vinyl chloride resin and extruding an inner layer pipe 3 with an inner diameter of 23 mm and a wall thickness of about 3 mm using a mold 2 heated to a temperature of about 200"C, the outer surface temperature does not drop. While heating with the hot air heating device 6, the first layer fiber composite 4 is helically wound and fused using the winding device 5, and then in the same manner, the second N-th fiber composite 4 is formed. was helically wound in the opposite direction to the first layer and fused to form a tubular body 11.

用いた繊維複合体4は、厚さ約0.5mm、巾約20m
mのテープ状で、ガラス繊維のロービングを開繊した後
、繊維間に塩素含有率62重量%の塩素化塩化ビニル樹
脂をよく含浸させて成形した。
The fiber composite 4 used had a thickness of about 0.5 mm and a width of about 20 m.
After opening a glass fiber roving, a chlorinated vinyl chloride resin having a chlorine content of 62% by weight was thoroughly impregnated between the fibers to form a tape shape of 500 m in diameter.

繊維複合体4中のガラス繊維量は30容量%であった。The amount of glass fiber in the fiber composite 4 was 30% by volume.

次いで管状体11をクロスヘツド金型8を通過させて、
押出機7で溶融混練して押出した塩素化塩化ビニル樹脂
を管状体11の外周に被覆して外層を形成し、冷却装置
9で冷却して引取機10で引き取り、所定の長さに切断
して繊維強化熱可塑性樹脂管12を得た。
Next, the tubular body 11 is passed through a crosshead mold 8,
Chlorinated vinyl chloride resin melted and kneaded and extruded by an extruder 7 is coated on the outer periphery of the tubular body 11 to form an outer layer, cooled by a cooling device 9, taken out by a take-off machine 10, and cut into a predetermined length. A fiber-reinforced thermoplastic resin pipe 12 was obtained.

以上のようにして得られた3層構造の繊維強化熱可塑性
樹脂管12は、眉間の接着性が良好で、管内面の変形は
ほとんどなかった。
The fiber-reinforced thermoplastic resin tube 12 with the three-layer structure obtained as described above had good adhesion between the eyebrows, and there was almost no deformation of the inner surface of the tube.

まあ七1(第2図参照) 塩素含有率67重量%の塩素化塩化ビニル樹脂を用い、
実施例1と同し押出機、金型を用いて、同寸法の内層管
3を押出成形後、内層管3の周囲に、繊維複合体13を
巻出装置t 14から巻き出し、予熱して管軸方向に配
置し、鼓形の加熱ロール15で内層管3に押圧、融着さ
せ、次いで熱風式加熱装置6により管表面を加熱しなが
ら巻回装置16により繊維複合体13を管の外周に巻回
、融着させて、管状体17とした。
Well Seventy-One (see Figure 2) Using chlorinated vinyl chloride resin with a chlorine content of 67% by weight,
After extruding an inner layer tube 3 of the same size using the same extruder and mold as in Example 1, the fiber composite 13 was unwound from the unwinding device t14 around the inner layer tube 3, and was preheated. The fiber composite 13 is placed in the tube axis direction, and is pressed and fused to the inner layer tube 3 with a drum-shaped heating roll 15. Then, while the tube surface is heated with a hot air heating device 6, the fiber composite 13 is wrapped around the outer circumference of the tube with a winding device 16. The tubular body 17 was obtained by winding and fusion-bonding the tubular body 17.

用いた繊維複合体15は、直径約0.5mmのひも状で
、ガラス繊維のロービングを開繊した後、繊維間に、塩
素含有率64重量%の塩素化塩化ビニル樹脂と塩素含有
率57重量%の塩素化塩化ビニル樹脂の10:1の混合
物をよく含浸させて成形した。繊維複合体15中のガラ
ス繊維量は25容量%であった。
The fiber composite 15 used was in the form of a string with a diameter of about 0.5 mm, and after opening a glass fiber roving, a chlorinated vinyl chloride resin with a chlorine content of 64% by weight and a chlorinated vinyl chloride resin with a chlorine content of 57% by weight were placed between the fibers. % chlorinated vinyl chloride resin and molded. The amount of glass fiber in the fiber composite 15 was 25% by volume.

次いで実施例1と同様の方法によて、管状体17の外周
に塩素化塩化ビニル樹脂を被覆して外層を形威し、繊維
強化熱可塑性樹脂管18を得た。
Next, in the same manner as in Example 1, the outer periphery of the tubular body 17 was coated with chlorinated vinyl chloride resin to form an outer layer, thereby obtaining a fiber-reinforced thermoplastic resin tube 18.

以上のようにして得られた3層構造の繊維強化熱可塑性
樹脂管19は、層間の接着性が良好で、管内面の変形は
ほとんどなかった。
The fiber-reinforced thermoplastic resin pipe 19 with the three-layer structure obtained as described above had good adhesion between the layers, and there was almost no deformation on the inner surface of the pipe.

〔発明の効果] 本発明は上記のように構成されているので、塩素化塩化
ビニル樹脂製の内層管と繊維複合体との融着が良好で繊
維補強効果に優れ、且つ寸法精度の高い繊維強化熱可塑
性樹脂管を得ることができる。
[Effects of the Invention] Since the present invention is configured as described above, the inner pipe made of chlorinated vinyl chloride resin and the fiber composite are well fused together, the fiber reinforcement effect is excellent, and the fibers have high dimensional accuracy. A reinforced thermoplastic tube can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の繊維強化熱可塑性樹脂管の製造装置の
一例を示す概略説明図、第2図は本発明の繊維強化熱可
塑性樹脂管の製造装置の他の例を示す概略説明図である
。 1.7・・・押出機、   2・・・金型、3・・・内
層管、    4,13・・・繊維複合体、5.16・
・・巻回装置、  6・・・熱風式加熱装置、8・・・
クロスヘツド金型、9・・・冷却装置10・・・引取機
、   11.17・・・管状体、12、18・・・繊
維強化熱可塑性樹脂管、14・・・巻出装置、    
15・・・加熱ロール。
FIG. 1 is a schematic explanatory diagram showing an example of the fiber-reinforced thermoplastic resin pipe manufacturing apparatus of the present invention, and FIG. 2 is a schematic explanatory diagram showing another example of the fiber-reinforced thermoplastic resin pipe manufacturing apparatus of the present invention. be. 1.7... Extruder, 2... Mold, 3... Inner layer tube, 4,13... Fiber composite, 5.16.
... Winding device, 6... Hot air heating device, 8...
Crosshead mold, 9... Cooling device 10... Taking machine, 11.17... Tubular body, 12, 18... Fiber reinforced thermoplastic resin tube, 14... Unwinding device,
15... Heating roll.

Claims (1)

【特許請求の範囲】[Claims] (1)熱可塑性樹脂を押出して内層管を成形し、該内層
管の外面に多数のフィラメントよりなる補強繊維に熱可
塑性樹脂が保持されてなる繊維複合体を巻回あるいは囲
繞して融着せしめる繊維強化熱可塑性樹脂管の製造方法
において、前記内層管を塩素化塩化ビニル樹脂を用いて
成形し、前記繊維複合体を構成する熱可塑性樹脂として
、前記内層管を形成する塩素化塩化ビニル樹脂よりも塩
素含有率が低い塩素化塩化ビニル樹脂を用いることを特
徴とする繊維強化熱可塑性樹脂管の製造方法。
(1) A thermoplastic resin is extruded to form an inner layer tube, and a fiber composite in which the thermoplastic resin is held by reinforcing fibers made of a large number of filaments is wound or surrounded and fused on the outer surface of the inner layer tube. In the method for manufacturing a fiber-reinforced thermoplastic resin pipe, the inner layer pipe is molded using a chlorinated vinyl chloride resin, and the thermoplastic resin constituting the fiber composite is made of a chlorinated vinyl chloride resin that forms the inner layer pipe. A method for producing a fiber-reinforced thermoplastic resin pipe, characterized in that a chlorinated vinyl chloride resin having a low chlorine content is used.
JP2040408A 1990-02-20 1990-02-20 Method for producing fiber reinforced thermoplastic resin pipe Expired - Lifetime JPH074875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2040408A JPH074875B2 (en) 1990-02-20 1990-02-20 Method for producing fiber reinforced thermoplastic resin pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2040408A JPH074875B2 (en) 1990-02-20 1990-02-20 Method for producing fiber reinforced thermoplastic resin pipe

Publications (2)

Publication Number Publication Date
JPH03243333A true JPH03243333A (en) 1991-10-30
JPH074875B2 JPH074875B2 (en) 1995-01-25

Family

ID=12579838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2040408A Expired - Lifetime JPH074875B2 (en) 1990-02-20 1990-02-20 Method for producing fiber reinforced thermoplastic resin pipe

Country Status (1)

Country Link
JP (1) JPH074875B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000022334A1 (en) * 1998-10-09 2000-04-20 Sekisui Chemical Co., Ltd. Composite high-pressure pipe and method of joining same
JP2000220771A (en) * 1999-01-29 2000-08-08 Teleflex Fluid Systems Inc Hose assembly and manufacture thereof
FR2873952A1 (en) * 2004-08-06 2006-02-10 Fibres Et Carbone Sa Soc D REINFORCED ELONGATED ELEMENTS SUCH AS TUBES, METHOD AND APPARATUS FOR MANUFACTURING
GB2446506A (en) * 2007-02-06 2008-08-13 Fibres De Carbone Soc D Fabricating elongate reinforced elements
JP2009505866A (en) * 2005-08-24 2009-02-12 ウォルター ダブリュー. クセック Method for producing reinforced PVC plastisol resin and product prepared thereby
JP2009214551A (en) * 2002-06-20 2009-09-24 Rocky Mountain Composites Inc Method for manufacturing resin impregnated multi orientation composite material
JP2011115983A (en) * 2009-12-01 2011-06-16 Ube Nitto Kasei Co Ltd Filament winding method, method for manufacturing fiber-reinforced plastic long object, and filament winding device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7094310B2 (en) 1998-10-09 2006-08-22 Sekisui Chemical Co., Ltd. Method for joining high-pressure composite pipes
US6629547B1 (en) * 1998-10-09 2003-10-07 Sekisui Chemical Co., Ltd. Composite high-pressure pipe and method of joining same
WO2000022334A1 (en) * 1998-10-09 2000-04-20 Sekisui Chemical Co., Ltd. Composite high-pressure pipe and method of joining same
JP2000220771A (en) * 1999-01-29 2000-08-08 Teleflex Fluid Systems Inc Hose assembly and manufacture thereof
JP2009214551A (en) * 2002-06-20 2009-09-24 Rocky Mountain Composites Inc Method for manufacturing resin impregnated multi orientation composite material
GB2431134A (en) * 2004-08-06 2007-04-18 Fibres De Carbone Soc D Reinforced elongated elements, such as tubes, method and device for producing same and use thereof
WO2006021711A1 (en) 2004-08-06 2006-03-02 Societe Des Fibres De Carbone Reinforced elongated elements, such as tubes, method and device for producing same and use thereof
GB2431134B (en) * 2004-08-06 2009-05-06 Fibres De Carbone Soc D Reinforced elongated elements, such as tubes, method and device for producing same and use thereof
FR2873952A1 (en) * 2004-08-06 2006-02-10 Fibres Et Carbone Sa Soc D REINFORCED ELONGATED ELEMENTS SUCH AS TUBES, METHOD AND APPARATUS FOR MANUFACTURING
JP2009505866A (en) * 2005-08-24 2009-02-12 ウォルター ダブリュー. クセック Method for producing reinforced PVC plastisol resin and product prepared thereby
GB2446506A (en) * 2007-02-06 2008-08-13 Fibres De Carbone Soc D Fabricating elongate reinforced elements
GB2446506B (en) * 2007-02-06 2010-03-24 Fibres De Carbone Soc D Reinforced elongate elements such as tubes, a fabrication method and apparatus
JP2011115983A (en) * 2009-12-01 2011-06-16 Ube Nitto Kasei Co Ltd Filament winding method, method for manufacturing fiber-reinforced plastic long object, and filament winding device

Also Published As

Publication number Publication date
JPH074875B2 (en) 1995-01-25

Similar Documents

Publication Publication Date Title
JPH06182882A (en) Structural member made of fiber-reinforced thermoplastic material and its production
US3969170A (en) Method for making a thermoplastic sleeve to be used as coupler fitting for tubes
JPH03243333A (en) Manufacture of fiber-reinforced thermoplastic resin pipe
JPH0911355A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JP2674844B2 (en) Manufacturing method of fiber reinforced resin pipe
JPH044132A (en) Manufacture of fiber-reinforced thermoplastic resin pipe
JPH03149485A (en) Multiple-unit tube
JPH0531782A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JP2726123B2 (en) Manufacturing method of fiber reinforced resin pipe
JPH0460292A (en) Manufacture of fiber reinforced resin pipe
JPH0735270A (en) Manufacture of fiber reinforced thermoplastic resin pipe
JPH03157591A (en) Composite tube and manufacture thereof
JPH07256779A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH0584847A (en) Production of fiber reinforced thermoplastic resin pipe
JPH02165930A (en) Manufacture of fiber reinforced thermoplastic resin pipe
JPH07290591A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH07144372A (en) Manufacture of fiber reinforced thermoplastic resin composite pipe
JPH03146326A (en) Manufacture of fiber-reinforced thermoplastic resin pipe
JPH06143273A (en) Molding material and filament winding molded product
JPH0852814A (en) Composite article and its production
JPH08174704A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH048983A (en) Manufacture of fiber reinforced thermoplastic resin pipe
JP3214892B2 (en) Method for producing hollow cross-section shaped body
JPH04201547A (en) Manufacture of fiber reinforced resin pipe
JPH07266436A (en) Manufacture of fiber reinforced thermoplastic resin composite tube