JPH09111012A - Production of composite material - Google Patents

Production of composite material

Info

Publication number
JPH09111012A
JPH09111012A JP26530795A JP26530795A JPH09111012A JP H09111012 A JPH09111012 A JP H09111012A JP 26530795 A JP26530795 A JP 26530795A JP 26530795 A JP26530795 A JP 26530795A JP H09111012 A JPH09111012 A JP H09111012A
Authority
JP
Japan
Prior art keywords
reinforcing material
inorganic particles
weight
composite material
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26530795A
Other languages
Japanese (ja)
Inventor
Akiyoshi Nozue
明義 野末
Hiroki Tamiya
裕記 田宮
Kiyotaka Komori
清孝 古森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP26530795A priority Critical patent/JPH09111012A/en
Publication of JPH09111012A publication Critical patent/JPH09111012A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers

Landscapes

  • Reinforced Plastic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a composite material having high insulation resistance and excellent soldering heat-resistance after moisture-absorption treatment by dispersing inorganic particles having an average particle diameter of <=1,000nm in a reinforcing material, impregnating a varnish containing an addition-type polyimide resin into the material, drying the product and forming the obtained prepreg. SOLUTION: A reinforcing material containing 1-30 pts.wt. (based on 100 pts.wt. of the reinforcing material) of inorganic particles having an average particle diameter of <=1,000nm is surface-treated, before impregnating a varnish, with a surface-treating agent containing an N-phenyl-γ-aminopropylsilane coupling agent expressed by the formula C6 H5 -NH-C3 H6 SiX3 (X is OCH3 , OC2 H5 , OC3 H7 or Cl).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、補強材に付加型ポ
リイミド樹脂含有ワニスを含浸し、次いで乾燥して得ら
れるプリプレグを成形して製造される複合材料の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a composite material produced by impregnating a reinforcing material with a varnish containing an addition type polyimide resin and then drying the resulting prepreg.

【0002】[0002]

【従来の技術】電子機器に使用される材料の最近の動向
として、小型化、軽量化と同時に、高速化、高密度化も
実現しようとする試みがある。その目的達成のための一
つの手段として、リードレスチップキャリア(LCC)
の表面実装技術(SMT)が挙げられる。例えばアルミ
ナのLCCをプリント回路基板に直接実装する場合、ア
ルミナとプリント回路基板との熱膨張係数が異なると、
接合部の半田に熱履歴によって亀裂が生じる。そのた
め、直接実装をする場合には、プリント回路基板の熱膨
張係数をLCCの熱膨張係数(アルミナの場合7ppm
/℃)にできるだけ近づけることが望ましい。さらに、
シリコンのベアチップをリードレスで直接実装しようと
する試みもあるが、そのためには、プリント回路基板の
熱膨張係数をシリコンの熱膨張係数(3〜4ppm/
℃)にできるだけ近づけることが望ましい。
2. Description of the Related Art As a recent trend of materials used for electronic devices, there is an attempt to realize high speed and high density as well as miniaturization and weight reduction. Leadless chip carrier (LCC) is one of the means to achieve the purpose.
Surface mounting technology (SMT) of the. For example, when the LCC of alumina is directly mounted on the printed circuit board, if the thermal expansion coefficients of the alumina and the printed circuit board are different,
Cracks occur in the solder at the joint due to thermal history. Therefore, in the case of direct mounting, the thermal expansion coefficient of the printed circuit board should be the same as that of the LCC (7 ppm for alumina).
/ ° C) is desirable. further,
There have also been attempts to directly mount bare silicon chips in leadless fashion. For that purpose, the thermal expansion coefficient of the printed circuit board must be the same as that of silicon (3-4 ppm /
(° C) is desirable.

【0003】本発明者らは、プリント回路基板の熱膨張
係数を小さくするための手段として、特願平6−108
816号において、モノフィラメントが集束されてなる
ストランドからなる補強材により樹脂が強化されてなる
複合材料であって、ストランドに平均粒径1000nm
以下の無機粒子が補強材100重量部に対して1重量部
以上の割合で含まれている低熱膨張複合材料を提案して
いる。しかし、この複合材料では、PCT処理等の吸湿
処理後に半田試験を行うとふくれが生じる場合があるこ
とが判明した。この理由の一つは、ストランド中に無機
粒子を含ませたことにより、ストランド中に樹脂が侵入
しにくい隙間ができ、ポア(小さな空洞)が生じるため
と考えられる。そこで、本発明者らは、含浸方法や成形
方法を改良することにより、ポアがなく、吸湿処理後の
半田耐熱性に優れた複合材料を製造できることを見出
し、特願平7−151850号及び特願平7−1518
69号として新たな製造方法を提案している。しかし、
さらに検討を進めると、このような含浸方法や成形方法
を改良した場合でも、無機粒子を含む補強材の表面処理
の方法によっては、得られる複合材料の吸湿処理後の絶
縁抵抗や、吸湿処理後の半田耐熱性に問題が生じる場合
があることが明らかになった。
As a means for reducing the coefficient of thermal expansion of a printed circuit board, the inventors of the present invention have filed Japanese Patent Application No. 6-108.
No. 816 is a composite material in which a resin is reinforced by a reinforcing material composed of strands formed by bundling monofilaments, and the strands have an average particle diameter of 1000 nm.
A low thermal expansion composite material containing the following inorganic particles in a proportion of 1 part by weight or more based on 100 parts by weight of the reinforcing material is proposed. However, in this composite material, it was found that swelling may occur when a solder test is performed after moisture absorption treatment such as PCT treatment. One of the reasons for this is considered to be that the inclusion of the inorganic particles in the strands creates a gap in the strands where the resin is less likely to enter, resulting in pores (small cavities). Therefore, the present inventors have found that by improving the impregnation method and the molding method, it is possible to produce a composite material having no pores and excellent solder heat resistance after moisture absorption treatment, and Japanese Patent Application No. 7-151850 and Wishhei 7-1518
No. 69 proposes a new manufacturing method. But,
Further investigation, even if such an impregnation method or a molding method is improved, depending on the method of surface treatment of the reinforcing material containing inorganic particles, insulation resistance after moisture absorption treatment of the obtained composite material or after moisture absorption treatment It has become clear that there may be a problem in solder heat resistance.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記の事情
に鑑みてなされたものであって、その目的とするところ
は、モノフィラメントが集束されてなるストランドから
なる補強材に、平均粒径1000nm以下の無機粒子を
含ませた後、前記補強材に付加型ポリイミド樹脂含有ワ
ニスを含浸し、次いで乾燥して得られるプリプレグを成
形して製造する複合材料の製造方法であって、吸湿処理
後の絶縁抵抗及び吸湿処理後の半田耐熱性が優れている
複合材料を得ることのできる方法を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a reinforcing material composed of strands formed by bundling monofilaments with an average particle diameter of 1000 nm. After containing the following inorganic particles, the reinforcing material is impregnated with an addition-type polyimide resin-containing varnish, and then a method for manufacturing a composite material which is manufactured by molding a prepreg obtained by drying, after a moisture absorption treatment. It is intended to provide a method capable of obtaining a composite material having excellent insulation resistance and solder heat resistance after moisture absorption treatment.

【0005】[0005]

【課題を解決するための手段】請求項1に係る発明の複
合材料の製造方法は、モノフィラメントが集束されてな
るストランドからなる補強材に、平均粒径1000nm
以下の無機粒子を前記補強材100重量部に対して1〜
30重量部の割合で含ませ、次いでこの無機粒子を含む
補強材に付加型ポリイミド樹脂含有ワニスを含浸、乾燥
してプリプレグを得、次いでこのプリプレグを成形して
複合材料を製造する複合材料の製造方法において、ワニ
スを含浸する前の無機粒子を含む補強材が下記式で表
されるN−フェニル−γ−アミノプロピルシランカップ
リング剤を含む表面処理剤を使用して、表面処理されて
いるとを特徴とする。
According to a first aspect of the present invention, there is provided a method for producing a composite material, wherein a reinforcing material composed of strands formed by bundling monofilaments has an average particle diameter of 1000 nm.
1 to 100 parts by weight of the following inorganic particles
30 parts by weight, then the reinforcing material containing the inorganic particles is impregnated with a varnish containing an addition type polyimide resin, dried to obtain a prepreg, and then the prepreg is molded to produce a composite material. In the method, the reinforcing material containing the inorganic particles before being impregnated with the varnish is surface-treated using a surface-treating agent containing an N-phenyl-γ-aminopropylsilane coupling agent represented by the following formula. Is characterized by.

【0006】 C6 5 −NH−C3 6 SiX3 −−− (XはOCH3 、OC2 5 、OC3 7 又はClを表
す。)請求項2に係る発明の複合材料の製造方法は、請
求項1記載の製造方法において、無機粒子を含む補強材
の表面処理を、補強材への表面処理剤の付着量が、表面
処理後の無機粒子を含む補強材100重量部に対し、
0.05〜1.0重量部となるように施すことを特徴と
する。
C 6 H 5 --NH--C 3 H 6 SiX 3 ---- (X represents OCH 3 , OC 2 H 5 , OC 3 H 7 or Cl.) A composite material according to claim 2 The manufacturing method is the manufacturing method according to claim 1, wherein the surface treatment of the reinforcing material containing inorganic particles is performed such that the amount of the surface treatment agent adhered to the reinforcing material is 100 parts by weight of the reinforcing material containing inorganic particles after the surface treatment. In contrast,
It is characterized in that it is applied in an amount of 0.05 to 1.0 part by weight.

【0007】請求項3に係る発明の複合材料の製造方法
は、請求項1又は請求項2記載の製造方法において、補
強材がガラスクロスであり、平均粒径1000nm以下
の無機粒子の材質がシリカであることを特徴とする。
According to a third aspect of the present invention, in the method for producing a composite material according to the first or second aspect, the reinforcing material is glass cloth, and the material of the inorganic particles having an average particle diameter of 1000 nm or less is silica. Is characterized in that.

【0008】[0008]

【発明の実施の形態】本発明における補強材としては、
モノフィラメントが集束されてなるストランドからなる
ものが用いられる。モノフィラメントとしては、低熱膨
張のものが好ましいが、特に限定はされない。モノフィ
ラメントの素材は、特に限定するものではないが、ガラ
ス(例えば、Eガラス、Dガラス、Qガラス、Sガラ
ス、Tガラス等)やアラミド樹脂の1種又は複数種であ
ることが好ましい。ストランドの長さについては、長繊
維で用いてもよいし、短繊維で用いてもよい。補強材の
形態としては、低熱膨張の観点から、樹脂含有量ができ
るだけ少なくてすむような形態が好ましい。このような
形態の補強材としては、特に限定はされないが、マッ
ト、シート、クロス(例えば、平織、ななこ織等の織り
方がある)及びこれらの複合物等の繊維成形体等が例示
される。上に挙げた補強材の中でも、ガラスクロスが特
に好ましい。その理由は、クロス形状は緻密であるため
樹脂含有量を低くできることや、フィラメントの連続性
が高いことにより、複合材料の低熱膨張化に有効だから
である。また、ガラスが好ましいのは、安価で、かつ、
安定に長繊維を得ることができるからである。
BEST MODE FOR CARRYING OUT THE INVENTION As the reinforcing material in the present invention,
The thing which consists of the strand which a monofilament bundled is used. The monofilament preferably has low thermal expansion, but is not particularly limited. The material of the monofilament is not particularly limited, but is preferably one or more kinds of glass (for example, E glass, D glass, Q glass, S glass, T glass, etc.) and aramid resin. Regarding the length of the strand, long fibers or short fibers may be used. From the viewpoint of low thermal expansion, the form of the reinforcing material is preferably such that the resin content is as small as possible. The reinforcing material in such a form is not particularly limited, but examples thereof include mats, sheets, cloths (for example, plain weave, satin weave, and the like), and fiber moldings such as composites thereof. . Of the above-mentioned reinforcing materials, glass cloth is particularly preferable. The reason is that since the cross shape is dense, the resin content can be reduced and the filament continuity is high, which is effective in reducing the thermal expansion of the composite material. Further, glass is preferable because it is inexpensive and
This is because long fibers can be stably obtained.

【0009】補強材に含ませる平均粒径1000nm以
下の無機粒子は、それ自身、低熱膨張の材料である。そ
の熱膨張係数は、特に限定されるわけではないが、10
ppm/℃以下であることが好ましい。無機粒子の熱膨
張係数が10ppm/℃より大きいと、複合材料の熱膨
張係数がアルミナ(7ppm/℃)やシリコン(3〜4
ppm/℃)に比べて大きくなりすぎるからである。ま
た、平均粒径1000nm以下の無機粒子の量は、無機
粒子を含ませる前の補強材100重量部に対して1〜3
0重量部の範囲内であることが重要である。この量が1
重量部未満であると、熱膨張係数の小さい複合材料が得
られず、また、上記無機粒子の量が無機粒子を含ませる
前の補強材100重量部に対して30重量部を越える
と、複合材料としたときの耐湿性が悪くなりやすいとい
う問題が生じるからである。
The inorganic particles having an average particle size of 1000 nm or less contained in the reinforcing material are themselves materials having low thermal expansion. The coefficient of thermal expansion is not particularly limited, but is 10
It is preferably ppm / ° C. or less. If the coefficient of thermal expansion of the inorganic particles is larger than 10 ppm / ° C, the coefficient of thermal expansion of the composite material will be alumina (7 ppm / ° C) or silicon (3 to 4).
(ppm / ° C.) is too large. The amount of the inorganic particles having an average particle size of 1000 nm or less is 1 to 3 parts by weight with respect to 100 parts by weight of the reinforcing material before the inorganic particles are contained.
It is important to be in the range of 0 parts by weight. This amount is 1
If the amount is less than 10 parts by weight, a composite material having a small coefficient of thermal expansion cannot be obtained, and if the amount of the inorganic particles exceeds 30 parts by weight with respect to 100 parts by weight of the reinforcing material before the inorganic particles are contained, the composite material is obtained. This is because there arises a problem that the moisture resistance of the material is likely to deteriorate.

【0010】無機粒子として平均粒径1000nm以下
のものを用いる理由は、以下の通りである。ストランド
を構成するモノフィラメントは、通常、数μmの太さで
あるため、モノフィラメント間の隙間はミクロンオーダ
ーになるので、ストランドの内部まで無機粒子を容易に
含ませるためには、その平均粒径が1μm(=1000
nm)以下であることが好ましいからである。さらに、
このように平均粒径の小さい無機粒子は、水等を媒体と
する処理液中で容易に単分散するので好ましい。
The reason for using the inorganic particles having an average particle size of 1000 nm or less is as follows. Since the monofilaments that compose the strands are usually several μm thick, the gap between the monofilaments is on the order of microns. Therefore, in order to easily include the inorganic particles even inside the strands, the average particle size is 1 μm. (= 1000
This is because it is preferably less than or equal to (nm). further,
Inorganic particles having a small average particle diameter are preferable because they are easily monodispersed in a treatment liquid containing water or the like as a medium.

【0011】なお、前記無機粒子としては、平均粒径1
〜100nmのコロイド粒子がさらに好ましい。このよ
うな無機粒子は、その粒径がさらに小さいので、より狭
いストランドの隙間にも入っていけるからである。しか
し、コロイド粒子の平均粒径は、小さければ小さいほど
よいわけではなく、1nm未満になると、コロイド粒子
の比表面積が非常に大きくなるため、樹脂との界面制御
が困難になるので、コロイド粒子の平均粒径の下限は1
nmである。
The average particle size of the inorganic particles is 1
More preferred are ~ 100 nm colloidal particles. This is because such an inorganic particle has a smaller particle size, so that it can enter the gap between the narrower strands. However, the smaller the average particle size of the colloidal particles, the better. If it is less than 1 nm, the specific surface area of the colloidal particles becomes very large, which makes it difficult to control the interface with the resin. The lower limit of the average particle size is 1
nm.

【0012】平均粒径1000nm以下の無機粒子とし
ては、特に限定されるわけではないが、溶融シリカや微
粒子アルミナ等のサブミクロンオーダーの市販粒子等が
好ましい。粒径のさらに小さい前記コロイド粒子として
は、特に限定されるわけではないが、シリカゾル、アル
ミナゾル、チタニアゾル等のゾル、超微粒子シリカ、超
微粒子チタニア等が好ましい。これらのコロイド粒子の
中でもシリカが特に好ましい。その理由は、シリカは、
容易に入手できる粒子の中では、熱膨張係数が低い
(0.55ppm/℃)からである。上述した粒子以外
にも、径の小さいボールを用いれば、ボールミル等の機
械的粉砕によってもサブミクロン粒子やコロイド粒子を
得ることができる。ここで、粉砕する材料は、低熱膨張
材料であることが望まれるので、シリカガラス、Eガラ
ス、Tガラス等のガラス、β−スポジュメンを析出させ
た結晶化ガラス、窒化ほう素、窒化珪素、ムライト、窒
化アルミニウム、コージェライト、チタン酸アルミニウ
ム(Al2 3 ・TiO2 )、β−ユークリプタイト等
の結晶が好ましい。
The inorganic particles having an average particle diameter of 1000 nm or less are not particularly limited, but submicron-order commercially available particles such as fused silica and fine particle alumina are preferable. The colloidal particles having a smaller particle size are not particularly limited, but sol such as silica sol, alumina sol, titania sol, ultrafine particle silica, and ultrafine particle titania are preferable. Among these colloidal particles, silica is particularly preferable. The reason is that silica is
This is because the coefficient of thermal expansion is low (0.55 ppm / ° C.) among particles that are easily available. In addition to the particles described above, submicron particles and colloidal particles can be obtained by mechanically crushing with a ball mill or the like by using balls having a small diameter. Here, since the material to be crushed is desired to be a low thermal expansion material, silica glass, E glass, glass such as T glass, crystallized glass in which β-spodumene is precipitated, boron nitride, silicon nitride, mullite. , Aluminum nitride, cordierite, aluminum titanate (Al 2 O 3 TiO 2 ), β-eucryptite and the like are preferable.

【0013】ストランドには、低熱膨張化材として平均
粒径1000nm以下の無機粒子のみを含ませるように
してもよいが、この無機粒子に加え、金属アルコキシド
の反応生成物をも低熱膨張化材として含ませることも可
能である。金属アルコキシドは、アルコール等の溶媒に
完全に溶解する。そのため、金属アルコキシドは、上記
無機粒子と同様に、それを含む処理液を補強材に含浸さ
せることにより、ストランドの内部まで容易に入ってい
くことができる性質を有している。なお、金属アルコキ
シドの反応生成物は、一般に連続相である無機膜を形成
するため、本発明における平均粒径1000nm以下の
無機粒子とは異なるものである。この金属アルコキシド
としては、特に限定するものではないが、シリコンアル
コキシド、チタニウムアルコキシド、アルミニウムアル
コキシド、マグネシウムアルコキシド、リチウムアルコ
キシド等が好ましい。その理由は、これらの原料を用い
れば、金属アルコキシドの反応生成物を容易に得ること
ができるからである。これらの、金属アルコキシドの中
でも、シリコンアルコキシドがより好ましい。シリコン
アルコキシドは、上記金属アルコキシドの中では、安価
であり、安定性も高く、その反応生成物であるシリカの
熱膨張係数が低い(0.55ppm/℃)からである。
The strands may contain only inorganic particles having an average particle diameter of 1000 nm or less as a low thermal expansion material. In addition to the inorganic particles, a reaction product of a metal alkoxide also serves as a low thermal expansion material. It is also possible to include it. The metal alkoxide is completely soluble in a solvent such as alcohol. Therefore, the metal alkoxide has the property of being able to easily enter the inside of the strand by impregnating the treatment liquid containing the metal alkoxide into the reinforcing material, similarly to the above-mentioned inorganic particles. Since the reaction product of the metal alkoxide generally forms an inorganic film which is a continuous phase, it is different from the inorganic particles having an average particle size of 1000 nm or less in the present invention. The metal alkoxide is not particularly limited, but silicon alkoxide, titanium alkoxide, aluminum alkoxide, magnesium alkoxide, lithium alkoxide and the like are preferable. The reason is that the reaction product of the metal alkoxide can be easily obtained by using these raw materials. Among these metal alkoxides, silicon alkoxide is more preferable. This is because silicon alkoxide is inexpensive and has high stability among the above metal alkoxides, and the thermal expansion coefficient of silica, which is a reaction product thereof, is low (0.55 ppm / ° C.).

【0014】本発明における、平均粒径1000nm以
下の無機粒子を補強材に含ませる方法については、特に
限定はされないが、例えば、水、アルコール等の媒体中
に無機粒子を分散させて、処理液を調整し、この処理液
を補強材に含浸した後、乾燥する方法が挙げられる。
The method of incorporating the inorganic particles having an average particle diameter of 1000 nm or less in the reinforcing material in the present invention is not particularly limited, but for example, the inorganic particles are dispersed in a medium such as water or alcohol to prepare a treatment liquid. Is adjusted, the reinforcing liquid is impregnated with the treatment liquid, and then dried.

【0015】本発明では、付加型ポリイミド樹脂含有ワ
ニスを含浸する前の無機粒子を含む補強材が前記式で
表されるN−フェニル−γ−アミノプロピルシランカッ
プリング剤を含む表面処理剤を使用して、表面処理され
ている。その方法については、特に限定はされないが、
このシランカップリング剤を水、アルコール等の媒体中
に溶解した溶液を、無機粒子を含む補強材に含浸した
後、熱処理する方法が挙げられる。そして、無機粒子を
含む補強材の表面処理を、補強材への表面処理剤の付着
量が、表面処理後の無機粒子を含む補強材100重量部
に対し、0.05〜1.0重量部となるように施すこと
が望ましい。なぜならば、0.05重量部未満では吸湿
処理後の絶縁抵抗及び吸湿処理後の半田耐熱性を優れた
ものとする表面処理の作用が顕著でなくなり、また、
1.0重量部を越えて付着させても表面処理の前記作用
が増大することがないためである。
In the present invention, the surface-treating agent containing the N-phenyl-γ-aminopropylsilane coupling agent represented by the above formula is used as the reinforcing material containing the inorganic particles before being impregnated with the varnish containing the addition type polyimide resin. Then, the surface is treated. The method is not particularly limited,
A method of impregnating a reinforcing material containing inorganic particles with a solution prepared by dissolving the silane coupling agent in a medium such as water or alcohol and then heat-treating the solution can be mentioned. Then, the surface treatment of the reinforcing material containing the inorganic particles is performed such that the amount of the surface treatment agent attached to the reinforcing material is 0.05 to 1.0 part by weight with respect to 100 parts by weight of the reinforcing material containing the inorganic particles after the surface treatment. It is desirable to apply it so that The reason is that if the amount is less than 0.05 parts by weight, the effect of the surface treatment that makes the insulation resistance after the moisture absorption treatment and the solder heat resistance after the moisture absorption treatment excellent is not remarkable, and
This is because the above-mentioned effect of the surface treatment does not increase even if the amount of adhesion exceeds 1.0 part by weight.

【0016】また、補強材で強化される樹脂として本発
明では付加型ポリイミド樹脂を使用する。その種類につ
いては例えばポリアミノビスマレイミド樹脂等が例示で
きるが、特に限定はない。そして、本発明では表面処理
を施した補強材に付加型ポリイミド樹脂を含有するワニ
スを含浸、乾燥してプリプレグを得、次いで、このプリ
プレグを成形して複合材料を製造するが、含浸方法、成
形方法、成形条件等については、特に限定はなく、用途
に応じて適宜決定すればよい。ただし、成形について
は、吸湿処理後の半田耐熱性を優れたものとする点か
ら、減圧条件下で成形することが好ましい。
In the present invention, an addition type polyimide resin is used as the resin reinforced with the reinforcing material. Examples of the type include polyamino bismaleimide resin, but there is no particular limitation. Then, in the present invention, a varnish containing an addition type polyimide resin is impregnated into the surface-treated reinforcing material and dried to obtain a prepreg, and then the prepreg is molded to manufacture a composite material. The method, molding conditions, etc. are not particularly limited and may be appropriately determined according to the application. However, the molding is preferably carried out under reduced pressure from the viewpoint that the solder heat resistance after moisture absorption is excellent.

【0017】[0017]

【実施例】以下、本発明の実施例と比較例を説明する
が、本発明は下記実施例に限定されない。
EXAMPLES Examples of the present invention and comparative examples will be described below, but the present invention is not limited to the following examples.

【0018】(実施例1)Eガラスの平織クロス〔旭シ
ュエーベル社製、品番216AS450、厚み100μ
m、繊維径7μm、打ち込み密度(ストランド本数/2
5mm):縦60本/25mm・横55本/25mm〕
を、まずコロイダルシリカ水溶液(日産化学工業社製、
商品名スノーテックスOL、コロイダルシリカの平均粒
径45nm、コロイダルシリカ含有率20重量%)に含
浸した後、3cm/秒の速度で引き上げた。その後、1
50℃で5分間熱処理を行った。このコーティングの作
業を2回繰り返すことにより、コロイダルシリカの付着
量が、コロイダルシリカを含ませる前の補強材100重
量部に対し15重量部である補強材を得た。
(Example 1) E-glass plain weave cloth (manufactured by Asahi Schwebel, product number 216AS450, thickness 100 μ
m, fiber diameter 7 μm, driving density (number of strands / 2
5mm): Length 60 / 25mm, Width 55 / 25mm]
First, a colloidal silica aqueous solution (manufactured by Nissan Chemical Industries,
The product was impregnated with Snowtex OL (trade name), colloidal silica having an average particle diameter of 45 nm, and colloidal silica content of 20% by weight), and then pulled up at a speed of 3 cm / sec. Then 1
Heat treatment was performed at 50 ° C. for 5 minutes. By repeating this coating operation twice, a reinforcing material was obtained in which the adhered amount of colloidal silica was 15 parts by weight with respect to 100 parts by weight of the reinforcing material before containing colloidal silica.

【0019】その後、コロイダルシリカを含ませた補強
材を、N−フェニル−γ−アミノプロピルシランカップ
リング剤であるN−フェニル−γ−アミノプロピルトリ
メトキシシラン(信越化学工業社製、品番KBM57
3)の濃度1重量%溶液に浸漬し、絞りロールを通した
後、110℃で5分間熱処理することにより、補強材へ
の表面処理剤の付着量が、表面処理後の無機粒子を含む
補強材100重量部に対し、0.43重量部である補強
材を得た。
After that, a reinforcing material containing colloidal silica was replaced with N-phenyl-γ-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product number KBM57) which is an N-phenyl-γ-aminopropylsilane coupling agent.
After being immersed in a solution of 3% in concentration of 1% by weight, passed through a squeezing roll, and then heat-treated at 110 ° C. for 5 minutes, the amount of the surface-treating agent adhering to the reinforcing material is reinforced including inorganic particles after the surface treatment. A reinforcing material having 0.43 parts by weight with respect to 100 parts by weight of the material was obtained.

【0020】次に、付加型ポリイミド樹脂である、ポリ
アミノビスマレイミド樹脂を含有しているワニスを、前
記で得られた表面処理を施した補強材に含浸させ、間隔
0.2mmのロールで絞った後、130℃で5分間乾燥
してプリプレグを得た。次に、得られたプリプレグを1
0枚重ね、200Torrの減圧条件下で、200℃、
30kg/cm2 の成形条件で90分間プレス成形し
て、基板(複合材料)を得た。
Next, the surface-treated reinforcing material obtained above was impregnated with a varnish containing a polyamino bismaleimide resin, which is an addition-type polyimide resin, and was squeezed with a roll having a gap of 0.2 mm. Then, it was dried at 130 ° C. for 5 minutes to obtain a prepreg. Next, the obtained prepreg is 1
0 sheets stacked, under reduced pressure of 200 Torr, 200 ℃,
A substrate (composite material) was obtained by press molding for 90 minutes under a molding condition of 30 kg / cm 2 .

【0021】(実施例2)コロイダルシリカを含ませた
補強材の表面処理について、補強材をN−フェニル−γ
−アミノプロピルトリメトキシシラン(信越化学工業社
製、品番KBM573)の濃度2重量%溶液に浸漬し、
絞りロールを通した後、110℃で5分間熱処理するこ
とにより、補強材への表面処理剤の付着量が、表面処理
後の無機粒子を含む補強材100重量部に対し、0.8
3重量部である補強材を得るようにした以外は、実施例
1と同様の操作を行って、基板(複合材料)を得た。
Example 2 Regarding the surface treatment of the reinforcing material containing colloidal silica, the reinforcing material was N-phenyl-γ.
-Immersing in a 2 wt% solution of aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product number KBM573),
After passing through the squeezing rolls, heat treatment was performed at 110 ° C. for 5 minutes so that the amount of the surface treatment agent attached to the reinforcing material was 0.8 with respect to 100 parts by weight of the reinforcing material containing the inorganic particles after the surface treatment.
A substrate (composite material) was obtained in the same manner as in Example 1, except that the reinforcing material was 3 parts by weight.

【0022】(実施例3)コロイダルシリカを含ませた
補強材の表面処理について、補強材をN−フェニル−γ
−アミノプロピルトリメトキシシラン(信越化学工業社
製、品番KBM573)の濃度0.01重量%溶液に浸
漬し、絞りロールを通した後、110℃で5分間熱処理
することにより、補強材への表面処理剤の付着量が、表
面処理後の無機粒子を含む補強材100重量部に対し、
0.02重量部である補強材を得るようにした以外は、
実施例1と同様の操作を行って、基板(複合材料)を得
た。
Example 3 Regarding the surface treatment of the reinforcing material containing colloidal silica, the reinforcing material was N-phenyl-γ.
-Aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product number KBM573) was immersed in a 0.01 wt% concentration solution, passed through a squeeze roll, and then heat-treated at 110 ° C for 5 minutes to form a surface on the reinforcing material. The amount of the treatment agent attached is 100 parts by weight of the reinforcing material containing the inorganic particles after the surface treatment,
Except that the reinforcing material is 0.02 parts by weight,
The same operation as in Example 1 was performed to obtain a substrate (composite material).

【0023】(実施例4)コロイダルシリカを含ませた
補強材の表面処理について、補強材をN−フェニル−γ
−アミノプロピルトリメトキシシラン(信越化学工業社
製、品番KBM573)の濃度4重量%溶液に浸漬し、
絞りロールを通した後、110℃で5分間熱処理するこ
とにより、補強材への表面処理剤の付着量が、表面処理
後の無機粒子を含む補強材100重量部に対し、1.5
1重量部である補強材を得るようにした以外は、実施例
1と同様の操作を行って、基板(複合材料)を得た。
Example 4 Regarding the surface treatment of the reinforcing material containing colloidal silica, the reinforcing material was N-phenyl-γ.
-Immersing in a 4 wt% solution of aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product number KBM573),
After passing through the squeezing rolls, heat treatment was performed at 110 ° C. for 5 minutes so that the amount of the surface treatment agent attached to the reinforcing material was 1.5 with respect to 100 parts by weight of the reinforcing material containing the inorganic particles after the surface treatment.
A substrate (composite material) was obtained in the same manner as in Example 1, except that the reinforcing material was 1 part by weight.

【0024】(比較例1)コロイダルシリカを含ませた
補強材の表面処理を行わないようにした以外は、実施例
1と同様の操作を行って、基板(複合材料)を得た。
Comparative Example 1 A substrate (composite material) was obtained in the same manner as in Example 1 except that the surface treatment of the reinforcing material containing colloidal silica was omitted.

【0025】(比較例2)コロイダルシリカを含ませた
補強材の表面処理について、補強材をγ−グリシドキシ
プロピルトリメトキシシラン(信越化学工業社製、品番
KBM403)の、濃度1重量%水溶液に浸漬し、絞り
ロールを通した後、110℃で5分間熱処理することに
より、補強材への表面処理剤の付着量が、表面処理後の
無機粒子を含む補強材100重量部に対し、0.61重
量部である表面処理済の補強材を得るようにした以外
は、実施例1と同様の操作を行って、基板(複合材料)
を得た。
Comparative Example 2 Regarding the surface treatment of the reinforcing material containing colloidal silica, the reinforcing material was an aqueous solution of γ-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product number KBM403) at a concentration of 1% by weight. After being passed through a squeezing roll and heat-treated at 110 ° C. for 5 minutes, the amount of the surface treatment agent adhering to the reinforcing material is 0 with respect to 100 parts by weight of the reinforcing material containing the inorganic particles after the surface treatment. Substrate (composite material) was prepared in the same manner as in Example 1 except that the surface-treated reinforcing material of 0.61 parts by weight was obtained.
I got

【0026】なお、上記の各実施例及び各比較例におけ
る、補強材への表面処理剤の付着量の測定は次のように
して行った。まず、表面処理後の無機粒子を含む補強材
を90℃、1時間乾燥して水分を除去する。次いで、こ
の水分を除去した補強材の重量を測定した後、この補強
材を300℃で2時間、加熱処理して、再度その重量を
測定し、300℃、2時間の加熱処理により減少した重
量を算出する。この加熱処理により減少した重量をシラ
ン系化合物のSi以外の成分の重量と見なし、この重量
と、原料として用いたアミノシラン系カップリング剤や
シラン系化合物の構造式とに基づいて、表面処理剤(ア
ミノシラン系カップリング剤やシラン系化合物)の付着
量を算出することにより、補強材への表面処理剤の付着
量を求めた。
The amount of the surface treatment agent attached to the reinforcing material in each of the above-mentioned Examples and Comparative Examples was measured as follows. First, the reinforcing material containing the inorganic particles after the surface treatment is dried at 90 ° C. for 1 hour to remove water. Next, after measuring the weight of the reinforcing material from which the water is removed, the reinforcing material is heat-treated at 300 ° C. for 2 hours, the weight is measured again, and the weight reduced by the heat treatment at 300 ° C. for 2 hours. To calculate. The weight reduced by this heat treatment is regarded as the weight of components other than Si of the silane-based compound, and based on this weight and the structural formula of the aminosilane-based coupling agent or silane-based compound used as the raw material, the surface treatment agent ( The amount of adhesion of the surface treatment agent to the reinforcing material was determined by calculating the amount of adhesion of the aminosilane coupling agent or silane compound).

【0027】また、各実施例及び各比較例で得られた基
板について、吸湿処理後の絶縁抵抗試験及び吸湿処理後
の半田耐熱試験を下記のようにして行い、その結果を表
1に示した。吸湿処理後の絶縁抵抗については、JIS
C6481に準じて、100℃の沸騰水中で2時間浸
漬した後の絶縁抵抗を測定した。吸湿処理後の半田耐熱
については、試料を135℃の飽和水蒸気中に2時間さ
らした(PCT処理)後、直ちに260℃の半田浴中に
60秒間浸漬し、ふくれが生じるかどうかを調べた。試
料5個についてこの試験を行い、5個全てにふくれが生
じなかった場合には○、5個全てにふくれが発生した場
合は×、5個中にふくれが生じたものとふくれが生じな
かったものとが混在する場合は△として表1に示した。
Further, with respect to the substrates obtained in each of the examples and the comparative examples, an insulation resistance test after moisture absorption treatment and a solder heat resistance test after moisture absorption treatment were conducted as follows, and the results are shown in Table 1. . Regarding insulation resistance after moisture absorption treatment, JIS
Insulation resistance after immersion in boiling water at 100 ° C. for 2 hours was measured according to C6481. Regarding the solder heat resistance after the moisture absorption treatment, the sample was exposed to saturated steam at 135 ° C. for 2 hours (PCT treatment), and then immediately immersed in a solder bath at 260 ° C. for 60 seconds to examine whether blistering occurred. This test was conducted on 5 samples. When all 5 did not blister. ○ When all 5 blistered, x. No blistered and blistered in 5 bulges. In the case where the materials and the materials are mixed, it is shown as Δ in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】表1の結果から、本発明の実施例は、比較
例に比べ吸湿処理後の絶縁抵抗及び吸湿処理後の半田耐
熱性の優れた基板が得られていることが確認できた。
From the results shown in Table 1, it was confirmed that the examples of the present invention yielded a substrate having excellent insulation resistance after the moisture absorption treatment and solder heat resistance after the moisture absorption treatment, as compared with the comparative examples.

【0030】[0030]

【発明の効果】請求項1〜請求項3に係る発明では、ワ
ニスを含浸する前の平均粒径1000nm以下の無機粒
子を含む補強材がN−フェニル−γ−アミノプロピルシ
ランカップリング剤を含む表面処理剤を使用して表面処
理されているので、請求項1〜請求項3に係る発明によ
れば、熱膨張係数が小さくて、かつ、吸湿処理後の絶縁
抵抗及び吸湿処理後の半田耐熱性が優れるポリイミド樹
脂系の複合材料が得られる。
According to the inventions of claims 1 to 3, the reinforcing material containing inorganic particles having an average particle diameter of 1000 nm or less before being impregnated with the varnish contains an N-phenyl-γ-aminopropylsilane coupling agent. Since the surface treatment is performed using the surface treatment agent, according to the inventions of claims 1 to 3, the thermal expansion coefficient is small, and the insulation resistance after the moisture absorption treatment and the solder heat resistance after the moisture absorption treatment are high. A polyimide resin-based composite material having excellent properties is obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29K 105:08 509:08 C08L 79:08 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication B29K 105: 08 509: 08 C08L 79:08

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 モノフィラメントが集束されてなるスト
ランドからなる補強材に、平均粒径1000nm以下の
無機粒子を前記補強材100重量部に対して1〜30重
量部の割合で含ませ、次いでこの無機粒子を含む補強材
に付加型ポリイミド樹脂含有ワニスを含浸、乾燥してプ
リプレグを得、次いでこのプリプレグを成形して複合材
料を製造する複合材料の製造方法において、ワニスを含
浸する前の無機粒子を含む補強材が下記式で表される
N−フェニル−γ−アミノプロピルシランカップリング
剤を含む表面処理剤を使用して、表面処理されているこ
とを特徴とする複合材料の製造方法。 C6 5 −NH−C3 6 SiX3 −−− (XはOCH3 、OC2 5 、OC3 7 又はClを表
す。)
1. A reinforcing material composed of strands formed by bundling monofilaments, containing inorganic particles having an average particle diameter of 1000 nm or less at a ratio of 1 to 30 parts by weight with respect to 100 parts by weight of the reinforcing material. A reinforcing material containing particles is impregnated with a varnish containing an addition-type polyimide resin, dried to obtain a prepreg, and then, in the method for manufacturing a composite material in which the prepreg is molded to manufacture a composite material, the inorganic particles before impregnating the varnish are A method for producing a composite material, wherein the reinforcing material containing is surface-treated using a surface-treating agent containing an N-phenyl-γ-aminopropylsilane coupling agent represented by the following formula. C 6 H 5 -NH-C 3 H 6 SiX 3 --- (X represents OCH 3, OC 2 H 5, OC 3 H 7 or Cl.)
【請求項2】 無機粒子を含む補強材の表面処理を、補
強材への表面処理剤の付着量が、表面処理後の無機粒子
を含む補強材100重量部に対し、0.05〜1.0重
量部となるように施すことを特徴とする請求項1記載の
複合材料の製造方法。
2. The surface treatment of a reinforcing material containing inorganic particles is carried out such that the amount of the surface treatment agent attached to the reinforcing material is 0.05 to 1% with respect to 100 parts by weight of the reinforcing material containing inorganic particles after the surface treatment. The method for producing a composite material according to claim 1, wherein the amount is 0 part by weight.
【請求項3】 モノフィラメントが集束されてなるスト
ランドからなる補強材がガラスクロスであり、平均粒径
1000nm以下の無機粒子の材質がシリカであること
を特徴とする請求項1又は請求項2記載の複合材料の製
造方法。
3. The reinforcing material composed of strands formed by bundling monofilaments is glass cloth, and the material of the inorganic particles having an average particle diameter of 1000 nm or less is silica, according to claim 1 or 2. Composite material manufacturing method.
JP26530795A 1995-10-13 1995-10-13 Production of composite material Pending JPH09111012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26530795A JPH09111012A (en) 1995-10-13 1995-10-13 Production of composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26530795A JPH09111012A (en) 1995-10-13 1995-10-13 Production of composite material

Publications (1)

Publication Number Publication Date
JPH09111012A true JPH09111012A (en) 1997-04-28

Family

ID=17415385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26530795A Pending JPH09111012A (en) 1995-10-13 1995-10-13 Production of composite material

Country Status (1)

Country Link
JP (1) JPH09111012A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246395A (en) * 2011-05-27 2012-12-13 Hitachi Chemical Co Ltd Prepreg, laminated plate, and printed wiring board using thermocurable resin composition
JP2016148040A (en) * 2016-03-01 2016-08-18 日立化成株式会社 Prepreg for printed wiring board, laminate and print circuit board
JP2016193963A (en) * 2015-03-31 2016-11-17 株式会社アドマテックス Filler reinforced composite material and prepreg

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246395A (en) * 2011-05-27 2012-12-13 Hitachi Chemical Co Ltd Prepreg, laminated plate, and printed wiring board using thermocurable resin composition
JP2016193963A (en) * 2015-03-31 2016-11-17 株式会社アドマテックス Filler reinforced composite material and prepreg
JP2016148040A (en) * 2016-03-01 2016-08-18 日立化成株式会社 Prepreg for printed wiring board, laminate and print circuit board

Similar Documents

Publication Publication Date Title
JP5117746B2 (en) Aramid-filled polyimides having advantageous thermal expansion properties and related methods
TW464639B (en) Impregnated glass fiber strands and products including the same
TW457266B (en) Glass fiber strands coated with thermally conductive inorganic particles and products including the same
EP0870795B1 (en) Composite film comprising low-dielectric resin and para-oriented aromatic polyamide
KR100351656B1 (en) Laminate and method of manufacture thereof
JP3401381B2 (en) Aromatic polyamide fiber paper, prepreg and laminate made of the aromatic polyamide fiber paper
MXPA00008554A (en) Glass fiber-reinforced laminates, electronic circuit boards and methods for assembling a fabric
JPH093218A (en) Production of composite material
JPH09111012A (en) Production of composite material
JP2005105035A (en) Prepreg, manufacturing method thereof and laminated plate
JPH09111009A (en) Production of composite material
JPH09111004A (en) Production of composite material
JPH10338809A (en) Composite film comprising low-permittivity resin and p-directing polyamide, prepreg thereof and use thereof
JP6181599B2 (en) Method for producing surface-treated glass fiber film
JPH07252370A (en) Composite material with low thermal expansibility and its production
JP2020100913A (en) Glass cloth, prepreg, and printed wiring board
JPH091680A (en) Manufacture of composite material
JP3047924B2 (en) Printed wiring board
JP2002293979A (en) Porous para-oriented aromatic polyamide film, its prepreg and substrate using prepreg and used for printed circuit
JP2904311B2 (en) Prepreg for printed wiring board, resin varnish, resin composition, and laminated board for printed wiring board manufactured using them
JPH07331069A (en) Heat-resistant resin composition
JP2003183982A (en) Glass fiber woven fabric treated for preventing dislocation
JPH093217A (en) Production of prepreg
JP3343330B2 (en) Method for producing insulating varnish, insulating varnish obtained by this method, and multilayer printed wiring board using this insulating varnish
JPH03124865A (en) Binder for heat-resistant fiber nonwoven fabric, heat-resistant fiber nonwoven fabric and its production