JPH0910592A - Denitration catalyst and method using the same - Google Patents

Denitration catalyst and method using the same

Info

Publication number
JPH0910592A
JPH0910592A JP7163622A JP16362295A JPH0910592A JP H0910592 A JPH0910592 A JP H0910592A JP 7163622 A JP7163622 A JP 7163622A JP 16362295 A JP16362295 A JP 16362295A JP H0910592 A JPH0910592 A JP H0910592A
Authority
JP
Japan
Prior art keywords
catalyst
denitration
exhaust gas
space velocity
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7163622A
Other languages
Japanese (ja)
Inventor
Takeshi Naganami
武 長南
Masao Wakabayashi
正男 若林
Taiji Sugano
泰治 菅野
Hiroyuki Ikeda
浩幸 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP7163622A priority Critical patent/JPH0910592A/en
Publication of JPH0910592A publication Critical patent/JPH0910592A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a denitration catalyst for an internal combustion engine which can remove NOx in exhaust gas in a lean air-fuel ratio internal combustion engine efficiently at a high space velocity and has high stoichiodurability and a high efficiency, high reliability denitration method for NOx exhaust gas from the internal combustion engine with the use of the catalyst. CONSTITUTION: A catalyst layer is formed with the use of a catalyst in which 0.1-10wt.% of alumina in terms of element of silver, 0.1-20wt.% of zinc, and 0.01-10wt.% of sulfur are supported on activated alumina respectively, and the catalyst is brought into contact with exhaust gas at a space velocity of 10,000-200,000h<-1> and at the temperature of a catalyst layer inlet of 300-600 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は排気ガス、特に自動車な
どの内燃機関の排気ガス中の窒素酸化物の浄化に用いら
れる触媒に関し、更に詳細には、希薄空燃比の内燃機関
の排気ガス中の窒素酸化物を高い空間速度で、且つ高効
率で浄化可能な触媒及びこれを用いた脱硝方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst used for purifying nitrogen oxides in exhaust gas, particularly exhaust gas of an internal combustion engine such as an automobile, and more particularly to a catalyst of lean air-fuel ratio in the exhaust gas of an internal combustion engine. The present invention relates to a catalyst capable of purifying nitrogen oxides at high space velocity with high efficiency, and a denitration method using the same.

【0002】[0002]

【従来の技術】自動車エンジンなどの内燃機関から排出
される各種の燃焼排ガス中には、燃焼生成物である水や
二酸化炭素(CO2)と共に一酸化窒素(NO)や二酸
化窒素(NO2)などの窒素酸化物(NOx)が含まれ
ている。NOxは人体に悪影響を与え、呼吸器疾患罹患
率を増加させるばかりでなく、地球環境保全の上から問
題視される酸性雨の原因の1つとなっている。そのた
め、これら各種の排ガスから効率よく窒素酸化物を除去
する脱硝技術の開発が望まれている。
During various combustion exhaust gas discharged from an internal combustion engine such as an automobile engine, a combustion products water or carbon dioxide (CO 2) with nitric oxide (NO) and nitrogen dioxide (NO 2) And nitrogen oxides (NOx) are included. NOx not only adversely affects the human body and increases the respiratory disease morbidity, but it is also one of the causes of acid rain which is regarded as a problem from the viewpoint of global environment conservation. Therefore, development of a denitration technology for efficiently removing nitrogen oxides from these various exhaust gases is desired.

【0003】他方において、地球温暖化防止の観点か
ら、近年希薄燃焼方式の内燃機関が注目されている。従
来の自動車用ガソリンエンジンは空燃比(A/F)=1
4.7付近で制御された化学量論比での燃焼であり、そ
の排気ガスの無害化処理に対しては排気ガス中の一酸化
炭素(CO)、炭化水素(HC)とNOxとを、主とし
て白金(Pt)、ロジウム(Rh)、パラジウム(P
d)及びセリア(CeO2)を含むアルミナ触媒に接触
させ有害三成分を同時に除去する三元触媒方式が採用さ
れてきた。
On the other hand, from the viewpoint of prevention of global warming, an internal combustion engine of a lean burn type has recently received attention. A conventional gasoline engine for automobiles has an air-fuel ratio (A / F) of 1
Combustion at a controlled stoichiometric ratio near 4.7, and carbon monoxide (CO), hydrocarbons (HC) and NOx in the exhaust gas for detoxification of the exhaust gas, Mainly platinum (Pt), rhodium (Rh), palladium (P
A three-way catalyst system in which harmful three components are simultaneously removed by contacting with an alumina catalyst containing d) and ceria (CeO 2 ) has been adopted.

【0004】しかしこの三元触媒方式は、化学量論比で
運転されることが絶対条件であるため、希薄空燃比で運
転されるリ−ンバ−ンガソリンエンジンの排気ガス浄化
には適用することができない。また、ディ−ゼルエンジ
ンは本来リ−ンバ−ンエンジンであるが、その排気ガス
に対しては浮遊粒子状物質とNOxの両方に厳しい規制
がかけられようとしている。
However, this three-way catalyst system must be applied to the exhaust gas purification of a lean-burn gasoline engine operated at a lean air-fuel ratio because it is absolutely necessary to operate at a stoichiometric ratio. I can't. Although the diesel engine is a lean-burn engine by nature, strict regulations are being imposed on both exhaust particulate matter and NOx with respect to its exhaust gas.

【0005】近年、酸素過剰雰囲気の希薄燃焼ガス中に
残存する未燃の炭化水素を還元剤としてNOx還元反応
が進行することが報告されて以来、この反応を促進する
触媒が種々開発され提案されている。例えば、アルミナ
やアルミナに遷移金属を担持した触媒が、炭化水素を還
元剤として用いるNOx還元反応に有効であるとする数
多くの報告がある。また、特開平4−284848号公
報には0.1〜4重量%のCu,Fe,Cr,Zn,N
i,Vを含有するアルミナあるいはシリカ−アルミナを
NOx還元触媒として使用した例が報告されている。
Since it has been reported in recent years that the NOx reduction reaction proceeds using unburned hydrocarbons remaining in the lean combustion gas in an oxygen excess atmosphere as a reducing agent, various catalysts for promoting this reaction have been developed and proposed. ing. For example, there are many reports that alumina or a catalyst in which a transition metal is supported on alumina is effective for a NOx reduction reaction using a hydrocarbon as a reducing agent. JP-A-4-284848 discloses that 0.1 to 4% by weight of Cu, Fe, Cr, Zn, N
It has been reported that alumina containing i, V or silica-alumina is used as a NOx reduction catalyst.

【0006】更に、Ptをアルミナに担持した触媒を用
いると、NOx還元反応が200〜300℃程度の低温
領域で進行することが特開平4−267946号公報、
特開平5−68855号公報や特開平5−103949
号公報等に報告されている。しかしながら、これらの担
持貴金属触媒を用いた場合、還元剤炭化水素の燃焼反応
が過度に促進されたり、地球温暖化物質の元凶の一つと
言われている多量のN2Oが生成し、無害なN2への還元
反応を選択的に進行させることが困難となるとい った
欠点を有していた。
Further, when a catalyst in which Pt is supported on alumina is used, the NOx reduction reaction proceeds in a low temperature region of about 200 to 300 ° C., JP-A-4-267946.
JP-A-5-68855 and JP-A-5-103949
It is reported in the Gazette and the like. However, when these supported noble metal catalysts are used, the combustion reaction of the reducing agent hydrocarbon is excessively promoted, and a large amount of N 2 O, which is said to be one of the causes of global warming substances, is produced, which is harmless. It has a drawback that it becomes difficult to selectively proceed the reduction reaction to N 2 .

【0007】本出願人の一方は、先に、酸素過剰雰囲気
下で炭化水素を還元剤として銀を含有する触媒を用いる
とNOx還元反応が選択的に進行することを見い出し、
本技術を特開平4ー281844号公報に開示した。該
公報開示の後、銀を含有する触媒を用いる類似のNOx
還元除去技術が特開平4−354536号公報、特開平
5−92124号公報、特開平5−92125号公報あ
るいは特開平6−277454号公報に開示されるに至
った。
[0007] One of the applicants has previously found that the NOx reduction reaction selectively proceeds when a catalyst containing silver as a reducing agent is used as a hydrocarbon in an oxygen excess atmosphere.
The present technology is disclosed in Japanese Patent Application Laid-Open No. 4-281844. After the disclosure of the publication, similar NOx using a silver-containing catalyst is disclosed.
The reduction and removal technology has been disclosed in JP-A-4-354536, JP-A-5-92124, JP-A-5-92125 or JP-A-6-277454.

【0008】[0008]

【発明が解決しようとする課題】しかし、実際の走行状
態におけるリ−ンバ−ンエンジンから排出される排気ガ
スのA/Fは、走行条件によりストイキオ近傍から酸素
過剰のリ−ンバ−ン領域まで連続的に変化するが、前記
公報に開示した触媒ではストイキオ耐久性能が不十分で
あって、長期使用が困難であるという欠点があった。こ
のようなストイキオ領域で起こる銀アルミナ触媒の劣化
は、銀の凝集やアルミナ担体へのコ−キング等に起因す
るものと考えられる。
However, the A / F of the exhaust gas discharged from the lean burn engine in the actual running condition is from the vicinity of stoichio to the lean burn excess oxygen region depending on running conditions. Although it changes continuously, the catalyst disclosed in the above publication has a drawback that the stoichio durability performance is insufficient and it is difficult to use for a long period of time. It is considered that such deterioration of the silver-alumina catalyst that occurs in the stoichio region is caused by aggregation of silver, coking on an alumina carrier, and the like.

【0009】また、一般にアルミナを担体として用いた
触媒は、触媒層における単位体積当たりの通過ガス流
量、いわゆるガス空間速度(以下、空間速度と称し、記
号SVで示される)に対する依存性が大きいことが知ら
れている。即ち、SV:1,000〜10,000h-1
程度の低空間速度では十分なNOx還元性能を発揮する
が、例えば触媒,33,61(1991)に報告されているように、
SV:10,000h-1以上の高空間速度になるとNO
x浄化性能が大きく低下してしまう。一般に内燃機関用
の排気ガス浄化触媒は、排気量に見合った比較的コンパ
クトな触媒層を形成することが望まれるが、上記したよ
うにSV:10,000h-1未満の低空間速度でのみ機
能する触媒では、触媒層としてエンジン排気量に比べて
不釣合いに大きな容積を有するものとなるために実用性
に乏しい。
[0009] In general, a catalyst using alumina as a carrier has a large dependency on a flow rate of a passing gas per unit volume in a catalyst layer, that is, a so-called gas space velocity (hereinafter, referred to as space velocity and represented by symbol SV). It has been known. That is, SV: 1,000 to 10,000 h -1
Although sufficient NOx reduction performance is exhibited at a low space velocity of a level, as reported in, for example, Catalyst, 33, 61 (1991),
SV: NO at high space velocity of 10,000h -1 or more
x Purification performance is significantly reduced. Generally, an exhaust gas purifying catalyst for an internal combustion engine is desired to form a relatively compact catalyst layer corresponding to the exhaust amount, but as described above, it functions only at a low space velocity of less than 10,000 h -1. In such a catalyst, the catalyst layer has a volume that is disproportionately large as compared with the engine displacement, so that it is not practical.

【0010】本発明は、上記従来技術の課題を解決すべ
くなされたものであり、その目的とするところは、希薄
空燃比の内燃機関における排気ガス中のNOxを10,
000h-1以上の高いガス空間速度で効率よく除去する
ことができ、併せて高いストイキオ耐久性能を有する内
燃機関用の脱硝触媒と、該触媒を使用しての希薄空燃比
の内燃機関排気ガス中のNOxの高効率、高信頼性の脱
硝方法を提供することにある。
The present invention has been made to solve the above-mentioned problems of the prior art, and an object thereof is to reduce NOx in exhaust gas in an internal combustion engine having a lean air-fuel ratio to 10,
A denitration catalyst for an internal combustion engine, which can be efficiently removed at a high gas space velocity of 000 h -1 or more, and also has a high stoichio durability, and an exhaust gas of an internal combustion engine with a lean air-fuel ratio using the catalyst. To provide a highly efficient and highly reliable NOx removal method for NOx.

【0011】[0011]

【課題を解決するための手段】本発明者等は、ストイキ
オ耐久性能を有する触媒及び該触媒を使用してのリ−ン
バ−ン領域での炭化水素によるNOx還元反応が高効率
的に進行する触媒及び脱硝方法について鋭意研究を重ね
た結果、活性アルミナに銀、亜鉛及び硫黄を含有させて
なる触媒を用いると、ストイキオ雰囲気下に曝されても
銀の凝集が抑制されることにより上記の課題を解決する
ことができることを見い出し本発明を完成するに至っ
た。
DISCLOSURE OF THE INVENTION The inventors of the present invention have found that a NOx reduction reaction by hydrocarbons in a lean-burn region using a catalyst having stoichio-durability can proceed with high efficiency. As a result of earnest studies on the catalyst and the denitration method, the use of a catalyst containing silver, zinc and sulfur in activated alumina suppresses the agglomeration of silver even when exposed to a stoichiometric atmosphere, so that the above problems The inventors have found that the above can be solved and completed the present invention.

【0012】すなわち、上記課題を解決するための本発
明の第1の発明は活性アルミナに銀、亜鉛及び硫黄を担
持させてなることを特徴とする脱硝触媒であり、より具
体的には活性アルミナとして、結晶学的にγ−型、η−
型あるいはその混合型に分類される活性アルミナを用
い、銀、亜鉛及び硫黄の担持量が、元素換算で、それぞ
れ活性アルミナ量に対して0.1〜10重量%、0.1
〜20重量%、0.01〜10重量%であるものが好ま
しい。
That is, the first invention of the present invention for solving the above-mentioned problems is a denitration catalyst characterized by supporting silver, zinc and sulfur on activated alumina, and more specifically, activated alumina. As crystallographically γ-type, η-
Type, or mixed type thereof, is used, and the supported amounts of silver, zinc, and sulfur are 0.1 to 10% by weight and 0.1 to the amount of activated alumina, respectively, in terms of elements.
It is preferably 20 to 20% by weight and 0.01 to 10% by weight.

【0013】また、本発明の第2の発明は、希薄空燃比
で運転される内燃機関の排気ガスを高空間速度で触媒層
と接触させることからなる排気ガスの脱硝方法におい
て、脱硝触媒層を構成する触媒として本第1の発明によ
る触媒を使用し、空間速度を10,000〜200,0
00h-1、好ましくは10,000〜100,000h
-1とし、好ましくは触媒層入口ガス温度を300℃以
上、600℃未満とすることを特徴とする排気ガスの脱
硝方法である。
A second aspect of the present invention is a method for denitrifying exhaust gas, which comprises contacting exhaust gas of an internal combustion engine operated at a lean air-fuel ratio with a catalyst layer at a high space velocity, The catalyst according to the first aspect of the present invention is used as the constituent catalyst, and the space velocity is 10,000 to 200,0.
00h -1 , preferably 10,000 to 100,000h
-1, and the catalyst layer inlet gas temperature is preferably 300 ° C. or higher and lower than 600 ° C. in the exhaust gas denitration method.

【0014】以上の様な本発明の脱硝触媒及び脱硝方法
によれば、水蒸気が共存する酸素過剰雰囲気下で、且つ
高空間速度であっても高いストイキオ耐久性能を有し、
且つリ−ンバ−ン領域での排気ガス中のNOx除去を効
果的に行うことができる。
According to the denitration catalyst and the denitration method of the present invention as described above, a high stoichiometric durability is obtained even in an oxygen excess atmosphere in which water vapor coexists, and even at a high space velocity.
Moreover, it is possible to effectively remove NOx in the exhaust gas in the lean burn region.

【0015】[0015]

【作用】以下、本発明の詳細及びその作用について更に
具体的に説明する。
The details of the present invention and the operation thereof will be described in more detail below.

【0016】まず、本第1の発明である触媒について説
明する。
First, the catalyst of the first invention will be described.

【0017】本発明の脱硝触媒の主成分の1つである活
性アルミナは、例えば鉱物学上ベーマイト、擬ベーマイ
ト、バイアライト、あるいはノルストランダライトに分
類される水酸化アルミニウムの粉体やゲルを、空気中あ
るいは真空中300〜800℃、好ましくは400〜7
00℃で加熱脱水することによって、結晶学的にγ−
型、η−型あるいはその混合型に分類される活性アルミ
ナに相転移させたものが脱硝性能上好ましい。他の結晶
構造をとるアルミナ、例えばα−アルミナは極端に比表
面積が小さく固体酸性にも乏しいので、本発明の触媒成
分としては不適当である。
The activated alumina which is one of the main components of the denitration catalyst of the present invention is, for example, a powder or gel of aluminum hydroxide classified into boehmite, pseudo-boehmite, vialite, or norstrandalite in mineralogy. In air or vacuum at 300 to 800 ° C, preferably 400 to 7
By heat dehydration at 00 ° C., the crystallographic γ-
It is preferable from the viewpoint of denitration performance that the phase transition is made to activated alumina classified into the type, η-type or mixed type thereof. Alumina having another crystal structure, such as α-alumina, has an extremely small specific surface area and is poor in solid acidity, and is therefore unsuitable as the catalyst component of the present invention.

【0018】本発明の脱硝触媒は、上記した結晶構造を
有する活性アルミナに銀、亜鉛及び硫黄を担持させてな
るものである。活性アルミナに担持される銀、亜鉛及び
硫黄の状態は特に限定されず、例えば、金属、合金、金
属硫化物、複合金属硫化物及びこれらの類似化合物、金
属硫酸塩、複合金属硫酸塩及びこれらの類似化合物、更
にはこれらの混合状態などが挙げられる。そして、活性
アルミナへの銀源及び亜鉛源の担持は、該活性アルミナ
自体もしくは該活性アルミナの前駆体であるアルミナ水
和物に対して行われる。銀源や亜鉛源を活性アルミナに
担持させる方法には特に限定はなく従来から行われてい
る手法、例えば吸着法、ポアフィリング法、インシピエ
ントウェットネス法、蒸発乾固法、スプレ−法などの含
浸法や混練り法及び物理混合法を任意に採用することが
できる。また、硫黄の担持方法も特に限定されず、各元
素の硫酸塩やSO2ガスによる処理などが挙げられる。
The denitration catalyst of the present invention comprises silver, zinc and sulfur supported on activated alumina having the above crystal structure. The state of silver, zinc and sulfur supported on the activated alumina is not particularly limited, and examples thereof include metals, alloys, metal sulfides, complex metal sulfides and their similar compounds, metal sulfates, complex metal sulfates and these. Similar compounds, and further, a mixed state thereof and the like can be mentioned. Then, the loading of the silver source and the zinc source on the activated alumina is performed on the activated alumina itself or an alumina hydrate that is a precursor of the activated alumina. The method of supporting the silver source and the zinc source on the activated alumina is not particularly limited, and there are conventionally used methods such as an adsorption method, a pore filling method, an incipient wetness method, an evaporation dryness method, and a spray method. Any of the impregnation method, the kneading method, and the physical mixing method can be adopted. Further, the method of supporting sulfur is not particularly limited, and examples thereof include treatment with a sulfate of each element or SO 2 gas.

【0019】銀源及び亜鉛源として用いるものは特にそ
の形態を限定されないが、水可溶性塩が好ましい。
The forms used as the silver source and the zinc source are not particularly limited, but water-soluble salts are preferable.

【0020】例えば、含浸させたもの等を乾燥するに際
しては、乾燥温度は特に限定するものではなく、通常8
0〜120℃程度で乾燥する。その後300〜800
℃、好ましくは400〜700℃程度で焼成して触媒を
得る。焼成温度が800℃を越えると、アルミナの相変
態が起こるので好ましくない。
For example, when drying the impregnated material, the drying temperature is not particularly limited, and is usually 8
Dry at about 0 to 120 ° C. Then 300-800
The catalyst is obtained by calcination at ℃, preferably about 400-700 ℃. If the firing temperature exceeds 800 ° C., phase transformation of alumina occurs, which is not preferable.

【0021】活性アルミナに対する銀、亜鉛及び硫黄の
担持量は、特に限定されないが、元素換算で、それぞれ
活性アルミナ量に対して0.1〜10重量%、0.1〜
20重量%、0.01〜10重量%であることが好まし
い。
The amounts of silver, zinc and sulfur supported on the activated alumina are not particularly limited, but in terms of elements, 0.1 to 10% by weight and 0.1 to 10% by weight based on the amount of activated alumina, respectively.
It is preferably 20% by weight and 0.01 to 10% by weight.

【0022】本発明の触媒の形状は粉状、球状、円筒
状、ハニカム状、ラセン状、粒状、ペレット状、リング
状などとすることができ、特に制限されることはなく使
用条件に応じて任意に形状や大きさを選択することがで
きる。特に、自動車エンジンの排ガス浄化の目的で用い
る場合には、排気ガスの流れ方向に対して多数の貫通孔
を有する耐火性一体構造の支持基体の表面に粉状触媒を
被覆して触媒層を形成したものが好適に使用される。こ
の場合には、粉状のものを篩い分けして一定の粒度に整
粒したもの、あるいは円筒状等の触媒を粉砕しふるい分
けして一定の粒度に整粒したものをバインダ−と共に前
記支持基質の表面に被覆する、いわゆる通常のウォッシ
ュコ−ト法が適用できる。
The catalyst of the present invention may be in the form of powder, sphere, cylinder, honeycomb, spiral, granule, pellet, ring, etc., and is not particularly limited and may be used depending on the use conditions. The shape and size can be arbitrarily selected. In particular, when used for the purpose of purifying exhaust gas of an automobile engine, a catalyst layer is formed by coating a powdery catalyst on the surface of a support substrate having a refractory integral structure having many through holes in the exhaust gas flow direction. Those that have been used are preferably used. In this case, a powdery material which has been sieved to a certain particle size or a cylindrical catalyst which has been crushed and sieved to a certain particle size is used together with a binder to form the support substrate. A so-called usual wash coat method for coating the surface of the can be applied.

【0023】次に本第2の発明である脱硝方法について
説明する。
Next, the denitration method of the second invention will be described.

【0024】本発明の触媒は、排気ガス中のCO、HC
及びH2といった還元性成分をNOx及びO2といった酸
化性成分で完全酸化するに要する化学量論量近傍から過
剰の酸素を含有する排気ガス、より具体的には希薄空燃
比に至る内燃機関排気ガス中のNOxの浄化に適用され
る。このような排気ガスを本発明の触媒と接触させるこ
とによって、NOxは排気ガス中に微量に存在するHC
等の還元剤によってN2、CO2及びH2Oにまで還元分
解されると同時にHC等の還元剤もCO2とH2Oに酸化
される。
The catalyst of the present invention is used for CO, HC in exhaust gas.
And exhaust gas containing excess oxygen from near the stoichiometric amount required to completely oxidize reducing components such as H 2 with oxidizing components such as NOx and O 2 , more specifically, exhaust gas of an internal combustion engine that reaches a lean air-fuel ratio It is applied to purify NOx in gas. When such exhaust gas is brought into contact with the catalyst of the present invention, NOx is present in the exhaust gas in a trace amount.
The reducing agent such as HC is reductively decomposed to N 2 , CO 2 and H 2 O, and at the same time, the reducing agent such as HC is also oxidized to CO 2 and H 2 O.

【0025】ディ−ゼルエンジンの排気ガスのように、
排気ガスそのもののHC/NOx比が低い場合には、排
気ガス中にメタン換算濃度で数百〜数千ppm程度の濃
度になるように自動車燃料等のHCを追加添加し、最適
状態に調節した後、本発明の触媒と接触させる。こうす
ればディーゼルエンジンの排気ガスにも本発明の方法は
適用でき、充分に高いNOx除去率を得ることが可能で
ある。
Like the exhaust gas of a diesel engine,
When the HC / NOx ratio of the exhaust gas itself is low, additional HC such as automobile fuel is added to the exhaust gas so as to have a concentration of several hundreds to several thousands ppm in terms of methane conversion and adjusted to an optimum state. Then, it is contacted with the catalyst of the present invention. In this way, the method of the present invention can be applied to the exhaust gas of a diesel engine, and a sufficiently high NOx removal rate can be obtained.

【0026】本発明による触媒を用いて、ストイキオ領
域からリ−ンバ−ン領域に至る空燃比で運転される内燃
機関の排気ガスを浄化する際のガス空間速度は特に限定
されるものではない。しかし、これを自動車等の移動用
内燃機関の排気ガス浄化用触媒として用いる場合には、
前述したようにSV10,000〜200,000
-1、好ましくは10,000〜200,000h-1
することが好ましい。
When the catalyst according to the present invention is used to purify the exhaust gas of an internal combustion engine operated at an air-fuel ratio from the stoichiometric region to the lean burn region, the gas space velocity is not particularly limited. However, when it is used as a catalyst for purifying exhaust gas of a moving internal combustion engine such as an automobile,
As described above, SV 10,000 to 200,000
h -1, it is preferable that preferably a 10,000~200,000h -1.

【0027】そして、本発明の触媒を用いて上記したよ
うな高い空間速度で酸素過剰雰囲気下におけるNOxの
浄化を効率良く進めるためには、触媒層入口ガス温度を
300℃以上、600℃未満にすることが好ましい。こ
れは、本発明によるアルミナに銀、亜鉛及び硫黄を含有
させた触媒が脱硝性能を発揮するには300℃以上の温
度が必要であり、これ未満の低温になるとHCが活性化
され難いためと推定される。また、触媒層入口温度が6
00℃以上の高温になると副反応であるHCの燃焼が優
勢になり、相対的にNOx還元活性が低下する。
In order to efficiently proceed the purification of NOx in the oxygen excess atmosphere with the above-mentioned high space velocity using the catalyst of the present invention, the catalyst layer inlet gas temperature is set to 300 ° C. or more and less than 600 ° C. Preferably. This is because the catalyst containing silver, zinc and sulfur in the alumina according to the present invention requires a temperature of 300 ° C. or higher in order to exert the denitration performance, and when the temperature is lower than this, HC is hard to be activated. Presumed. Further, the catalyst layer inlet temperature is 6
When the temperature becomes higher than 00 ° C., combustion of HC, which is a side reaction, becomes dominant, and the NOx reduction activity relatively decreases.

【0028】[0028]

【実施例】以下に実施例及び比較例により、本発明を更
に詳細に説明する。但し、本発明は下記実施例に限定さ
れるものでない。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the following examples.

【0029】(実施例1) [触媒の調製]市販のベ−マイト粉末300g(構造水
27.7%)を、硝酸銀7g、硝酸亜鉛6水和物70g
及び硫酸1.33gの500ml水溶液に24時間浸漬
後、攪拌しながら加熱し水分を蒸発させた。
(Example 1) [Preparation of catalyst] 300 g of commercially available boehmite powder (structured water 27.7%), silver nitrate 7 g, zinc nitrate hexahydrate 70 g
After dipping in a 500 ml aqueous solution of 1.33 g of sulfuric acid and sulfuric acid for 24 hours, the mixture was heated with stirring to evaporate water.

【0030】次に、110℃で通風乾燥後、空気中70
0℃で3時間焼成し触媒(1)を得た。尚、元素換算で
の銀、亜鉛及び硫黄の含有率は、アルミナに対してそれ
ぞれ2.0%、6.6%、0.2%である。
Next, after air drying at 110 ° C., 70 in air
It was calcined at 0 ° C. for 3 hours to obtain a catalyst (1). The contents of silver, zinc and sulfur in terms of element are 2.0%, 6.6% and 0.2% with respect to alumina, respectively.

【0031】[性能評価例1]得られた触媒(1)を加
圧成型した後、粉砕して粒度を250〜500μに整粒
した。この整粒した触媒(1)を内径21mmのステン
レス製反応管に充填し、常圧固定床反応装置に装着し
た。
[Performance Evaluation Example 1] The obtained catalyst (1) was pressure-molded and then pulverized to adjust the particle size to 250 to 500 µ. This sized catalyst (1) was filled in a stainless steel reaction tube having an inner diameter of 21 mm and mounted in a fixed-pressure atmospheric reactor.

【0032】この触媒層にモデル排気ガスとして、NO
500ppm、C36 500ppm、O2 5%、H2
O 10%、残部N2 からなる混合ガスを空間速度3
0,000h-1で通過させた。
NO was added to this catalyst layer as model exhaust gas.
500ppm, C 3 H 6 500ppm, O 2 5%, H 2
A mixed gas consisting of 10% O and the balance N 2 was used to produce a space velocity of 3
It was passed at 10,000 h -1 .

【0033】触媒層入口ガス温度を300〜600℃の
範囲の所定の温度に設定し、各所定温度毎に反応管出口
ガス組成が安定した時点の分析値を用い、脱硝率を以下
の式1で求めた。
The catalyst layer inlet gas temperature is set to a predetermined temperature in the range of 300 to 600 ° C., and the denitration rate is calculated by the following equation 1 using the analysis value at the time when the reaction tube outlet gas composition becomes stable at each predetermined temperature. I asked for.

【0034】なお、反応管出口ガス中のNOとNO2
ついては化学発光式NOx計で測定し、N2O濃度はP
orapack Qカラムを装着したガスクロマトグラ
フ−熱伝導度検出器を用いて測定した。その結果、本発
明のいずれの触媒でもN2O及びNO2は殆ど生成しなか
った。
NO and NO 2 in the reaction tube outlet gas were measured by a chemiluminescence type NOx meter, and the N 2 O concentration was P
The measurement was performed using a gas chromatograph-thermal conductivity detector equipped with an orapack Q column. As a result, N 2 O and NO 2 were scarcely produced by any of the catalysts of the present invention.

【0035】式1 得られた結果を表1に示した。なお、表1には性能評価
例1で得られた最高脱硝率Cmax(%)を示した。
Equation 1 Table 1 shows the obtained results. The maximum denitration rate Cmax (%) obtained in Performance Evaluation Example 1 is shown in Table 1.

【0036】 [性能評価例2]上記触媒(1)を下記表2に示すスト
イキオ条件下に曝した後、性能評価例1のモデルガス条
件にて再度評価を行った。表1に、得られた結果を性能
評価例2の最高脱硝率Cmax(%)として示した。
[0036] [Performance Evaluation Example 2] The catalyst (1) was exposed to the stoichiometric conditions shown in Table 2 below, and then evaluated again under the model gas conditions of Performance Evaluation Example 1. The obtained results are shown in Table 1 as the maximum denitration rate Cmax (%) of Performance Evaluation Example 2.

【0037】 [性能評価例3]上記触媒(1)を用い、空間速度を7
0,000h-1とした以外は、性能評価例1と同様にし
て触媒の性能を評価した。
[0037] [Performance Evaluation Example 3] Using the above catalyst (1), the space velocity was set to 7
The performance of the catalyst was evaluated in the same manner as in Performance Evaluation Example 1 except that the catalyst performance was set to 10,000 h -1 .

【0038】表3に上記空間速度における最高脱硝率C
max(%)を示す。
Table 3 shows the maximum denitration rate C at the above space velocity.
Indicates max (%).

【0039】 本実施例の触媒(1)は、より高い空間速度でも非常に
優れた脱硝性能を示した。 (実施例2)〜(実施例3)実施例1において、亜鉛の
含有率を8%、3%とした以外は、実施例1と同様にし
て、それぞれ触媒(2)(実施例2)、触媒(3)(実
施例3)を得た。
[0039] The catalyst (1) of this example showed very excellent denitration performance even at a higher space velocity. (Example 2) to (Example 3) Catalyst (2) (Example 2) was prepared in the same manner as in Example 1 except that the contents of zinc were changed to 8% and 3%, respectively. A catalyst (3) (Example 3) was obtained.

【0040】次いで、これらの触媒を用いて性能評価例
1と2とを行った。得られた結果をそれぞれ表1に示し
た。
Next, performance evaluation examples 1 and 2 were carried out using these catalysts. The obtained results are shown in Table 1.

【0041】(実施例4)実施例1において、硫黄の含
有率を1.5%とした以外は、実施例1と同様にして、
触媒(4)を得た。
(Example 4) In the same manner as in Example 1 except that the sulfur content in Example 1 was changed to 1.5%,
A catalyst (4) was obtained.

【0042】次いで、この触媒を用いて性能評価例1と
2とを行った。得られた結果をそれぞれ表1に示した。
Then, performance evaluation examples 1 and 2 were carried out using this catalyst. The obtained results are shown in Table 1.

【0043】(実施例5)実施例1において、銀の含有
率を3%とした以外は、実施例1と同様にして触媒
(5)を得た。
(Example 5) A catalyst (5) was obtained in the same manner as in Example 1 except that the content of silver was changed to 3%.

【0044】次いで、この触媒を用いて性能評価例1と
2とを行った。得られた結果をそれぞれ表1に示した。
Then, performance evaluation examples 1 and 2 were carried out using this catalyst. The obtained results are shown in Table 1.

【0045】(比較例1)実施例1において、硫黄及び
亜鉛の含有率を0%とした以外は実施例1と同様にして
触媒(6)を得た。
(Comparative Example 1) A catalyst (6) was obtained in the same manner as in Example 1 except that the contents of sulfur and zinc were changed to 0%.

【0046】次いで、この触媒を用いて性能評価例1と
2とを行った。得られた結果をそれぞれ表1に示した。
Then, performance evaluation examples 1 and 2 were carried out using this catalyst. The obtained results are shown in Table 1.

【0047】(比較例2)実施例4において、亜鉛の含
有率を0%とした以外は実施例4と同様にして触媒
(7)を得た。
(Comparative Example 2) A catalyst (7) was obtained in the same manner as in Example 4 except that the content of zinc was changed to 0%.

【0048】次いで、この触媒を用いて性能評価例1と
2とを行った。得られた結果をそれぞれ表1に示した。
Then, performance evaluation examples 1 and 2 were carried out using this catalyst. The obtained results are shown in Table 1.

【0049】(比較例3)実施例1において、銀及び硫
黄の含有率をそれぞれ3.6%、0%とした以外は実施
例1と同様にして触媒(8)を得た。
Comparative Example 3 A catalyst (8) was obtained in the same manner as in Example 1 except that the contents of silver and sulfur were changed to 3.6% and 0%, respectively.

【0050】次いで、この触媒を用いて性能評価例1と
2とを行った。得られた結果をそれぞれ表1に示した。
Then, performance evaluation examples 1 and 2 were carried out using this catalyst. The obtained results are shown in Table 1.

【0051】(比較例4)特開平6−277454号公
報の実施例9に基づいて、触媒を調製した。
Comparative Example 4 A catalyst was prepared based on Example 9 of JP-A-6-277454.

【0052】硝酸亜鉛6水和物46gと硝酸アルミナウ
ム9水和物280gを,1.5lの水に溶解させた。こ
の水溶液に7重量%のアンモニア水溶液650gを激し
く攪拌させながら加え沈殿物を得た。この沈殿物を約1
昼夜熟成させた後、これを濾過、洗浄した。こうして得
られた沈殿物を110℃で約1昼夜乾燥させ、続いて6
00℃で6時間焼成して担体を得た。得られた担体の組
成はZnO:Al23=25:75(重量%、酸化物換
算)であった。この担体38gを、硝酸銀1.26g含
む200ml水溶液に加え、蒸発乾固、焼成を行い、銀
を2重量%担持させた触媒(9)を得た。
46 g of zinc nitrate hexahydrate and 280 g of alumina nitrate nonahydrate were dissolved in 1.5 l of water. To this aqueous solution, 650 g of a 7% by weight aqueous ammonia solution was added with vigorous stirring to obtain a precipitate. About 1 of this precipitate
After aging for 24 hours, this was filtered and washed. The precipitate thus obtained is dried at 110 ° C. for about 1 day and then 6
The carrier was obtained by baking at 00 ° C. for 6 hours. The composition of the obtained carrier was ZnO: Al 2 O 3 = 25: 75 (% by weight, calculated as oxide). 38 g of this carrier was added to a 200 ml aqueous solution containing 1.26 g of silver nitrate, evaporated to dryness and baked to obtain a catalyst (9) carrying 2% by weight of silver.

【0053】次いで、この触媒を用いて性能評価例1と
2とを行った。得られた結果をそれぞれ表1に示した。
Then, performance evaluation examples 1 and 2 were carried out using this catalyst. The obtained results are shown in Table 1.

【0054】表1の性能評価例1の結果では、本発明の
実施例の触媒(1)〜(5)及び比較例の触媒(6)〜
(8)は、比較例の触媒(9)に比べ、非常に優れた脱
硝性能を示した。しかし、性能評価例2の結果では実施
例の触媒(1)〜(5)のみが優れた脱硝性能を示して
おり、本発明の触媒はストイキオ耐性に優れていること
がわかった。
The results of the performance evaluation example 1 in Table 1 show that the catalysts (1) to (5) of the examples of the present invention and the catalysts (6) to (6) of the comparative examples.
(8) showed a very excellent denitration performance as compared with the catalyst (9) of the comparative example. However, in the results of Performance Evaluation Example 2, only the catalysts (1) to (5) of the example showed excellent denitration performance, and it was found that the catalyst of the present invention has excellent stoichioresistance.

【0055】[0055]

【発明の効果】以上の様に、本発明による脱硝触媒及び
脱硝方法によれば、水蒸気が共存する希薄燃焼領域にお
いて、ストイキオ状態に保持した後であっても高空間速
度において高い転化率で窒素酸化物を還元浄化できるの
で、特に希薄空燃比で運転される内燃機関から排出され
る窒素酸化物の浄化に有用である。
As described above, according to the denitration catalyst and the denitration method according to the present invention, in a lean combustion region where water vapor coexists, even at a high space velocity even after holding in a stoichiometric state, nitrogen is converted at a high conversion rate. Since oxides can be reduced and purified, it is particularly useful for purification of nitrogen oxides discharged from an internal combustion engine operated at a lean air-fuel ratio.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池田 浩幸 千葉県 市川市 中国分 3−18−5 住 友金属鉱山株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Hiroyuki Ikeda Ichikawa City, Chiba Chugoku 3-18-5 Sumitomo Metal Mining Co., Ltd. Central Research Laboratory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 活性アルミナに銀、亜鉛及び硫黄を担
持させてなることを特徴とする脱硝触媒。
1. A denitration catalyst comprising activated alumina supporting silver, zinc and sulfur.
【請求項2】 銀、亜鉛及び硫黄の担持量が、元素換
算で、それぞれ活性アルミナ量に対して0.1〜10重
量%、0.1〜20重量%、0.01〜10重量%であ
ることを特徴とする請求項1記載の脱硝触媒。
2. The amount of silver, zinc and sulfur supported is 0.1 to 10% by weight, 0.1 to 20% by weight and 0.01 to 10% by weight based on the amount of activated alumina, respectively, in terms of elements. The denitration catalyst according to claim 1, wherein the denitration catalyst is present.
【請求項3】 希薄空燃比で運転される内燃機関の排
気ガスを高空間速度で触媒層と接触させることからなる
排気ガスの脱硝方法において、脱硝触媒層を構成する触
媒として請求項1または2記載の脱硝触媒を使用するこ
とを特徴とする脱硝方法。
3. A denitration method for exhaust gas, which comprises contacting exhaust gas of an internal combustion engine operated at a lean air-fuel ratio with a catalyst layer at a high space velocity, wherein the catalyst constituting the denitration catalyst layer is a catalyst constituting the denitration catalyst layer. A denitration method using the described denitration catalyst.
【請求項4】 空間速度を10,000〜200,0
00h-1、触媒層入口ガス温度を300℃以上、600
℃未満とすることを特徴とする請求項3記載の脱硝方
法。
4. The space velocity is 10,000 to 200,0.
00h -1 , the catalyst layer inlet gas temperature is 300 ° C or higher, 600
4. The denitration method according to claim 3, wherein the temperature is lower than ℃.
【請求項5】 空間速度を10,000〜100,0
00h-1とすることを特徴とする請求項3または4記載
の脱硝方法。
5. The space velocity is 10,000 to 100,0.
The denitration method according to claim 3 or 4, wherein the denitration is set to 00h- 1 .
JP7163622A 1995-06-29 1995-06-29 Denitration catalyst and method using the same Pending JPH0910592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7163622A JPH0910592A (en) 1995-06-29 1995-06-29 Denitration catalyst and method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7163622A JPH0910592A (en) 1995-06-29 1995-06-29 Denitration catalyst and method using the same

Publications (1)

Publication Number Publication Date
JPH0910592A true JPH0910592A (en) 1997-01-14

Family

ID=15777434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7163622A Pending JPH0910592A (en) 1995-06-29 1995-06-29 Denitration catalyst and method using the same

Country Status (1)

Country Link
JP (1) JPH0910592A (en)

Similar Documents

Publication Publication Date Title
JPH09299763A (en) Denitration catalyst layer and denitrating method
JPH10174886A (en) Waste gas cleaning catalyst layer, waste gas cleaning catalyst covered structural body and waste gas cleaning method
JPH0910592A (en) Denitration catalyst and method using the same
JP3682476B2 (en) NOx removal catalyst, method for producing the same, and exhaust gas NOx removal method using the same
JP3567998B2 (en) Denitration catalyst and denitration method using the same
JPH08309194A (en) Catalyst for exhaust gas purification and exhaust gas purification method
JP3358274B2 (en) Denitration catalyst and denitration method
JPH07256103A (en) Production of denitration catalyst and denitrating method
JPH0970538A (en) Catalyst layer for denitrification, denitrification catalyst structural body and denitrification method using that
JPH09299800A (en) Catalyst for purification of exhaust gas and method for purifying exhaust gas
JPH0970539A (en) Denitrification catalyst and denitrification method using that
JPH09108571A (en) Catalyst layer for denitration, denitration catalyst structure and denitration method by then same
JPH0924273A (en) Denitration catalyst and denitration process using the same
JPH07256101A (en) Denitration catalyst and denitrating method
JPH10235156A (en) Exhaust gas purifying catalyst bed, exhaust gas purifying catalyst coated structure and exhaust gas purifying method using the same
JPH08131829A (en) Denitrification catalyst and denitrifying method using the same
JPH0824645A (en) Denitration catalyst and denitration method using the same
JPH0924276A (en) Denitration catalyst and denitration process
JPH09308819A (en) Catalyst layer and method for denitrification
JPH11128689A (en) Purification of waste gas
JPH07289894A (en) Denitrification catalyst and denitrifying method using the same
JPH08309193A (en) Denitration catalyst and denitration method
JPH105602A (en) Catalyst for purifying exhaust gas and exhaust gas purification
JPH10286463A (en) Catalytic layer for purification of exhaust gas, catalytic structure for purification of exhaust gas and method for purifying exhaust gas with the same
JPH07275707A (en) Production of denox catalyst and denitrification method