JPH09105441A - Base isolation device - Google Patents

Base isolation device

Info

Publication number
JPH09105441A
JPH09105441A JP8216605A JP21660596A JPH09105441A JP H09105441 A JPH09105441 A JP H09105441A JP 8216605 A JP8216605 A JP 8216605A JP 21660596 A JP21660596 A JP 21660596A JP H09105441 A JPH09105441 A JP H09105441A
Authority
JP
Japan
Prior art keywords
seismic isolation
elastic body
columnar lead
ratio
isolation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8216605A
Other languages
Japanese (ja)
Other versions
JP3024562B2 (en
Inventor
Tsukasa Kishizono
司 岸園
Ikuo Shimoda
郁夫 下田
Henrii Robinson Uiriamu
ヘンリー ロビンソン ウイリアム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Industry Co Ltd
Original Assignee
Oiles Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26521533&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH09105441(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Oiles Industry Co Ltd filed Critical Oiles Industry Co Ltd
Priority to JP8216605A priority Critical patent/JP3024562B2/en
Publication of JPH09105441A publication Critical patent/JPH09105441A/en
Application granted granted Critical
Publication of JP3024562B2 publication Critical patent/JP3024562B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a base isolation device to provide stable base isolation characteristics and to prevent the occurrence of fatigue and the damage of an elastic material layer of an elastic material and columnar leas and be excellent in durability, a base isolation effect, and manufacturability. SOLUTION: This base isolation device 5 comprises an elastic material 3 formed in such a manner that an elastic material layer and a rigidity material layer are alternately laminated together; and columnar lead 4 arranged in a hollow part 12 specified by the inner circumferential surface 9 of the elastic material 3. The base isolation device is formed in such a manner that a ratio Vp/Ve between a total area ap of the cut surface of the columnar lead r and the area Ar of the load surface of the elastic material 3 is 0.01-0.12 and a ratio Vp/Ve between the volume Vp of the columnar lead 4 arranged in a hollow part 12 and the volume Ve of the hollow part 12 in such a state that the columnar lead is not inserted and a load is exerted on the elastic material 3 is 1.02-1.12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二つの構造物間に
配されて両構造物間の相対的な水平振動のエネルギを吸
収し、構造物への振動加速度を低減するための装置、特
に地震エネルギを減衰して地震入力加速度を低減し、建
築物、橋梁等の構造物の損壊を防止する免震装置及びこ
の免震装置を一個以上使用したシステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device arranged between two structures for absorbing the energy of relative horizontal vibration between the two structures to reduce vibration acceleration to the structures, and more particularly to a device for reducing vibration acceleration to the structures. The present invention relates to a seismic isolation device that attenuates seismic energy to reduce seismic input acceleration and prevents damage to structures such as buildings and bridges, and a system that uses one or more seismic isolation devices.

【0002】[0002]

【発明が解決しようとする課題】振動エネルギ吸収体と
しては、例えば、特公昭61−17984号公報に記載
のものが知られており、この振動エネルギ吸収体は、二
つの構造物間に固定されていて剪断力を加えることによ
って塑性変形する鉛部材を有している。このような振動
エネルギ吸収体の鉛部材は、その塑性変形において、亀
裂等を生じることなしに振動エネルギを好ましく吸収す
るが、変形後も、通常のばねと異なり吸収したエネルギ
を構造物に戻さず、その変形した状態を維持し、構造物
の元の位置への復帰を行わせ難いものである。
As a vibration energy absorber, for example, the one disclosed in Japanese Patent Publication No. 61-17984 is known, and this vibration energy absorber is fixed between two structures. And has a lead member that is plastically deformed by applying a shearing force. The lead member of such a vibration energy absorber preferably absorbs vibration energy without causing cracks or the like in its plastic deformation, but unlike a normal spring, even after deformation, the absorbed energy does not return to the structure. However, it is difficult to return the structure to its original position while maintaining the deformed state.

【0003】弾性材料層を構成するゴム等からなる弾性
板と剛性材料層を構成する金属板とを交互に積層し、こ
れらを互いに加硫接着等して相互に固着してなる免震装
置としての弾性体は、地震入力加速度を低減し、構造物
を地震の破壊力から一応保護するが、振動エネルギ吸収
能力が低く、これを単独で免震装置として用いた場合、
上記の鉛部材と比較して、地震動を受けた構造物の地震
後の振動が鎮るまでに長時間を要する等の地震工学及び
振動工学の観点から実用上種々の問題がある。
A seismic isolation device in which elastic plates made of rubber or the like forming elastic material layers and metal plates forming rigid material layers are alternately laminated and fixed to each other by vulcanization adhesion or the like. The elastic body reduces the seismic input acceleration and protects the structure from the destructive force of the earthquake, but has a low vibration energy absorption capacity, and when it is used alone as a seismic isolation device,
Compared with the above-mentioned lead members, there are various practical problems from the viewpoint of seismic engineering and vibration engineering in that it takes a long time for the post-earthquake vibration of a structure subjected to earthquake motion to subside.

【0004】そこで、鉛部材の塑性変形における振動エ
ネルギ吸収能と、弾性体の地震入力加速度の低減能及び
復元能とを合せ持つべく、弾性体と、この弾性体を貫通
して配された柱状鉛とを具備した免震装置も前記公報に
提案されている。
Therefore, in order to have both the vibration energy absorbing ability in the plastic deformation of the lead member and the seismic input acceleration reducing ability and restoring ability of the elastic body, the elastic body and the columnar shape penetrating the elastic body are provided. A seismic isolation device including lead is also proposed in the above publication.

【0005】図1及び図2に示す免震装置5は、弾性材
料層を構成するゴム等からなる弾性板1と剛性材料層を
構成する環状の剛性板2とを交互に積層して相互に固定
してなる環状の弾性体3と、弾性体3の円筒状の内周面
9で規定される中空部12に配された円柱状鉛4と、円
柱状鉛4の下面及び上面にそれぞれ当接して弾性体3の
下面及び上面のそれぞれにボルト等により取り付けられ
たフランジプレート18及び19とを具備し、例えば、
フランジプレート18側が基礎等の一方の構造物に固定
され、フランジプレート19側に建築物等の他方の構造
物が載置されて、フランジプレート19を介して建築物
等から鉛直方向荷重Xを受けるようにして、用いられ
る。
The seismic isolation device 5 shown in FIGS. 1 and 2 has elastic plates 1 made of rubber or the like forming elastic material layers and annular rigid plates 2 forming rigid material layers alternately laminated to each other. The fixed annular elastic body 3, the cylindrical lead 4 arranged in the hollow portion 12 defined by the cylindrical inner peripheral surface 9 of the elastic body 3, and the lower surface and the upper surface of the cylindrical lead 4 are respectively contacted. It is provided with flange plates 18 and 19 that are in contact with and attached to the lower surface and the upper surface of the elastic body 3 by bolts or the like.
The flange plate 18 side is fixed to one structure such as a foundation, the other structure such as a building is placed on the flange plate 19 side, and a vertical load X is received from the building or the like via the flange plate 19. Used in this way.

【0006】このような免震装置5に対して地震により
横方向力Fが生じた場合の当該横方向力Fと横変位δと
の関係は、対角剛性Kerと弾性体3の横方向(水平方
向)の剛性Krとが同程度の場合、換言すれば弾性体3
で隙間なく拘束された円柱状鉛4の剪断降伏荷重Auに
基づく剪断降伏荷重特性値Qd(このQdと剪断降伏荷
重Auとの間には、設計では、履歴曲線をバイリニア特
性で表わした場合、便宜上、Qd= 0.8・Auの関係
をもたせており、本発明ではQdを剪断降伏荷重とい
う)が小さくなる場合には、図3に示すような履歴曲線
を描き、対角剛性Kerが剛性Krに比較して大きい場
合、換言すれば弾性体3で隙間なく拘束された円柱状鉛
4の剪断降伏荷重Qdが大きくなる場合には、図4に示
すような履歴曲線を描くこととなる。ここで、剪断降伏
荷重Qdは、次式(1)で表される。 Qd=ap・σpd・・・・・(1)
The relationship between the lateral force F and the lateral displacement δ when the lateral force F is generated by the seismic isolation device 5 due to an earthquake is as follows: diagonal rigidity Ker and lateral direction of the elastic body 3 ( When the rigidity Kr in the horizontal direction is about the same, in other words, the elastic body 3
The shear yield load characteristic value Qd based on the shear yield load Au of the cylindrical lead 4 constrained without a gap by (when this Qd and the shear yield load Au are represented by the bilinear characteristic in the design, For the sake of convenience, the relationship of Qd = 0.8 · Au is given, and in the present invention, when Qd is called a shear yield load), a hysteresis curve is drawn as shown in FIG. When it is larger than Kr, in other words, when the shear yield load Qd of the cylindrical lead 4 constrained by the elastic body 3 without a gap becomes large, a hysteresis curve as shown in FIG. 4 is drawn. Here, the shear yield load Qd is expressed by the following equation (1). Qd = ap · σpd (1)

【0007】式(1)において、apは、円柱状鉛4の
剪断面の面積(本発明では、剛性材料層の内周で囲まれ
る円柱状鉛4の横断面積で定義する)で、免震装置5に
加わる横方向力Fに対する円柱状鉛4の剪断面の面積に
相当し、σpdは、弾性体3により隙間なしに拘束され
ていない円柱状鉛4自体の剪断降伏応力(本発明では、
これを設計剪断降伏応力という)であり、純粋鉛(純度
99.9%以上)の場合、0.5Hz振動でかつ50%
以上の歪振幅では、設計値として85kg/cm2 であ
る。
In the formula (1), ap is the area of the shear plane of the cylindrical lead 4 (in the present invention, defined by the cross-sectional area of the cylindrical lead 4 surrounded by the inner circumference of the rigid material layer), and is seismic isolated. It corresponds to the area of the shear plane of the cylindrical lead 4 with respect to the lateral force F applied to the device 5, and σpd is the shear yield stress of the cylindrical lead 4 itself which is not constrained by the elastic body 3 without a gap (in the present invention,
This is the design shear yield stress), and in the case of pure lead (purity 99.9% or more), it is 0.5 Hz vibration and 50%.
With the above strain amplitude, the design value is 85 kg / cm 2 .

【0008】ところで、図3に示すような履歴曲線を描
く免震装置5では、地震において、それに対する免震効
果は優れるものの、これに載置される構造物と基礎との
相対変位が大きく、また地震後の後揺れが比較的長く続
き、長周期成分の大きな地震動では共振する虞を有し、
更に、台風時のような強風時には、載置された構造物が
大きく揺れる場合がある。一方、免震装置5による動的
固有振動周期は、図3及び図4に示す対角剛性Ker で
与えられるが、図4に示すような履歴曲線を描く免震装
置5では、剛性Krが比較的小さくても、対角剛性Ke
r が大きい場合には、円柱状鉛4の剪断降伏荷重Qdが
大きくなり、免震効果を発揮するに十分な長周期化が困
難となり、結果として、免震効果が悪くなる。
By the way, in the seismic isolation device 5 which draws a hysteresis curve as shown in FIG. 3, although the seismic isolation effect against the earthquake is excellent, the relative displacement between the structure and the foundation mounted thereon is large, Also, after shaking after the earthquake lasts for a relatively long time, there is a possibility that it will resonate in a large earthquake motion with a long period component,
Further, the mounted structure may shake significantly during strong wind such as typhoon. On the other hand, the dynamic natural vibration period by the seismic isolation device 5 is given by the diagonal rigidity Ke r shown in FIGS. 3 and 4, but in the seismic isolation device 5 which draws a hysteresis curve as shown in FIG. Diagonal rigidity Ke
When r is large, the shear yield load Qd of the cylindrical lead 4 becomes large, and it becomes difficult to make the period long enough to exert the seismic isolation effect, and as a result, the seismic isolation effect deteriorates.

【0009】また、式(1)に従った円柱状鉛4の剪断
降伏荷重Qdを保証する要件としては、弾性体を構成す
る弾性材料層と剛性材料層とに円柱状鉛4がそれに周期
的な剪断変形が生じている間及びその後も隙間なく拘束
されていることである。そして中空部12に配された円
柱状鉛4が弾性体3に隙間なく拘束されていないと、地
震による横方向力(水平方向力)Fが生じた場合、弾性
体3の内周面9と、これに接する円柱状鉛4の円筒状の
外周面との間に隙間が生じて、横方向力Fと横変位(水
平方向変位)δとの関係において、図5の履歴曲線21
で示すような不安定な特性となり、円柱状鉛4による効
果をそれ程得ることができず、所望の免震効果を得るこ
とが困難となる。一方、弾性体3により必要以上に円柱
状鉛4を拘束すると、地震による横方向力Fでの円柱状
鉛4の塑性変形において、弾性体3の弾性材料層が過度
に圧縮され、これによっても弾性体3の弾性材料層の早
期の劣化を招来し、耐久性に問題が生じる。また、円柱
状鉛4を形成するために、弾性体3の中空部12に圧入
する鉛の量には限度があり、一定量以上の鉛を弾性体3
の中空部12に圧入することは困難であり、無理にこれ
を行うと弾性体3自体が損壊してしまう虞がある。
Further, as a requirement for guaranteeing the shear yield load Qd of the cylindrical lead 4 according to the equation (1), the cylindrical lead 4 is periodically arranged in the elastic material layer and the rigid material layer forming the elastic body. That is, it is constrained without a gap during and after the occurrence of various shear deformations. If the cylindrical lead 4 arranged in the hollow portion 12 is not constrained by the elastic body 3 without a gap, when a lateral force (horizontal force) F due to an earthquake is generated, , A gap is formed between the cylindrical outer peripheral surface of the cylindrical lead 4 which is in contact with this, and the history curve 21 of FIG. 5 in relation to the lateral force F and the lateral displacement (horizontal displacement) δ.
The unstable characteristics as shown in (3) are not obtained, the effect of the cylindrical lead 4 cannot be obtained so much, and it becomes difficult to obtain the desired seismic isolation effect. On the other hand, if the elastic body 3 restrains the columnar lead 4 more than necessary, the elastic material layer of the elastic body 3 is excessively compressed during the plastic deformation of the columnar lead 4 by the lateral force F due to an earthquake. This causes early deterioration of the elastic material layer of the elastic body 3 and causes a problem in durability. Further, there is a limit to the amount of lead that is press-fitted into the hollow portion 12 of the elastic body 3 in order to form the cylindrical lead 4, and a certain amount or more of lead can be used in the elastic body 3.
It is difficult to press-fit into the hollow portion 12, and if this is forcibly performed, the elastic body 3 itself may be damaged.

【0010】そして、図1及び図2に示す免震装置5で
は、数度の地震により繰り返して横方向変位が生じる
と、円柱状鉛4の上下面の周縁部が丸み付けされて、当
該周縁部と弾性体3との間に環状隙間が生じる虞もあ
る。
In the seismic isolation device 5 shown in FIGS. 1 and 2, when lateral displacement is repeatedly generated due to an earthquake of several degrees, the peripheral edges of the upper and lower surfaces of the cylindrical lead 4 are rounded to form the peripheral edge. There is a possibility that an annular gap may be formed between the portion and the elastic body 3.

【0011】本発明は、前記諸点に鑑みてなされたもの
であって、剪断降伏荷重Qdと、以下述べる弾性体の支
持荷重Wとの関係に着目して、この関係から得られる柱
状鉛の剪断面の面積apと、弾性体の荷重面の面積Ar
との比を所定の範囲内にすることにより、免震効果に優
れる上に、構造物と基礎との相対変位を小さくすること
ができ、また地震後の後揺れも早期に減衰することがで
き、台風時のような強風時でも載置された構造物の横揺
れを少なくし得、加えて免震効果を発揮するに十分な長
周期化を計り得て長周期成分の地震動でも共振の虞がな
い免震装置を提供することを目的とする。
The present invention has been made in view of the above points, and paying attention to the relationship between the shear yield load Qd and the supporting load W of the elastic body described below, the shearing of columnar lead obtained from this relationship. Area ap of the surface and area Ar of the load surface of the elastic body
By setting the ratio of the to and within the specified range, the seismic isolation effect is excellent, the relative displacement between the structure and the foundation can be made small, and the post-earthquake sway can be damped early. , It is possible to reduce the rolling of the mounted structure even in strong winds such as typhoons, and in addition, it is possible to lengthen the period enough to exert the seismic isolation effect, which may cause resonance even in the case of long-period seismic motion. The purpose of the present invention is to provide a seismic isolation device.

【0012】また本発明は、上記所定の面積比率を有す
る免震装置において、弾性体の中空部に配された柱状鉛
を所定に隙間なしに拘束し得る結果、安定な免震特性を
得ることができ、加えて弾性体の弾性材料層及び柱状鉛
の疲労、損壊を回避することができ、耐久性及び免震効
果並びに製造性に優れた免震装置を提供することを目的
とする。
Further, according to the present invention, in the seismic isolation device having the above-mentioned predetermined area ratio, the columnar lead arranged in the hollow portion of the elastic body can be restrained without a predetermined gap, so that stable seismic isolation characteristics can be obtained. In addition, it is possible to avoid fatigue and damage of the elastic material layer of the elastic body and columnar lead, and to provide a seismic isolation device having excellent durability, seismic isolation effect, and manufacturability.

【0013】更に本発明では上記のような免震装置を少
なくとも一個使用したシステムを提供することを目的と
する。
A further object of the present invention is to provide a system using at least one seismic isolation device as described above.

【0014】[0014]

【課題を解決するための手段】本発明によれば前記目的
は、弾性材料層及び剛性材料層が交互に積層されてなる
弾性体と、この弾性体を貫通して配された少なくとも一
つの柱状鉛とを具備しており、当該柱状鉛の剪断降伏荷
重Qdが柱状鉛の剪断面の面積apと設計剪断降伏応力
σpdとの積となるように、柱状鉛がその剪断方向にお
いて弾性体に隙間なしに拘束されている免震装置であっ
て、柱状鉛の剪断面の総面積Σapと弾性体の荷重面の
面積Arとの比Σap/Arが0.01〜0.12であ
る免震装置によって達成される。
According to the present invention, the above object is to provide an elastic body in which elastic material layers and rigid material layers are alternately laminated, and at least one columnar body penetrating the elastic body. The columnar lead has a gap in the elastic body in the shearing direction so that the shearing yield load Qd of the columnar lead is the product of the area ap of the columnar lead's shear plane and the designed shear yield stress σpd. A seismic isolation device which is restrained without being provided, wherein a ratio Σap / Ar of a total area Σap of columnar lead shear planes and an area Ar of a load surface of an elastic body is 0.01 to 0.12. Achieved by

【0015】また本発明によれば前記目的は、少なくと
も一つの柱状鉛と、弾性材料層及び剛性材料層が交互に
積層されてなる弾性体と、少なくともこの弾性体の内周
面で規定されており、柱状鉛が密に配された少なくとも
一つの中空部とを具備した免震装置であって、柱状鉛の
剪断面の総面積Σapと弾性体の荷重面の面積Arとの
比Σap/Arが0.01〜0.12であり、中空部に
配された柱状鉛の体積Vpと、柱状鉛が未挿入であっ
て、弾性体に荷重が加えられた状態での中空部の容積V
eとの比Vp/Veが1.02〜1.12である免震装
置によっても達成される。
According to the present invention, the object is defined by at least one columnar lead, an elastic body in which elastic material layers and rigid material layers are alternately laminated, and at least an inner peripheral surface of the elastic body. And a seismic isolation device having at least one hollow portion in which columnar lead is densely arranged, and a ratio Σap / Ar of a total area Σap of shear planes of columnar lead to an area Ar of a load surface of an elastic body. Is 0.01 to 0.12, and the volume Vp of the columnar lead arranged in the hollow portion and the volume Vp of the hollow portion in a state where the columnar lead is not inserted and the elastic body is loaded.
It is also achieved by a seismic isolation device having a ratio Vp / Ve with e of 1.02 to 1.12.

【0016】本発明は、柱状鉛が弾性体により隙間なく
拘束されて、柱状鉛の剪断降伏荷重Qdが当該柱状鉛の
剪断面の面積apと設計剪断降伏応力σpdとの積とな
る免震装置においては、その要求される特性を、柱状鉛
の剪断降伏荷重Qdと載置される構造物に対する弾性体
の支持荷重Wとの比で評価することができることに着目
し、剪断降伏荷重Qdと支持荷重Wとの比Qd/Wが
0.02よりも小さい場合には、載置される構造物と基
礎との相対変位が大きく、また地震後の後揺れが比較的
長く続き、長周期成分の大きな地震動では共振する虞を
有し、台風時のような強風時には載置された構造物が大
きく揺れる虞がある一方、比Qd/Wが0.08よりも
大きい場合には、長周期化が困難となり、結果として、
免震効果が悪くなる、という知見に基づいてなされたも
のである。
According to the present invention, the columnar lead is constrained by the elastic body without a gap, and the shear yield load Qd of the columnar lead is the product of the area ap of the shear plane of the columnar lead and the designed shear yield stress σpd. , The required characteristics can be evaluated by the ratio of the shear yield load Qd of columnar lead to the support load W of the elastic body for the structure to be placed, and the shear yield load Qd and the support When the ratio Qd / W with the load W is smaller than 0.02, the relative displacement between the mounted structure and the foundation is large, and the post-earthquake sway continues for a relatively long time, and There is a risk of resonance in a large earthquake motion, and there is a risk of the mounted structure swaying significantly during strong winds such as during a typhoon. On the other hand, if the ratio Qd / W is greater than 0.08, a longer period will occur. Difficult, and as a result,
This was done based on the finding that the seismic isolation effect will deteriorate.

【0017】免震装置5においては、円柱状鉛4の剪断
降伏荷重Qdは、上記の式(1)で与えられ、また、弾
性体3の支持荷重Wは、 W=Ar・P・・・・・・・・(2) で与えられる。ここで、Arは、弾性体3の荷重面の面
積で、免震装置5に加わる鉛直方向荷重X、すなわち支
持荷重Wに対する弾性体3の受圧面積に相当し、Pは、
免震装置5に加わる鉛直方向荷重Xに対する弾性体3の
平均圧縮応力で、免震装置の設計では、通常、60kg
/cm2 〜130kg/cm2 程度の値がとられる。
In the seismic isolation device 5, the shear yield load Qd of the cylindrical lead 4 is given by the above equation (1), and the supporting load W of the elastic body 3 is W = Ar · P ...・ ・ ・ (2) is given. Here, Ar is the area of the load surface of the elastic body 3, and corresponds to the vertical load X applied to the seismic isolation device 5, that is, the pressure receiving area of the elastic body 3 with respect to the support load W, and P is
The average compressive stress of the elastic body 3 against the vertical load X applied to the seismic isolation device 5, which is usually 60 kg in the design of the seismic isolation device.
A value of about / cm 2 to 130 kg / cm 2 is taken.

【0018】ところで、比Qd/Wは、 で表され、ここで、σpd=80kg/cm2 、P=1
30kg/cm2 とすると、比Qd/Wの上限値は、換
言すればap/Arの上限値は、約0.12となり、σ
pd=100kg/cm2 、P=60kg/cm2 とす
ると、比Qd/Wの下限値は、換言すればap/Arの
下限値は、約0.01となる。なお、上記のσpdの値
は、0.5Hz振動でかつ50%以上の歪振幅での値で
ある。
By the way, the ratio Qd / W is Where σpd = 80 kg / cm 2 , P = 1
If it is set to 30 kg / cm 2 , the upper limit of the ratio Qd / W, in other words, the upper limit of ap / Ar becomes about 0.12, and σ
When pd = 100 kg / cm 2 and P = 60 kg / cm 2 , the lower limit value of the ratio Qd / W, in other words, the lower limit value of ap / Ar is about 0.01. The value of σpd is a value at a vibration amplitude of 0.5 Hz and a strain amplitude of 50% or more.

【0019】すなわち、柱状鉛の剪断面の面積apと、
弾性体の荷重面の面積Arとの比ap/Arを0.01
〜0.12の範囲内にすることにより、免震効果が優
れ、構造物と基礎との相対変位を小さくすることがで
き、また地震後の後揺れも早期に減衰することができ、
台風時のような強風時でも載置された構造物の横揺れを
少なくし得、加えて長周期化を計り得て長周期成分の地
震動でも共振の虞がないといえるのである。
That is, the area ap of the shear surface of the columnar lead,
The ratio ap / Ar with the area Ar of the loading surface of the elastic body is 0.01
By setting it within the range of 0.12, the seismic isolation effect is excellent, the relative displacement between the structure and the foundation can be reduced, and the post-swing after the earthquake can be damped early.
It can be said that even when a strong wind such as a typhoon is used, the rolling motion of the mounted structure can be reduced, and in addition, the period can be lengthened and there is no fear of resonance even in the case of long-period seismic motion.

【0020】なお、以下の実施例からも明らかであるよ
うに、比ap/Arを、0.02〜0.07にすること
により、更に好ましい結果が得られ、比ap/Arを、
0.03〜0.06にすることにより、更により好まし
い結果が得られることが判明した。
As will be apparent from the following examples, by setting the ratio ap / Ar to 0.02 to 0.07, more preferable results can be obtained, and the ratio ap / Ar can be set as follows.
It has been found that even more preferable results can be obtained by setting it to 0.03 to 0.06.

【0021】一つの弾性体に複数個の柱状鉛が配される
場合も同様であって、本発明では、この場合をも含め
て、柱状鉛の剪断面の総面積Σapと弾性体の荷重面の
面積Arとの比Σap/Arが上記の範囲内にされる。
The same applies to the case where a plurality of columnar leads are arranged in one elastic body, and in the present invention, including this case, the total area Σap of the shear planes of the columnar lead and the load surface of the elastic body. The ratio Σap / Ar with the area Ar of is within the above range.

【0022】また本発明は、中空部に配された柱状鉛の
体積Vpと、弾性体の内周面で規定される中空部の容
積、具体的には、柱状鉛を配する前、換言すれば柱状鉛
を形成するための鉛を圧入する前であって、弾性体に荷
重を加えた状態での中空部(以下、縮小中空部という)
の容積Veとを一定の関係にすることにより、弾性体を
構成する弾性材料層と剛性材料層とに柱状鉛が隙間なし
に拘束される結果、式(1)に従った柱状鉛の剪断降伏
荷重Qdが保証され、而して上記効果に加えて耐久性及
び免震効果並びに製造性に特に優れた免震装置を提供し
得るという知見に基づいてなされたものである。
In the present invention, the volume Vp of columnar lead arranged in the hollow portion and the volume of the hollow portion defined by the inner peripheral surface of the elastic body, specifically, before the columnar lead is arranged, in other words, For example, the hollow part before the lead for forming columnar lead is press-fitted and the elastic body is loaded (hereinafter referred to as the reduced hollow part).
Since the columnar lead is constrained between the elastic material layer and the rigid material layer forming the elastic body without a gap by making the volume Ve of the columnar constant, the shear yield of the columnar lead according to the equation (1) is obtained. The load Qd is guaranteed, and in addition to the above effects, it is possible to provide a seismic isolation device that is particularly excellent in durability and seismic isolation effect and manufacturability.

【0023】すなわち本発明の免震装置では、前記面積
比率に加えて、中空部に配された柱状鉛の体積Vpと、
縮小中空部の容積Veとの比Vp/Veが1.02〜
1.12である。縮小中空部の容積Veは、弾性体に加
えられる鉛直方向荷重、換言すれば免震装置が支持する
構造物の重量によって増減し、また縮小中空部の容積V
eに対して1.00倍を越える体積の柱状鉛が配された
状態における中空部の容積とも異なる。本免震装置にお
いても、縮小中空部の容積Veに対して1.00倍を十
分越える体積の柱状鉛を中空部に配して、柱状鉛を弾性
体の弾性材料層に食い込ませ、中空部を規定する弾性体
の内周面を、弾性材料層の位置で凹面となし、剛性材料
層の位置で凸面となるようにしてもよい。
That is, in the seismic isolation apparatus of the present invention, in addition to the above area ratio, the volume Vp of the columnar lead arranged in the hollow portion,
The ratio Vp / Ve to the volume Ve of the reduced hollow portion is 1.02
It is 1.12. The volume Ve of the reduced hollow portion increases or decreases depending on the vertical load applied to the elastic body, in other words, the weight of the structure supported by the seismic isolation device.
It is also different from the volume of the hollow portion in the state where columnar lead having a volume exceeding 1.00 times e is arranged. Also in this seismic isolation device, the columnar lead having a volume sufficiently exceeding 1.00 times the volume Ve of the reduced hollow part is arranged in the hollow part, and the columnar lead is made to bite into the elastic material layer of the elastic body to form the hollow part. The inner peripheral surface of the elastic body that defines the above may be a concave surface at the position of the elastic material layer and a convex surface at the position of the rigid material layer.

【0024】ところで、円柱状鉛4を縮小中空部の容積
の1.00倍(比Vp/Ve=1.00)よりも少なく
配した場合には、弾性体3の内周面9と、内周面9に対
面してこれに接する円柱状鉛4の外周面との間に隙間が
生じ易くなり、したがって免震装置5の作動中に、すな
わち免震装置5に繰り返し横方向力Fが加わっている間
に、容易に弾性体3の内周面9と円柱状鉛4の外周面と
の間に隙間が生じ、履歴曲線21で示すような不安定な
免震特性を示すことになる。これは、円柱状鉛4が弾性
体3に少なくとも剪断方向において隙間なく拘束され
ず、剪断変形以外の変形を生じ、円柱状鉛4が設計剪断
降伏応力(通常、純度99.9%以上の純粋度の鉛の場
合には、設計値として85kg/cm2 )を現出しない
ことにもよる、と推測される。
By the way, when the columnar lead 4 is arranged to be smaller than 1.00 times the volume of the reduced hollow portion (ratio Vp / Ve = 1.00), the inner peripheral surface 9 of the elastic body 3 and A gap is likely to be formed between the outer peripheral surface of the cylindrical lead 4 which faces the peripheral surface 9 and is in contact therewith, and therefore, the lateral force F is repeatedly applied during the operation of the seismic isolation device 5, that is, to the seismic isolation device 5. During this, a gap is easily formed between the inner peripheral surface 9 of the elastic body 3 and the outer peripheral surface of the cylindrical lead 4, and an unstable seismic isolation characteristic as shown by the history curve 21 is exhibited. This is because the columnar lead 4 is not constrained in the elastic body 3 at least in the shearing direction without any gap, and deformation other than shearing deformation occurs, so that the columnar lead 4 has a designed shear yield stress (usually a purity of 99.9% or more pure). It is speculated that this is because the design value of 85 kg / cm 2 ) does not appear in the case of lead of degree.

【0025】一方、円柱状鉛4を縮小中空部の容積の
1.12倍(比Vp/Ve=1.12)よりも多く配し
た場合には、円柱状鉛4が大きく弾性板1に食い込ん
で、図6の符号41で示すように、弾性体3の内周面9
が過度に凹面になり、この位置の近傍での弾性板1と剛
性板2との間の剪断応力が大きくなり過ぎることとな
る。このように過度に応力が生じた状態であると、弾性
板1の劣化を早め、耐久性が劣ることになる。また、免
震装置5の製造において、中空部12に円柱状鉛4を形
成するために、鉛を縮小中空部の容積の1.12倍より
多く圧入することは、その圧入力を極めて大きくしなけ
ればならない上に、圧入により弾性体3を損壊してしま
う虞があり、困難であることも判った。
On the other hand, when the columnar lead 4 is arranged in an amount larger than 1.12 times the volume of the reduced hollow portion (ratio Vp / Ve = 1.12), the columnar lead 4 largely digs into the elastic plate 1. Then, as indicated by reference numeral 41 in FIG. 6, the inner peripheral surface 9 of the elastic body 3 is
Becomes excessively concave, and the shear stress between the elastic plate 1 and the rigid plate 2 near this position becomes too large. When the stress is excessively generated in this way, the elastic plate 1 is accelerated to deteriorate and the durability is deteriorated. Further, in manufacturing the seismic isolation device 5, in order to form the cylindrical lead 4 in the hollow portion 12, press-fitting lead more than 1.12 times the volume of the reduced hollow portion makes the press-fitting force extremely large. In addition to this, it has been found that there is a possibility that the elastic body 3 may be damaged by press fitting, which is difficult.

【0026】なお、以下の実施例からも明らかであるよ
うに、小さな振動入力では、高い剛性を示し、大きな振
動入力では、低い剛性を示す機能、いわゆるトリガ機能
が特に要求され、かつ大振幅の地震動に特に好ましく対
応し得るためには、比Vp/Veが1.02以上である
ことがよい。また、比Vp/Veが1.02〜1.07
の範囲であると、製造性に極めて優れる。
As will be apparent from the following embodiments, a function exhibiting high rigidity with a small vibration input and a low rigidity with a large vibration input, that is, a so-called trigger function is particularly required, and a large amplitude is required. The ratio Vp / Ve is preferably 1.02 or more in order to cope with the earthquake motion particularly preferably. Further, the ratio Vp / Ve is 1.02 to 1.07.
Within the range, the productivity is extremely excellent.

【0027】本発明において、弾性材料層の素材として
は、天然ゴム、シリコンゴム、高減衰ゴム、ウレタンゴ
ム又はクロロプレンゴム等を挙げることができるが、好
ましくは天然ゴムである。弾性材料層の各層の厚みとし
ては、無負荷状態において1mm〜30mm程度のもの
が好ましいが、これに限定されない。また、剛性材料層
の素材としては、鋼板、炭素繊維、ガラス繊維若しくは
アラミド繊維等の繊維補強合成樹脂板又は繊維補強硬質
ゴム板等を挙げることができ、その厚みは、各厚肉剛性
板には10mm〜50mm程度、それ以外の各層には1
mm〜6mm程度のものが好ましいが、これに限定され
ず、更にその枚数においても特に限定されない。弾性体
及び柱状鉛は、円環状体及び円柱状体が好ましいが、他
の形状のもの、例えば楕円若しくは方形体及び楕円若し
くは方形体のものであってもよい。弾性体を貫通して配
される柱状鉛は、一つでもよいが、これに代えて、一つ
の弾性体に複数の中空部を形成し、この複数の中空部に
それぞれ柱状鉛を配して免震装置を構成してもよい。な
お、これら複数の中空部の各柱状鉛を比Vp/Veに関
して同一の上記条件下で配する必要はなく、それぞれ異
なる条件下で配してもよく、また、各柱状鉛が比Vp/
Veに関して上記条件を満足しているのが好ましいが、
複数個の柱状鉛の内の一部の柱状鉛を、比Vp/Veに
関して上記条件を満足しないようにして配してもよい。
In the present invention, examples of the material of the elastic material layer include natural rubber, silicone rubber, high damping rubber, urethane rubber, chloroprene rubber and the like, but natural rubber is preferable. The thickness of each elastic material layer is preferably about 1 mm to 30 mm in the unloaded state, but is not limited thereto. Further, as the material of the rigid material layer, a steel plate, a fiber-reinforced synthetic resin plate such as a carbon fiber, a glass fiber or an aramid fiber, or a fiber-reinforced hard rubber plate can be mentioned. Is about 10 mm to 50 mm, and 1 for each of the other layers.
It is preferably about mm to 6 mm, but is not limited to this, and the number thereof is not particularly limited. The elastic body and the columnar lead are preferably an annular body and a columnar body, but may have other shapes, for example, an ellipse or a square body and an ellipse or a square body. The columnar lead penetrating through the elastic body may be one, but instead, a plurality of hollow portions are formed in one elastic body, and the columnar lead is arranged in each of the plurality of hollow portions. A seismic isolation device may be configured. In addition, it is not necessary to arrange each columnar lead of the plurality of hollow portions under the same condition with respect to the ratio Vp / Ve, and they may be arranged under different conditions.
It is preferable that the above conditions are satisfied with respect to Ve,
Partial columnar lead of the plurality of columnar leads may be arranged so as not to satisfy the above condition for the ratio Vp / Ve.

【0028】また本発明は、弾性材料層及び剛性材料層
が交互に積層されてなる弾性体と、この弾性体の内周面
で規定される少なくとも一つの中空部に配された柱状鉛
とを具備した上述の免震装置を一個以上、好ましくは複
数個構造物と基礎との間に配するシステムにも適用する
ことができ、この場合、柱状鉛の剪断降伏荷重Qdが柱
状鉛の剪断面の面積apと設計剪断降伏応力σpdとの
積となるように、柱状鉛が対応の弾性体に隙間なく拘束
されて、柱状鉛の剪断面の総面積Σapと弾性体の荷重
面の総面積ΣArとの比Σap/ΣArが0.01〜
0.12であればよく、また、柱状鉛の剪断面の総面積
Σapと弾性体の荷重面の総面積ΣArとの比Σap/
ΣArが0.01〜0.12であり、中空部に配された
柱状鉛の体積Vpと、柱状鉛が未挿入であって、弾性体
に荷重が加えられた状態での中空部(縮小中空部)の容
積Veとの比Vp/Veが1.02〜1.12であれ
ば、上述の効果を同様に得ることができる。また、本シ
ステムにおいても、比Σap/ΣArを、0.02〜
0.07にすることにより、更に好ましい結果が得ら
れ、比Σap/ΣArを、0.03〜0.06にするこ
とにより、更により好ましい結果が得られる一方、比V
p/Veが1.02〜1.07であると、好ましい製造
性を得ることができる。
Further, according to the present invention, an elastic body in which elastic material layers and rigid material layers are alternately laminated, and columnar lead arranged in at least one hollow portion defined by the inner peripheral surface of the elastic body are provided. It can be applied to a system in which one or more, preferably a plurality of the above-mentioned seismic isolation devices provided are arranged between a structure and a foundation. In this case, the shear yield load Qd of columnar lead is the shear plane of columnar lead. Of the columnar lead, the total area Σap of the shear planes of the columnar lead and the total area ΣAr of the loading surface of the elastic body ΣAr And the ratio Σap / ΣAr is 0.01 to
0.12 is sufficient, and the ratio Σap / of the total area Σap of the columnar lead shear surfaces and the total area ΣAr of the loading surface of the elastic body is Σap /
ΣAr is 0.01 to 0.12, the volume Vp of the columnar lead arranged in the hollow portion, and the hollow portion in the state where the columnar lead is not inserted and the elastic body is loaded (reduced hollow) If the ratio Vp / Ve to the volume Ve of the part) is 1.02 to 1.12, the above effect can be obtained similarly. Also in this system, the ratio Σap / ΣAr is 0.02
By setting the ratio to 0.07, a more preferable result can be obtained, and by setting the ratio Σap / ΣAr to 0.03 to 0.06, an even more preferable result can be obtained.
When p / Ve is 1.02 to 1.07, preferable manufacturability can be obtained.

【0029】加えて、本システムの免震装置において、
中空部を規定する弾性体の内周面は、柱状鉛が弾性体の
弾性材料層に食い込んで、当該弾性材料層の位置で凹面
になり、剛性材料層の位置で凸面になっていてもよい。
なお、複数の免震装置を配するシステムにおいて、これ
ら複数の免震装置を比Vp/Veに関して同一の上記条
件下で配する必要はなく、それぞれ異なる条件下で配し
てもよく、また、比Vp/Veに関して各免震装置が上
記条件を満足しているのが好ましいが、複数個の免震装
置の内の一部の免震装置を、比Vp/Veに関して上記
条件を満足しないようにして配してもよい。
In addition, in the seismic isolation device of this system,
The inner peripheral surface of the elastic body that defines the hollow portion may be a concave surface at the position of the elastic material layer and a convex surface at the position of the elastic material layer when columnar lead bites into the elastic material layer of the elastic body. .
In a system in which a plurality of seismic isolation devices are arranged, it is not necessary to arrange the plurality of seismic isolation devices under the same conditions with respect to the ratio Vp / Ve, and they may be arranged under different conditions. It is preferable that each seismic isolation device satisfies the above conditions with respect to the ratio Vp / Ve, but some seismic isolation devices of the plurality of seismic isolation devices should not satisfy the above conditions with respect to the ratio Vp / Ve. You may distribute it.

【0030】更に、柱状鉛を具備した免震装置を一個以
上構造物と基礎との間に配する上述のシステムにおい
て、弾性材料層及び剛性材料層が交互に積層されてな
り、中空部を有さない中実の弾性体を具備した少なくと
も一個の他の免震装置を、柱状鉛を具備した免震装置と
共に構造物と基礎との間に配してもよい。
Further, in the above-mentioned system in which at least one seismic isolation device having columnar lead is arranged between the structure and the foundation, elastic material layers and rigid material layers are alternately laminated and have a hollow portion. At least one other seismic isolation device having a solid elastic body may be provided between the structure and the foundation together with the seismic isolation device having columnar lead.

【0031】柱状鉛を具備した少なくとも一個の免震装
置と、柱状鉛を具備しなく、中実の弾性体を具備した少
なくとも一個の免震装置とを構造物と基礎との間に配し
てなるこのようなシステムにおいては、弾性体の荷重面
の総面積ΣArに、柱状鉛を具備しない免震装置の中実
の弾性体の荷重面を含めて、比Σap/ΣArが上記条
件を満足するように、各免震装置を構成する。
At least one seismic isolation device having columnar lead and at least one seismic isolation device not having columnar lead but having a solid elastic body are arranged between the structure and the foundation. In such a system, the ratio Σap / ΣAr includes the total area ΣAr of the load surface of the elastic body including the load surface of the solid elastic body of the seismic isolation device that does not include columnar lead, and the ratio Σap / ΣAr satisfies the above condition Configure each seismic isolation device as follows.

【0032】上記柱状鉛を具備するいずれの免震装置に
おいても、剛性材料層が、弾性体におけるその各端面側
にそれぞれ配された厚肉剛性板を具備し、柱状鉛の一端
部が、一方の厚肉剛性板の内周面によって規定される中
空部の一端部に密に配されており、柱状鉛の他端部が、
他方の厚肉剛性板の内周面によって規定される中空部の
他端部に密に配されているとよい。
In any of the seismic isolation devices having the columnar lead described above, the rigid material layer includes thick rigid plates respectively arranged on the respective end faces of the elastic body, and one end of the columnar lead has one side. Is densely arranged at one end of the hollow part defined by the inner peripheral surface of the thick rigid plate, and the other end of the columnar lead is
It may be densely arranged at the other end of the hollow portion defined by the inner peripheral surface of the other thick rigid plate.

【0033】図2に示すような免震装置5では、前述の
とおり、数度の地震が加わることにより、円柱状鉛4の
上下面の周縁部と弾性体3との間に環状隙間が生じ、長
期の使用によりこの環状隙間により免震特性が不安定と
なり得るが、本発明は、上記のように、柱状鉛の両端部
のそれぞれを、各厚肉剛性板の内周面で規定される中空
部の各端部に密に配して、環状隙間の発生を防止し、免
震特性の劣化を防止しようとするものである。
In the seismic isolation device 5 as shown in FIG. 2, as described above, when an earthquake of several degrees is applied, an annular gap is generated between the peripheral portions of the upper and lower surfaces of the cylindrical lead 4 and the elastic body 3. Although the seismic isolation characteristics may become unstable due to this annular gap due to long-term use, the present invention defines each of both ends of the columnar lead by the inner peripheral surface of each thick rigid plate as described above. It is arranged densely at each end of the hollow part to prevent the formation of an annular gap and prevent the deterioration of the seismic isolation characteristics.

【0034】[0034]

【発明の実施の形態】以下、本発明及び本発明の実施の
形態を、好ましい実施例に基づいて更に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention and embodiments of the present invention will be further described based on preferred examples.

【0035】[0035]

【実施例】図7に示す本例の免震装置5は、環状の弾性
板1からなる弾性材料層並びに環状の薄肉剛性鋼板2及
び環状の厚肉剛性鋼板15、16からなる剛性材料層と
が交互に積層されてなる環状の弾性体3と、少なくとも
弾性体3の内周面9で規定される中空部12に密に配さ
れた円柱状鉛4と、鋼板15及び16にぞれぞれボルト
17を介して連結されたフランジプレート18及び19
と、円柱状鉛4の下面及び上面においてフランジプレー
ト18及び19と鋼板15及び16とを互いに剪断方向
(F方向)に固定する剪断キー20とを具備しており、
円柱状鉛4が密に配された中空部12は、内周面9に加
えて、下方の剪断キー20の上面21と上方の剪断キー
20の下面22とによって規定されている。免震装置5
において、鋼板15及び16は、弾性体3の上下端面側
の弾性材料層に埋め込まれて配されており、円柱状鉛4
の下端部23は、鋼板15の内周面によって規定される
中空部12の下端部に密に配されており、円柱状鉛4の
上端部24は、鋼板16の内周面によって規定される中
空部12の上端部に密に配されている。
EXAMPLE A seismic isolation device 5 of this example shown in FIG. 7 includes an elastic material layer composed of an annular elastic plate 1 and a rigid material layer composed of an annular thin rigid steel plate 2 and annular thick rigid steel plates 15 and 16. An annular elastic body 3 formed by alternately laminating, cylindrical lead 4 densely arranged in a hollow portion 12 defined by at least an inner peripheral surface 9 of the elastic body 3, and steel plates 15 and 16, respectively. Flange plates 18 and 19 connected to each other via bolts 17
And a shear key 20 for fixing the flange plates 18 and 19 and the steel plates 15 and 16 to each other in the shear direction (F direction) on the lower surface and the upper surface of the cylindrical lead 4,
The hollow portion 12 in which the cylindrical lead 4 is densely arranged is defined by the upper surface 21 of the lower shear key 20 and the lower surface 22 of the upper shear key 20 in addition to the inner peripheral surface 9. Seismic isolation device 5
In, the steel plates 15 and 16 are embedded in the elastic material layer on the upper and lower end surface sides of the elastic body 3, and are arranged in the cylindrical lead 4
The lower end portion 23 of the cylindrical lead 4 is densely arranged at the lower end portion of the hollow portion 12 defined by the inner peripheral surface of the steel plate 15, and the upper end portion 24 of the cylindrical lead 4 is defined by the inner peripheral surface of the steel plate 16. They are densely arranged at the upper end of the hollow portion 12.

【0036】本免震装置5は、フランジプレート18側
が基礎10に、フランジプレート19側が構造物11に
それぞれ連結されて用いられる。本例においては、弾性
材料層を形成するために、厚さ5mmの天然ゴム製の環
状の弾性板1を25枚使用し、剛性材料層を形成するた
めに、厚さ2.3mmの環状の鋼板2を22枚と、厚さ
31mmの環状の鋼板15及び16とを使用した。
The seismic isolation device 5 is used by connecting the flange plate 18 side to the foundation 10 and the flange plate 19 side to the structure 11. In this example, 25 elastic rubber plates 1 made of natural rubber having a thickness of 5 mm are used to form the elastic material layer, and an annular plate having a thickness of 2.3 mm is used to form the rigid material layer. Twenty-two steel plates 2 and 31 mm-thick annular steel plates 15 and 16 were used.

【0037】本発明の免震装置5を製造する場合には、
まず、環状の弾性板1と鋼板2とを交互に積層して、そ
の下面及び上面に環状の鋼板15及び16を配置し、型
内における加圧下での加硫接着等によりこれらを相互に
固定してなる環状の弾性体3を準備し、その後、円柱状
鉛4を中空部12に形成すべく、弾性体3の中空部12
に鉛を圧入する。鉛の圧入は、円柱状鉛4が弾性体3に
より中空部12において隙間なしに拘束されるように、
鉛を中空部12に油圧ラム等により押し込んで行う。鉛
の圧入後、剪断キー20並びにフランジプレート18及
び19を取り付ける。なお、型内における加圧下での加
硫接着による弾性体3の形成において、鋼板2、15及
び16の外周面を覆って、円筒状被覆層25が形成され
るようにするとよい。本例の被覆層の厚みは、10mm
であった。また上記形成において、弾性板1の内周側の
一部が流動して、鋼板2、15及び16の内周面を覆っ
て、円筒状被覆層25と同様であるがそれよりも極めて
薄い円筒状被覆層が形成されてもよい。
When manufacturing the seismic isolation device 5 of the present invention,
First, the annular elastic plate 1 and the steel plate 2 are alternately laminated, the annular steel plates 15 and 16 are arranged on the lower surface and the upper surface thereof, and these are fixed to each other by vulcanization adhesion under pressure in the mold. The annular elastic body 3 is prepared, and then the hollow portion 12 of the elastic body 3 is formed so that the cylindrical lead 4 is formed in the hollow portion 12.
Press-fit lead into. Lead is press-fitted so that the cylindrical lead 4 is restrained by the elastic body 3 in the hollow portion 12 without any gap.
Lead is pushed into the hollow portion 12 with a hydraulic ram or the like. After press-fitting the lead, the shear key 20 and the flange plates 18 and 19 are attached. In the formation of the elastic body 3 by vulcanization adhesion under pressure in the mold, the cylindrical coating layer 25 may be formed so as to cover the outer peripheral surfaces of the steel plates 2, 15 and 16. The thickness of the coating layer in this example is 10 mm
Met. In the above-mentioned formation, a part of the inner peripheral side of the elastic plate 1 flows to cover the inner peripheral surfaces of the steel plates 2, 15 and 16 and is the same as the cylindrical covering layer 25, but a cylinder thinner than that. A coating layer may be formed.

【0038】無負荷状態における弾性体3の高さが24
0mmの図7に示すような免震装置5において、比ap
/Arを変化させて、各比ap/Arでの基礎10の振
動エネルギEbによる構造物11への振動エネルギEs
を求めた。得られた比ap/Arと免震装置5によるエ
ネルギ伝達率Es/Ebとの関係を図8に示す。
The height of the elastic body 3 in the unloaded state is 24
In the seismic isolation device 5 of 0 mm as shown in FIG.
/ Ar is changed, and the vibration energy Es to the structure 11 by the vibration energy Eb of the foundation 10 at each ratio ap / Ar.
I asked. FIG. 8 shows the relationship between the obtained ratio ap / Ar and the energy transfer rate Es / Eb by the seismic isolation device 5.

【0039】なお、このエネルギ伝達率は、以上の各値
に加えて、免震装置5の面圧を80kg/cm2 とし、
弾性板1の剪断弾性率Gを6kg/cm2 とし、入力と
して、エルセントロ地震波、十勝沖地震波、八戸地震波
及びTAFT地震波を用い、これに統計的処理を施し
て、求めた。
In addition to the above values, the energy transfer rate is such that the surface pressure of the seismic isolation device 5 is 80 kg / cm 2 ,
The shear elastic modulus G of the elastic plate 1 was set to 6 kg / cm 2, and El Centro seismic wave, Tokachi offshore seismic wave, Hachinohe seismic wave, and TAFT seismic wave were used as inputs, and statistical processing was performed to obtain them.

【0040】図8から明らかなように、比ap/Arが
0.01〜0.12の範囲内であれば、エネルギ伝達率
Es/Ebが1/2以下となり、基礎10の振動エネル
ギが十分に減衰されて構造物11に伝達されることが判
る。また、比ap/Arが0.12を越えると、応答加
速度比(応答/入力)が約50%以上になることを確認
し得た。また、比ap/Arが0.01未満であると、
構造物11と基礎10との相対変位が、例えば好ましい
比ap/Ar=0.05におけるそれの2〜3倍以上も
生じ、実用的でないことが判った。
As is apparent from FIG. 8, when the ratio ap / Ar is in the range of 0.01 to 0.12, the energy transfer rate Es / Eb becomes 1/2 or less, and the vibration energy of the foundation 10 is sufficient. It can be seen that the signal is attenuated and transmitted to the structure 11. It was also confirmed that the response acceleration ratio (response / input) was about 50% or more when the ratio ap / Ar exceeded 0.12. When the ratio ap / Ar is less than 0.01,
It was found that the relative displacement between the structure 11 and the foundation 10 was 2 to 3 times or more than that at the preferable ratio ap / Ar = 0.05, which was not practical.

【0041】また、比ap/Arが0.02〜0.07
の範囲内の場合及び0.03〜0.06の範囲内の場合
は、図8から明らかなように、ぞれぞれ更に好ましいエ
ネルギ伝達率Es/Ebが得られることが判る。
The ratio ap / Ar is 0.02 to 0.07.
It is understood that, in the case of within the range of 10 and the case of within the range of 0.03 to 0.06, more preferable energy transfer rates Es / Eb are obtained respectively, as is apparent from FIG.

【0042】一方、図7に示す免震装置5であって、鋼
板2、15及び16の外径を500mm、内径を90m
mとした免震装置5に対して、鉛直荷重57tonf
(面圧30kgf/cm2 )〜342tonf(面圧1
80kgf/cm2 )を加えて、水平方向の変位と水平
方向力との関係を実験により求めた。これを図9〜図1
2に示す。図9〜図12において、(a)は、免震装置
5の全弾性板1自体の横変位(水平方向変位)が10%
の場合、(b)及び(c)は、同じく50%及び100
%の場合である。図9に示す鉛直荷重57tonf(面
圧30kgf/cm2 )を加えた場合における比Vp/
Veは1.03、図10に示す鉛直荷重114tonf
(面圧60kgf/cm2 )を加えた場合における比V
p/Veは1.00、図11に示す鉛直荷重228to
nf(面圧120kgf/cm2 )を加えた場合におけ
る比Vp/Veは1.02及び図12に示す鉛直荷重3
42tonf(面圧180kgf/cm2 )を加えた場
合における比Vp/Veは1.11であった。以上の場
合における比ap/Arは、0.03であった。
On the other hand, in the seismic isolation device 5 shown in FIG. 7, the steel plates 2, 15 and 16 have an outer diameter of 500 mm and an inner diameter of 90 m.
vertical load of 57 tonf against seismic isolation device 5 with m
(Surface pressure 30 kgf / cm 2 ) to 342 tonf (Surface pressure 1
80 kgf / cm 2 ) was applied, and the relationship between the horizontal displacement and the horizontal force was determined by experiments. This is shown in FIGS.
It is shown in FIG. 9 to 12, (a) shows that the lateral displacement (horizontal displacement) of the elastic plate 1 itself of the seismic isolation device 5 is 10%.
In the case of (b) and (c), 50% and 100
%. Ratio Vp / when vertical load 57 tonf (contact pressure 30 kgf / cm 2 ) shown in FIG. 9 is applied
Ve is 1.03, vertical load 114 tonf shown in FIG.
Ratio V when (contact pressure 60 kgf / cm 2 ) is applied
p / Ve is 1.00, the vertical load 228to shown in FIG.
The ratio Vp / Ve in the case of applying nf (surface pressure 120 kgf / cm 2 ) is 1.02 and the vertical load 3 shown in FIG.
The ratio Vp / Ve in the case of adding 42 tonf (surface pressure 180 kgf / cm 2 ) was 1.11. The ratio ap / Ar in the above case was 0.03.

【0043】図9、図11及び図12から明らかである
ように、比Vp/Veが1.02以上では、トリガ機能
が特に要求され、大振幅の地震に対して好ましく対応し
得ることが判る。また図10から明らかであるように、
比Vp/Veが1.00〜1.02未満の場合には、ト
リガ機能を好ましく得ることができないといえる。な
お、比Vp/Veが1.07以下であれば、製造におい
て中空部12への鉛の圧入が容易であり、それほど困難
を伴わないことが判明した。また、比Vp/Veが1.
12以上になるように、中空部12へ鉛を圧入しようと
したが、弾性体3の損壊なしに、これを行うことは困難
であることが判明した。
As is clear from FIGS. 9, 11 and 12, it can be seen that when the ratio Vp / Ve is 1.02 or more, the trigger function is particularly required, and a large amplitude earthquake can be favorably dealt with. . Also, as is clear from FIG.
When the ratio Vp / Ve is 1.00 to less than 1.02, it can be said that the trigger function cannot be preferably obtained. It has been found that when the ratio Vp / Ve is 1.07 or less, it is easy to press fit lead into the hollow portion 12 in the manufacturing process, and it is not so difficult. Further, the ratio Vp / Ve is 1.
Although it was attempted to press-fit lead into the hollow portion 12 so as to have 12 or more, it was found to be difficult to do so without damaging the elastic body 3.

【0044】なお、免震装置5では、鋼板15及び16
とフランジプレート18及び19とを別体で形成した
が、フランジプレート18及び19に、厚肉剛性板を一
体に形成して、免震装置を具体化してもよい。
In the seismic isolation device 5, the steel plates 15 and 16
Although the flange plates 18 and 19 are separately formed, a thick rigid plate may be integrally formed with the flange plates 18 and 19 to embody the seismic isolation device.

【0045】[0045]

【発明の効果】以上のように本発明によれば、柱状鉛の
剪断面の総面積Σapと、弾性体の荷重面の面積Arと
の比Σar/Arを所定の範囲内にするため、免震効果
に優れ、構造物と基礎との相対変位を小さくすることが
でき、また地震後の後揺れも早期に減衰することがで
き、台風時のような強風時でも載置された構造物の横揺
れを少なくし得、加えて免震効果を発揮するに十分な長
周期化を計り得て長周期成分の地震動でも共振の虞がな
い免震装置を提供することができる。そして弾性体の中
空部に配された柱状鉛を隙間なしに拘束し得る結果、安
定な免震特性を得ることができ、しかも、トリガ機能を
有して、大振幅の地震動に好ましく対応し得、加えて弾
性体の弾性材料層及び柱状鉛の劣化を回避することがで
き、耐久性及び免震効果並びに製造性に特に優れた免震
装置を提供することができる。
As described above, according to the present invention, the ratio Σar / Ar of the total area Σap of the columnar lead shear plane and the area Ar of the load surface of the elastic body is set within the predetermined range. It excels in seismic effect, the relative displacement between the structure and the foundation can be reduced, and the post-earthquake swaying can be attenuated early, and the structure placed even during strong wind such as typhoon It is possible to provide a seismic isolation device that can reduce lateral vibration and can also increase the period enough to exert the seismic isolation effect, and that does not cause resonance even with seismic motion of a long period component. And, as a result that the columnar lead arranged in the hollow part of the elastic body can be restrained without a gap, stable seismic isolation characteristics can be obtained, and moreover, it has a trigger function and can preferably respond to a large amplitude earthquake motion. In addition, it is possible to avoid deterioration of the elastic material layer of the elastic body and columnar lead, and it is possible to provide a seismic isolation device which is particularly excellent in durability, seismic isolation effect, and manufacturability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る免震装置の斜視図である。FIG. 1 is a perspective view of a seismic isolation device according to the present invention.

【図2】図1に示す免震装置の断面図である。FIG. 2 is a cross-sectional view of the seismic isolation device shown in FIG.

【図3】免震装置の動作説明図である。FIG. 3 is an operation explanatory view of the seismic isolation device.

【図4】免震装置の動作説明図である。FIG. 4 is an operation explanatory view of the seismic isolation device.

【図5】免震装置の動作説明図である。FIG. 5 is an operation explanatory view of the seismic isolation device.

【図6】図1に示す免震装置の一部拡大断面図である。FIG. 6 is a partially enlarged cross-sectional view of the seismic isolation device shown in FIG.

【図7】本発明の好ましい一実施例の断面図である。FIG. 7 is a sectional view of a preferred embodiment of the present invention.

【図8】図7に示す実施例の効果を示す図である。FIG. 8 is a diagram showing an effect of the embodiment shown in FIG.

【図9】図7に示す実施例の効果を示す図である。FIG. 9 is a diagram showing an effect of the embodiment shown in FIG.

【図10】図7に示す実施例の効果を示す図である。FIG. 10 is a diagram showing an effect of the embodiment shown in FIG.

【図11】図7に示す実施例の効果を示す図である。FIG. 11 is a diagram showing an effect of the embodiment shown in FIG.

【図12】図7に示す実施例の効果を示す図である。FIG. 12 is a diagram showing an effect of the embodiment shown in FIG.

【符号の説明】[Explanation of symbols]

1 弾性板 2 剛性鋼板 3 弾性体 4 円柱状鉛 5 免震装置 12 中空部 1 elastic plate 2 rigid steel plate 3 elastic body 4 cylindrical lead 5 seismic isolation device 12 hollow part

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一つの柱状鉛と、弾性材料層
及び剛性材料層が交互に積層されてなる弾性体と、少な
くともこの弾性体の内周面で規定されており、柱状鉛が
密に配された少なくとも一つの中空部とを具備した免震
装置であって、柱状鉛の剪断面の総面積Σapと弾性体
の荷重面の面積Arとの比Σap/Arが0.01〜
0.12であり、中空部に配された柱状鉛の体積Vp
と、柱状鉛が未挿入であって、弾性体に荷重が加えられ
た状態での中空部の容積Veとの比Vp/Veが1.0
2〜1.12である免震装置。
1. At least one columnar lead, an elastic body in which elastic material layers and rigid material layers are alternately laminated, and at least an inner peripheral surface of the elastic body are defined, and the columnar lead is densely arranged. A seismic isolation device including at least one hollow part, wherein a ratio Σap / Ar of a total area Σap of columnar lead shear surfaces and an area Ar of a load surface of an elastic body is 0.01 to
0.12, the volume Vp of columnar lead arranged in the hollow portion
And columnar lead is not inserted, the ratio Vp / Ve to the volume Ve of the hollow portion in a state where a load is applied to the elastic body is 1.0.
A seismic isolation device that is 2-1.12.
【請求項2】 比Σap/Arが、0.02〜0.07
である請求項1に記載の免震装置。
2. The ratio Σap / Ar is 0.02 to 0.07.
The seismic isolation device according to claim 1.
【請求項3】 比Σap/Arが、0.03〜0.06
である請求項1に記載の免震装置。
3. The ratio Σap / Ar is 0.03 to 0.06.
The seismic isolation device according to claim 1.
【請求項4】 比Vp/Veが1.02〜1.07であ
る請求項1から3のいずれか一項に記載の免震装置。
4. The seismic isolation device according to claim 1, wherein the ratio Vp / Ve is 1.02 to 1.07.
【請求項5】 中空部を規定する弾性体の内周面は、柱
状鉛が弾性体の弾性材料層に食い込んで、当該弾性材料
層の位置で凹面になっている請求項1から4のいずれか
一項に記載の免震装置。
5. The inner peripheral surface of the elastic body that defines the hollow portion is columnar lead that is dented in the elastic material layer of the elastic body and is concave at the position of the elastic material layer. The seismic isolation device described in paragraph 1.
【請求項6】 中空部を規定する弾性体の内周面は、柱
状鉛が弾性体の弾性材料層に食い込んで、剛性材料層の
位置で凸面になっている請求項1から5のいずれか一項
に記載の免震装置。
6. The inner peripheral surface of the elastic body that defines the hollow portion is columnar lead, which is embedded in the elastic material layer of the elastic body, and is convex at the position of the rigid material layer. The seismic isolation device described in paragraph 1.
【請求項7】 剛性材料層は、弾性体におけるその各端
面側にそれぞれ配された厚肉剛性板を具備しており、柱
状鉛の一端部は、一方の厚肉剛性板の内周面で規定され
た中空部の一端部に密に配されており、柱状鉛の他端部
は、他方の厚肉剛性板の内周面で規定された中空部の他
端部に密に配されている請求項1から6のいずれか一項
に記載の免震装置。
7. The rigid material layer comprises a thick rigid plate disposed on each end face side of the elastic body, and one end of the columnar lead is an inner peripheral surface of one thick rigid plate. It is densely arranged at one end of the specified hollow part, and the other end of the columnar lead is densely arranged at the other end of the hollow part specified by the inner peripheral surface of the other thick rigid plate. The seismic isolation device according to any one of claims 1 to 6.
【請求項8】 弾性材料層及び剛性材料層が交互に積層
されてなる弾性体と、この弾性体を貫通して配された少
なくとも一つの柱状鉛とを具備しており、柱状鉛の剪断
降伏荷重Qdが当該柱状鉛の剪断面の面積apと設計剪
断降伏荷重σpdとの積となるように、柱状鉛がその剪
断方向において弾性体に隙間なしに拘束されている免震
装置を一個以上と、弾性材料層及び剛性材料層が交互に
積層されてなる中実の弾性体を具備した他の免震装置を
一個以上とを有した免震システムであって、柱状鉛の剪
断面の総面積Σapと弾性体の荷重面の総面積ΣArと
の比Σap/ΣArが0.01〜0.12である免震シ
ステム。
8. A shear yield of columnar lead, comprising: an elastic body in which elastic material layers and rigid material layers are alternately laminated, and at least one columnar lead arranged so as to penetrate the elastic body. One or more seismic isolation devices in which the columnar lead is constrained by the elastic body without a gap in the shearing direction so that the load Qd becomes the product of the area ap of the shear plane of the columnar lead and the design shear yield load σpd , A seismic isolation system having at least one other seismic isolation device having a solid elastic body in which elastic material layers and rigid material layers are alternately laminated, and the total area of columnar lead shear planes. A seismic isolation system in which the ratio Σap / ΣAr of Σap and the total area ΣAr of the load surface of the elastic body is 0.01 to 0.12.
【請求項9】 比Σap/ΣArが、0.02〜0.0
7である請求項8に記載の免震システム。
9. The ratio Σap / ΣAr is 0.02 to 0.0.
The seismic isolation system according to claim 8, wherein the seismic isolation system is 7.
【請求項10】 比Σap/ΣArが、0.03〜0.
06である請求項8に記載の免震システム。
10. The ratio Σap / ΣAr is 0.03 to 0.
The seismic isolation system according to claim 8, which is 06.
【請求項11】 柱状鉛を具備した免震装置において、
剛性材料層は、弾性体におけるその各端面側にそれぞれ
配された厚肉剛性板を具備しており、柱状鉛の一端部
は、一方の厚肉剛性板の内周面で規定された中空部の一
端部に密に配されており、柱状鉛の他端部は、他方の厚
肉剛性板の内周面で規定された中空部の他端部に密に配
されている請求項8から10のいずれか一項に記載の免
震システム。
11. A seismic isolation device comprising columnar lead,
The rigid material layer includes thick-walled rigid plates arranged on the respective end faces of the elastic body, and one end of the columnar lead has a hollow portion defined by the inner peripheral surface of one of the thick-walled rigid plates. 9. The columnar lead is densely arranged at one end thereof, and the other end of the columnar lead is densely arranged at the other end of the hollow portion defined by the inner peripheral surface of the other thick rigid plate. The seismic isolation system according to any one of 10.
【請求項12】 弾性材料層及び剛性材料層が交互に積
層されてなる弾性体と、この弾性体の内周面で規定され
る少なくとも一つの中空部に配された柱状鉛とを具備し
た免震装置を一個以上有した免震システムであって、柱
状鉛の剪断面の総面積Σapと弾性体の荷重面の総面積
ΣArとの比Σap/ΣArが0.01〜0.12であ
り、中空部に配された柱状鉛の体積Vpと、柱状鉛が未
挿入であって、弾性体に荷重が加えられた状態での中空
部の容積Veとの比Vp/Veが1.02〜1.12で
ある免震システム。
12. An elastic body comprising an elastic material layer and a rigid material layer alternately laminated, and columnar lead arranged in at least one hollow portion defined by an inner peripheral surface of the elastic body. A seismic isolation system having one or more seismic devices, wherein a ratio Σap / ΣAr of a total area Σap of columnar lead shear surfaces and a total area ΣAr of load surfaces of the elastic body is 0.01 to 0.12. The ratio Vp / Ve of the volume Vp of the columnar lead arranged in the hollow portion and the volume Ve of the hollow portion in a state where the columnar lead is not inserted and a load is applied to the elastic body is 1.02 to 1 .12 seismic isolation system.
【請求項13】 比Σap/ΣArが、0.02〜0.
07である請求項12に記載の免震システム。
13. The ratio Σap / ΣAr is 0.02 to 0.
The seismic isolation system according to claim 12, which is 07.
【請求項14】 比Σap/ΣArが、0.03〜0.
06である請求項12に記載の免震システム。
14. The ratio Σap / ΣAr is 0.03 to 0.
The seismic isolation system according to claim 12, which is 06.
【請求項15】 比Vp/Veが1.02〜1.07で
ある請求項12から14のいずれか一項に記載の免震シ
ステム。
15. The seismic isolation system according to claim 12, wherein the ratio Vp / Ve is 1.02 to 1.07.
【請求項16】 免震装置において、中空部を規定する
弾性体の内周面は、柱状鉛が弾性体の弾性材料層に食い
込んで、当該弾性材料層の位置で凹面になっている請求
項12から15のいずれか一項に記載の免震システム。
16. The seismic isolation apparatus according to claim 1, wherein the inner peripheral surface of the elastic body defining the hollow portion is concave at the position of the elastic material layer because columnar lead bites into the elastic material layer of the elastic body. The seismic isolation system according to any one of 12 to 15.
【請求項17】 免震装置において、中空部を規定する
弾性体の内周面は、柱状鉛が弾性体の弾性材料層に食い
込んで、剛性材料層の位置で凸面になっている請求項1
2から16のいずれか一項に記載の免震システム。
17. The seismic isolation device according to claim 1, wherein the columnar lead bites into the elastic material layer of the elastic body, and the inner peripheral surface of the elastic body defining the hollow portion is convex at the position of the rigid material layer.
The seismic isolation system according to any one of 2 to 16.
【請求項18】 免震装置において、剛性材料層は、弾
性体におけるその各端面側にそれぞれ配された厚肉剛性
板を具備しており、柱状鉛の一端部は、一方の厚肉剛性
板の内周面で規定された中空部の一端部に密に配されて
おり、柱状鉛の他端部は、他方の厚肉剛性板の内周面で
規定された中空部の他端部に密に配されている請求項1
2から17のいずれか一項に記載の免震システム。
18. The seismic isolation device according to claim 1, wherein the rigid material layer includes a thick rigid plate disposed on each end surface side of the elastic body, and one end of the columnar lead has one thick rigid plate. Is densely arranged at one end of the hollow part defined by the inner peripheral surface of the columnar lead, and the other end of the columnar lead is at the other end of the hollow part defined by the inner peripheral surface of the other thick rigid plate. Claim 1 which is arranged densely
The seismic isolation system according to any one of 2 to 17.
【請求項19】 弾性材料層及び剛性材料層が交互に積
層されてなる中実の弾性体を具備した他の免震装置を一
個以上更に備えた免震システムであって、弾性体の荷重
面の総面積ΣArは、他の免震装置の弾性体の荷重面を
も含めた値である請求項12から18のいずれか一項に
記載の免震システム。
19. A seismic isolation system further comprising at least one other seismic isolation device comprising a solid elastic body in which elastic material layers and rigid material layers are alternately laminated, the load surface of the elastic body being provided. The seismic isolation system according to any one of claims 12 to 18, wherein the total area ΣAr of is a value including the load surface of an elastic body of another seismic isolation device.
JP8216605A 1995-08-04 1996-07-30 Seismic isolation device Expired - Lifetime JP3024562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8216605A JP3024562B2 (en) 1995-08-04 1996-07-30 Seismic isolation device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-219594 1995-08-04
JP21959495 1995-08-04
JP8216605A JP3024562B2 (en) 1995-08-04 1996-07-30 Seismic isolation device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP03500199A Division JP3988849B2 (en) 1995-08-04 1999-02-12 Seismic isolation device

Publications (2)

Publication Number Publication Date
JPH09105441A true JPH09105441A (en) 1997-04-22
JP3024562B2 JP3024562B2 (en) 2000-03-21

Family

ID=26521533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8216605A Expired - Lifetime JP3024562B2 (en) 1995-08-04 1996-07-30 Seismic isolation device

Country Status (1)

Country Link
JP (1) JP3024562B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050322A (en) * 1999-08-10 2001-02-23 Showa Electric Wire & Cable Co Ltd Manufacture for laminated rubber supporting body
JP2009061468A (en) * 2007-09-05 2009-03-26 Kimura Chem Plants Co Ltd Method for producing laminated rubber bearing body, and laminated rubber bearing body
JP2013217483A (en) * 2012-04-12 2013-10-24 Swcc Showa Device Technology Co Ltd Laminated rubber bearing body
WO2018194109A1 (en) 2017-04-20 2018-10-25 オイレス工業株式会社 Seismic isolation support device
WO2018194107A1 (en) 2017-04-20 2018-10-25 オイレス工業株式会社 Seismic isolation support device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017194098A (en) 2016-04-19 2017-10-26 オイレス工業株式会社 Seismic isolator
JP2018013172A (en) * 2016-07-20 2018-01-25 オイレス工業株式会社 Base isolation support device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050322A (en) * 1999-08-10 2001-02-23 Showa Electric Wire & Cable Co Ltd Manufacture for laminated rubber supporting body
JP2009061468A (en) * 2007-09-05 2009-03-26 Kimura Chem Plants Co Ltd Method for producing laminated rubber bearing body, and laminated rubber bearing body
JP2013217483A (en) * 2012-04-12 2013-10-24 Swcc Showa Device Technology Co Ltd Laminated rubber bearing body
WO2018194109A1 (en) 2017-04-20 2018-10-25 オイレス工業株式会社 Seismic isolation support device
WO2018194107A1 (en) 2017-04-20 2018-10-25 オイレス工業株式会社 Seismic isolation support device
KR20190116361A (en) 2017-04-20 2019-10-14 오일레스고교 가부시키가이샤 Isolation Support Device
KR20190116360A (en) 2017-04-20 2019-10-14 오일레스고교 가부시키가이샤 Isolation Support Device

Also Published As

Publication number Publication date
JP3024562B2 (en) 2000-03-21

Similar Documents

Publication Publication Date Title
US5761856A (en) Vibration isolation apparatus
US10619700B2 (en) Seismic isolation apparatus
JPH09105441A (en) Base isolation device
JP3114624B2 (en) Seismic isolation device
EP3614017A1 (en) Seismic isolation support device
JP3988849B2 (en) Seismic isolation device
JP2006207680A (en) Laminated rubber supporter
JP3825898B2 (en) Seismic isolation device
JP2008292000A (en) Vibration isolation device
JP4594183B2 (en) Laminated support
JP2019127994A (en) Aseismic base isolation support device
JP3503712B2 (en) Lead encapsulated laminated rubber
KR100409274B1 (en) Vibration isolating apparatus and vibration isolating system
JP2006022965A (en) Vibration isolation device
JP3021447U (en) Seismic isolation device
JP2007170679A (en) Vibration isolating apparatus
JP3039846B2 (en) Laminated rubber bearing
JP2937983B2 (en) Vertical shock-absorbing laminated rubber bearing
EP3614016A1 (en) Seismic isolation support device
JP3359465B2 (en) Laminated rubber bearing
JPH0262670B2 (en)
JPH1129986A (en) Laminated rubber bearing body and its manufacture
JP6982350B1 (en) Seismic isolation bearing device for structures
JP2940731B2 (en) Structure vibration control device
JPH0635766B2 (en) Laminated rubber support

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term