JPH09102321A - Solid electrolyte battery and its manufacture - Google Patents

Solid electrolyte battery and its manufacture

Info

Publication number
JPH09102321A
JPH09102321A JP7282610A JP28261095A JPH09102321A JP H09102321 A JPH09102321 A JP H09102321A JP 7282610 A JP7282610 A JP 7282610A JP 28261095 A JP28261095 A JP 28261095A JP H09102321 A JPH09102321 A JP H09102321A
Authority
JP
Japan
Prior art keywords
solid electrolyte
positive electrode
battery
solid
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7282610A
Other languages
Japanese (ja)
Other versions
JP3363676B2 (en
Inventor
Maruo Jinno
丸男 神野
Mikiya Yamazaki
幹也 山崎
Toshiyuki Noma
俊之 能間
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP28261095A priority Critical patent/JP3363676B2/en
Publication of JPH09102321A publication Critical patent/JPH09102321A/en
Application granted granted Critical
Publication of JP3363676B2 publication Critical patent/JP3363676B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the discharge characteristic of a solid electrolyte battery having a polymeric solid electrolyte between positive and negative electrodes and to suppress deterioration of electrode materials caused by charge and discharge to provide the battery with excellent charge/discharge and charge- discharge cycle characteristics by enabling the battery to be charged and discharged at large currents even when used as a secondary battery. SOLUTION: This solid electrolyte battery has a polymeric solid electrolyte between positive and negative electrodes. They are aligned so that the particle diameters of electrode materials in the positive and/or negative electrode are large at their interfaces with the polymeric solid electrolyte and small on the opposite side to the interfaces, and a fluidized material for the polymeric solid electrolyte is supplied to the electrode material where the particle diameters are large, and is hardened to form the polymeric solid electrolyte.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は正極と負極の間に
高分子固体電解質を有する固体電解質電池及びこのよう
な固体電解質電池を製造する固体電解質電池の製造方法
に係り、特に、高分子固体電解質が正極や負極における
電極材料の内部まで浸透して形成され、大電流での充放
電等が行なえる電池特性に優れた固体電解質電池及びそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolyte battery having a polymer solid electrolyte between a positive electrode and a negative electrode, and a method for manufacturing such a solid electrolyte battery, and more particularly to a polymer solid electrolyte. The present invention relates to a solid electrolyte battery having excellent battery characteristics, which is formed by penetrating into the inside of an electrode material in a positive electrode or a negative electrode and can be charged and discharged with a large current, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来より、電池における電解質として
は、一般に水系或いは非水系の電解液が使用されていた
が、近年、このような液体の電解質に代えて、高分子で
構成された高分子固体電解質を用いた固体電解質電池が
注目されるようになった。すなわち、このような固体電
解質電池は電解質が液体でないため、漏液の心配がな
く、腐食性も小さく、また電解液の注液等を必要とせ
ず、電池構造が簡単で、その組立ても容易になる等の利
点があった。
2. Description of the Related Art Conventionally, an aqueous or non-aqueous electrolyte has been generally used as an electrolyte in a battery. In recent years, instead of such a liquid electrolyte, a polymer solid composed of a polymer has been used. Attention has been focused on solid electrolyte batteries using electrolytes. That is, in such a solid electrolyte battery, since the electrolyte is not a liquid, there is no fear of liquid leakage, the corrosiveness is small, and there is no need to inject the electrolytic solution, the battery structure is simple, and its assembly is easy. There were advantages such as becoming.

【0003】そして、このような固体電解質電池を製造
するにあたっては、従来より様々な方法が用いられてお
り、例えば、その正極や負極の電極材料に粉体を用い、
この粉体からなる電極材料により正極や負極を作製した
後、これらの電極上に高分子固体電解質を構成する流動
性モノマー材料を塗布し、その後、このモノマー材料を
硬化させて、高分子固体電解質をこれらの電極上に形成
することが行なわれていた。
In order to manufacture such a solid electrolyte battery, various methods have been conventionally used. For example, powder is used as the electrode material for the positive electrode and the negative electrode,
After producing a positive electrode or a negative electrode from an electrode material made of this powder, a fluid monomer material that constitutes a polymer solid electrolyte is applied onto these electrodes, and then this monomer material is cured to give a polymer solid electrolyte. Were formed on these electrodes.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記のように
して高分子固体電解質を形成した固体電解質電池におい
ては、放電特性が悪かったり、二次電池として使用する
場合に、大電流での充放電が行なえず、また充放電によ
り電極材料が次第に劣化して充放電容量が低下し、充放
電サイクル特性が悪くなる等の問題があった。
However, in the solid electrolyte battery in which the polymer solid electrolyte is formed as described above, the discharge characteristics are poor, and when it is used as a secondary battery, it is charged and discharged at a large current. However, there was a problem that the electrode material gradually deteriorated due to charge and discharge, the charge and discharge capacity decreased, and the charge and discharge cycle characteristics deteriorate.

【0005】そして、この発明においては、正極と負極
の間に高分子固体電解質を有する固体電解質電池におけ
るこのような問題を解決することを課題としており、上
記のような固体電解質電池における放電特性を向上さ
せ、また二次電池として使用する場合には、大電流での
充放電が行なえると共に、充放電により電極材料が次第
に劣化して充放電容量が低下するということもなく、充
放電サイクル特性にも優れた固体電解質電池が得られる
ようにすることを課題とするものである。
In the present invention, it is an object to solve such a problem in a solid electrolyte battery having a polymer solid electrolyte between a positive electrode and a negative electrode, and to improve the discharge characteristics in the solid electrolyte battery as described above. In addition, when used as a secondary battery, it is possible to charge and discharge with a large current, and the charge and discharge capacity does not decrease as the electrode material gradually deteriorates due to charge and discharge. Another object is to obtain an excellent solid electrolyte battery.

【0006】そこで、本発明者等は、前記のようにして
高分子固体電解質を形成した固体電解質電池において、
上記のような問題が生じる原因について検討したとこ
ろ、正極や負極の電極材料に使用する粉体には様々な粒
径のものが含まれており、このように様々な粒径の電極
材料で正極や負極を作製した後、この正極や負極上に高
分子電解質を構成する流動性のモノマー材料を塗布した
場合、このモノマー材料がこれらの電極の内部まで十分
に浸透せず、この状態でこのモノマー材料を硬化させて
高分子固体電解質を作製すると、この高分子固体電解質
と電極との接触性が悪く、これによって放電特性が悪く
なり、また充放電による電極材料の劣化が生じるという
ことが分かり、この発明を完成するにいたったのであ
る。
[0006] Therefore, the present inventors, in the solid electrolyte battery formed with the polymer solid electrolyte as described above,
Upon examining the causes of the problems described above, the powders used in the electrode materials for the positive and negative electrodes contained various particle sizes. If a fluid monomer material that constitutes the polymer electrolyte is applied on the positive electrode or the negative electrode after manufacturing the negative electrode or the negative electrode, the monomer material does not sufficiently penetrate into the inside of the electrode, When a solid polymer electrolyte is prepared by curing the material, it is found that the contact property between the solid polymer electrolyte and the electrode is poor, which deteriorates the discharge characteristics, and also causes deterioration of the electrode material due to charge and discharge, It came to complete this invention.

【0007】[0007]

【課題を解決するための手段】この発明における固体電
解質電池においては、上記のような課題を解決するた
め、正極と負極の間に高分子固体電解質が設けられた固
体電解質電池において、正極及び/又は負極における電
極材料の粒径が高分子固体電解質との界面側で大きく、
この界面と反対側で小さくなるようにしたのである。
In the solid electrolyte battery of the present invention, in order to solve the above problems, in a solid electrolyte battery in which a polymer solid electrolyte is provided between a positive electrode and a negative electrode, Alternatively, the particle size of the electrode material in the negative electrode is large on the interface side with the solid polymer electrolyte,
The size is made smaller on the side opposite to this interface.

【0008】また、この発明における固体電解質電池の
製造方法においては、正極と負極の間に高分子固体電解
質を有する固体電解質電池を製造するにあたり、正極及
び/又は負極における電極材料の粒径が高分子固体電解
質との界面側で大きく、この界面と反対側で小さくなる
ように配列し、粒径が大きい電極材料側に高分子固体電
解質用の流動性材料を供給した後、この高分子固体電解
質用の流動性材料を硬化させて高分子固体電解質を形成
するようにしたのである。
In the method for producing a solid electrolyte battery according to the present invention, when producing a solid electrolyte battery having a polymer solid electrolyte between a positive electrode and a negative electrode, the particle size of the electrode material in the positive electrode and / or the negative electrode is high. The polymer solid electrolyte is arranged so that it is large on the interface side with the molecular solid electrolyte and small on the opposite side, and the fluid material for the polymer solid electrolyte is supplied to the electrode material side with a large particle size. The fluid material for use was cured to form a solid polymer electrolyte.

【0009】ここで、この発明における固体電解質電池
及び固体電解質電池の製造方法に示すように、正極及び
/又は負極における電極材料の粒径が高分子固体電解質
との界面側で大きく、この界面と反対側で小さくなるよ
うに配列すると、高分子固体電解質との界面側における
電極材料間の空間が大きくなる一方、この界面と反対側
において空間が小さくなり、高分子固体電解質用の流動
性材料を供給した場合に、この高分子固体電解質用の流
動性材料がその界面側から内部側に上手く浸透し、この
状態で高分子固体電解質用の流動性材料を硬化させる
と、高分子固体電解質が電極の内部まで十分に浸透した
状態で形成されるようになる。
Here, as shown in the solid electrolyte battery and the method for manufacturing the solid electrolyte battery in the present invention, the particle size of the electrode material in the positive electrode and / or the negative electrode is large on the interface side with the solid polymer electrolyte, and If they are arranged so that they are smaller on the opposite side, the space between the electrode materials on the interface side with the solid polymer electrolyte becomes larger, while the space on the opposite side to this interface becomes smaller, and the fluid material for the solid polymer electrolyte is made smaller. When supplied, the fluid material for polymer solid electrolyte permeates well from the interface side to the inner side, and when the fluid material for polymer solid electrolyte is cured in this state, the polymer solid electrolyte becomes an electrode. It will be formed in a state of fully penetrating to the inside.

【0010】そして、このように高分子固体電解質が電
極の内部まで十分に浸透した状態で形成されると、電極
材料と高分子固体電解質との接触性が高まって両者の複
合化が行なわれ、放電特性が向上すると共に、二次電池
として使用する場合に、大電流での充放電が行なえるよ
うになり、また充放電時における正極材料等の劣化も少
なくなり、充放電サイクル特性が向上する。
When the polymer solid electrolyte is formed in such a state that it has penetrated into the electrode sufficiently, the contact between the electrode material and the polymer solid electrolyte is increased, and the two are composited. In addition to improving the discharge characteristics, when used as a secondary battery, it becomes possible to charge and discharge with a large current, and the deterioration of the positive electrode material during charge and discharge is reduced, and the charge and discharge cycle characteristics are improved. .

【0011】ここで、上記のように電極材料における粒
径を高分子固体電解質との界面側で大きく、この界面と
反対側で小さくなるように配列するにあたっては、高分
子固体電解質が電極内部まで十分に形成されて、電極材
料と高分子固体電解質との接触性がさらによくなるよう
にするため、高分子固体電解質との界面側における粒径
が10μm以上になるようにする一方、この界面と反対
側の面、例えば集電体と接触する面における粒径が1μ
m以下になるようにすることが好ましく、さらに高分子
固体電解質の界面側からその反対側に向かうにつれて電
極材料の粒径が徐々に減少するようにして配列させるこ
とが好ましい。
Here, in order to arrange the particle size of the electrode material so that it is large on the interface side with the solid polymer electrolyte and small on the opposite side to this interface as described above, the solid polymer electrolyte reaches the inside of the electrode. In order to improve the contact property between the electrode material and the solid polymer electrolyte to be sufficiently formed, the particle size on the interface side with the solid polymer electrolyte should be 10 μm or more, while the particle size should be opposite to this interface. Side surface, for example, the particle size on the surface that contacts the current collector is 1μ
The particle size of the electrode material is preferably m or less, and more preferably arranged so that the particle size of the electrode material gradually decreases from the interface side of the solid polymer electrolyte toward the opposite side.

【0012】また、上記の高分子固体電解質を構成する
高分子としては、リチウムイオン等に対するイオン導電
性の高いものが好ましく、ポリエチレンオキシド,ポリ
プロピレンオキシド,ポリエチレンイミン等を好適に使
用することができる。
As the polymer constituting the above-mentioned polymer solid electrolyte, those having a high ionic conductivity with respect to lithium ions and the like are preferable, and polyethylene oxide, polypropylene oxide, polyethyleneimine and the like can be preferably used.

【0013】また、この固体電解質電池において、移動
させるイオンの種類は特に限定されないが、例えば、リ
チウムイオンを移動させる場合、負極材料としては、金
属リチウム或いはリチウムの吸蔵・放出が可能な合金、
金属酸化物、炭素材料等が使用される。ここで、上記の
合金としては、例えば、Li−Al合金,Li−In合
金,Li−Sn合金,Li−Pb合金,Li−Bi合
金,Li−Ga合金,Li−Sr合金,Li−Si合
金,Li−Zn合金,Li−Cd合金,Li−Ca合
金,Li−Ba合金等のリチウム合金を、また上記の金
属酸化物としては、例えば、Fe23 ,TiO2 ,N
23 ,WO3 等の金属酸化物を、また上記の炭素材
料としては、例えば、天然黒鉛,人造黒鉛,無定形炭素
等を使用することができる。
In the solid electrolyte battery, the kind of ions to be moved is not particularly limited. For example, when lithium ions are moved, the negative electrode material is metallic lithium or an alloy capable of inserting and extracting lithium,
Metal oxides, carbon materials, etc. are used. Here, as the above-mentioned alloy, for example, Li-Al alloy, Li-In alloy, Li-Sn alloy, Li-Pb alloy, Li-Bi alloy, Li-Ga alloy, Li-Sr alloy, Li-Si alloy , Li-Zn alloy, Li-Cd alloy, Li-Ca alloy, a lithium alloy such as Li-Ba alloy, and as the metal oxide, for example, Fe 2 O 3, TiO 2 , N
Metal oxides such as b 2 O 3 and WO 3 can be used, and as the carbon material, for example, natural graphite, artificial graphite, amorphous carbon and the like can be used.

【0014】一方、上記のようにリチウムイオンを移動
させる場合における正極材料としては、マンガン,コバ
ルト,ニッケル,バナジウム,ニオブの少なくとも一種
を含む金属酸化物等を使用することができる。
On the other hand, a metal oxide containing at least one of manganese, cobalt, nickel, vanadium and niobium can be used as the positive electrode material in the case of moving lithium ions as described above.

【0015】また、上記のようにリチウムイオンを移動
させる場合において、この高分子固体電解質に加える溶
質としては、例えば、トリフルオロメタンスルホン酸リ
チウムLiCF3 SO3 ,ヘキサフルオロリン酸リチウ
ムLiPF6 ,テトラフルオロホウ酸リチウムLiBF
4 ,過塩素酸リチウムLiClO4 ,トリフルオロメタ
ンスルホン酸イミドリチウムLiN(CF3 SO22
等を使用することができる。
In the case where lithium ions are transferred as described above, examples of solutes to be added to the polymer solid electrolyte include lithium trifluoromethanesulfonate LiCF 3 SO 3 , lithium hexafluorophosphate LiPF 6 , tetrafluoromethane. Lithium borate LiBF
4 , lithium perchlorate LiClO 4 , trifluoromethanesulfonic acid imide lithium LiN (CF 3 SO 2 ) 2
Etc. can be used.

【0016】また、高分子固体電解質に上記のような溶
質を加えるにあたっては、上記の溶質を溶解する溶媒を
加え、上記の高分子固体電解質をゲル状にして使用する
こともでき、このような溶媒としては、例えば、プロピ
レンカーボネート,エチレンカーボネート,γ−ブチロ
ラクトン,ブチレンカーボネート,1,2−ジメトキシ
エタン,ジメチルカーボネート,ジエチルカーボネート
等を使用することができる。
Further, when adding the above-mentioned solute to the polymer solid electrolyte, it is also possible to add a solvent for dissolving the above-mentioned solute to make the above-mentioned polymer solid electrolyte into a gel state and use it. As the solvent, for example, propylene carbonate, ethylene carbonate, γ-butyrolactone, butylene carbonate, 1,2-dimethoxyethane, dimethyl carbonate, diethyl carbonate or the like can be used.

【0017】[0017]

【実施例】以下、この発明に係る固体電解質電池及びそ
の製造方法の実施例について具体的に説明すると共に、
比較例を挙げ、この発明の実施例における固体電解質電
池が、放電特性や充放電サイクル特性において優れてい
ることを明らかにする。なお、この発明は下記の実施例
に示したものに限定されるものではなく、その要旨を変
更しない範囲において適宜変更して実施できるものであ
る。
EXAMPLES Examples of the solid electrolyte battery and the method for producing the same according to the present invention will be specifically described below,
Comparative examples will be given to clarify that the solid electrolyte batteries in the examples of the present invention are excellent in discharge characteristics and charge / discharge cycle characteristics. The present invention is not limited to those shown in the following embodiments, and can be carried out by appropriately changing it without departing from the scope of the invention.

【0018】[実施例1〜3]これらの実施例において
は、正極,負極及び高分子固体電解質を下記に示すよう
にして作製し、図1に示すような扁平型の固体電解質二
次電池を得るようにした。
[Examples 1 to 3] In these Examples, a positive electrode, a negative electrode and a polymer solid electrolyte were produced as follows, and a flat type solid electrolyte secondary battery as shown in FIG. 1 was prepared. I got it.

【0019】(正極の作製)これらの実施例のものにお
いては、正極材料として700〜900℃の温度で熱処
理したリチウム含有二酸化コバルトLiCoO2 の粉末
を用い、この正極材料の粉末をふるい等により粒径を揃
え、この正極材料と、導電剤であるカーボン粉末と、結
着剤であるフッ素樹脂粉末とを85:10:5の重量比
で混合し、ドクターブレード法により正極集電体5上に
正極材料の粒径が小さいものから順々に塗布し、その
後、100〜150℃で熱処理して、厚みが約70μ
m,直径が10mmの円板状になった各正極1を作製し
た。ここで、正極集電体5上に正極材料の粒径が小さい
ものから順々に塗布するにあたり、実施例1のものにお
いては、正極材料の粒径が正極集電体5側で1μm以
下、中央部で約5μm、高分子固体電解質3と接触する
界面側で10μm以上になるようにし、また実施例2に
おいては、正極集電体5側で1μm以下、中央部で約3
μm、高分子固体電解質3と接触する界面側で10μm
以上になるようにし、また実施例3においては、正極集
電体5側から高分子固体電解質3と接触する界面に向け
て、粒径が1μm以下の層と、粒径が約3μmの層と、
粒径が約7μmの層と、粒径が10μm以上の層とを順
々に形成するようにした。なお、上記の正極集電体5に
はフェライト系ステンレス鋼を使用した。また、上記の
正極材料の粒径は、上記のようにふるい等により粒径を
揃えた後、レーザー光式粒度分布測定法により求めた平
均粒子径で示した。
(Preparation of Positive Electrode) In these examples, powder of lithium-containing cobalt dioxide LiCoO 2 heat-treated at a temperature of 700 to 900 ° C. was used as the positive electrode material, and the powder of the positive electrode material was granulated by sieving or the like. The positive electrode material, carbon powder that is a conductive agent, and fluororesin powder that is a binder are mixed in a weight ratio of 85: 10: 5, and the positive electrode material 5 is mixed on the positive electrode current collector 5 by a doctor blade method. The positive electrode material is coated in order from the smallest particle size and then heat-treated at 100 to 150 ° C. to a thickness of about 70 μm.
A disk-shaped positive electrode 1 having a diameter of m and a diameter of 10 mm was produced. Here, in order to apply the positive electrode material on the positive electrode current collector 5 in order from the smallest particle size, the positive electrode material of Example 1 has a particle size of 1 μm or less on the positive electrode current collector 5 side, It is about 5 μm in the central portion and 10 μm or more on the interface side in contact with the solid polymer electrolyte 3, and in Example 2, it is 1 μm or less on the positive electrode current collector 5 side and about 3 μm in the central portion.
μm, 10 μm on the interface side in contact with the solid polymer electrolyte 3
As described above, and in Example 3, a layer having a particle size of 1 μm or less and a layer having a particle size of about 3 μm were provided from the positive electrode current collector 5 side toward the interface in contact with the solid polymer electrolyte 3. ,
A layer having a particle size of about 7 μm and a layer having a particle size of 10 μm or more were sequentially formed. In addition, ferritic stainless steel was used for the positive electrode collector 5. The particle size of the positive electrode material is shown by the average particle size obtained by the laser beam particle size distribution measuring method after the particle size is made uniform by a sieve as described above.

【0020】(負極の作製)負極材料としては平均粒径
が約10μmの黒鉛粉末を用い、この黒鉛粉末と結着剤
であるフッ素樹脂とを95:5の重量比で混合し、この
混合物をドクターブレード法により負極集電体6上に塗
布した後、これを100〜150℃で真空熱処理して、
厚みが約50μm,直径が10mmの円板状になった負
極2を得た。なお、負極集電体6にはフェライト系ステ
ンレス鋼を使用した。
(Production of Negative Electrode) As the negative electrode material, graphite powder having an average particle size of about 10 μm was used, and the graphite powder and a fluororesin as a binder were mixed at a weight ratio of 95: 5, and this mixture was mixed. After coating on the negative electrode current collector 6 by the doctor blade method, this is subjected to vacuum heat treatment at 100 to 150 ° C.,
A disk-shaped negative electrode 2 having a thickness of about 50 μm and a diameter of 10 mm was obtained. In addition, ferritic stainless steel was used for the negative electrode current collector 6.

【0021】(高分子固体電解質の作製)高分子固体電
解質におけるモノマー材料に、下記の化1に示す分子量
が約1000のアクリレート系モノマーを用い、このモ
ノマー材料に対して、エチレンカーボネートとジメチル
カーボネートとが4:6の割合になった混合溶媒に過塩
素酸リチウムLiClO4 を1mol/l溶解させた電
解液を重量比1:3の割合で混合させて高分子固体電解
質用溶液を調製し、この高分子固体電解質用溶液を上記
のようにして作製した各正極1上に25〜100μmの
厚みになるように塗布し、その後、この高分子固体電解
質形成用溶液にエレクトロカーテン式電子線照射装置か
ら出力200kV、照射線量2〜5Mradで電子線を
照射して上記のモノマー材料を重合させ、上記の各正極
1上にゲル状になった高分子固体電解質3を作製した。
(Preparation of Solid Polymer Electrolyte) An acrylate-based monomer having a molecular weight of about 1000 shown in the following chemical formula 1 was used as a monomer material in the solid polymer electrolyte, and ethylene carbonate and dimethyl carbonate were added to the monomer material. In a mixed solvent having a ratio of 4: 6, 1 mol / l of lithium perchlorate LiClO 4 was mixed at a weight ratio of 1: 3 to prepare a polymer solid electrolyte solution. A solution for solid polymer electrolyte is applied onto each positive electrode 1 produced as described above so as to have a thickness of 25 to 100 μm, and then this solution for forming solid polymer electrolyte is applied from an electron curtain electron beam irradiation apparatus. An electron beam is irradiated at an output of 200 kV and an irradiation dose of 2 to 5 Mrad to polymerize the above-mentioned monomer materials to form a gel on each of the above-mentioned positive electrodes 1. Polymer solid electrolyte 3 was prepared.

【0022】[0022]

【化1】 Embedded image

【0023】(電池の作製)次に、この実施例1〜3の
各固体電解質電池を製造するにあたっては、図1に示す
ように、各正極1上に作製した高分子固体電解質3の上
にそれぞれ上記の負極1を重ね、正極1と負極2の間に
高分子固体電解質3が挾まれるようにして正極缶4aと
負極缶4bとが形成する電池ケース4内に収容させ、正
極集電体5を介して正極1を正極缶4aに接続させる一
方、負極集電体6を介して負極2を負極缶4bに接続さ
せ、この正極缶4aと負極缶4bとを絶縁性パッキン7
により電気的に絶縁し、この電池内部で生じた化学エネ
ルギーを正極缶4aと負極缶4bの両端子から電気エネ
ルギーとして外部へ取り出すようにした。
(Production of Battery) Next, in producing each of the solid electrolyte batteries of Examples 1 to 3, on the solid polymer electrolyte 3 produced on each positive electrode 1, as shown in FIG. The above-mentioned negative electrodes 1 are stacked, respectively, and the solid polymer electrolyte 3 is sandwiched between the positive electrodes 1 and the negative electrodes 2 and housed in the battery case 4 formed by the positive electrode can 4a and the negative electrode can 4b. The positive electrode 1 is connected to the positive electrode can 4a via the body 5, while the negative electrode 2 is connected to the negative electrode can 4b via the negative electrode current collector 6, and the positive electrode can 4a and the negative electrode can 4b are insulated from each other by the insulating packing 7
The electric energy is electrically insulated by means of and the chemical energy generated inside the battery is taken out as electric energy from both terminals of the positive electrode can 4a and the negative electrode can 4b.

【0024】[比較例1]この比較例においては、上記
実施例1〜3の固体電解質電池と正極1だけを変更さ
せ、それ以外については、上記実施例1〜3の場合と同
様にして固体電解質電池を作製した。
[Comparative Example 1] In this comparative example, only the solid electrolyte batteries of Examples 1 to 3 and the positive electrode 1 were changed, and the other components were the same as those of Examples 1 to 3 described above. An electrolyte battery was produced.

【0025】ここで、この比較例1においては正極1を
作製するにあたり、上記実施例1〜3の場合と同様に、
正極材料として700〜900℃の温度で熱処理したリ
チウム含有二酸化コバルトの粉末を用い、この正極材料
の粉末をふるい等によりその粒径を揃えることなくその
まま使用し、この正極材料と、導電剤であるカーボン粉
末と、結着剤であるフッ素樹脂粉末とを85:10:5
の重量比で混合し、この混合物をドクターブレード法に
より正極集電体5上に塗布し、その後、100〜150
℃で熱処理して、厚みが約70μm,直径が10mmの
円板状になった正極1を作製した。
Here, in producing the positive electrode 1 in this Comparative Example 1, as in the case of Examples 1 to 3 above,
A lithium-containing cobalt dioxide powder heat-treated at a temperature of 700 to 900 ° C. is used as a positive electrode material, and this positive electrode material powder is used as it is without being made uniform in particle size by sieving. 85: 10: 5 carbon powder and fluororesin powder as a binder
In a weight ratio of 100 to 150, and the mixture is applied onto the positive electrode current collector 5 by the doctor blade method.
A heat treatment was carried out at a temperature of ℃ to produce a disk-shaped positive electrode 1 having a thickness of about 70 μm and a diameter of 10 mm.

【0026】次に、上記のようにして作製した実施例1
〜3及び比較例1の各固体電解質電池についてそれぞれ
温度25℃の雰囲気下において、充電電流密度500μ
A/cm2 で4.20Vまで充電した後、放電電流密度
500μA/cm2 で2.50Vまで放電し、このよう
な充放電のサイクルを繰り返して行ない、サイクル数の
増加に伴う放電容量の変化を測定して、各固体電解質電
池における充放電サイクル特性を調べ、その結果を図2
に示した。
Next, Example 1 manufactured as described above was used.
~ 3 and each solid electrolyte battery of Comparative Example 1 under a temperature of 25 ℃ atmosphere, charging current density 500μ
After being charged to 4.20 V at A / cm 2, it was discharged to 2.50 V at a discharge current density of 500 μA / cm 2 , and such a charging / discharging cycle was repeated to change the discharge capacity with the increase in the number of cycles. Is measured to examine the charge / discharge cycle characteristics of each solid electrolyte battery, and the results are shown in FIG.
It was shown to.

【0027】この結果、正極材料の粒径を、高分子固体
電解質3との界面側において大きくする一方、高分子固
体電解質3との界面と反対側の正極集電体5側において
小さくした実施例1〜3の各固体電解質電池は、正極材
料の粒径を制御しなかった比較例1の固体電解質電池に
比べて、サイクル数の増加に伴う放電容量の減少が著し
く少なくなっており、充放電サイクル特性が非常に向上
していた。
As a result, an example in which the particle size of the positive electrode material was increased on the interface side with the solid polymer electrolyte 3 and decreased on the positive electrode current collector 5 side opposite to the interface with the solid polymer electrolyte 3 Compared with the solid electrolyte battery of Comparative Example 1 in which the particle size of the positive electrode material was not controlled, each of the solid electrolyte batteries 1 to 3 had a significantly smaller decrease in discharge capacity with an increase in the number of cycles, and the charge / discharge The cycle characteristics were greatly improved.

【0028】また、上記実施例1〜3の各固体電解質電
池を比較した場合、正極材料の粒径が正極集電体5側か
ら高分子固体電解質3との界面側に向かって順々に大き
くなるようにして、正極材料の粒径の異なる層を多く設
けた実施例3の固体電解質電池における充放電サイクル
特性が、実施例4,5の固体電解質電池のものよりも優
れていた。
When the solid electrolyte batteries of Examples 1 to 3 are compared, the particle size of the positive electrode material increases in order from the positive electrode current collector 5 side toward the interface with the polymer solid electrolyte 3. As described above, the charge / discharge cycle characteristics of the solid electrolyte battery of Example 3 in which a large number of layers having different particle sizes of the positive electrode material were provided were superior to those of the solid electrolyte batteries of Examples 4 and 5.

【0029】次に、上記実施例3と比較例1の固体電解
質電池について、温度25℃の雰囲気の下で、充電電流
密度500μA/cm2 で4.20Vまで充電した後、
放電電流密度500μA/cm2 で2.50Vまで放電
して、これらの各固体電解質電池における充放電特性を
調べた。ここで、これらの固体電解質電池における充放
電特性を調べるにあたっては、縦軸に電池電圧、横軸に
充放電容量をとり、充放電容量による電池電圧の変動を
調べ、その結果を図3に示した。なお、同図において
は、実施例3の固体電解質電池における結果を実線で、
比較例1の固体電解質電池における結果を破線で示すと
共に、放電時における結果を太線で、充電時における結
果を細線で示した。
Next, the solid electrolyte batteries of Example 3 and Comparative Example 1 were charged to 4.20 V at a charging current density of 500 μA / cm 2 in an atmosphere at a temperature of 25 ° C.
After discharging to 2.50 V at a discharge current density of 500 μA / cm 2 , the charge / discharge characteristics of each of these solid electrolyte batteries were examined. Here, in examining the charge / discharge characteristics of these solid electrolyte batteries, the vertical axis represents the battery voltage and the horizontal axis represents the charge / discharge capacity, and the change in the battery voltage due to the charge / discharge capacity was investigated. The results are shown in FIG. It was In the figure, the results of the solid electrolyte battery of Example 3 are represented by solid lines,
The results of the solid electrolyte battery of Comparative Example 1 are shown by broken lines, the results of discharging are shown by thick lines, and the results of charging are shown by thin lines.

【0030】この結果、上記実施例3の固体電解質電池
は比較例1の固体電解質電池に比べて、放電時における
電池電圧の変動が少なく、比較例1の電池に比べて放電
特性が優れていた。
As a result, the solid electrolyte battery of Example 3 had less variation in battery voltage during discharge than the solid electrolyte battery of Comparative Example 1, and was superior in discharge characteristics to the battery of Comparative Example 1. .

【0031】[実施例4〜6]これらの実施例において
は、正極,負極及び高分子固体電解質を下記に示すよう
にして作製し、前記実施例1〜3と同様に、図1に示す
扁平型の固体電解質二次電池を得るようにした。
[Examples 4 to 6] In these Examples, a positive electrode, a negative electrode and a solid polymer electrolyte were prepared as follows, and the flattened surface shown in FIG. Type solid electrolyte secondary battery.

【0032】(正極の作製)これらの実施例のものにお
いては、正極材料として700〜900℃の温度で熱処
理したリチウム含有二酸化コバルトの粉末を用い、この
正極材料の粉末と、導電剤であるカーボン粉末と、結着
剤であるフッ素樹脂粉末とを85:10:5の重量比で
混合し、この混合物をドクターブレード法により正極集
電体5上に塗布し、その後、100〜150℃で熱処理
して、厚みが約70μm,直径が10mmの円板状にな
った正極1を作製した。なお、上記の正極集電体5には
フェライト系ステンレス鋼を使用した。
(Production of Positive Electrode) In these examples, a lithium-containing cobalt dioxide powder heat-treated at a temperature of 700 to 900 ° C. was used as a positive electrode material, and the positive electrode material powder and carbon as a conductive agent were used. The powder and a fluororesin powder as a binder are mixed in a weight ratio of 85: 10: 5, and this mixture is applied on the positive electrode current collector 5 by the doctor blade method, and then heat treated at 100 to 150 ° C. Then, a disk-shaped positive electrode 1 having a thickness of about 70 μm and a diameter of 10 mm was produced. In addition, ferritic stainless steel was used for the positive electrode collector 5.

【0033】(負極の作製)負極材料としては黒鉛粉末
を用い、この黒鉛粉末をふるい等によりその粒径を揃
え、この黒鉛粉末と結着剤であるフッ素樹脂とを95:
5の重量比で混合し、ドクターブレード法により負極集
電体6上に黒鉛粉末の粒径が小さいものから順々に塗布
し、その後、これを100〜150℃で真空熱処理し
て、厚みが約50μm,直径が10mmの円板状になっ
た各負極2を得た。ここで、負極集電体6上に黒鉛粉末
の粒径が小さいものから順々に塗布するにあたり、実施
例4のものにおいては、黒鉛粉末の粒径が負極集電体6
側で1μm以下、中央部で約5μm、高分子固体電解質
3と接触する界面側で10μm以上になるようにし、ま
た実施例5においては、負極集電体6側で1μm以下、
中央部で約3μm、高分子固体電解質3と接触する界面
側で10μm以上になるようにし、また実施例6におい
ては、負極集電体6側から高分子固体電解質3と接触す
る界面に向けて、粒径が1μm以下の層と、粒径が約3
μmの層と、粒径が約7μmの層と、粒径が10μm以
上の層とを順々に形成するようにした。なお、負極集電
体6にはフェライト系ステンレス鋼を使用した。また、
上記の黒鉛粉末の粒径も、上記の実施例1〜3における
正極材料の場合と同様に、レーザー光式粒度分布測定法
により求めた平均粒子径で示した。
(Preparation of Negative Electrode) Graphite powder was used as the negative electrode material, and the particle size of the graphite powder was made uniform by sieving, and the graphite powder and the fluororesin as the binder were mixed at 95:
5 in a weight ratio of 5 and sequentially applied onto the negative electrode current collector 6 by a doctor blade method, starting from the one having the smallest particle size of the graphite powder, and then subjected to vacuum heat treatment at 100 to 150 ° C. Disc-shaped negative electrodes 2 having a diameter of about 50 μm and a diameter of 10 mm were obtained. Here, in order to apply the graphite powder on the negative electrode current collector 6 in order from the smallest particle size of the graphite powder, in the case of Example 4, the graphite powder had a particle size of negative electrode current collector 6.
1 μm or less on the side, about 5 μm on the central portion, and 10 μm or more on the interface side in contact with the solid polymer electrolyte 3, and in Example 5, 1 μm or less on the negative electrode current collector 6 side,
The thickness is about 3 μm in the central portion and 10 μm or more on the interface side in contact with the solid polymer electrolyte 3, and in Example 6, from the negative electrode current collector 6 side toward the interface in contact with the solid polymer electrolyte 3. , A layer with a particle size of 1 μm or less and a particle size of about 3
A layer having a particle size of 7 μm, a layer having a particle size of about 7 μm, and a layer having a particle size of 10 μm or more are sequentially formed. In addition, ferritic stainless steel was used for the negative electrode current collector 6. Also,
The particle size of the above graphite powder is also shown by the average particle size obtained by the laser beam particle size distribution measuring method, as in the case of the positive electrode materials in Examples 1 to 3 above.

【0034】(高分子固体電解質の作製)高分子固体電
解質におけるモノマー材料に、前記の化1に示す分子量
が約1000のアクリレート系モノマーを用い、このモ
ノマー材料に対して、エチレンカーボネートとジメチル
カーボネートとが4:6の割合になった混合溶媒に過塩
素酸リチウムLiClO4 を1mol/l溶解させた電
解液を重量比1:3の割合で混合させた高分子固体電解
質形成用溶液を調整し、この高分子固体電解質形成用溶
液を上記のようにして作製した各負極2上に25〜10
0μmの厚みになるように塗布し、その後、この高分子
固体電解質形成用溶液にエレクトロカーテン式電子線照
射装置から出力200kV、照射線量2〜5Mradで
電子線を照射して上記のモノマー材料を重合させ、上記
の各負極2上にゲル状になった高分子固体電解質3を作
製した。
(Preparation of Polymer Solid Electrolyte) As the monomer material in the polymer solid electrolyte, an acrylate-based monomer having a molecular weight of about 1000 shown in Chemical formula 1 above is used, and ethylene carbonate and dimethyl carbonate are added to the monomer material. To prepare a polymer solid electrolyte forming solution in which an electrolyte solution in which lithium perchlorate LiClO 4 was dissolved at a ratio of 4: 6 and 1 mol / l was mixed at a weight ratio of 1: 3, This polymer solid electrolyte forming solution is applied to each of the negative electrodes 2 produced as described above in an amount of 25 to 10
It is applied so as to have a thickness of 0 μm, and then the solution for forming a polymer solid electrolyte is irradiated with an electron beam at an output of 200 kV and an irradiation dose of 2 to 5 Mrad to polymerize the above monomer materials. Then, a gelled polymer solid electrolyte 3 was produced on each of the above negative electrodes 2.

【0035】(電池の作製)次に、上記のようにして各
負極2上に作製した高分子固体電解質3が、正極1と負
極2の間に挾まれるようにして正極缶4aと負極缶4b
とが形成する電池ケース4内に収容させ、上記実施例1
〜3の場合と同様の扁平型になった実施例4〜6の各固
体電解質電池を作製した。
(Production of Battery) Next, the polymer solid electrolyte 3 produced on each negative electrode 2 as described above is sandwiched between the positive electrode 1 and the negative electrode 2 so that the positive electrode can 4a and the negative electrode can 4 are formed. 4b
The battery pack is housed in the battery case 4 formed by
Flat solid-state batteries of Examples 4 to 6 similar to those in Examples 1 to 3 were produced.

【0036】[比較例2]この比較例においては、上記
実施例4〜6の固体電解質電池と負極2だけを変更さ
せ、それ以外については、上記実施例4〜6の場合と同
様にして固体電解質電池を作製した。
[Comparative Example 2] In this comparative example, only the solid electrolyte batteries of Examples 4 to 6 and the negative electrode 2 were changed, and the other components were the same as those of Examples 4 to 6 described above. An electrolyte battery was produced.

【0037】ここで、この比較例2においては、上記実
施例4〜6において使用した黒鉛粉末の粒径をふるい等
によって揃えることなく、この黒鉛粉末をそのまま使用
し、この黒鉛粉末と結着剤であるフッ素樹脂とを95:
5の重量比で混合し、この混合物をドクターブレード法
により負極集電体6上に塗布し、その後、これを100
〜150℃で真空熱処理して、厚みが約50μm,直径
が10mmの円板状になった負極2を得た。
Here, in Comparative Example 2, the graphite powder used in Examples 4 to 6 was used as it was without making the particle diameter of the graphite powder uniform by sieving, and the graphite powder and the binder were used. With the fluororesin which is 95:
5 in a weight ratio, and the mixture is applied onto the negative electrode current collector 6 by the doctor blade method.
Vacuum heat treatment was performed at ˜150 ° C. to obtain a disk-shaped negative electrode 2 having a thickness of about 50 μm and a diameter of 10 mm.

【0038】次に、上記のようにして作製した実施例4
〜6及び比較例2の各固体電解質電池について、上記実
施例1〜3及び比較例1の場合と同様にして、これらの
各固体電解質電池における充放電サイクル特性を調べ、
その結果を図4に示した。
Next, Example 4 produced as described above.
~ 6 and the solid electrolyte batteries of Comparative Example 2 in the same manner as in Examples 1 to 3 and Comparative Example 1 above, the charge and discharge cycle characteristics of these solid electrolyte batteries were examined.
The result is shown in FIG.

【0039】この結果、負極2における黒鉛粉末の粒径
を、高分子固体電解質3との界面側において大きくする
一方、高分子固体電解質3の界面と反対の負極集電体6
側において小さくした実施例4〜6の各固体電解質電池
は、黒鉛粉末の粒径を制御しなかった比較例2の固体電
解質電池に比べて、サイクル数の増加に伴う放電容量の
減少が著しく少なくなっており、充放電サイクル特性が
非常に向上していた。
As a result, the particle size of the graphite powder in the negative electrode 2 is increased on the interface side with the solid polymer electrolyte 3, while the negative electrode current collector 6 opposite to the interface with the solid polymer electrolyte 3 is formed.
Each of the solid electrolyte batteries of Examples 4 to 6 having a smaller size on the side has a significantly smaller decrease in discharge capacity with an increase in the number of cycles as compared with the solid electrolyte battery of Comparative Example 2 in which the particle size of the graphite powder was not controlled. And the charge / discharge cycle characteristics were greatly improved.

【0040】また、上記実施例4〜6の各固体電解質電
池を比較した場合、黒鉛粉末の粒径が負極集電体6側か
ら高分子固体電解質3との界面側に向かって順々に大き
くなるようにして、黒鉛粉末の粒径の異なる層を多く設
けた実施例6の固体電解質電池における充放電サイクル
特性が、実施例4,5の固体電解質電池のものよりも優
れていた。
When the solid electrolyte batteries of Examples 4 to 6 are compared, the particle size of the graphite powder increases from the negative electrode current collector 6 side toward the interface with the polymer solid electrolyte 3. As described above, the charge / discharge cycle characteristics of the solid electrolyte battery of Example 6 provided with many layers of graphite powder having different particle sizes were superior to those of the solid electrolyte batteries of Examples 4 and 5.

【0041】[0041]

【発明の効果】以上詳述したように、この発明において
は、正極及び/又は負極における電極材料の粒径が高分
子固体電解質との界面側で大きく、この界面と反対側で
小さくなるように配列した状態で、電極に高分子固体電
解質用の流動性材料を供給して高分子固体電解質用の流
動性材料を硬化させるようにしたため、高分子固体電解
質が電極の内部まで十分に浸透した状態で形成され、電
極材料と高分子固体電解質との接触性が高まり、これに
よって放電特性が向上し、また二次電池として使用した
場合には、大電流での充放電が行なえると共に、充放電
時における電極材料の劣化も抑制され、充放電サイクル
特性が著しく向上した。
As described above in detail, in the present invention, the particle size of the electrode material in the positive electrode and / or the negative electrode is large on the interface side with the solid polymer electrolyte and small on the opposite side. In the arrayed state, the fluid material for the solid polymer electrolyte was supplied to the electrode to cure the fluid material for the solid polymer electrolyte, so that the solid polymer electrolyte sufficiently penetrated into the electrode. , The contact property between the electrode material and the solid polymer electrolyte is improved, which improves the discharge characteristics.When used as a secondary battery, it can be charged and discharged with a large current, and can also be charged and discharged. Deterioration of the electrode material at the time was also suppressed, and the charge / discharge cycle characteristics were significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例1〜6及び比較例1,2の各
固体電解質電池の構造を示した断面説明図である。
FIG. 1 is an explanatory cross-sectional view showing the structure of each solid electrolyte battery of Examples 1 to 6 and Comparative Examples 1 and 2 of the present invention.

【図2】この発明の実施例1〜3及び比較例1の各固体
電解質電池における充放電サイクル特性を示した図であ
る。
FIG. 2 is a diagram showing charge / discharge cycle characteristics in each of the solid electrolyte batteries of Examples 1 to 3 and Comparative Example 1 of the present invention.

【図3】この発明の実施例3及び比較例1の各固体電解
質電池における充放電特性を示した図である。
FIG. 3 is a diagram showing charge / discharge characteristics in each solid electrolyte battery of Example 3 and Comparative Example 1 of the present invention.

【図4】この発明の実施例4〜6及び比較例2の各固体
電解質電池における充放電サイクル特性を示した図であ
る。
FIG. 4 is a diagram showing charge / discharge cycle characteristics in each of the solid electrolyte batteries of Examples 4 to 6 and Comparative Example 2 of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 高分子固体電解質 1 Positive electrode 2 Negative electrode 3 Polymer solid electrolyte

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Koji Nishio 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極と負極の間に高分子固体電解質が設
けられた固体電解質電池において、正極及び/又は負極
における電極材料の粒径が高分子固体電解質との界面側
で大きく、この界面と反対側で小さくなっていることを
特徴とする固体電解質電池。
1. In a solid electrolyte battery in which a solid polymer electrolyte is provided between a positive electrode and a negative electrode, the particle size of the electrode material in the positive electrode and / or the negative electrode is large on the interface side with the solid polymer electrolyte, and A solid electrolyte battery characterized in that it is smaller on the opposite side.
【請求項2】 請求項1に記載した固体電解質電池にお
いて、上記電極材料の粒径が高分子固体電解質との界面
側において10μm以上である一方、界面と反対側の面
における粒径が1μm以下になっていることを特徴とす
る固体電解質電池。
2. The solid electrolyte battery according to claim 1, wherein the particle size of the electrode material is 10 μm or more on the interface side with the solid polymer electrolyte, while the particle size on the surface opposite to the interface is 1 μm or less. A solid electrolyte battery characterized in that
【請求項3】 正極と負極の間に高分子固体電解質を有
する固体電解質電池を製造するにあたり、正極及び/又
は負極における電極材料の粒径が高分子固体電解質との
界面側で大きく、この界面と反対側で小さくなるように
配列し、粒径が大きい電極材料側に高分子固体電解質用
の流動性材料を供給した後、この高分子固体電解質用の
流動性材料を硬化させて高分子固体電解質を形成するこ
とを特徴とする固体電解質電池の製造方法。
3. When manufacturing a solid electrolyte battery having a polymer solid electrolyte between a positive electrode and a negative electrode, the particle size of the electrode material in the positive electrode and / or the negative electrode is large on the interface side with the solid polymer electrolyte, and this interface The fluid material for the solid polymer electrolyte is supplied to the electrode material side having a large particle size, and the fluid material for the polymer solid electrolyte is cured to solidify the polymer solid. A method for producing a solid electrolyte battery, which comprises forming an electrolyte.
JP28261095A 1995-10-03 1995-10-03 Solid electrolyte battery and method for manufacturing solid electrolyte battery Expired - Fee Related JP3363676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28261095A JP3363676B2 (en) 1995-10-03 1995-10-03 Solid electrolyte battery and method for manufacturing solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28261095A JP3363676B2 (en) 1995-10-03 1995-10-03 Solid electrolyte battery and method for manufacturing solid electrolyte battery

Publications (2)

Publication Number Publication Date
JPH09102321A true JPH09102321A (en) 1997-04-15
JP3363676B2 JP3363676B2 (en) 2003-01-08

Family

ID=17654760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28261095A Expired - Fee Related JP3363676B2 (en) 1995-10-03 1995-10-03 Solid electrolyte battery and method for manufacturing solid electrolyte battery

Country Status (1)

Country Link
JP (1) JP3363676B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1131533A (en) * 1997-07-09 1999-02-02 Mitsubishi Chem Corp Lithium secondary battery
JP2006210003A (en) * 2005-01-25 2006-08-10 Nissan Motor Co Ltd Electrode for battery
JP2011070802A (en) * 2009-09-24 2011-04-07 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JPWO2018062081A1 (en) * 2016-09-29 2019-07-11 Tdk株式会社 All solid lithium ion rechargeable battery
WO2020110666A1 (en) * 2018-11-29 2020-06-04 株式会社村田製作所 Solid-state battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1131533A (en) * 1997-07-09 1999-02-02 Mitsubishi Chem Corp Lithium secondary battery
JP2006210003A (en) * 2005-01-25 2006-08-10 Nissan Motor Co Ltd Electrode for battery
JP2011070802A (en) * 2009-09-24 2011-04-07 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JPWO2018062081A1 (en) * 2016-09-29 2019-07-11 Tdk株式会社 All solid lithium ion rechargeable battery
WO2020110666A1 (en) * 2018-11-29 2020-06-04 株式会社村田製作所 Solid-state battery
CN113169297A (en) * 2018-11-29 2021-07-23 株式会社村田制作所 Solid-state battery
JPWO2020110666A1 (en) * 2018-11-29 2021-09-27 株式会社村田製作所 Solid state battery

Also Published As

Publication number Publication date
JP3363676B2 (en) 2003-01-08

Similar Documents

Publication Publication Date Title
US7422826B2 (en) In situ thermal polymerization method for making gel polymer lithium ion rechargeable electrochemical cells
JP2000277148A (en) Polymer electrolyte battery
JPH10255842A (en) Lithium-polymer secondary battery
KR20200095188A (en) Composite for solid polymer electrolytes and all solid polymer electrolytes comprising the same
JP3574072B2 (en) Gel polymer electrolyte lithium secondary battery
JP3363676B2 (en) Solid electrolyte battery and method for manufacturing solid electrolyte battery
JP4193248B2 (en) Gel electrolyte battery
JP2000294291A (en) Polymer electrolyte battery
JPH09134730A (en) Solid electrolyte battery and its manufacture
JPH09199112A (en) Nonaqueous electrolyte secondary cell
JPH0997617A (en) Solid electrolytic battery
JP3327468B2 (en) Lithium ion secondary battery and method of manufacturing the same
JP3384661B2 (en) Solid electrolyte battery and method for manufacturing solid electrolyte battery
JPH10261437A (en) Polymer electrolyte and lithium polymer battery using it
KR20190080459A (en) Radiation gel-type electrolyte precursor composition, secondary battery and manufacturing method of the same
JP3443257B2 (en) Solid electrolyte battery
JP4843833B2 (en) Method for improving low temperature characteristics of lithium secondary battery
JP3407507B2 (en) Polymer electrolyte and lithium battery
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2000173598A (en) Manufacture of electrode and battery
JPH08124597A (en) Solid electrolytic secondary cell
JP2001202996A (en) Lithium-polymer secondary battery
JP2000299132A (en) Gel electrolyte secondary battery
JP2019096419A (en) Negative electrode active substance, negative electrode, and lithium ion secondary battery
JP2002184392A (en) Nonaqueous secondary cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071025

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121025

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees