JP2000299132A - Gel electrolyte secondary battery - Google Patents

Gel electrolyte secondary battery

Info

Publication number
JP2000299132A
JP2000299132A JP11109326A JP10932699A JP2000299132A JP 2000299132 A JP2000299132 A JP 2000299132A JP 11109326 A JP11109326 A JP 11109326A JP 10932699 A JP10932699 A JP 10932699A JP 2000299132 A JP2000299132 A JP 2000299132A
Authority
JP
Japan
Prior art keywords
gel electrolyte
carbon material
polymer
secondary battery
total acidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11109326A
Other languages
Japanese (ja)
Inventor
Takashi Iijima
島 孝 飯
Teruo Shinbara
原 照 男 榛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11109326A priority Critical patent/JP2000299132A/en
Publication of JP2000299132A publication Critical patent/JP2000299132A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a high-performance gel electrolyte secondary battery exhibiting discharge capacity of a negative electrode material alike in a solution system and in a gel electrolyte system and having a high energy density. SOLUTION: This gel electrolyte secondary battery is constructed of a positive electrode, a negative electrode using a carbon material storing/releasing lithium as an active material, and a polymer gel electrolyte. In the carbon material, an oxygen content is not less than 0.05 wt.%, a quinone type oxygen amount is not less than 20 μmol/g, a total acidity is not less than 10 μmol/g and not more than the quinone type oxygen amount, a ratio of a carboxyl group amount to the total acidity is not more than 0.4. Desirably, the gel electrolyte includes a polymer prepared by chemically cross-linking monomers including a terminal acryloyl modified alkylene oxide polymer at least.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、正極とリチウムを
吸蔵・放出することが可能な炭素材料を活物質とした負
極と高分子ゲル状電解質とから構成されるゲル状電解質
二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gel electrolyte secondary battery comprising a positive electrode, a negative electrode using a carbon material capable of occluding and releasing lithium as an active material, and a polymer gel electrolyte.

【0002】[0002]

【従来の技術】非プロトン性有機溶媒にリチウム塩を溶
解してなる溶液を電解質として用いたリチウム二次電池
は、高エネルギー密度電池として注目され、様々な電子
機器の電源として普及している。しかしながら最近のエ
レクトロニクス技術の進歩は著しく、電子機器の更なる
軽量化、小型化、薄型化、多機能化が図られており、電
源である電池に対しても、小型化、軽量化、薄型化、信
頼性の向上など、より一層の高性能化が要望されてい
る。このような要望に応えるために、正極と負極とが固
体電解質層を介して積層された固体電解質電池が提案さ
れている。
2. Description of the Related Art A lithium secondary battery using a solution obtained by dissolving a lithium salt in an aprotic organic solvent as an electrolyte has attracted attention as a high energy density battery and has been widely used as a power source for various electronic devices. However, recent advances in electronics technology have been remarkable, and electronic devices are becoming lighter, smaller, thinner, and more multifunctional, and batteries, which are power sources, have been made smaller, lighter, and thinner. There is a demand for higher performance such as improved reliability. In order to meet such a demand, a solid electrolyte battery in which a positive electrode and a negative electrode are stacked via a solid electrolyte layer has been proposed.

【0003】固体電解質は基本的に揮発性の溶媒を含ま
ないために、揮発性溶媒を含む電解液系のリチウム二次
電池で生じる漏液、短絡時などの発熱による溶媒の蒸発
に起因した容器破裂などの課題を回避することができ安
全性に優れるリチウム二次電池を提供することが可能で
ある。更に破裂回避に伴い耐圧容器やガス抜き装置など
が不要となるため、重量あたりのエネルギー密度を大幅
に改善できる。従って、固体電解質を用いることで小型
化、軽量化、薄型化の観点で正に上記の要望に沿った特
性を持ったリチウム二次電池を提供することが可能であ
る。
[0003] Since the solid electrolyte basically does not contain a volatile solvent, a container caused by evaporation of the solvent due to heat generation at the time of leakage or short circuit generated in an electrolyte type lithium secondary battery containing a volatile solvent. It is possible to provide a lithium secondary battery which can avoid problems such as rupture and is excellent in safety. Further, since a pressure vessel and a gas venting device are not required as a result of avoiding the rupture, the energy density per weight can be greatly improved. Therefore, by using a solid electrolyte, it is possible to provide a lithium secondary battery having characteristics that exactly meet the above demands in terms of size reduction, weight reduction, and thickness reduction.

【0004】リチウム二次電池へ適用可能な固体電解質
として、ポリエチレンオキシドに代表されるようなエチ
レンオキシドを基本骨格とした高分子へリチウム塩を溶
解した高分子系固体電解質や、Li3N、LiI、LiI-Li2S-P2
O5などの無機材料が研究されているが、何れの固体電解
質もイオン導電性が溶液系の電解質に比較して低いため
に、短時間充電や重負荷放電の際に容量が低下するとい
う問題があった。
As a solid electrolyte applicable to a lithium secondary battery, a polymer solid electrolyte in which a lithium salt is dissolved in a polymer having a basic skeleton of ethylene oxide such as polyethylene oxide, Li 3 N, LiI, LiI-Li 2 SP 2
Problem but inorganic materials such as O 5 have been studied, one of the solid electrolyte also ionic conductivity to lower than the electrolyte solution system, capacity decreases during a short time charging and heavy load discharge was there.

【0005】固体電解質のイオン導電性に関しては、リ
チウム塩と、リチウム二次電池に通常に用いられる非プ
ロトン性溶媒とを高分子に含有させて形成される高分子
ゲルを電解質に用いることにより溶液に近いイオン伝導
度が達成可能になるなど、ゲル状電解質の技術を核とし
たイオン導電性の改善が盛んに検討されている。ゲル状
電解質は物理ゲルと化学架橋ゲルの大きく二つに分類で
きる。前者は、高分子鎖どうしの物理的絡み合いが架橋
点として作用することによりゲル化するもので、例え
ば、高分子と電解液とを加熱することで一様な溶液を調
製し、後に冷却することでゲル化させることが可能であ
る。架橋点が物理的絡み合いであるため、物理ゲルは高
温下での再溶融、熱サイクルによる高分子と溶媒の分
離、即ちゲルからの溶媒の染み出しなど、基本的に解決
困難な問題を持つ。
[0005] Regarding the ionic conductivity of the solid electrolyte, a polymer gel formed by incorporating a lithium salt and an aprotic solvent generally used in a lithium secondary battery into a polymer is used as an electrolyte. Improving ionic conductivity with gel electrolyte technology as the core has been actively studied, for example, ionic conductivity close to that of achievable. Gel electrolytes can be broadly classified into physical gels and chemically crosslinked gels. In the former, gelling occurs when the physical entanglement of polymer chains acts as a cross-linking point.For example, a uniform solution is prepared by heating a polymer and an electrolytic solution, and then cooling is performed. Can be gelled. Since the cross-linking points are physically entangled, the physical gel has basically difficult problems such as remelting at a high temperature, separation of the polymer and the solvent by thermal cycling, that is, exudation of the solvent from the gel.

【0006】他方、化学架橋ゲルはアクリル酸エステル
に代表されるような単官能、或いは、多官能性のモノマ
ーと電解液との混合溶液を重合させて得られるもので、
モノマーの構造、ネットワーク構造の最適化などによ
り、イオン導電性と機械的強度、並びに、物理ゲルで問
題となった熱によるゲルの構造劣化も抑制可能であり、
非常に有望なゲル電解質である。更に、光重合や電子線
重合などのように、比較的短時間で架橋反応を完了させ
ることが可能なため、製造プロセスという観点からも、
有効な材料である。
On the other hand, a chemically crosslinked gel is obtained by polymerizing a mixed solution of a monofunctional or polyfunctional monomer represented by an acrylate ester and an electrolytic solution.
By optimizing the monomer structure and network structure, it is possible to suppress ionic conductivity and mechanical strength, as well as the gel structural degradation caused by heat, which has become a problem with physical gels.
It is a very promising gel electrolyte. Furthermore, since the crosslinking reaction can be completed in a relatively short time, such as photopolymerization and electron beam polymerization, from the viewpoint of the production process,
It is an effective material.

【0007】化学架橋ゲルの中でも特に末端アクリロイ
ル変成アルキレンオキシド重合体を化学架橋することで
得られる高分子ゲルは、溶媒の保持力に優れ、従って、
温度上昇によるガス発生や漏液の問題で非常に優れた特
性を示す(特開平5-114419号公報)。また、その構造を三
官能性マクロモノマーの化学架橋体にすることで高弾性
率、適度な伸びを兼ね備えたゲル状電解質を得ることが
可能である(特開平5-198303号公報、特開平5-205779号
公報)。
[0007] Among the chemically crosslinked gels, polymer gels obtained by chemically crosslinking an acryloyl-modified alkylene oxide polymer are particularly excellent in solvent retention, and
It shows very excellent characteristics due to the problem of gas generation and liquid leakage due to temperature rise (Japanese Patent Application Laid-Open No. H5-114419). In addition, it is possible to obtain a gel electrolyte having both high elastic modulus and appropriate elongation by making the structure a chemically cross-linked body of a trifunctional macromonomer (JP-A-5-198303, JP-A-5-198303). -205779).

【0008】しかしながら、電池としての充電時、或い
は放電時の過電圧は、ゲル状電解質のイオン導電性の良
否のみによって決定されるものではなく、しばしば、活
物質とゲル電解質界面で生じる抵抗による寄与が大きな
割合を占める。
However, the overvoltage at the time of charging or discharging as a battery is not determined solely by the quality of the ionic conductivity of the gel electrolyte, but often depends on the resistance generated at the interface between the active material and the gel electrolyte. Make up a large percentage.

【0009】このような観点に立って、界面抵抗を低減
することを目的とした検討がなされている。例示するな
らば、正極活物質に用いられるLiCoO2に代表されるよう
な酸化物の表面にポリエチレンオキサイドに代表される
ようなポリエーテルなどの高分子をグラフト化させるこ
とにより、活物質と高分子との相互作用を強くすること
により界面抵抗と低減させようとする試みが検討されて
いる(特開平8-111233号公報)。
From such a viewpoint, studies have been made for the purpose of reducing the interface resistance. For example, by grafting a polymer such as polyether represented by polyethylene oxide onto the surface of an oxide represented by LiCoO 2 used for the positive electrode active material, the active material and the polymer are grafted. Attempts have been made to reduce the interfacial resistance by strengthening the interaction with the compound (JP-A-8-111233).

【0010】他方、界面抵抗の低減を目的とした負極に
関する検討としては、負極に用いる炭素材料のX線回折
による結晶構造因子の最適化に関する報告がなされてい
る(特開平7-320724号公報)。基本的に黒鉛の結晶構造が
発達していることが界面抵抗の低減に重要との結論が提
出されているが、本発明者が鋭意検討した結果、ポリエ
チレングリコールのアクリレート系モノマーの化学架橋
体をゲル電解質に用いた場合には、結晶性の高い天然黒
鉛や、ピッチコークスなどの易黒鉛化炭素を2800℃以上
で焼成した黒鉛質材料を負極に用いても、10時間率充電
においてすら過電圧が大きいために充電容量の低下は著
しいものであった。
On the other hand, as a study on a negative electrode for the purpose of reducing interface resistance, a report has been made regarding optimization of a crystal structure factor of a carbon material used for the negative electrode by X-ray diffraction (Japanese Patent Application Laid-Open No. 7-320724). . It has been concluded that the development of the graphite crystal structure is basically important for reducing the interfacial resistance, but as a result of intensive studies by the present inventors, a chemically crosslinked product of an acrylate monomer of polyethylene glycol was obtained. When used as a gel electrolyte, even if a graphite material obtained by firing natural graphite having high crystallinity or graphitizable carbon such as pitch coke at 2800 ° C or more is used as a negative electrode, an overvoltage can occur even at 10-hour charging. Because of the large size, the reduction in charge capacity was remarkable.

【0011】このように従来の技術では、ゲル状電解質
のイオン導電性は向上したものの、負極とゲル状固体電
解質との界面抵抗の低減に関しては、甚だ不十分な状況
であった。
As described above, in the prior art, although the ionic conductivity of the gel electrolyte is improved, the reduction of the interface resistance between the negative electrode and the gel solid electrolyte has been extremely insufficient.

【0012】[0012]

【発明が解決しようとする課題】本発明の目的は、溶液
系において示す負極材料の放電容量をゲル状電解質系に
おいても同様に発現させ、エネルギー密度の高い高性能
なゲル状電解質二次電池を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a high performance gel electrolyte secondary battery having a high energy density by expressing the discharge capacity of a negative electrode material shown in a solution system in a gel electrolyte system as well. To provide.

【0013】[0013]

【課題を解決するための手段】本発明者らは、上記の目
的を達成すべく鋭意検討を重ねた結果、ゲル状電解質に
対して、下記の炭素材料を負極に用いることにより、ゲ
ル状電解質と炭素材料の界面抵抗を低減することを見出
し、本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, the following carbon materials have been used for the negative electrode with respect to the gel electrolyte. It has been found that the interfacial resistance between carbon and a carbon material is reduced, and the present invention has been completed.

【0014】即ち、正極と、リチウムを吸蔵・放出する
ことが可能な炭素材料を活物質とした負極と、高分子ゲ
ル状電解質とから構成されるゲル状電解質二次電池であ
って、前記炭素材料が、下記の条件: (1) 酸素含有量 ≧ 0.05重量% (2) キノン型酸素量 ≧ 20μmol/g (3) 10μmol/g ≦ 全酸度 ≦ キノン型酸素量 (4) カルボキシル基量/全酸度 ≦ 0.4 を満足することを特徴とするゲル状電解質二次電池であ
る。
Specifically, the present invention provides a gel electrolyte secondary battery comprising a positive electrode, a negative electrode using a carbon material capable of inserting and extracting lithium as an active material, and a polymer gel electrolyte. The material is under the following conditions: (1) Oxygen content ≧ 0.05% by weight (2) Quinone type oxygen content ≧ 20 μmol / g (3) 10 μmol / g ≦ Total acidity ≦ Quinone type oxygen content (4) Carboxyl group content / Total A gel electrolyte secondary battery characterized by satisfying an acidity ≦ 0.4.

【0015】また、前記ゲル状電解質は、少なくとも末
端アクリロイル変性アルキレンオキシド重合体を含むモ
ノマーを化学架橋してなる高分子を含んだ構成となるこ
とが好ましい。
It is preferable that the gel electrolyte has a structure containing a polymer obtained by chemically cross-linking at least a monomer containing an acryloyl-modified alkylene oxide polymer.

【0016】ここで、上記の酸素含有量は燃焼法に基づ
いて測定した元素分析値で炭素材料中に含まれる全ての
酸素を重量%で表したもの、上記のキノン型酸素量はNaB
H4との反応により検出される炭素材料表面に存在するキ
ノン型酸素量を炭素材料単位重量あたりのモル数(μmol
/g)で表したもの、上記の全酸度はNaOHとの反応により
検出される炭素材料表面に存在する酸性官能基量を炭素
材料単位重量あたりのモル数(μmol/g)で表したもの、
上記のカルボキシル基量はNaHCO3との反応により検出さ
れる炭素材料表面に存在する強酸性官能基量を炭素材料
単位重量あたりのモル数(μmol/g)で表したものであ
る。
Here, the above oxygen content is a value obtained by expressing all oxygen contained in the carbon material by weight% based on an elemental analysis value measured based on a combustion method, and the above quinone type oxygen content is NaB
Quinone type oxygen moles per carbon material unit weight present on the carbon material surface to be detected by reaction with H 4 ([mu] mol
/ g), the total acidity is expressed in terms of the number of acidic functional groups present on the carbon material surface detected by reaction with NaOH in moles per unit carbon material weight (μmol / g),
The amount of carboxyl groups is the amount of strongly acidic functional groups present on the surface of the carbon material detected by the reaction with NaHCO 3 , expressed in terms of moles per unit weight of the carbon material (μmol / g).

【0017】[0017]

【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0018】本発明において本質的に重要な点は、炭素
材料とゲル状電解質の界面抵抗が下記の機構に基づくも
のであると推察し、その解決策として、炭素材料表面へ
の極性官能基の導入を検討し、その官能基の種類と導入
量を最適化することにより、界面抵抗の大幅な低減化を
達成した点である。
The essential point in the present invention is that the interface resistance between the carbon material and the gel electrolyte is presumed to be based on the following mechanism. The point is that by examining the introduction and optimizing the type of the functional group and the amount to be introduced, the interfacial resistance was significantly reduced.

【0019】炭素材料は、その構造が非晶質であっても
結晶性であっても、表面には基本的には極性を持たない
ため、見かけ上ゲル状電解質と密着していてもその界面
をミクロに観ると、溶媒分子は主に高分子を構成する極
性部分に束縛され、炭素材料表面とは殆ど相互作用を持
たないと推定される。従って、溶液系電解質と炭素材料
とで構成される界面に比較して、ゲル状電解質と炭素材
料との界面は、1)炭素材料表面に存在する溶媒分子の平
均的な密度が少ない、2)炭素材料表面近傍に存在する溶
媒分子でも溶液系の場合とは運動の自由度が小さい、と
考えられる。そして、これら2つの界面の特徴は明らか
にリチウムイオンの移動を妨げる作用をもたらす。即
ち、界面抵抗の増加をもたらすと推定される。
Since the surface of a carbon material has basically no polarity irrespective of whether it has an amorphous structure or a crystalline structure, even if it is apparently in close contact with a gel electrolyte, its surface is When viewed microscopically, it is presumed that the solvent molecules are mainly bound by the polar portion constituting the polymer and have little interaction with the carbon material surface. Therefore, compared to the interface composed of the solution-based electrolyte and the carbon material, the interface between the gel electrolyte and the carbon material has 1) an average density of the solvent molecules existing on the carbon material surface is small, 2) It is considered that even solvent molecules existing near the surface of the carbon material have a smaller degree of freedom of movement than in the case of the solution system. And the characteristics of these two interfaces obviously have the effect of hindering the movement of lithium ions. That is, it is estimated that the interface resistance increases.

【0020】この解決策として、炭素材料表面に極性官
能基を導入することで高分子と同程度以上の極性を持た
せ、この極性部分により炭素材料表面に溶媒を取り込
み、炭素材料表面に吸着した平均的な溶媒密度を増加さ
せることにより、溶液系電解質に近い界面状況を作り出
すという思想に基づき鋭意検討した結果、酸素含有官能
基を炭素材料表面に導入し、その官能基の種類と導入量
を最適化することにより、界面抵抗の大幅な低減を達成
した。
As a solution to this problem, a polar functional group is introduced into the surface of the carbon material so that the surface of the carbon material has the same or higher polarity as that of the polymer. As a result of intensive studies based on the idea of creating an interface state close to a solution-based electrolyte by increasing the average solvent density, oxygen-containing functional groups were introduced on the carbon material surface, and the type and amount of the functional groups were introduced. By optimizing, a large reduction in interface resistance was achieved.

【0021】即ち、下記の条件、 (1) 酸素含有量 ≧ 0.05重量% (2) キノン型酸素量 ≧ 20μmol/g (3) 10μmol/g ≦ 全酸度 ≦ キノン型酸素量 (4) カルボキシル基量/全酸度 ≦ 0.4 を満足する炭素材料を負極に用いることにより界面抵抗
の低減を達成した。
That is, under the following conditions: (1) oxygen content ≧ 0.05% by weight (2) quinone type oxygen content ≧ 20 μmol / g (3) 10 μmol / g ≦ total acidity ≦ quinone type oxygen content (4) carboxyl group content A reduction in interfacial resistance was achieved by using a carbon material satisfying a total acidity of ≦ 0.4 for the negative electrode.

【0022】以下に上記の炭素材料を規定する各指標に
関して具体的に説明する。
Hereinafter, each of the indices defining the carbon material will be described in detail.

【0023】酸素含有量は炭素材料中に含まれる酸素量
を表すが、本願発明における規定では、酸素含有量は炭
素材料表面の持つ極性の大小を表す基本的指標として用
いている。すなわち、本願発明に用いる炭素材料は含有
する酸素がゲル電解質と接触する炭素材料表面に濃化し
ていることが本質的に重要である。そして、ゲル状電解
質との相互作用を強くするために必要な酸素含有量が0.
05重量%以上であり、より好ましくは、0.10重量%以上で
ある。
The oxygen content indicates the amount of oxygen contained in the carbon material. In the present invention, the oxygen content is used as a basic index indicating the magnitude of the polarity of the surface of the carbon material. That is, it is essentially important that oxygen contained in the carbon material used in the present invention is concentrated on the surface of the carbon material in contact with the gel electrolyte. And the oxygen content necessary to strengthen the interaction with the gel electrolyte is 0.
It is at least 05% by weight, more preferably at least 0.10% by weight.

【0024】酸素含有量が0.05重量%未満では、酸素に
基づく炭素材料表面の極性部位の密度が低く、従って炭
素材料表面への溶媒の取り込みが充分でないために、界
面抵抗の低減効果が発現しない。
If the oxygen content is less than 0.05% by weight, the density of polar sites on the surface of the carbon material based on oxygen is low, and therefore the effect of reducing the interface resistance is not exhibited because the solvent is not sufficiently incorporated into the surface of the carbon material. .

【0025】電解液系Li二次電池に用いられる有機溶媒
は、基本的に、エーテル型酸素、あるいは、カルボニル
型酸素をその構造中に持つ。本発明において重要な点は
溶媒分子との相互作用を強めるような官能基を炭素材料
表面に導入することで界面抵抗を低減することにあり、
鋭意検討した結果、キノン型酸素を炭素材料表面に導入
することが特に溶媒との相互作用を高め、その結果、界
面抵抗を低減するのに効果的であることを見出した。そ
して炭素材料表面と溶媒との相互作用を強めるのに必要
なキノン型酸素量が20μmol/g以上であり、より好まし
くは、キノン型酸素量≧25μmol/gである。キノン型酸
素量が20μmol/g未満では、キノン型酸素に基づく炭素
材料表面への溶媒の取り込みが充分でないために、界面
抵抗の低減効果が発現しない。
The organic solvent used for the electrolyte-type Li secondary battery basically has ether-type oxygen or carbonyl-type oxygen in its structure. The important point in the present invention is to reduce the interfacial resistance by introducing a functional group that enhances the interaction with the solvent molecule on the carbon material surface,
As a result of diligent studies, it has been found that introducing quinone-type oxygen to the surface of the carbon material is particularly effective in enhancing the interaction with the solvent and, as a result, reducing the interface resistance. The amount of quinone-type oxygen necessary to enhance the interaction between the carbon material surface and the solvent is 20 μmol / g or more, and more preferably, the amount of quinone-type oxygen ≧ 25 μmol / g. When the amount of quinone-type oxygen is less than 20 μmol / g, the effect of reducing the interface resistance is not exhibited because the solvent is not sufficiently incorporated into the surface of the carbon material based on the quinone-type oxygen.

【0026】本願発明において全酸度はLiイオンの伝導
経路として活用されると考えられる。すなわち、全酸度
で表される官能基は酸性官能基であり水素を遊離しやす
い構造の官能基であり、言い換えれば化学的に反応性の
高い水素を含有する官能基である。充電中には、負極活
物質である炭素材料とゲル電解質とが接触する界面に高
い電圧が印加され、酸性官能基の水素はLiイオンとの置
換反応が進行すると考えられる。水素とLiとが置換した
酸性官能基中のLiは、以降の充電時、あるいは放電時に
はLiイオンの伝導経路として活用されることになる。界
面抵抗を低減するための新たなイオン伝導経路としての
十分な低抵抗を発現するために必要な官能基量が全酸度
≧10μmol/g以上であり、より好ましくは、全酸度≧15
μmol/gである。
In the present invention, it is considered that the total acidity is utilized as a conduction path of Li ions. That is, the functional group represented by the total acidity is an acidic functional group and a functional group having a structure that easily releases hydrogen, in other words, a functional group containing chemically highly reactive hydrogen. During charging, a high voltage is applied to the interface between the carbon material as the negative electrode active material and the gel electrolyte, and it is considered that the substitution reaction of hydrogen of the acidic functional group with Li ions proceeds. Li in the acidic functional group substituted by hydrogen and Li will be used as a conduction path of Li ions during subsequent charging or discharging. The amount of functional groups required to develop a sufficiently low resistance as a new ion conduction path for reducing interface resistance is total acidity ≧ 10 μmol / g, more preferably, total acidity ≧ 15
μmol / g.

【0027】本発明において第二に重要な点は、末端ア
クリロイル変性アルキレンオキシド重合体を含むモノマ
ー溶液を化学架橋して形成される高分子から成るゲルに
対しては、上述のキノン型酸素による炭素材料表面と溶
媒との相互作用の強化と、酸性官能基によるLiイオン伝
導経路の形成とを必要条件として、更に炭素材料表面に
存在する酸性官能基、キノン型酸素に関する詳細な分布
を最適化してはじめて界面抵抗を低減し得ることを見出
したことである。
The second important point in the present invention is that a gel composed of a polymer formed by chemically cross-linking a monomer solution containing a terminal acryloyl-modified alkylene oxide polymer is subjected to the above-mentioned carbonization by quinone-type oxygen. By strengthening the interaction between the material surface and the solvent and forming a Li-ion conduction path by the acidic functional group, further optimizing the detailed distribution of the acidic functional group and quinone-type oxygen present on the carbon material surface It is the first finding that the interfacial resistance can be reduced.

【0028】即ち、一般に炭素材料表面に形成される含
酸素官能基は、カルボキシル基、ラクトン基、水酸基、
キノン型酸素、環状エーテル酸素に分類されるが、本発
明者が鋭意検討した結果、特に、全酸度とキノン型酸素
の量的大小関係、強酸性基であるカルボキシル基が全酸
度に占める比率が上記界面抵抗低減に特に有効であるこ
とを見出した。
That is, oxygen-containing functional groups generally formed on the surface of a carbon material include carboxyl groups, lactone groups, hydroxyl groups,
The quinone-type oxygen and the cyclic ether oxygen are classified, and as a result of the inventor's intensive studies, in particular, the quantitative magnitude relationship between the total acidity and the quinone-type oxygen, the ratio of the carboxyl group, which is a strongly acidic group, to the total acidity, It has been found that it is particularly effective in reducing the interface resistance.

【0029】以下に、カルボキシル基量、全酸度、キノ
ン型酸素量に関して具体的に説明する。
The carboxyl group content, the total acidity, and the quinone-type oxygen content are specifically described below.

【0030】アルキレンオキシド重合体は、エチレンオ
キシド重合体(ポリエチレンオキシド)に代表されるよう
に、補液力が強く、すなわち、溶媒とポリマーとの相互
作用が強い系である。そのために、溶媒との相互作用強
化に寄与するキノン型酸素の量を他の含酸素官能基より
も相対的に高濃度にする必要がある。そのための具体的
な指標が、「全酸度≦キノン型酸素量」である。より好
ましくは、キノン型酸素量の全酸度に対する相対的比率
がより高い、「全酸度≦(キノン型酸素量×0.7)」が好
適である。キノン型酸素量の全酸度に対する相対濃度を
高くすることにより、界面抵抗低減に起因する容量発現
ばかりでなく、更に、充放電のサイクル安定性が向上す
る。これは、キノン型酸素量の相対濃度が増加すること
により、ゲル状電解質と炭素材料表面との物理的接触が
改善され、その結果、充放電に伴う炭素材料の膨張収縮
に対し、ゲル状電解質の剥離が抑制されるためと考えら
れる。
The alkylene oxide polymer is a system having a strong fluid replacement power, that is, a strong interaction between the solvent and the polymer, as represented by an ethylene oxide polymer (polyethylene oxide). Therefore, it is necessary to make the amount of quinone-type oxygen contributing to strengthening the interaction with the solvent relatively higher than that of other oxygen-containing functional groups. A specific index for that purpose is “total acidity ≦ quinone-type oxygen amount”. More preferably, “total acidity ≦ (quinone-type oxygen amount × 0.7)”, in which the relative ratio of the quinone-type oxygen amount to the total acidity is higher. By increasing the relative concentration of the quinone-type oxygen amount with respect to the total acidity, not only capacity development due to reduction in interface resistance but also charge / discharge cycle stability is improved. This is because the physical contact between the gel electrolyte and the carbon material surface is improved by increasing the relative concentration of the quinone-type oxygen amount. It is considered that the peeling off is suppressed.

【0031】全酸度を構成するプロトン供与性の官能基
は基本的にはプロトンと水素とが置換することによりLi
イオンの伝導経路の構築に寄与するが、他方、特にカル
ボキシル基は充電時(Liドープ反応)に溶媒の分解など副
反応にも同時に寄与する確率が高い。カルボキシル基が
関与する副反応により生成する皮膜は、基本的にLiイオ
ンの伝導に対して抵抗として作用するので、従って全酸
度に寄与する官能基の中で、カルボキシル基量の量を相
対的に減少させることで、Liイオン伝導経路のみの形成
を選択的に進めることができる。これを定量的に表した
のが、「カルボキシル基量/全酸度≦0.4」であり、より
好ましくは、「カルボキシル基量/全酸度≦0.35」であ
る。カルボキシル基量/全酸度>0.4では、充電持の副反
応が激しくなり抵抗性の皮膜が形成されるため、炭素材
料の持つ理論容量を十分に発現できない。
The proton-donating functional group constituting the total acidity is basically composed of Li
While contributing to the construction of ion conduction pathways, on the other hand, carboxyl groups, in particular, have a high probability of simultaneously contributing to side reactions such as decomposition of the solvent during charging (Li doping reaction). Since the film formed by the side reaction involving carboxyl groups basically acts as a resistance to the conduction of Li ions, the amount of carboxyl groups is relatively small among the functional groups that contribute to the total acidity. By reducing the amount, formation of only the Li ion conduction path can be selectively advanced. This is quantitatively expressed as “amount of carboxyl group / total acidity ≦ 0.4”, and more preferably “amount of carboxyl group / total acidity ≦ 0.35”. When the amount of carboxyl groups / total acidity> 0.4, the side reaction during charging becomes intense and a resistive film is formed, so that the theoretical capacity of the carbon material cannot be sufficiently exhibited.

【0032】本発明に用いる炭素材料は、上述のように
表面構造が本質的に重要であって、Liを電気化学的に吸
蔵・放出することが可能な炭素材料であれば、特に、そ
の内部構造に関して何ら制限されるものではないが、具
体的には以下の材料を例示することが可能である。有機
高分子(フェノール樹脂、フラン樹脂、ポリアクリロニ
トリル、セルロースなど)、コークスやピッチを不活性
雰囲気中、もしくは、減圧下で500℃以上3000℃以下の
温度で焼成することにより得られるもの、キッシュ黒
鉛、天然黒鉛を好適に用いることができる。さらには高
エネルギー密度の観点から、黒鉛質構造が発達した材料
がより好ましく、X線回折による黒鉛の面間隔d002が、d
002≦0.337nmを満たす黒鉛質材料を好適に使用すること
が可能である。
The surface structure of the carbon material used in the present invention is essentially important as described above, and if the carbon material is capable of electrochemically occluding and releasing Li, particularly the carbon material inside thereof is used. Although there is no particular limitation on the structure, the following materials can be specifically exemplified. Organic polymers (phenolic resin, furan resin, polyacrylonitrile, cellulose, etc.), those obtained by firing coke or pitch in an inert atmosphere or under reduced pressure at a temperature of 500 ° C or more and 3000 ° C or less, Kish graphite And natural graphite can be suitably used. Further, from the viewpoint of high energy density, a material having a developed graphite structure is more preferable, and the plane spacing d 002 of graphite by X-ray diffraction is d
Graphitic materials satisfying 002 ≦ 0.337 nm can be suitably used.

【0033】本発明では、炭素材料の表面構造と、末端
アクリロイル変性アルキレンオキシド重合体を含むモノ
マー溶液を化学架橋して形成される高分子構造を持つゲ
ル状電解質との組み合わせに本質的特徴を持つため、ゲ
ル状電解質を構成する溶媒並びにリチウム塩の構造を限
定するものではないが、以下の構造体を例示可能であ
る。
In the present invention, the combination of the surface structure of the carbon material and the gel electrolyte having a polymer structure formed by chemically cross-linking a monomer solution containing a terminal acryloyl-modified alkylene oxide polymer has an essential feature. Therefore, the structures of the solvent and the lithium salt constituting the gel electrolyte are not limited, but the following structures can be exemplified.

【0034】高分子ゲル状電解質としては、リチウムイ
オン及び強酸のアニオンからなる電解質塩と、酸素また
は窒素を含有して成る高分子化合物と、非プロトン性有
機溶媒とからなるものが好ましい。リチウムイオン及び
強酸のアニオンからなる電解質塩としては、過塩素酸リ
チウム(LiClO4)、トリフルオロメタンスルホン酸リチウ
ム(LiCF3SO3)、六フッ化リン酸リチウム(LiPF6)、四フ
ッ化ホウ酸リチウム(LiBF4)、六フッ化ヒ酸リチウム(Li
AsF6)、六フッ化アンチモン酸リチウム(LiSbF6)、リチ
ウムトリフルオロメタンスルホン酸イミド(LiN(CF3SO2)
2)などを例示することができる。
The polymer gel electrolyte is preferably composed of an electrolyte salt composed of lithium ions and a strong acid anion, a polymer compound containing oxygen or nitrogen, and an aprotic organic solvent. Examples of electrolyte salts composed of lithium ions and anions of strong acids include lithium perchlorate (LiClO 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium hexafluorophosphate (LiPF 6 ), and tetrafluoroboric acid. Lithium (LiBF 4 ), lithium hexafluoroarsenate (Li
AsF 6), lithium hexafluoro antimonate (LiSbF 6), lithium trifluoromethanesulfonate imide (LiN (CF 3 SO 2)
2 ) and the like.

【0035】また、非プロトン性有機溶媒としては、エ
チレンカーボネート(EC)、プロピレンカーボネート(P
C)、ブチレンカーボネート(BC)、γ-ブチロラクトン(γ
-BL)、スルホラン(SL)、1,2-ジメトキシエタン(DME)、
1,2-ジエトキシエタン(DEE)、エトキシメトキシエタン
(EME)、テトラヒドロフラン(THF)、2-メチルテトラヒド
ロフラン(2M-THF)、1,3-ジオキソラン(DOX)、4-メチル-
1,3-ジオキソラン(4M-DOX)を例示することができる。
As aprotic organic solvents, ethylene carbonate (EC), propylene carbonate (P
C), butylene carbonate (BC), γ-butyrolactone (γ
-BL), sulfolane (SL), 1,2-dimethoxyethane (DME),
1,2-diethoxyethane (DEE), ethoxymethoxyethane
(EME), tetrahydrofuran (THF), 2-methyltetrahydrofuran (2M-THF), 1,3-dioxolane (DOX), 4-methyl-
1,3-dioxolane (4M-DOX) can be exemplified.

【0036】また、末端アクリロイル変性アルキレンオ
キシド重合体としては、結晶性の抑制、溶液の保持能力
を高めるなどの観点から、オキシエチレン構造を主体と
したアルキレンオキシド重合体が好ましく、具体的に
は、アルキレンオキシド構造中におけるエチレンオキシ
ド構造体の含有量が50モル%以上であることが好まし
く、更に好ましくは、60モル%以上である。一例とし
て、オキシエチレンとオキシプロピレンのランダム共重
合体の末端アクリロイル変成体などを好適に使用するこ
とができる。
As the acryloyl-terminal-modified alkylene oxide polymer, an alkylene oxide polymer having an oxyethylene structure as a main component is preferred from the viewpoints of suppressing crystallinity and increasing the ability to hold a solution. The content of the ethylene oxide structure in the alkylene oxide structure is preferably at least 50 mol%, more preferably at least 60 mol%. As an example, a terminal acryloyl modified product of a random copolymer of oxyethylene and oxypropylene can be suitably used.

【0037】本発明に用いられる正極は特に制限される
ものではないが、例示するならば、リチウム含有マンガ
ン酸化物、リチウム含有コバルト酸化物、リチウム含有
ニッケル酸化物、及び、マンガン、コバルト及びニッケ
ルから選ばれた少なくとも2種の金属を含有する複合酸
化物、リチウムを含有する五酸化バナジウム、二硫化チ
タン、二硫化モリブデンなどの硫化物、ポリアニリン、
ポリアセチレン、ポリピロールなどの導電性高分子など
を用いるのが好ましい。
Although the positive electrode used in the present invention is not particularly limited, examples thereof include lithium-containing manganese oxide, lithium-containing cobalt oxide, lithium-containing nickel oxide, and manganese, cobalt and nickel. A composite oxide containing at least two selected metals, vanadium pentoxide containing lithium, titanium disulfide, sulfides such as molybdenum disulfide, polyaniline,
It is preferable to use a conductive polymer such as polyacetylene or polypyrrole.

【0038】炭素材料表面に極性を持った含酸素官能基
を導入することにより、高分子ゲル電解質を構成する溶
媒の一部が炭素材料表面に捕獲され、この溶媒分子を介
してリチウムイオンがゲル電解質から炭素材料へ移動す
るための新たな導入路が形成されるという機構により界
面抵抗が低減されるものと推察される。このために、大
電流密度充電時の負極の利用率低下が抑制され、放電容
量が低下しにくくなる。
By introducing a polar oxygen-containing functional group to the surface of the carbon material, a part of the solvent constituting the polymer gel electrolyte is captured on the surface of the carbon material, and lithium ions are gelated through the solvent molecules. It is presumed that the interface resistance is reduced by the mechanism of forming a new introduction path for moving from the electrolyte to the carbon material. For this reason, a decrease in the utilization rate of the negative electrode during charging at a large current density is suppressed, and the discharge capacity is not easily reduced.

【0039】[0039]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記の実施例に限定されるもの
ではなく、その要旨を変更しない範囲において適宜変更
して実施することが可能なものである。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention can be practiced by appropriately changing the gist of the invention. Is possible.

【0040】実施例1 [負極の作製]人造黒鉛(SFG15、TIMCAL Ltd.社製)約30g
を、30%濃度の過酸化水素水500mLと混合し、撹拌しなが
ら室温で15時間反応させた後、蒸留水を用いて濾液が中
性になるまで吸引濾過を繰り返した。洗浄を終えた黒鉛
粉は、90℃で温風乾燥し、更に90℃で真空乾燥した。乾
燥後の黒鉛粉と、ポリフッ化ビニリデン(PVdF)樹脂のN-
メチルピロリドン(NMP)溶液とを混合して、黒鉛に対し
てPVdF樹脂が重量比で9:1になるようにスラリーを調整
した。NMPを適宜加えてスラリーの粘度を調整した後に
銅箔上に塗布し、80℃の乾燥器内で溶媒を除去すること
により、負極に用いる電極を作製した。負極は更にロー
ルプレスすることにより、嵩密度を1.0〜1.1g/mL、面密
度1.2〜1.5mg/cm2に調整し、試験電極に供した。
Example 1 [Preparation of negative electrode] About 30 g of artificial graphite (SFG15, manufactured by TIMCAL Ltd.)
Was mixed with 500 mL of a 30% concentration of hydrogen peroxide solution, and reacted at room temperature for 15 hours with stirring. Then, suction filtration was repeated using distilled water until the filtrate became neutral. The washed graphite powder was dried with hot air at 90 ° C., and further dried in vacuum at 90 ° C. The dried graphite powder and N-polyvinylidene fluoride (PVdF) resin
A slurry was prepared by mixing with a methylpyrrolidone (NMP) solution so that the weight ratio of PVdF resin to graphite was 9: 1. After adjusting the viscosity of the slurry by appropriately adding NMP, the slurry was applied on a copper foil, and the solvent was removed in a dryer at 80 ° C. to prepare an electrode to be used as a negative electrode. The negative electrode was further roll-pressed to adjust the bulk density to 1.0 to 1.1 g / mL and the areal density to 1.2 to 1.5 mg / cm 2 , and provided the test electrode.

【0041】[ゲル電解質の作製]アルゴン雰囲気のグロ
ーブボックス内でエチレンカーボネート(EC)とプロピレ
ンカーボネート(PC)を体積比2:1で混合した溶媒にLiClO
4を1mol/Lの濃度で溶解させた電解液(富山薬品工業(株)
製)と、エチレンオキシドとプロピレンオキシドの共重
合体の末端をアクリロイル変性したマクロモノマーTA14
0K((株)パイオニクス製)とを重量比で5:1に混合し、更
に、光重合開始剤として、2,2-ジメトキシ-2-フェニル
アセトフェノンを0.10重量%加えて、透明で一様な溶液
を得た。この溶液を負極上に薄く塗布し、負極成型体内
部まで十分電解質を染み込ませる目的で30分間真空含浸
させた後に、約1mW/cm2強度の長波長(365nm)の紫外線を
20分間照射して、光架橋反応を進行させた。
[Preparation of Gel Electrolyte] In a glove box under an argon atmosphere, LiClO was added to a solvent in which ethylene carbonate (EC) and propylene carbonate (PC) were mixed at a volume ratio of 2: 1.
4 dissolved at a concentration of 1 mol / L (Toyama Pharmaceutical Co., Ltd.)
And acryloyl-modified macromonomer TA14 at the end of a copolymer of ethylene oxide and propylene oxide.
And 0K (manufactured by Pionix) in a weight ratio of 5: 1.Additionally, 0.10% by weight of 2,2-dimethoxy-2-phenylacetophenone was added as a photopolymerization initiator to obtain a transparent and uniform mixture. A solution was obtained. The solution was thinly coated on the negative electrode, after vacuum impregnated for 30 minutes in order to instill a negative electrode molded inside until sufficient electrolyte, the ultraviolet long wavelength of about 1 mW / cm 2 intensity (365 nm)
Irradiation for 20 minutes allowed the photocrosslinking reaction to proceed.

【0042】[ゲル電解質電池(コイン型電池)の組立]上
記で作製した負極/ゲル電解質成型体にリチウム金属を
張り合わせた後、直径12mmの円形に切り抜き、コイン型
のセル(2032型)を作製した。上述のモノマー溶液の電極
への塗布からセル作製までの行程は、全てアルゴン雰囲
気のグローブボックス中で行った。
[Assembly of Gel Electrolyte Battery (Coin-Type Battery)] After laminating lithium metal on the negative electrode / gel electrolyte molded body prepared above, cut out into a circle having a diameter of 12 mm to produce a coin-type cell (2032 type). did. The processes from the application of the monomer solution to the electrodes to the cell fabrication were all performed in a glove box in an argon atmosphere.

【0043】[初期充放電における容量発現率と充放電
サイクルにおける容量維持率]上記で作製した「黒鉛負
極/ゲル電解質/リチウム金属」で構成されるコイン電池
は、室温(約25℃に恒温調整)で、下限0V、上限1.0Vの電
位規制で一定電流(電流密度0.1mA/cm2)で充電(黒鉛への
リチウムのドープ反応)・放電(黒鉛からのリチウムの脱
ドープ反応)を30回サイクルさせ、充電容量、放電容量
のサイクルに伴う減少を調査した。そして、C6Liの化学
組成式で表される黒鉛の理論容量(372mAh/g)に対する第
一回目のサイクルの放電容量の比率(100分率)を容量発
現率として定義し、他方、最大放電容量に対する10サイ
クル目の放電容量の比率(100分率)を容量維持率として
定義し、サイクル安定性の指標とした。
[Capacity development rate in initial charge / discharge and capacity retention rate in charge / discharge cycle] The coin battery composed of “graphite negative electrode / gel electrolyte / lithium metal” prepared above was subjected to room temperature (constant temperature adjustment to about 25 ° C.). ), Charge (doping reaction of graphite with lithium) and discharge (dedoping reaction of lithium from graphite) with constant current (current density of 0.1 mA / cm 2 ) and discharge (de-doping reaction of lithium from graphite) 30 times with 0 V lower limit and 1.0 V upper limit electric potential regulation The charge capacity and the discharge capacity were reduced by cycling. Then, the ratio (100 fraction) of the discharge capacity of the first cycle to the theoretical capacity (372 mAh / g) of graphite represented by the chemical composition formula of C 6 Li is defined as the capacity development rate, while the maximum discharge rate is defined. The ratio of the discharge capacity at the 10th cycle to the capacity (percentage) was defined as the capacity retention rate, and was used as an index of cycle stability.

【0044】ここで、本発明において、炭素材料の規定
に用いる指標は以下のように規定されるものである。
Here, in the present invention, the index used for defining the carbon material is defined as follows.

【0045】[酸素含有量]測定には、FISONS Instrumen
ts社製 EA 1108 Elemental Analyzerを使用した。
[Oxygen content] was measured using FISONS Instrument
ts 1EA Elemental Analyzer was used.

【0046】酸素は、"Unterzaucher Modified"法に基
づき測定する。すなわち、炭素材料中の酸素は、触媒下
での高温熱分解により完全にCOへ変換され、COガス濃度
として熱伝導度検出器により検出される。酸素の検量線
の測定にはベンゾイックアシッドを用い、その仕込量を
変化させることで検量線を得る。元素分析測定に用いる
サンプルは、炭素材料表面に吸着した水分の影響を除去
する目的で、予め90℃で2時間以上真空乾燥したものを
試験に供する。
Oxygen is measured according to the "Unterzaucher Modified" method. That is, oxygen in the carbon material is completely converted to CO by high-temperature pyrolysis under a catalyst, and is detected as a CO gas concentration by a thermal conductivity detector. The calibration curve of oxygen is measured using benzoic acid, and the calibration curve is obtained by changing the charged amount. Samples used for elemental analysis are dried in advance at 90 ° C. for 2 hours or more in order to remove the influence of moisture adsorbed on the carbon material surface, and then subjected to the test.

【0047】[キノン型酸素量]炭素材料表面に存在する
キノン型酸素が水素化剤であるNaBH4との反応で水酸基
に変換する反応を利用し、キノン型酸素を定量する。反
応は下式に従う; 8(>C=O) + NaBH4 + 2H2O → 8(>C-OH) + NaBO2 キノン型酸素に対して過剰のNaBH4を加え、上記の反応
で残留した未反応なNaBH4を下式で分解させ、その際に
発生する水素ガスを定量することにより、キノン型酸素
を定量する。
[Quinone-type oxygen amount] The quinone-type oxygen is quantified by utilizing a reaction in which quinone-type oxygen present on the surface of the carbon material is converted into a hydroxyl group by a reaction with NaBH 4 as a hydrogenating agent. The reaction follows the formula; 8 (> C = O) + NaBH 4 + 2H 2 O → 8 (> C-OH) + NaBO 2 Excess NaBH 4 with respect to quinone-type oxygen was added and remained in the above reaction. Unreacted NaBH 4 is decomposed by the following formula, and hydrogen gas generated at that time is quantified to determine quinone-type oxygen.

【0048】NaBH4 + 3H2O → NaBO3 + 5H2 実際の測定手順は下記に従う:NaBH4を0.064g秤量し、
0.1N NaOH水溶液100mLに溶解し、NaBH4溶液を調製す
る。フラスコ内に予め90℃で30分間以上真空乾燥した炭
素材料1gと撹拌子を入れゴム栓をし、発生した水素ガス
量を定量するためのガスビュレット(最大10mL計量)系に
接続する。系内を窒素ガスに置換した後、ゴム栓からシ
リンジで8mLの蒸留水と4mLのNaBH4溶液を注入し、1時間
スターラーで撹拌を続ける。6N H2SO4 3mLをシリンジで
加えた後5分間撹拌し、その間に発生したガス量(水素ガ
ス)をビュレットで計量する(V1)。このV1に基づき、上
記の反応式に基づいて、消費したNaBH4の量、即ち、炭
素材料表面のキノン型酸素量を算出する。
NaBH 4 + 3H 2 O → NaBO 3 + 5H 2 The actual measurement procedure is as follows: weigh 0.064 g of NaBH 4 ,
Dissolve in 100 mL of 0.1N NaOH aqueous solution to prepare NaBH 4 solution. In a flask, 1 g of a carbon material previously vacuum-dried at 90 ° C. for 30 minutes or more and a stirrer are placed, and a rubber stopper is connected. The flask is connected to a gas burette (maximum 10 mL measurement) system for measuring the amount of generated hydrogen gas. After replacing the inside of the system with nitrogen gas, 8 mL of distilled water and 4 mL of NaBH 4 solution are injected from a rubber stopper with a syringe, and stirring is continued for 1 hour with a stirrer. After adding 3 mL of 6N H 2 SO 4 with a syringe, the mixture is stirred for 5 minutes, and the amount of gas (hydrogen gas) generated during the addition is measured with a burette (V1). Based on V1, the amount of consumed NaBH 4 , that is, the amount of quinone-type oxygen on the surface of the carbon material is calculated based on the above reaction formula.

【0049】[全酸度]一般に炭素材料表面には、カルボ
キシル基、水酸基、ラクトン環などの酸性官能基が存在
する。これらの酸性官能基は、NaOHとの反応により水素
とNaとが置換し中和する。全酸度は、この中和反応によ
り炭素材料により消費されるNaOH量により、炭素材料表
面に存在する酸性官能基量を評価するもので、測定の詳
細は下記に従う;予め90℃で真空乾燥した炭素材料1gを1
00mLの三角フラスコに入れ、0.01NのNaOH水溶液50mLを
加え冷却管を立てて、ホットスターラー上で撹拌子で撹
拌しながら4時間煮沸反応する。反応終了後、加圧濾過
器で濾過し、濾液を0.01NのHClで中和滴定し、滴定量か
ら消費したNaOH量を計算し、炭素材料1g当たりのNaOH消
費量として全酸度(μmol/g)を算出する。
[Total acidity] Generally, acidic functional groups such as a carboxyl group, a hydroxyl group and a lactone ring are present on the surface of a carbon material. These acidic functional groups are neutralized by substitution with hydrogen and Na by reaction with NaOH. The total acidity is used to evaluate the amount of acidic functional groups present on the carbon material surface by the amount of NaOH consumed by the carbon material due to this neutralization reaction.The details of the measurement are as follows; 1g of material 1
Put into a 00 mL Erlenmeyer flask, add 50 mL of 0.01N NaOH aqueous solution, set up a cooling tube, and boil for 4 hours while stirring with a stirrer on a hot stirrer. After completion of the reaction, the mixture was filtered with a pressure filter, and the filtrate was subjected to neutralization titration with 0.01N HCl, the amount of NaOH consumed was calculated from the titer, and the total acidity (μmol / g) was calculated as the NaOH consumption per 1 g of the carbon material. ) Is calculated.

【0050】[カルボキシル基量]炭素材料表面に存在す
る各種酸性官能基の解離定数の違いを利用して、強酸性
基であるカルボキシル基のみの量を定量評価するという
方法である。即ち、炭素材料を弱塩基であるNaHCO3で中
和させ、消費したNaHCO3からカルボキシル基を定量評価
するものであって、測定の具体的手順は下記に従う;予
め90℃で真空乾燥した炭素材料1gを100mLの三角フラス
コに入れ、0.01NのNaHCO3水溶液 50mLを加え密栓状態
で、振蕩器で3時間、室温で振蕩させながら反応を進行
させる。反応終了後、加圧濾過器で濾過し、濾液に0.01
NのHCl水溶液を過剰に加え、20分間煮沸した後急冷し、
0.01NのNaOHで中和滴定する。滴定量から炭素材料との
反応で消費したNaHCO3量を計算し、炭素材料1g当たりの
NaHCO3消費量としてカルボキシル基量(μmol/g)を算出
する。
[Amount of carboxyl group] A method of quantitatively evaluating the amount of only a carboxyl group, which is a strongly acidic group, by utilizing the difference in the dissociation constant of various acidic functional groups present on the surface of the carbon material. That is, the carbon material is neutralized with NaHCO 3 which is a weak base, and the carboxyl group is quantitatively evaluated from the consumed NaHCO 3 ; the specific procedure of the measurement is as follows; the carbon material previously dried in vacuum at 90 ° C. 1 g is placed in a 100 mL Erlenmeyer flask, 50 mL of 0.01 N NaHCO 3 aqueous solution is added, and the reaction is allowed to proceed while shaking for 3 hours at room temperature with a shaker in a sealed stopper. After completion of the reaction, the mixture was filtered with a pressure filter, and the filtrate was added at 0.01 wt.
N HCl aqueous solution is added in excess, boiled for 20 minutes, then quenched,
Perform a neutralization titration with 0.01 N NaOH. Calculate the amount of NaHCO 3 consumed in the reaction with the carbon material from the titration amount, and calculate
The amount of carboxyl groups (μmol / g) is calculated as NaHCO 3 consumption.

【0051】実施例2 2Nの硫酸に(NH4)2S2O8を溶解させた飽和溶液を調整し、
実施例1で用いた人造黒鉛15gを混合し、撹拌しながら室
温で10日間反応させた。酸化反応終了後、黒鉛粉は蒸留
水で吸引濾過を行い、最終的に硫酸塩が濾過液から消失
するまで蒸留水による吸引濾過洗浄を繰り返した。この
後の乾燥工程以降は実施例1と同様にして、酸化処理し
た黒鉛粉の電極性能を評価した。
Example 2 A saturated solution of (NH 4 ) 2 S 2 O 8 dissolved in 2N sulfuric acid was prepared.
15 g of the artificial graphite used in Example 1 was mixed and reacted at room temperature for 10 days with stirring. After completion of the oxidation reaction, the graphite powder was subjected to suction filtration with distilled water, and suction filtration washing with distilled water was repeated until finally sulfates disappeared from the filtrate. After this drying step, the electrode performance of the oxidized graphite powder was evaluated in the same manner as in Example 1.

【0052】実施例3 実施例1で用いた人造黒鉛を酸素プラズマで酸化処理し
た。プラズマ処理には(株)サムコインターナショナル社
製のラボ用プラズマ処理装置PT500を用いた。処理条件
は、以下の通りとした。反応容器内に黒鉛粉5gを入れ、
真空レベルが80mTorr以下になったところで、毎分30〜4
0mLの酸素を導入し(反応系内は300〜900mTorr)高周波誘
導によりプラズマを発生させて、黒鉛粉表面を酸化処理
した。この後の乾燥工程以降は実施例1と同様にして、
酸化処理した黒鉛粉の電極性能を評価した。
Example 3 The artificial graphite used in Example 1 was oxidized by oxygen plasma. For the plasma treatment, a laboratory plasma treatment device PT500 manufactured by Samco International Co., Ltd. was used. The processing conditions were as follows. Put 5g of graphite powder in the reaction vessel,
When the vacuum level drops below 80 mTorr, 30 to 4
Oxygen of 0 mL was introduced (the reaction system was 300 to 900 mTorr), and plasma was generated by high frequency induction to oxidize the surface of the graphite powder. After the subsequent drying step, in the same manner as in Example 1,
The electrode performance of the oxidized graphite powder was evaluated.

【0053】実施例4 実施例3において、プラズマ処理装置内に導入するガス
を空気に変更しその他の条件は全て実施例3と同様の方
法で空気プラズマ処理した人造黒鉛を調製した。この後
の乾燥工程以降は実施例1と同様にして、酸化処理した
黒鉛粉の電極性能を評価した。
Example 4 In Example 3, artificial gas which was subjected to air plasma treatment in the same manner as in Example 3 except that the gas introduced into the plasma processing apparatus was changed to air was prepared. After this drying step, the electrode performance of the oxidized graphite powder was evaluated in the same manner as in Example 1.

【0054】比較例1 実施例1に用いた人造黒鉛を何ら処理することなく、実
施例1と同様の方法によりその電極特性を評価した。
Comparative Example 1 The electrode characteristics of the artificial graphite used in Example 1 were evaluated in the same manner as in Example 1 without any treatment.

【0055】比較例2 実施例1に用いた人造黒鉛約15gを発煙硝酸300cc中に混
合し、沸騰温度(約110℃)にて3時間撹拌しながら反応さ
せた後、蒸留水を用いて濾液が中性になるまで吸引濾過
を繰り返した。この後の乾燥工程以降は実施例1と同様
にして、酸化処理した黒鉛粉の電極性能を評価した。
Comparative Example 2 About 15 g of the artificial graphite used in Example 1 was mixed with 300 cc of fuming nitric acid, and reacted while stirring at a boiling temperature (about 110 ° C.) for 3 hours. The suction filtration was repeated until was neutral. After this drying step, the electrode performance of the oxidized graphite powder was evaluated in the same manner as in Example 1.

【0056】比較例3 実施例1に用いた人造黒鉛約15gを60%濃度の硝酸300cc中
に混合し、80℃にて3時間撹拌しながら反応させた後、
蒸留水を用いて濾液が中性になるまで吸引濾過を繰り返
した。この後の乾燥工程以降は実施例1と同様にして、
酸化処理した黒鉛粉の電極性能を評価した。
Comparative Example 3 About 15 g of the artificial graphite used in Example 1 was mixed in 300 cc of 60% nitric acid and reacted while stirring at 80 ° C. for 3 hours.
Suction filtration was repeated using distilled water until the filtrate became neutral. After the subsequent drying step, in the same manner as in Example 1,
The electrode performance of the oxidized graphite powder was evaluated.

【0057】比較例4 実施例1に用いた人造黒鉛を磁性坩堝に入れ、予め620℃
に保温したマッフル炉の中に挿入し、約1.5時間、空気
酸化処理した。この後の乾燥工程以降は実施例1と同様
にして、酸化処理した黒鉛粉の電極性能を評価した。
Comparative Example 4 The artificial graphite used in Example 1 was put in a magnetic crucible, and was previously heated at 620 ° C.
Into a muffle furnace, which was kept warm, and air-oxidized for about 1.5 hours. After this drying step, the electrode performance of the oxidized graphite powder was evaluated in the same manner as in Example 1.

【0058】上記実施例1〜4、比較例1〜4の黒鉛粉の酸
素含有量、キノン型酸素含有量、全酸度、カルボキシル
基量、第1サイクルの放電容量(脱ドープ量)、容量発現
率、容量維持率を、まとめて表1に示した。
The oxygen content, quinone-type oxygen content, total acidity, carboxyl group content, discharge capacity (dedoping amount) of the first cycle, and capacity development of the graphite powders of Examples 1 to 4 and Comparative Examples 1 to 4 described above. The rates and capacity retention rates are summarized in Table 1.

【0059】[0059]

【表1】 表1の結果から明らかに、実施例1〜4の本発明で規定す
るところの炭素材料の容量発現率が80%以上であるのに
対して、含酸素量が少ない未処理の炭素材料(比較例
1)、並びに、カルボキシル基量が相対的に多い硝酸酸化
黒鉛粉(比較例2、比較例3)、酸素含有量が少なく、キノ
ン型酸素は多いが全酸度が少ない空気酸化黒鉛粉(比較
例4)は何れも過電圧が大きいために、容量発現率が15%
以下であった。また、容量維持率に関しても、実施例で
は85%以上であるのに対して、比較例では50%以下であ
り、明らかに本願発明で規定される炭素材料の充放電サ
イクルに対する安定性が改善されていることが認められ
る。
[Table 1] It is clear from the results in Table 1 that the carbon material as defined in Examples 1 to 4 has a capacity expression rate of 80% or more, whereas the untreated carbon material having a low oxygen content (comparative) An example
1), and nitric oxide graphite powder having a relatively large amount of carboxyl groups (Comparative Examples 2 and 3), air-oxidized graphite powder having a low oxygen content and a large amount of quinone-type oxygen but a low total acidity (Comparative Example In 4), the overvoltage is large, and the capacity expression rate is 15%.
It was below. In addition, the capacity retention rate was 85% or more in the example, but was 50% or less in the comparative example, and the stability to the charge-discharge cycle of the carbon material defined by the present invention was clearly improved. Is recognized.

【0060】[0060]

【発明の効果】本発明によれば、本発明の炭素材料を負
極に用いることで、特に、末端アクリロイル変性アルキ
レンオキシド重合体を含むモノマーを化学架橋してなる
高分子ゲル電解質と組み合わせることにより負極とゲル
状電解質の界面抵抗を小さくすることが可能となり、そ
の結果、充電の際の過電圧が小さくなり、理論容量に近
い放電容量を発揮でき、エネルギー密度の高い高性能な
ゲル状電解質二次電池を提供できる。
According to the present invention, the carbon material of the present invention is used for a negative electrode, and in particular, the negative electrode is combined with a polymer gel electrolyte obtained by chemically cross-linking a monomer containing an acryloyl-modified alkylene oxide polymer. The interface resistance between the electrolyte and the gel electrolyte can be reduced, and as a result, the overvoltage at the time of charging is reduced, the discharge capacity close to the theoretical capacity can be exhibited, and the high performance gel electrolyte secondary battery with high energy density Can be provided.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H003 AA01 AA02 AA04 BB01 BB12 BD04 5H029 AJ03 AJ06 AK03 AK05 AK16 AL07 AM00 AM16 EJ12  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H003 AA01 AA02 AA04 BB01 BB12 BD04 5H029 AJ03 AJ06 AK03 AK05 AK16 AL07 AM00 AM16 EJ12

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】正極と、リチウムを吸蔵・放出することが
可能な炭素材料を活物質とした負極と、高分子ゲル状電
解質とから構成されるゲル状電解質二次電池であって、
前記炭素材料が、下記の条件: (1) 酸素含有量 ≧ 0.05重量% (2) キノン型酸素量 ≧ 20μmol/g (3) 10μmol/g ≦ 全酸度 ≦ キノン型酸素量 (4) カルボキシル基量/全酸度 ≦ 0.4 を満足することを特徴とする、ゲル状電解質二次電池。
1. A gel electrolyte secondary battery comprising a positive electrode, a negative electrode using a carbon material capable of inserting and extracting lithium as an active material, and a polymer gel electrolyte,
The carbon material has the following conditions: (1) oxygen content ≧ 0.05% by weight (2) quinone type oxygen content ≧ 20 μmol / g (3) 10 μmol / g ≦ total acidity ≦ quinone type oxygen content (4) carboxyl group content / A gel electrolyte secondary battery characterized by satisfying a total acidity of ≦ 0.4.
【請求項2】前記高分子ゲル状電解質が、少なくとも末
端アクリロイル変性アルキレンオキシド重合体を含むモ
ノマーを化学架橋してなる高分子を含む、請求項1に記
載のゲル状電解質二次電池。
2. The gel electrolyte secondary battery according to claim 1, wherein the polymer gel electrolyte includes a polymer obtained by chemically cross-linking at least a monomer containing an acryloyl-modified alkylene oxide polymer.
JP11109326A 1999-04-16 1999-04-16 Gel electrolyte secondary battery Withdrawn JP2000299132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11109326A JP2000299132A (en) 1999-04-16 1999-04-16 Gel electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11109326A JP2000299132A (en) 1999-04-16 1999-04-16 Gel electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2000299132A true JP2000299132A (en) 2000-10-24

Family

ID=14507404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11109326A Withdrawn JP2000299132A (en) 1999-04-16 1999-04-16 Gel electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2000299132A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100805123B1 (en) 2007-02-15 2008-02-21 삼성에스디아이 주식회사 Lithium secondary battery
JP2012046378A (en) * 2010-08-27 2012-03-08 National Institute Of Advanced Industrial Science & Technology Surface oxidation method of carbon material
US8367248B2 (en) 2006-11-22 2013-02-05 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method of preparing thereof, and rechargeable lithium battery including the same
US8623552B2 (en) 2007-06-07 2014-01-07 Samsung Sdi Co., Ltd. Negative active material for lithium secondary battery, and lithium secondary battery including same
US8835049B2 (en) 2006-11-22 2014-09-16 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery including the same
JPWO2020105196A1 (en) * 2018-11-22 2021-10-07 昭和電工マテリアルズ株式会社 Negative electrode material for lithium ion secondary battery, method for manufacturing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8367248B2 (en) 2006-11-22 2013-02-05 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method of preparing thereof, and rechargeable lithium battery including the same
US8835049B2 (en) 2006-11-22 2014-09-16 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery including the same
KR100805123B1 (en) 2007-02-15 2008-02-21 삼성에스디아이 주식회사 Lithium secondary battery
US8110305B2 (en) 2007-02-15 2012-02-07 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US8623552B2 (en) 2007-06-07 2014-01-07 Samsung Sdi Co., Ltd. Negative active material for lithium secondary battery, and lithium secondary battery including same
JP2012046378A (en) * 2010-08-27 2012-03-08 National Institute Of Advanced Industrial Science & Technology Surface oxidation method of carbon material
JPWO2020105196A1 (en) * 2018-11-22 2021-10-07 昭和電工マテリアルズ株式会社 Negative electrode material for lithium ion secondary battery, method for manufacturing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
EP3886222A4 (en) * 2018-11-22 2021-12-08 Showa Denko Materials Co., Ltd. Negative electrode material for lithium-ion secondary cell, method for manufacturing negative electrode material for lithium-ion secondary cell, negative electrode material slurry for lithium-ion secondary cell, negative electrode for lithium-ion secondary cell, and lithium-ion secondary cell

Similar Documents

Publication Publication Date Title
US9362592B2 (en) Method of preparing gel polymer electrolyte secondary battery and gel polymer electrolyte secondary battery
US5851504A (en) Carbon based electrodes
JP7183198B2 (en) lithium secondary battery
KR20160026648A (en) Composite electrolyte, and lithium battery comprising electrolyte
US11444272B2 (en) Positive electrode including room temperature solid state plasticizer, and solid electrolyte battery including the same
US11374262B2 (en) Solid electrolyte battery and battery module and battery pack comprising same
KR20080101702A (en) Secondary battery and manufacturing method of the same
JP4193481B2 (en) Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery
WO2002084775A1 (en) Lithium polymer secondary cell
KR20160066498A (en) Binder for Secondary Battery And Secondary Battery Comprising The Same
US7919208B2 (en) Anode active material and battery
JP6028093B2 (en) Polymer and production method thereof
CN111837258A (en) Method for manufacturing an electrode comprising a polymer solid electrolyte and electrode thus obtained
WO2020184713A1 (en) Negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP2000299132A (en) Gel electrolyte secondary battery
JP4601273B2 (en) Non-aqueous solvent type secondary battery
JP2015111514A (en) Negative electrode active material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP2013065494A (en) Binder for negative electrode of lithium ion secondary battery, manufacturing method of the same, and lithium ion secondary battery using binder for negative electrode
JP2020149911A (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20190088330A (en) Manufacturing methods for carbon nano tube-electrode composite powder and electrode for solid electrolyte battery including the same
JPH0997617A (en) Solid electrolytic battery
JPH1186627A (en) Polymer solid electrolyte and its use
KR20190088333A (en) Electrode for solid electrolyte battery and solid electrolyte battery including the same
JP2015210931A (en) Binder for negative electrode of secondary battery, negative electrode of secondary battery and secondary battery
JP3013815B2 (en) Polymer electrolyte and secondary battery using the electrolyte

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060704