JP4193481B2 - Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery - Google Patents

Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4193481B2
JP4193481B2 JP2002357887A JP2002357887A JP4193481B2 JP 4193481 B2 JP4193481 B2 JP 4193481B2 JP 2002357887 A JP2002357887 A JP 2002357887A JP 2002357887 A JP2002357887 A JP 2002357887A JP 4193481 B2 JP4193481 B2 JP 4193481B2
Authority
JP
Japan
Prior art keywords
active material
positive electrode
electrode active
battery
fluorination treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002357887A
Other languages
Japanese (ja)
Other versions
JP2004192896A (en
Inventor
剛史 大川
真志生 渋谷
弦 福嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002357887A priority Critical patent/JP4193481B2/en
Publication of JP2004192896A publication Critical patent/JP2004192896A/en
Application granted granted Critical
Publication of JP4193481B2 publication Critical patent/JP4193481B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムのドープ、脱ドープにより起電力を得る非水電解質二次電池に用いられる正極活物質及びその製造方法に関するものであり、さらには、この正極活物質を用いた非水電解質二次電池に関するものである。特に、高温保存時のガス発生が少なく、形状安定性に優れた非水電解質二次電池を提供するための正極活物質の改良に関する。
【0002】
【従来の技術】
近年、携帯電話、携帯オーディオプレイヤー、PDA等のポータブル電子機器が数多く登場し、その小型軽量化が図られている。そして、これらの電子機器のポータブル電源として、大きなエネルギー密度を持つ非水電解質二次電池(いわゆるリチウムイオン二次電池)が広く使用されている。
【0003】
ところで、リチウムイオン二次電池には、非水溶媒を含む非水電解液が用いられており、液漏れを防止するために、通常は外装として金属製容器が用いられている。しかしながら、外装にこのような金属製容器を用いた場合には、例えば薄型大面積のシート型電池、薄型小面積のカード型電池、あるいは柔軟で自由度の高い形状を有する電池等を作製することが大変困難である。
【0004】
そこで、その有効な解決手段として、無機・有機の完全固体電解質や、高分子ゲルからなる半固体電解質を用いて電池を作製することが検討されている。具体的には、高分子と電解質とからなる高分子固体電解質や、マトリックス高分子に非水電解液を可塑剤として加えてなるゲル状の電解質を用いた、いわゆる固体電解質電池が提案されている。
【0005】
固体電解質電池は、電解質が固体又はゲル状であるために、液漏れの心配がなく、電解質が固定化され、電解質の厚みを固定することができる。また、電解質と電極との接着性もよく、電解質と電極との接触を良好な状態に保持することができる。このため、固体電解質電池は、金属製容器により電解液を閉じ込めたり、電池素子に圧力をかける必要がなく、成型自由度の高いフィルム状の外装を使用することができ、多様化するポータブル電子機器に合わせた電池設計が可能である。
【0006】
特に、外装に高分子フィルムと金属箔とからなり熱融着が可能な防湿性ラミネートフィルム用いることで、ホットシール等により容易に密閉構造が実現できる。また、防湿性ラミネートフィルムは、フィルム自体の強度が強く、気密性に優れており、金属容器に比べて軽量で薄く、安価である等の利点も有している。
【0007】
【発明が解決しようとする課題】
しかしながら、フィルム状の外装は材料自身が柔らかいため、電池内圧の変化に敏感に反応してしまうという欠点がある。すなわち、電極表面での電解質の酸化・分解の結果発生したガス等により電池が膨れてしまい、形状異常を起こすという問題がある。特に、満充電の電池を夏期の車中等に長期間放置した場合に悪影響を及ぼすことが懸念される。
【0008】
そこで本発明は、このような従来の実情に鑑みて提案されたものであり、充電状態で高温に長期間放置した場合にもガス発生が少なく、フィルム状の外装を使用しても形状安定性に優れた非水電解質二次電池を実現することが可能な正極活物質を提供することを目的とし、その製造方法を提供することを目的とする。さらに、充電状態で高温に長期間保存した場合にもガス発生が少なく、フィルム状の外装を使用しても形状安定性に優れた非水電解質二次電池を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者らは、上記の問題を解決するために長期に亘り鋭意研究を重ねてきた。その結果、リチウムと遷移金属との複合酸化物を正極活物質として用いる場合、その平均粒子径および比表面積を適正な範囲に設定すること、及びその表面にフッ素化処理を施すことが、負荷特性の確保と高温保存時のガス発生による膨れの抑制につながり、これらを併用したときにはじめて良好な電池特性及びガス発生による膨れ防止を同時に実現し得ることを見出すに至った。
【0010】
本発明は、このような知見に基づいて完成されたものであり、本発明の正極活物質は、リチウムと遷移金属との複合酸化物を含み、その表面にフッ素化処理が施されており、前記複合酸化物は、平均粒子径が3μm〜24μm、比表面積が0.10m2 /g〜0.92m2 /gであものである。また、本発明の非水電解質二次電池は、リチウムと遷移金属との複合酸化物を正極活物質として含有する正極と、リチウム金属、リチウム合金又はリチウムをドープ、脱ドープすることが可能な材料を含有する負極と、非水電解質と、これらを収容する外装容器とを備え、前記複合酸化物の表面にフッ素化処理が施されており、前記複合酸化物は、平均粒子径が3μm〜24μm、比表面積が0.10m2 /g〜0.92m2 /gであものである。
【0011】
正極活物質であるリチウムと遷移金属との複合酸化物の平均粒子径、比表面積を適正な範囲とし、さらに複合酸化物の表面にフッ素処理を施すことで、高温保存時のガス発生が抑えられ、例えば外装容器に防湿性ラミネートフィルムを用いた場合にも膨れが抑えられる。ここで、フッ素化処理によって負荷特性が低下する傾向にあるが、複合酸化物の平均粒子径や比表面積を前記範囲内に設定することで、負荷特性を維持することができ、満足し得る電池性能が得られる。
【0012】
また、本発明の正極活物質の製造方法は、平均粒子径が3μm〜24μm、比表面積が0.10m2 /g〜0.92m2 /gであるリチウムと遷移金属との複合酸化物の表面に対して、フッ素ガス分圧が5%以上のフッ素処理用ガスを接触させてフッ素処理を行うようにしたものである
【0013】
フッ素化処理に際しては、フッ素ガスの分圧を調整することによりフッ素化の程度を調整することが可能であるが、フッ素ガスの分圧が低すぎると効果が不足する。フッ素ガス分圧を5%以上とすることで、十分なフッ素化が実現され、高温保存時のガス発生による膨れが抑制される。
【0014】
【発明の実施の形態】
以下、本発明を適用した正極活物質、その製造方法、非水電解質二次電池について詳細に説明する。
【0015】
本発明の正極活物質は、リチウムと遷移金属との複合酸化物を活物質材料として含むものである。ここで、前記複合酸化物は、例えば、一般式LixMyNzO2(MはCo又はNiであり、NはCo,Mn,Ni,Cr,Fe,V,Al,B,Mgから選ばれる少なくとも1種である。また、0.05≦x≦1.10,0<y,0.80≦y+z≦1.00である。)で表される化合物である。
【0016】
上記複合酸化物においては、その平均粒子径と比表面積が重要であり、これらを適正な範囲に設定することで、高温保存時のガス発生による膨れを抑えながら、良好な電池性能を得ることができる。具体的には、平均粒子径は3μm〜24μm、比表面積は0.10m/g〜0.92m/gとする。
【0017】
前記平均粒子径が3μm未満である場合には、非水電解質二次電池の正極活物質として用いたときに初期容量が低下する。また、逆に、前記平均粒子径が24μmを越えて大きい場合には、電池特性が低下する。一方、前記比表面積については、比表面積が0.10m/g未満のものを用いると、非水電解質二次電池の負荷特性が低下し、逆に0.92m/gを越えて大きなものを用いると、高温保存時にガス発生による膨れが発生する。
【0018】
前記複合酸化物は、平均粒子径と比表面積を前記適正な範囲に設定することに加えて、フッ素化処理が施されていることが必要である。この場合、フッ素化処理の結果、活物質材料である複合酸化物の表面に当該複合酸化物に対して0.2〜3.5重量%のフッ素原子が存在することが好ましい。複合酸化物に対するフッ素原子の割合が0.2重量%未満の場合には、高温保存時にガス発生による膨れが発生する。逆に3.5重量%より多い場合には初期容量が低下し、負荷特性も低下する。
【0019】
フッ素化処理としては、例えばFガス/不活性ガスの混合ガスと直接反応させる方法がある。例えば、処理すべき正極活物質、すなわち前記複合酸化物を前記混合ガス中で一定時間放置する。その結果、目的とする表面にフッ素原子が存在する複合酸化物(活物質材料)が得られる。このとき、Fガス分圧を変更することにより複合酸化物のフッ素化の程度を調整することが可能であるが、Fガス分圧が3%未満である場合には効果が小さいため、フッ素ガス分圧は3%より大きい分圧であることが好ましい。
【0020】
また、前記複合酸化物に不純物として炭酸リチウムが含まれる場合、上記フッ素化処理により炭酸リチウムもフッ素化されて安定なフッ化リチウムとなる。生成したフッ化リチウムは、活物質上での電極反応を阻害し、負荷特性が低下する。そのため、前記複合酸化物が不純物としてx重量%の炭酸リチウムを含むとすると、これをフッ素化処理して正極活物質に用いる場合、x≦4であることが好ましい。この場合、目的とする効果を得るためには、フッ素化処理後の表面に存在するフッ素原子の量のうち前記炭酸リチウムのフッ素化により消費された量を差し引いた量、すなわちフッ素化処理後の表面に存在するフッ素量−x/2(重量%)が、複合酸化物(活物質材料)に対して0.2〜3.5重量%であることが好ましい。
【0021】
以上が本発明の正極活物質及びその製造方法であるが、かかる正極活物質は、非水電解質二次電池(いわゆるリチウムイオン二次電池)の正極活物質材料として用いることができる。ここで、非水電解質二次電池の構成としては、前記正極活物質を用いた正極の他、負極、非水電解質、及び外装容器を挙げることができる。
【0022】
ここで、負極に用いる負極活物質としては特に限定されないが、例えばリチウム金属、リチウムと合金を形成可能な金属及びその合金、リチウムをドープ脱ドープする材料等を挙げることができる。リチウムをドープ脱ドープする材料としては、例示するならば難黒鉛化性炭素、人造黒鉛、天然黒鉛、熱分解炭素類、コークス類(ピッチコークス、ニードルコークス、石油コークス等)、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体(フェノール樹脂、フラン樹脂等を適当な温度で焼成し炭素化したもの)、炭素繊維、活性炭、カーボンブラック類等の炭素質材料を挙げることができる。また、酸化鉄、酸化ルテニウム、酸化モリブデン、酸化タングステン、酸化チタン、酸化スズ等の比較的電位が卑な電位でリチウムをドープ脱ドープする酸化物やその他窒化物なども同様に使用可能である。
【0023】
電解質としては、電解質塩を含有させた固体電解質、マトリクス高分子に非水溶媒と電解質塩を含浸させたゲル状電解質のいずれも用いることができる。また、固体電解質やゲル状電解質では、正極、負極それぞれに成分が異なる電解質を使用することもできるが、1種類の電解質を使用する場合は、非水溶媒に電解質塩を溶解させた非水電解液も使用可能である。
【0024】
前記ゲル状電解質に用いる非水電解液や電解液として用いる非水電解液は、有機溶媒と電解質とを適宜組み合わせて調製されるが、これら有機溶媒はこの種の電池に用いられるものであればいずれも使用可能である。例示するならば、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4メチル1,3ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル、酢酸エステル、酪酸エステル、プロピオン酸エステル等である。これらは、単独で使用しても、複数種混合して用いてもよい。特に、高温での安定性の点から、高沸点溶媒を含有させることが好ましい。
【0025】
固体電解質としては、リチウムイオン導電性を有する材料であれば無機固体電解質、高分子固体電解質のいずれも用いることができる。無機固体電解質として、窒化リチウム、よう化リチウムが挙げられる。高分子固体電解質は、電解質塩とそれを溶解する高分子化合物からなり、高分子化合物はポリ(エチレンオキサイド)や同架橋体などのエーテル系高分子、ポリ(メタクリレート)エステル系、アクリレート系等を単独あるいは分子中に共重合、または混合して用いることができる。
【0026】
ゲル状電解質のマトリックス高分子としては、上記非水電解液を吸収してゲル化するものであれば種々の高分子が利用できる。具体的には、例えば、ポリビニリデンフルオロライドやポリビニリデンフルオロライド−co−ヘキサフルオロプロピレン等のフッ素系高分子、ポリエチレンオキサイドや同架橋体等のエーテル系高分子、ポリアクリロニトリル等を使用できる。特に、酸化還元安定性の観点からは、フッ素系高分子を用いることが望ましい。ゲル状電解質では、これらマトリックス高分子に電解質塩を含有させることにより、イオン導電性を賦与する。
【0027】
上記非水電解質に用いられる電解質塩は、この種の電池に用いられるものであればいずれも使用可能である。例示するならば、LiClO、LiAsF、LiPF、LiBF、LiB(C、CHSOLi、CFSOLi、LiCl、LiBr、LiN(CFSO等である。
【0028】
本発明の非水電解質二次電池は、電池形状については特に限定されることはなく、円筒型、角型、コイン型、ボタン型、ラミネートシート型等、任意の形状にすることができるが、特に、ラミネートフィルムを外装材に用いた非水電解質二次電池において効果的である。
【0029】
また、本発明の非水電解質二次電池において、電極(負極及び正極)の作製方法は問わない。例えば、活物質材料に公知の結着剤等を添加し溶剤を加えて塗布する方法、結物質材料に公知の結着剤等を添加し加熱して塗布する方法、活物質材料単独、あるいは導電性材料、さらには結着材と混合して成型等の処理を施して成型体電極を作成する方法等を採ることができる。具体的には、活物質を結着材、有機溶剤等と混合してスラリー状とした後、集電体上に塗布、乾燥することにより前記負極や正極を作製することができる。あるいは、結着材の有無にかかわらず、活物質に熱を加えたまま加圧成型することにより強度を有した電極を作製することも可能である。勿論、電極に作製方法は、これらに限定されるものではない。
【0030】
さらに、前記負極及び正極の組み合わせからなる発電要素の作製方法としては、正負極間にセパレーターを介して巻芯の周囲に捲回する作成方法、電極とセパレーターを順次積層する積層方式等が挙げられる。薄形電池や角型電池を作製する場合にも、例えば前記捲回する方式を採用することができる。
【0031】
【実施例】
以下、本発明の具体的な実施例について、実験結果に基づいて説明する。
【0032】
実施例1
先ず、以下のようにして正極電極を作製した。
平均粒子径3μm、比表面積0.92m/gのLiNi0.8Co0.2粉末を、80℃、F分圧20%のF/Ar混合ガス中で10時間放置することによりフッ素化処理を施した。フッ素化処理後のLiNi0.8Co0.2粒子中に含まれるフッ素量を比色法により測定したところ、1.2重量%であった。なお、LiNi0.8Co0.2粉末の平均粒子径は湿式レーザー粒度分布計で、比表面積はマックソーブにより測定した。
【0033】
次いで、このフッ素化処理が施されたLiNiO91重量%と、導電剤である黒鉛6重量%と、結着剤であるポリビニリデンフルオライド3重量%とを混合して正極合剤を作製した。次に、これをN−メチル−2−ピロリドンに分散させてスラリー状とした。さらに、これを正極集電体となる厚さ20μmの帯状のアルミニウム箔の片面に均一に塗布した後に乾燥させた。そして、ロールプレス機で圧縮成型することによって正極活物質層を作製した。
【0034】
次に、負極電極を以下のようにして作製した。
先ず、粉砕した黒鉛粉末90重量%と、結着剤であるポリビニリデンフルオライド10重量%とを混合し、負極合剤を作製した。この負極合剤をN−メチル−2−ピロリドンに分散させてスラリー状とした。これを負極集電体となる厚さ20μmの帯状の銅箔の片面に均一に塗布した後に乾燥させた。そして、ロールプレス機で圧縮成型することによって負極活物質層を作製した。
【0035】
また、ゲル状電解質を次のようにして作製した。先ず、炭酸エチレン(EC)11.5重量%と、炭酸プロピレン(PC)11.5重量%と、電解質塩であるLiPF4重量%とを混合して可塑剤を調整した。これに対して分子量が600000であるブロック共重合ポリビニリデンフルオライド−co−ヘキサフルオロプロピレン10重量%と、炭酸ジエチル60重量%とを混合して溶解させた。次に、これを負極活物質層及び正極活物質層の片面に均一に塗布して含浸させた。そして、常温で8時間放置することによって炭酸ジエチルを気化させて除去し、ゲル状電解質を作製した。
【0036】
最後に、上述したようにゲル状電解質が塗布された正極活物質層と負極活物質層とを、ゲル状電解質が塗布された面同士を対向させて圧着し、発電素子を作製した。この発電素子を、厚さ180μmの防湿性アルミラミネートフィルム外装中に真空封止して、寸法がおよそ2.5cm×4.0cm×0.46mmである平板型ゲル状電解質電池を作製した。
【0037】
図1及び図2に作製した平板型ゲル状電解質電池の構成を示す。ゲル状電解質電池1は、正極活物質層2と、負極活物質層3とが、ゲル状電解質4を介して形成された発電素子5が、外装フィルム6の内部に収容されてなる。正極活物質層2は正極リード7と接続されており、負極活物質層3は負極リード8と接続されている。正極リード7及び負極リード8は、樹脂フィルム9を介して外装フィルム6に接着されることにより密閉性が確保されており、その先端部が外装フィルム6の外部に臨み、外部端子としての機能を果たしている。なお、図1では、ゲル状電解質1と正極活物質層3、負極活物質層4の図示を省略する。また、図2では、正極リード7と負極リード8、樹脂フィルム9の図示を省略する。
【0038】
実施例2
平均粒子径3μm、比表面積0.92m/gのLiNi0.8Co0.2粉末を、80℃、F分圧20%のF/Ar混合ガス中で10時間放置することでフッ素化処理を施した。フッ素化処理後のLiNi0.8Co0.2粒子中に含まれるフッ素量を測定したところ、1.8重量%であった。これを正極活物質として用いた以外は実施例1と同様にして電池を作製した。
【0039】
実施例3
平均粒子径3μm、比表面積0.92m/gのLiNi0.8Co0.2粉末を、80℃、F分圧30%のF/Ar混合ガス中で10時間放置することでフッ素化処理を施した。フッ素化処理後のLiNi0.8Co0.2粒子中に含まれるフッ素量を測定したところ、3.6重量%であった。これを正極活物質として用いた以外は実施例1と同様にして電池を作製した。
【0040】
実施例4
平均粒子径3μm、比表面積0.92m/gのLiNi0.8Co0.2粉末を、80℃、F分圧50%のF/Ar混合ガス中で10時間放置することでフッ素化処理を施した。フッ素化処理後のLiNi0.8Co0.2粒子中に含まれるフッ素量を測定したところ、4.4重量%であった。これを正極活物質として用いた以外は実施例1と同様にして電池を作製した。
【0041】
実施例5
平均粒子径15μm、比表面積0.55m/gのLiNi0.8Co0.2粉末を、80℃、F分圧3%のF/Ar混合ガス中で10時間放置することでフッ素化処理を施した。フッ素化処理後のLiNi0.8Co0.2粒子中に含まれるフッ素量を測定したところ、0.1重量%であった。これを正極活物質として用いた以外は実施例1と同様にして電池を作製した。
【0042】
実施例6
平均粒子径15μm、比表面積0.55m/gのLiNi0.8Co0.2粉末を、80℃、F分圧5%のF/Ar混合ガス中で10時間放置することでフッ素化処理を施した。フッ素化処理後のLiNi0.8Co0.2粒子中に含まれるフッ素量を測定したところ、0.2重量%であった。これを正極活物質として用いた以外は実施例1と同様にして電池を作製した。
【0043】
実施例7
平均粒子径15μm、比表面積0.55m/gのLiNi0.8Co0.2粉末を、80℃、F分圧20%のF/Ar混合ガス中で10時間放置することでフッ素化処理を施した。フッ素化処理後のLiNi0.8Co0.2粒子中に含まれるフッ素量を測定したところ、1.6重量%であった。これを正極活物質として用いた以外は実施例1と同様にして電池を作製した。
【0044】
実施例8
平均粒子径15μm、比表面積0.55m/gのLiNi0.8Co0.2粉末を、80℃、F分圧30%のF/Ar混合ガス中で10時間放置することでフッ素化処理を施した。フッ素化処理後のLiNi0.8Co0.2粒子中に含まれるフッ素量を測定したところ、3.4重量%であった。これを正極活物質として用いた以外は実施例1と同様にして電池を作製した。
【0045】
実施例9
平均粒子径15μm、比表面積0.55m/gのLiNi0.8Co0.2粉末を、80℃、F分圧50%のF/Ar混合ガス中で10時間放置することでフッ素化処理を施した。フッ素化処理後のLiNi0.8Co0.2粒子中に含まれるフッ素量を測定したところ、3.8重量%であった。これを正極活物質として用いた以外は実施例1と同様にして電池を作製した。
【0046】
実施例10
平均粒子径22μm、比表面積0.34m/gのLiNi0.8Co0.2粉末を、80℃、F分圧3%のF/Ar混合ガス中で10時間放置することでフッ素化処理を施した。フッ素化処理後のLiNi0.8Co0.2粒子中に含まれるフッ素量を測定したところ、0.1重量%であった。これを正極活物質として用いた以外は実施例1と同様にして電池を作製した。
【0047】
実施例11
平均粒子径22μm、比表面積0.34m/gのLiNi0.8Co0.2粉末を、80℃、F分圧5%のF/Ar混合ガス中で10時間放置することでフッ素化処理を施した。フッ素化処理後のLiNi0.8Co0.2粒子中に含まれるフッ素量を測定したところ、0.3重量%であった。これを正極活物質として用いた以外は実施例1と同様にして電池を作製した。
【0048】
実施例12
平均粒子径22μm、比表面積0.34m/gのLiNi0.8Co0.2粉末を、80℃、F分圧30%のF/Ar混合ガス中で10時間放置することでフッ素化処理を施した。フッ素化処理後のLiNi0.8Co0.2粒子中に含まれるフッ素量を測定したところ、2.0重量%であった。これを正極活物質として用いた以外は実施例1と同様にして電池を作製した。
【0049】
実施例13
平均粒子径22μm、比表面積0.34m/gのLiNi0.8Co0.2粉末を、80℃、F分圧50%のF/Ar混合ガス中で10時間放置することでフッ素化処理を施した。フッ素化処理後のLiNi0.8Co0.2粒子中に含まれるフッ素量を測定したところ、3.7重量%であった。これを正極活物質として用いた以外は実施例1と同様にして電池を作製した。
【0050】
実施例14
平均粒子径5μm、比表面積0.47m/gのLiCoO粉末を、80℃、F分圧30%のF/Ar混合ガス中で10時間放置することでフッ素化処理を施した。フッ素化処理後のLiCoO粒子中に含まれるフッ素量を測定したところ、3.1重量%であった。これを正極活物質として用いた以外は実施例1と同様にして電池を作製した。
【0051】
実施例15
平均粒子径5μm、比表面積0.47m/gのLiCoO粉末を、80℃、F分圧50%のF/Ar混合ガス中で10時間放置することでフッ素化処理を施した。フッ素化処理後のLiCoO粒子中に含まれるフッ素量を測定したところ、4.0重量%であった。これを正極活物質として用いた以外は実施例1と同様にして電池を作製した。
【0052】
実施例16
平均粒子径12μm、比表面積0.30m/gのLiCoO粉末を、80℃、F分圧3%のF/Ar混合ガス中で10時間放置することでフッ素化処理を施した。フッ素化処理後のLiCoO粒子中に含まれるフッ素量を測定したところ、0.1重量%であった。これを正極活物質として用いた以外は実施例1と同様にして電池を作製した。
【0053】
実施例17
平均粒子径12μm、比表面積0.30m/gのLiCoO粉末を、80℃、F分圧5%のF/Ar混合ガス中で10時間放置することでフッ素化処理を施した。フッ素化処理後のLiCoO粒子中に含まれるフッ素量を測定したところ、0.5重量%であった。これを正極活物質として用いた以外は実施例1と同様にして電池を作製した。
【0054】
実施例18
平均粒子径12μm、比表面積0.30m/gのLiCoO粉末を、80℃、F分圧30%のF/Ar混合ガス中で10時間放置することでフッ素化処理を施した。フッ素化処理後のLiCoO粒子中に含まれるフッ素量を測定したところ、3.3重量%であった。これを正極活物質として用いた以外は実施例1と同様にして電池を作製した。
【0055】
実施例19
平均粒子径12μm、比表面積0.30m/gのLiCoO粉末を、80℃、F分圧50%のF/Ar混合ガス中で10時間放置することでフッ素化処理を施した。フッ素化処理後のLiCoO粒子中に含まれるフッ素量を測定したところ、3.7重量%であった。これを正極活物質として用いた以外は実施例1と同様にして電池を作製した。
【0056】
実施例20
平均粒子径20μm、比表面積0.10m/gのLiCoO粉末を、80℃、F分圧5%のF/Ar混合ガス中で10時間放置することでフッ素化処理を施した。フッ素化処理後のLiCoO粒子中に含まれるフッ素量を測定したところ、0.2重量%であった。これを正極活物質として用いた以外は実施例1と同様にして電池を作製した。
【0057】
実施例21
平均粒子径20μm、比表面積0.10m/gのLiCoO粉末を、80℃、F分圧20%のF/Ar混合ガス中で10時間放置することでフッ素化処理を施した。フッ素化処理後のLiCoO粒子中に含まれるフッ素量を測定したところ、1.7重量%であった。これを正極活物質として用いた以外は実施例1と同様にして電池を作製した。
【0058】
実施例22
平均粒子径20μm、比表面積0.10m/gのLiCoO粉末を、80℃、F分圧30%のF/Ar混合ガス中で10時間放置することでフッ素化処理を施した。フッ素化処理後のLiCoO粒子中に含まれるフッ素量を測定したところ、3.2重量%であった。これを正極活物質として用いた以外は実施例1と同様にして電池を作製した。
【0059】
実施例23
平均粒子径20μm、比表面積0.10m/gのLiCoO粉末を、80℃、F分圧50%のF/Ar混合ガス中で10時間放置することでフッ素化処理を施した。フッ素化処理後のLiCoO粒子中に含まれるフッ素量を測定したところ、3.7重量%であった。これを正極活物質として用いた以外は実施例1と同様にして電池を作製した。
【0060】
比較例1
平均粒子径2μm、比表面積0.95m/gのLiNi0.8Co0.2粉末を、80℃、F分圧5%のF/Ar混合ガス中で10時間放置することでフッ素化処理を施した。フッ素化処理後のLiNi0.8Co0.2粒子中に含まれるフッ素量を測定したところ、0.5重量%であった。これを正極活物質として用いた以外は実施例1と同様にして電池を作製した。
【0061】
比較例2
平均粒子径2μm、比表面積0.95m/gのLiNi0.8Co0.2粉末を、80℃、F分圧30%のF/Ar混合ガス中で10時間放置することでフッ素化処理を施した。フッ素化処理後のLiNi0.8Co0.2粒子中に含まれるフッ素量を測定したところ、3.5重量%であった。これを正極活物質として用いた以外は実施例1と同様にして電池を作製した。
【0062】
比較例3
平均粒子径26μm、比表面積0.31m/gのLiNi0.8Co0.2粉末を、80℃、F分圧3%のF/Ar混合ガス中で10時間放置することでフッ素化処理を施した。フッ素化処理後のLiNi0.8Co0.2粒子中に含まれるフッ素量を測定したところ、0.1重量%であった。これを正極活物質として用いた以外は実施例1と同様にして電池を作製した。
【0063】
比較例4
平均粒子径26μm、比表面積0.31m/gのLiNi0.8Co0.2粉末を、80℃、F分圧5%のF/Ar混合ガス中で10時間放置することでフッ素化処理を施した。フッ素化処理後のLiNi0.8Co0.2粒子中に含まれるフッ素量を測定したところ、0.4重量%であった。これを正極活物質として用いた以外は実施例1と同様にして電池を作製した。
【0064】
比較例5
平均粒子径26μm、比表面積0.31m/gのLiNi0.8Co0.2粉末を、80℃、F分圧20%のF/Ar混合ガス中で10時間放置することでフッ素化処理を施した。フッ素化処理後のLiNi0.8Co0.2粒子中に含まれるフッ素量を測定したところ、1.7重量%であった。これを正極活物質として用いた以外は実施例1と同様にして電池を作製した。
【0065】
比較例6
平均粒子径26μm、比表面積0.31m/gのLiNi0.8Co0.2粉末を、80℃、F分圧50%のF/Ar混合ガス中で10時間放置することでフッ素化処理を施した。フッ素化処理後のLiNi0.8Co0.2粒子中に含まれるフッ素量を測定したところ、3.3重量%であった。これを正極活物質として用いた以外は実施例1と同様にして電池を作製した。
【0066】
比較例7
平均粒子径2μm、比表面積0.63m/gのLiCoO粉末を、80℃、F分圧20%のF/Ar混合ガス中で10時間放置することでフッ素化処理を施した。フッ素化処理後のLiCoO粒子中に含まれるフッ素量を測定したところ、1.6重量%であった。これを正極活物質として用いた以外は実施例1と同様にして電池を作製した。
【0067】
比較例8
平均粒子径25μm、比表面積0.08m/gのLiCoO粉末を、80℃、F分圧3%のF/Ar混合ガス中で10時間放置することでフッ素化処理を施した。フッ素化処理後のLiCoO粒子中に含まれるフッ素量を測定したところ、0.1重量%であった。これを正極活物質として用いた以外は実施例1と同様にして電池を作製した。
【0068】
比較例9
平均粒子径25μm、比表面積0.08m/gのLiCoO粉末を、80℃、F分圧20%のF/Ar混合ガス中で10時間放置することでフッ素化処理を施した。フッ素化処理後のLiCoO粒子中に含まれるフッ素量を測定したところ、1.5重量%であった。これを正極活物質として用いた以外は実施例1と同様にして電池を作製した。
【0069】
上記実施例1〜実施例23、及び比較例1〜比較例9で作製された平板型ゲル状電解質電池について、以下に示す方法によって初回充電容量、負荷特性、及び高温保存特性を評価した。
【0070】
<初回充電容量>
未処理の活物質に対するフッ素化処理後の活物質の電池容量変化率を求めた。先ず、作製直後の各電池(実施例1〜23,比較例1〜9)を23℃で、未処理の活物質理論容量の2時間率充電(0.5C)(定電流定電圧充電)を4.2Vまで10時間行った。このときの各電池の充電容量を求め、未処理の電池の充電容量に対する処理後の電池(実施例1〜23,比較例1〜9)の容量の減少率を100分率として計算した。
【0071】
<負荷特性>
理論容量の1/2時間率放電(2C)を行い、次のように評価した。先ず、各電池に対して、23℃で定電流定電圧充電を上限4.2Vまで10時間行った。次に、5時間率放電(0.2C)を終止電圧3.0Vまで行った。このときの放電容量を0.2C放電容量として求めた。その後、再び定電流定電圧充電を上限4.2Vまで10時間行い、次いで1/2時間率放電(2C)を終止電圧3.0Vまで行った。このときの放電容量を2C放電容量として求めた。0.2C放電容量に対する2C放電容量を100分率として計算した。
【0072】
<高温保存特性>
充電状態の電池を高温保存した際の電池寸法の変化を評価した。先ず、各電池に対して、23℃で定電流定電圧充電を上限4.3Vまで10時間行った。この時の各電池の厚さを測定し、初期厚さとした。その後、各電池を80℃恒温槽中にて15日間保存した後、恒温槽から取り出した直後の電池厚さを測定した。この時の厚さから初期厚さを減じた分(変化量)を初期厚さに対する100分率として算出し、それを未処理の電池の変化率から差し引いたものをセル膨れ低減率として計算した。
【0073】
上述した実施例1〜実施例23、及び比較例1〜比較例9について、初回充電容量減少率、セル膨れ低減率、負荷特性を測定した結果を、表1に示す。
【0074】
【表1】

Figure 0004193481
表1から、フッ素化処理によって高温保存時のセル膨れが抑制されることが判明した。ただし、平均粒子径が2μmの複合酸化物や平均粒子径が25μm以上の複合酸化物にフッ素化処理をした場合には、比較例2,6,7のように初回充電容量減少率が大きくなるか、比較例1,3のように効果が小さいことがわかった。また、フッ素化処理によって全体的に負荷特性が低下する傾向が確認されたが、元来負荷特性が低めである平均粒子径25μm以上の活物質にフッ素化処理を施すと、比較例4,5,6,8,9のようにさらに負荷特性が低下し、電池としての性能が低下してしまうことがわかった。
【0075】
これに対して、適正な平均粒子径、比表面積を有する複合酸化物にフッ素化処理を施した各実施例の場合、初回充電容量減少率が小さく、セル厚さ増加率も抑制され、且つ負荷特性も優れていると判明した。すなわち、3μm〜24μmの平均粒子径を有する活物質(リチウムと遷移金属の複合酸化物)にフッ素化処理を施すことにより、高温保存時の膨れを抑制でき、且つその他の電池特性も満足するものが得られることが判明した。特に、フッ素処理後のフッ素量が0.2重量%〜3.5重量%である実施例1〜3,実施例6〜8,実施例11,12,実施例17,18,実施例20〜22は、セル膨れ低減率が大きく、且つその他の特性も高いことから、より好適であると言える。
【0076】
【発明の効果】
以上の説明からも明らかなように、平均粒子径が3μm24μm、比表面積が0.10m2 /g〜0.92m2 /gである複合酸化物の表面にフッ素化処理を施したものを正極活物質として用いることによって、高温保存時のガス膨れが少なくフィルム状の外装を用いても信頼性の高い非水電解質二次電池を得ることが可能である。特に、フッ素化の処理量が活物質である複合酸化物に対して0.2重量%〜3.5重量%である時に、セル膨れ低減率が大きく、充電容量や負荷特性等の電池特性に優れた非水電解質二次電池を実現することが可能である。
【図面の簡単な説明】
【図1】ゲル状電解質電池の概略平面図である。
【図2】ゲル状電解質電池の概略断面図である。
【符号の説明】
1 ゲル状電解質電池
2 正極活物質層
3 負極活物質層
4 ゲル状電解質
5 発電要素
6 外装フィルム[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a positive electrode active material used for a non-aqueous electrolyte secondary battery that obtains an electromotive force by doping or dedoping lithium, and a method for producing the same. Further, the present invention relates to a non-aqueous electrolyte using the positive electrode active material. The present invention relates to a secondary battery. In particular, the present invention relates to an improvement in a positive electrode active material for providing a non-aqueous electrolyte secondary battery that generates less gas during high-temperature storage and has excellent shape stability.
[0002]
[Prior art]
In recent years, a large number of portable electronic devices such as mobile phones, portable audio players, and PDAs have appeared, and their size and weight have been reduced. As portable power sources for these electronic devices, non-aqueous electrolyte secondary batteries (so-called lithium ion secondary batteries) having a large energy density are widely used.
[0003]
By the way, a non-aqueous electrolyte containing a non-aqueous solvent is used for a lithium ion secondary battery, and a metal container is usually used as an exterior in order to prevent liquid leakage. However, when such a metal container is used for the exterior, for example, a thin and large area sheet type battery, a thin and small area card type battery, or a battery having a flexible and highly flexible shape, etc. Is very difficult.
[0004]
Therefore, as an effective solution, it has been studied to produce a battery using an inorganic / organic complete solid electrolyte or a semi-solid electrolyte made of a polymer gel. Specifically, so-called solid electrolyte batteries using a polymer solid electrolyte composed of a polymer and an electrolyte and a gel electrolyte obtained by adding a non-aqueous electrolyte as a plasticizer to a matrix polymer have been proposed. .
[0005]
In the solid electrolyte battery, since the electrolyte is solid or gel, there is no fear of liquid leakage, the electrolyte is fixed, and the thickness of the electrolyte can be fixed. Moreover, the adhesiveness between the electrolyte and the electrode is good, and the contact between the electrolyte and the electrode can be maintained in a good state. For this reason, solid electrolyte batteries do not need to contain an electrolytic solution in a metal container or apply pressure to the battery elements, and can use a film-like exterior with a high degree of freedom in molding, and diversify portable electronic devices. It is possible to design a battery that meets the requirements.
[0006]
In particular, by using a moisture-proof laminate film that is made of a polymer film and a metal foil and can be heat-sealed, an airtight structure can be easily realized by hot sealing or the like. In addition, the moisture-proof laminate film has advantages such as strong strength of the film itself, excellent airtightness, light weight, thinness, and low cost compared to a metal container.
[0007]
[Problems to be solved by the invention]
However, since the material of the film-like exterior is soft, there is a drawback that it reacts sensitively to changes in the battery internal pressure. That is, there is a problem that the battery swells due to a gas or the like generated as a result of oxidation and decomposition of the electrolyte on the electrode surface, causing a shape abnormality. In particular, there is a concern that a fully charged battery may be adversely affected when left in a car in the summer for a long period of time.
[0008]
Therefore, the present invention has been proposed in view of such conventional circumstances, and even when left in a charged state at a high temperature for a long period of time, there is little gas generation, and shape stability can be achieved even when a film-like exterior is used. It aims at providing the positive electrode active material which can implement | achieve the non-aqueous-electrolyte secondary battery excellent in this, and it aims at providing the manufacturing method. It is another object of the present invention to provide a non-aqueous electrolyte secondary battery that generates little gas even when stored at a high temperature for a long time in a charged state, and has excellent shape stability even when a film-like exterior is used.
[0009]
[Means for Solving the Problems]
The inventors of the present invention have made extensive studies over a long period of time in order to solve the above problems. As a result, when using a composite oxide of lithium and a transition metal as a positive electrode active material,Average particle size andSetting the specific surface area to an appropriate range; andOn its surfaceFluorination treatment leads to securing load characteristics and suppressing blistering due to gas generation during high-temperature storage, and when these are used in combination, good battery characteristics and prevention of blistering due to gas generation can be realized at the same time. I came to find it.
[0010]
The present invention has been completed based on such findings, and the positive electrode active material of the present invention includes a composite oxide of lithium and a transition metal,The surface has been fluorinated,The composite oxide has an average particle diameter of 3 μm to 24 μm and a specific surface area of 0.10 m.2/G-0.92m2/ GRuIs. Further, the nonaqueous electrolyte secondary battery of the present invention includes a positive electrode containing a composite oxide of lithium and a transition metal as a positive electrode active material, and a material that can be doped or dedoped with lithium metal, a lithium alloy, or lithium. A negative electrode containing non-aqueous electrolyte, and an outer container containing these,The surface of the composite oxide has been subjected to fluorination treatment,The composite oxide has an average particle diameter of 3 μm to 24 μm and a specific surface area of 0.10 m.2/G-0.92m2/ GRuIs.
[0011]
The average particle diameter and specific surface area of the composite oxide of lithium and transition metal, which is the positive electrode active material, are within an appropriate range, andOn the surface of the complex oxideFluorineConversionBy performing the treatment, gas generation during high-temperature storage can be suppressed, and swelling can be suppressed even when a moisture-proof laminate film is used for an exterior container, for example. Here, the load characteristics tend to decrease due to the fluorination treatment, but by setting the average particle diameter and specific surface area of the composite oxide within the above ranges, the load characteristics can be maintained and the battery can be satisfied Performance is obtained.
[0012]
The method for producing a positive electrode active material of the present invention has an average particle diameter of 3 μm to 24 μm and a specific surface area of 0.10 m.2/G-0.92m2/ G composite oxide of lithium and transition metalSurface ofFluorine gas partial pressure of 5% or moreConversionFluorine in contact with processing gasConversionProcessIt is what.
[0013]
In the fluorination treatment, the degree of fluorination can be adjusted by adjusting the partial pressure of the fluorine gas. However, if the partial pressure of the fluorine gas is too low, the effect is insufficient. By setting the fluorine gas partial pressure to 5% or more, sufficient fluorination is realized, and swelling due to gas generation during high-temperature storage is suppressed.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a positive electrode active material to which the present invention is applied, a manufacturing method thereof, and a nonaqueous electrolyte secondary battery will be described in detail.
[0015]
The positive electrode active material of the present invention contains a composite oxide of lithium and a transition metal as an active material. Here, the composite oxide is, for example, a general formula LixMyNzO2 (M is Co or Ni, and N is at least one selected from Co, Mn, Ni, Cr, Fe, V, Al, B, and Mg). And 0.05 ≦ x ≦ 1.10, 0 <y, 0.80 ≦ y + z ≦ 1.00.)
[0016]
In the composite oxide, the average particle size and specific surface area are important, and by setting these in an appropriate range, it is possible to obtain good battery performance while suppressing swelling due to gas generation during high temperature storage. it can. Specifically, the average particle diameter is 3 μm to 24 μm, and the specific surface area is 0.10 m.2/G-0.92m2/ G.
[0017]
When the average particle diameter is less than 3 μm, the initial capacity decreases when used as a positive electrode active material of a non-aqueous electrolyte secondary battery. Conversely, when the average particle size is larger than 24 μm, the battery characteristics are deteriorated. On the other hand, the specific surface area is 0.10 m.2If less than / g is used, the load characteristics of the non-aqueous electrolyte secondary battery deteriorate, conversely 0.92 m2When a large material exceeding / g is used, blistering due to gas generation occurs during high temperature storage.
[0018]
The composite oxide needs to be subjected to a fluorination treatment in addition to setting the average particle diameter and specific surface area within the proper ranges. In this case, as a result of the fluorination treatment, it is preferable that 0.2 to 3.5 wt% of fluorine atoms are present on the surface of the composite oxide which is an active material material with respect to the composite oxide. When the ratio of fluorine atoms to the composite oxide is less than 0.2% by weight, blistering due to gas generation occurs during high temperature storage. On the other hand, when it is more than 3.5% by weight, the initial capacity is lowered and the load characteristics are also lowered.
[0019]
As the fluorination treatment, for example, F2There is a method of directly reacting with a gas / inert gas mixed gas. For example, the positive electrode active material to be treated, that is, the composite oxide is left in the mixed gas for a certain time. As a result, a composite oxide (active material) having fluorine atoms on the target surface can be obtained. At this time, F2It is possible to adjust the degree of fluorination of the composite oxide by changing the gas partial pressure.2Since the effect is small when the gas partial pressure is less than 3%, the fluorine gas partial pressure is preferably a partial pressure greater than 3%.
[0020]
Moreover, when lithium carbonate is contained as an impurity in the composite oxide, the lithium carbonate is also fluorinated by the fluorination treatment to become stable lithium fluoride. The generated lithium fluoride inhibits the electrode reaction on the active material, and the load characteristics are reduced. Therefore, assuming that the composite oxide contains x wt% lithium carbonate as an impurity, it is preferable that x ≦ 4 when this is fluorinated and used as the positive electrode active material. In this case, in order to obtain the intended effect, the amount obtained by subtracting the amount consumed by the fluorination of lithium carbonate from the amount of fluorine atoms present on the surface after the fluorination treatment, that is, after the fluorination treatment. The amount of fluorine existing on the surface -x / 2 (% by weight) is preferably 0.2 to 3.5% by weight with respect to the composite oxide (active material).
[0021]
The above is the positive electrode active material and the method for producing the same of the present invention. Such a positive electrode active material can be used as a positive electrode active material of a nonaqueous electrolyte secondary battery (so-called lithium ion secondary battery). Here, as a structure of a nonaqueous electrolyte secondary battery, a negative electrode, a nonaqueous electrolyte, and an exterior container can be mentioned besides the positive electrode using the said positive electrode active material.
[0022]
Here, the negative electrode active material used for the negative electrode is not particularly limited, and examples thereof include lithium metal, a metal capable of forming an alloy with lithium and an alloy thereof, and a material for doping and dedoping lithium. Examples of materials for doping and dedoping lithium include non-graphitizable carbon, artificial graphite, natural graphite, pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, glassy Examples of the carbonaceous material include carbons, organic polymer compound fired bodies (phenol resins, furan resins, etc., fired at an appropriate temperature and carbonized), carbon fibers, activated carbon, and carbon blacks. Further, oxides such as iron oxide, ruthenium oxide, molybdenum oxide, tungsten oxide, titanium oxide, tin oxide, etc. that dope and dedoped lithium with a relatively low potential, and other nitrides can be used as well.
[0023]
As the electrolyte, either a solid electrolyte containing an electrolyte salt or a gel electrolyte obtained by impregnating a matrix polymer with a nonaqueous solvent and an electrolyte salt can be used. In addition, in the case of a solid electrolyte or gel electrolyte, it is possible to use electrolytes having different components for each of the positive electrode and the negative electrode. However, when one type of electrolyte is used, non-aqueous electrolysis in which an electrolyte salt is dissolved in a non-aqueous solvent is used. Liquid can also be used.
[0024]
The non-aqueous electrolyte used for the gel electrolyte and the non-aqueous electrolyte used as the electrolyte are prepared by appropriately combining an organic solvent and an electrolyte, and these organic solvents can be used for this type of battery. Either can be used. For example, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4 methyl 1,3 Dioxolane, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propionitrile, acetate ester, butyrate ester, propionate ester, and the like. These may be used alone or as a mixture of two or more. In particular, it is preferable to contain a high boiling point solvent from the viewpoint of stability at high temperatures.
[0025]
As the solid electrolyte, any inorganic solid electrolyte or polymer solid electrolyte can be used as long as the material has lithium ion conductivity. Examples of the inorganic solid electrolyte include lithium nitride and lithium iodide. The polymer solid electrolyte is composed of an electrolyte salt and a polymer compound that dissolves the electrolyte salt. The polymer compound is an ether polymer such as poly (ethylene oxide) or a crosslinked product thereof, a poly (methacrylate) ester, an acrylate, or the like. It can be used alone, copolymerized or mixed in the molecule.
[0026]
As the matrix polymer of the gel electrolyte, various polymers can be used as long as they can gel by absorbing the non-aqueous electrolyte. Specifically, for example, a fluorine-based polymer such as polyvinylidene fluoride or polyvinylidene fluoride-co-hexafluoropropylene, an ether-based polymer such as polyethylene oxide or the crosslinked product, polyacrylonitrile, or the like can be used. In particular, it is desirable to use a fluorine-based polymer from the viewpoint of redox stability. In the gel electrolyte, ionic conductivity is imparted by adding an electrolyte salt to these matrix polymers.
[0027]
Any electrolyte salt used for the non-aqueous electrolyte can be used as long as it is used for this type of battery. To illustrate, LiClO4, LiAsF6, LiPF6, LiBF4, LiB (C6H5)4, CH3SO3Li, CF3SO3Li, LiCl, LiBr, LiN (CF3SO2)2Etc.
[0028]
The nonaqueous electrolyte secondary battery of the present invention is not particularly limited with respect to the battery shape, and can be any shape such as a cylindrical shape, a square shape, a coin shape, a button shape, a laminate sheet shape, In particular, it is effective in a non-aqueous electrolyte secondary battery using a laminate film as an exterior material.
[0029]
Moreover, in the nonaqueous electrolyte secondary battery of the present invention, the method for producing the electrodes (negative electrode and positive electrode) is not limited. For example, a method in which a known binder or the like is added to an active material and a solvent is added, and a method is applied in which a known binder or the like is added to a binder material and heated, an active material alone or a conductive material For example, a method of forming a molded body electrode by performing a process such as molding by mixing with a conductive material or a binder can be employed. Specifically, the negative electrode and the positive electrode can be produced by mixing an active material with a binder, an organic solvent, and the like to form a slurry and then applying and drying the mixture on a current collector. Alternatively, regardless of the presence or absence of the binder, it is also possible to produce a strong electrode by pressure molding while applying heat to the active material. Of course, the manufacturing method of the electrode is not limited to these.
[0030]
Furthermore, examples of a method for producing a power generation element comprising a combination of the negative electrode and the positive electrode include a production method in which a winding is wound around a core via a separator between positive and negative electrodes, and a lamination method in which electrodes and a separator are sequentially laminated. . Also in the case of manufacturing a thin battery or a square battery, for example, the winding method can be adopted.
[0031]
【Example】
Hereinafter, specific examples of the present invention will be described based on experimental results.
[0032]
Example 1
First, a positive electrode was produced as follows.
Average particle size 3μm, specific surface area 0.92m2/ G LiNi0.8Co0.2O2Powder at 80 ° C., F2F with partial pressure of 20%2Fluorination treatment was performed by leaving it in an Ar gas mixture for 10 hours. LiNi after fluorination treatment0.8Co0.2O2The amount of fluorine contained in the particles was measured by a colorimetric method and found to be 1.2% by weight. LiNi0.8Co0.2O2The average particle size of the powder was measured by a wet laser particle size distribution meter, and the specific surface area was measured by Macsorb.
[0033]
Next, this fluorinated LiNiO2A positive electrode mixture was prepared by mixing 91% by weight, 6% by weight of graphite as a conductive agent, and 3% by weight of polyvinylidene fluoride as a binder. Next, this was dispersed in N-methyl-2-pyrrolidone to form a slurry. Furthermore, this was applied to one side of a strip-shaped aluminum foil having a thickness of 20 μm to be a positive electrode current collector and then dried. And the positive electrode active material layer was produced by compression molding with a roll press machine.
[0034]
Next, the negative electrode was produced as follows.
First, 90% by weight of pulverized graphite powder and 10% by weight of polyvinylidene fluoride as a binder were mixed to prepare a negative electrode mixture. This negative electrode mixture was dispersed in N-methyl-2-pyrrolidone to form a slurry. This was uniformly applied to one side of a strip-shaped copper foil having a thickness of 20 μm to be a negative electrode current collector, and then dried. And the negative electrode active material layer was produced by compression molding with a roll press machine.
[0035]
Moreover, the gel electrolyte was produced as follows. First, 11.5% by weight of ethylene carbonate (EC), 11.5% by weight of propylene carbonate (PC), and LiPF which is an electrolyte salt64% by weight was mixed to prepare a plasticizer. On the other hand, 10% by weight of block copolymer polyvinylidene fluoride-co-hexafluoropropylene having a molecular weight of 600,000 and 60% by weight of diethyl carbonate were mixed and dissolved. Next, this was uniformly coated and impregnated on one side of the negative electrode active material layer and the positive electrode active material layer. Then, by standing for 8 hours at room temperature, diethyl carbonate was vaporized and removed, and a gel electrolyte was produced.
[0036]
Finally, as described above, the positive electrode active material layer coated with the gel electrolyte and the negative electrode active material layer were pressure-bonded with the surfaces coated with the gel electrolyte facing each other, to produce a power generating element. This power generation element was vacuum-sealed in a moisture-proof aluminum laminate film exterior having a thickness of 180 μm to produce a flat gel electrolyte battery having dimensions of approximately 2.5 cm × 4.0 cm × 0.46 mm.
[0037]
FIG. 1 and FIG. 2 show the configuration of the flat plate gel electrolyte battery produced. In the gel electrolyte battery 1, a power generating element 5 in which a positive electrode active material layer 2 and a negative electrode active material layer 3 are formed via a gel electrolyte 4 is housed in an exterior film 6. The positive electrode active material layer 2 is connected to the positive electrode lead 7, and the negative electrode active material layer 3 is connected to the negative electrode lead 8. The positive electrode lead 7 and the negative electrode lead 8 are adhered to the exterior film 6 through the resin film 9 to ensure hermeticity. Plays. In FIG. 1, the gel electrolyte 1, the positive electrode active material layer 3, and the negative electrode active material layer 4 are not shown. In FIG. 2, the positive electrode lead 7, the negative electrode lead 8, and the resin film 9 are not shown.
[0038]
Example 2
Average particle size 3μm, specific surface area 0.92m2/ G LiNi0.8Co0.2O2Powder at 80 ° C., F2F with partial pressure of 20%2Fluorination treatment was performed by leaving it in an Ar mixed gas for 10 hours. LiNi after fluorination treatment0.8Co0.2O2When the amount of fluorine contained in the particles was measured, it was 1.8% by weight. A battery was fabricated in the same manner as in Example 1 except that this was used as the positive electrode active material.
[0039]
Example 3
Average particle size 3μm, specific surface area 0.92m2/ G LiNi0.8Co0.2O2Powder at 80 ° C., F2F with 30% partial pressure2Fluorination treatment was performed by leaving it in an Ar mixed gas for 10 hours. LiNi after fluorination treatment0.8Co0.2O2When the amount of fluorine contained in the particles was measured, it was 3.6% by weight. A battery was fabricated in the same manner as in Example 1 except that this was used as the positive electrode active material.
[0040]
Example 4
Average particle size 3μm, specific surface area 0.92m2/ G LiNi0.8Co0.2O2Powder at 80 ° C., F2F with 50% partial pressure2Fluorination treatment was performed by leaving it in an Ar mixed gas for 10 hours. LiNi after fluorination treatment0.8Co0.2O2When the amount of fluorine contained in the particles was measured, it was 4.4% by weight. A battery was fabricated in the same manner as in Example 1 except that this was used as the positive electrode active material.
[0041]
Example 5
Average particle size 15μm, specific surface area 0.55m2/ G LiNi0.8Co0.2O2Powder at 80 ° C., F2F with 3% partial pressure2Fluorination treatment was performed by leaving it in an Ar mixed gas for 10 hours. LiNi after fluorination treatment0.8Co0.2O2When the amount of fluorine contained in the particles was measured, it was 0.1% by weight. A battery was fabricated in the same manner as in Example 1 except that this was used as the positive electrode active material.
[0042]
Example 6
Average particle size 15μm, specific surface area 0.55m2/ G LiNi0.8Co0.2O2Powder at 80 ° C., F2F with partial pressure of 5%2Fluorination treatment was performed by leaving it in an Ar mixed gas for 10 hours. LiNi after fluorination treatment0.8Co0.2O2When the amount of fluorine contained in the particles was measured, it was 0.2% by weight. A battery was fabricated in the same manner as in Example 1 except that this was used as the positive electrode active material.
[0043]
Example 7
Average particle size 15μm, specific surface area 0.55m2/ G LiNi0.8Co0.2O2Powder at 80 ° C., F2F with partial pressure of 20%2Fluorination treatment was performed by leaving it in an Ar mixed gas for 10 hours. LiNi after fluorination treatment0.8Co0.2O2When the amount of fluorine contained in the particles was measured, it was 1.6% by weight. A battery was fabricated in the same manner as in Example 1 except that this was used as the positive electrode active material.
[0044]
Example 8
Average particle size 15μm, specific surface area 0.55m2/ G LiNi0.8Co0.2O2Powder at 80 ° C., F2F with 30% partial pressure2Fluorination treatment was performed by leaving it in an Ar mixed gas for 10 hours. LiNi after fluorination treatment0.8Co0.2O2When the amount of fluorine contained in the particles was measured, it was 3.4% by weight. A battery was fabricated in the same manner as in Example 1 except that this was used as the positive electrode active material.
[0045]
Example 9
Average particle size 15μm, specific surface area 0.55m2/ G LiNi0.8Co0.2O2Powder at 80 ° C., F2F with 50% partial pressure2Fluorination treatment was performed by leaving it in an Ar mixed gas for 10 hours. LiNi after fluorination treatment0.8Co0.2O2When the amount of fluorine contained in the particles was measured, it was 3.8% by weight. A battery was fabricated in the same manner as in Example 1 except that this was used as the positive electrode active material.
[0046]
Example 10
Average particle size 22μm, specific surface area 0.34m2/ G LiNi0.8Co0.2O2Powder at 80 ° C., F2F with 3% partial pressure2Fluorination treatment was performed by leaving it in an Ar mixed gas for 10 hours. LiNi after fluorination treatment0.8Co0.2O2When the amount of fluorine contained in the particles was measured, it was 0.1% by weight. A battery was fabricated in the same manner as in Example 1 except that this was used as the positive electrode active material.
[0047]
Example 11
Average particle size 22μm, specific surface area 0.34m2/ G LiNi0.8Co0.2O2Powder at 80 ° C., F2F with partial pressure of 5%2Fluorination treatment was performed by leaving it in an Ar mixed gas for 10 hours. LiNi after fluorination treatment0.8Co0.2O2When the amount of fluorine contained in the particles was measured, it was 0.3% by weight. A battery was fabricated in the same manner as in Example 1 except that this was used as the positive electrode active material.
[0048]
Example 12
Average particle size 22μm, specific surface area 0.34m2/ G LiNi0.8Co0.2O2Powder at 80 ° C., F2F with 30% partial pressure2Fluorination treatment was performed by leaving it in an Ar mixed gas for 10 hours. LiNi after fluorination treatment0.8Co0.2O2When the amount of fluorine contained in the particles was measured, it was 2.0% by weight. A battery was fabricated in the same manner as in Example 1 except that this was used as the positive electrode active material.
[0049]
Example 13
Average particle size 22μm, specific surface area 0.34m2/ G LiNi0.8Co0.2O2Powder at 80 ° C., F2F with 50% partial pressure2Fluorination treatment was performed by leaving it in an Ar mixed gas for 10 hours. LiNi after fluorination treatment0.8Co0.2O2When the amount of fluorine contained in the particles was measured, it was 3.7% by weight. A battery was fabricated in the same manner as in Example 1 except that this was used as the positive electrode active material.
[0050]
Example 14
Average particle size 5μm, specific surface area 0.47m2/ G LiCoO2Powder at 80 ° C., F2F with 30% partial pressure2Fluorination treatment was performed by leaving it in an Ar mixed gas for 10 hours. LiCoO after fluorination treatment2When the amount of fluorine contained in the particles was measured, it was 3.1% by weight. A battery was fabricated in the same manner as in Example 1 except that this was used as the positive electrode active material.
[0051]
Example 15
Average particle size 5μm, specific surface area 0.47m2/ G LiCoO2Powder at 80 ° C., F2F with 50% partial pressure2Fluorination treatment was performed by leaving it in an Ar mixed gas for 10 hours. LiCoO after fluorination treatment2When the amount of fluorine contained in the particles was measured, it was 4.0% by weight. A battery was fabricated in the same manner as in Example 1 except that this was used as the positive electrode active material.
[0052]
Example 16
Average particle size 12μm, specific surface area 0.30m2/ G LiCoO2Powder at 80 ° C., F2F with 3% partial pressure2Fluorination treatment was performed by leaving it in an Ar mixed gas for 10 hours. LiCoO after fluorination treatment2When the amount of fluorine contained in the particles was measured, it was 0.1% by weight. A battery was fabricated in the same manner as in Example 1 except that this was used as the positive electrode active material.
[0053]
Example 17
Average particle size 12μm, specific surface area 0.30m2/ G LiCoO2Powder at 80 ° C., F2F with partial pressure of 5%2Fluorination treatment was performed by leaving it in an Ar mixed gas for 10 hours. LiCoO after fluorination treatment2When the amount of fluorine contained in the particles was measured, it was 0.5% by weight. A battery was fabricated in the same manner as in Example 1 except that this was used as the positive electrode active material.
[0054]
Example 18
Average particle size 12μm, specific surface area 0.30m2/ G LiCoO2Powder at 80 ° C., F2F with 30% partial pressure2Fluorination treatment was performed by leaving it in an Ar mixed gas for 10 hours. LiCoO after fluorination treatment2When the amount of fluorine contained in the particles was measured, it was 3.3% by weight. A battery was fabricated in the same manner as in Example 1 except that this was used as the positive electrode active material.
[0055]
Example 19
Average particle size 12μm, specific surface area 0.30m2/ G LiCoO2Powder at 80 ° C., F2F with 50% partial pressure2Fluorination treatment was performed by leaving it in an Ar mixed gas for 10 hours. LiCoO after fluorination treatment2When the amount of fluorine contained in the particles was measured, it was 3.7% by weight. A battery was fabricated in the same manner as in Example 1 except that this was used as the positive electrode active material.
[0056]
Example 20
Average particle size 20μm, specific surface area 0.10m2/ G LiCoO2Powder at 80 ° C., F2F with partial pressure of 5%2Fluorination treatment was performed by leaving it in an Ar mixed gas for 10 hours. LiCoO after fluorination treatment2When the amount of fluorine contained in the particles was measured, it was 0.2% by weight. A battery was fabricated in the same manner as in Example 1 except that this was used as the positive electrode active material.
[0057]
Example 21
Average particle size 20μm, specific surface area 0.10m2/ G LiCoO2Powder at 80 ° C., F2F with partial pressure of 20%2Fluorination treatment was performed by leaving it in an Ar mixed gas for 10 hours. LiCoO after fluorination treatment2When the amount of fluorine contained in the particles was measured, it was 1.7% by weight. A battery was fabricated in the same manner as in Example 1 except that this was used as the positive electrode active material.
[0058]
Example 22
Average particle size 20μm, specific surface area 0.10m2/ G LiCoO2Powder at 80 ° C., F2F with 30% partial pressure2Fluorination treatment was performed by leaving it in an Ar mixed gas for 10 hours. LiCoO after fluorination treatment2When the amount of fluorine contained in the particles was measured, it was 3.2% by weight. A battery was fabricated in the same manner as in Example 1 except that this was used as the positive electrode active material.
[0059]
Example 23
Average particle size 20μm, specific surface area 0.10m2/ G LiCoO2Powder at 80 ° C., F2F with 50% partial pressure2Fluorination treatment was performed by leaving it in an Ar mixed gas for 10 hours. LiCoO after fluorination treatment2When the amount of fluorine contained in the particles was measured, it was 3.7% by weight. A battery was fabricated in the same manner as in Example 1 except that this was used as the positive electrode active material.
[0060]
Comparative Example 1
Average particle size 2μm, specific surface area 0.95m2/ G LiNi0.8Co0.2O2Powder at 80 ° C., F2F with partial pressure of 5%2Fluorination treatment was performed by leaving it in an Ar mixed gas for 10 hours. LiNi after fluorination treatment0.8Co0.2O2When the amount of fluorine contained in the particles was measured, it was 0.5% by weight. A battery was fabricated in the same manner as in Example 1 except that this was used as the positive electrode active material.
[0061]
Comparative Example 2
Average particle size 2μm, specific surface area 0.95m2/ G LiNi0.8Co0.2O2Powder at 80 ° C., F2F with 30% partial pressure2Fluorination treatment was performed by leaving it in an Ar mixed gas for 10 hours. LiNi after fluorination treatment0.8Co0.2O2When the amount of fluorine contained in the particles was measured, it was 3.5% by weight. A battery was fabricated in the same manner as in Example 1 except that this was used as the positive electrode active material.
[0062]
Comparative Example 3
Average particle size 26μm, specific surface area 0.31m2/ G LiNi0.8Co0.2O2Powder at 80 ° C., F2F with 3% partial pressure2Fluorination treatment was performed by leaving it in an Ar mixed gas for 10 hours. LiNi after fluorination treatment0.8Co0.2O2When the amount of fluorine contained in the particles was measured, it was 0.1% by weight. A battery was fabricated in the same manner as in Example 1 except that this was used as the positive electrode active material.
[0063]
Comparative Example 4
Average particle size 26μm, specific surface area 0.31m2/ G LiNi0.8Co0.2O2Powder at 80 ° C., F2F with partial pressure of 5%2Fluorination treatment was performed by leaving it in an Ar mixed gas for 10 hours. LiNi after fluorination treatment0.8Co0.2O2When the amount of fluorine contained in the particles was measured, it was 0.4% by weight. A battery was fabricated in the same manner as in Example 1 except that this was used as the positive electrode active material.
[0064]
Comparative Example 5
Average particle size 26μm, specific surface area 0.31m2/ G LiNi0.8Co0.2O2Powder at 80 ° C., F2F with partial pressure of 20%2Fluorination treatment was performed by leaving it in an Ar mixed gas for 10 hours. LiNi after fluorination treatment0.8Co0.2O2When the amount of fluorine contained in the particles was measured, it was 1.7% by weight. A battery was fabricated in the same manner as in Example 1 except that this was used as the positive electrode active material.
[0065]
Comparative Example 6
Average particle size 26μm, specific surface area 0.31m2/ G LiNi0.8Co0.2O2Powder at 80 ° C., F2F with 50% partial pressure2Fluorination treatment was performed by leaving it in an Ar mixed gas for 10 hours. LiNi after fluorination treatment0.8Co0.2O2When the amount of fluorine contained in the particles was measured, it was 3.3% by weight. A battery was fabricated in the same manner as in Example 1 except that this was used as the positive electrode active material.
[0066]
Comparative Example 7
Average particle size 2μm, specific surface area 0.63m2/ G LiCoO2Powder at 80 ° C., F2F with partial pressure of 20%2Fluorination treatment was performed by leaving it in an Ar mixed gas for 10 hours. LiCoO after fluorination treatment2When the amount of fluorine contained in the particles was measured, it was 1.6% by weight. A battery was fabricated in the same manner as in Example 1 except that this was used as the positive electrode active material.
[0067]
Comparative Example 8
Average particle size 25μm, specific surface area 0.08m2/ G LiCoO2Powder at 80 ° C., F2F with 3% partial pressure2Fluorination treatment was performed by leaving it in an Ar mixed gas for 10 hours. LiCoO after fluorination treatment2When the amount of fluorine contained in the particles was measured, it was 0.1% by weight. A battery was fabricated in the same manner as in Example 1 except that this was used as the positive electrode active material.
[0068]
Comparative Example 9
Average particle size 25μm, specific surface area 0.08m2/ G LiCoO2Powder at 80 ° C., F2F with partial pressure of 20%2Fluorination treatment was performed by leaving it in an Ar mixed gas for 10 hours. LiCoO after fluorination treatment2When the amount of fluorine contained in the particles was measured, it was 1.5% by weight. A battery was fabricated in the same manner as in Example 1 except that this was used as the positive electrode active material.
[0069]
For the flat gel electrolyte batteries prepared in Examples 1 to 23 and Comparative Examples 1 to 9, the initial charge capacity, load characteristics, and high-temperature storage characteristics were evaluated by the following methods.
[0070]
<First charge capacity>
The battery capacity change rate of the active material after fluorination treatment with respect to the untreated active material was determined. First, each battery (Examples 1 to 23, Comparative Examples 1 to 9) immediately after production was charged at 23 ° C. with a two-hour rate charge (0.5 C) (constant current and constant voltage charge) of an untreated active material theoretical capacity. It went to 4.2V for 10 hours. The charge capacity of each battery at this time was calculated | required, and the reduction | decrease rate of the capacity | capacitance of the battery (Examples 1-23, Comparative Examples 1-9) after a process with respect to the charge capacity of an untreated battery was calculated as 100 fraction.
[0071]
<Load characteristics>
A 1/2 hour rate discharge (2C) of theoretical capacity was performed and evaluated as follows. First, each battery was charged at a constant current and a constant voltage at 23 ° C. for 10 hours up to an upper limit of 4.2 V. Next, a 5-hour rate discharge (0.2 C) was performed to a final voltage of 3.0V. The discharge capacity at this time was determined as a 0.2 C discharge capacity. Thereafter, constant current and constant voltage charging was again performed for 10 hours up to an upper limit of 4.2 V, and then a 1/2 hour rate discharge (2C) was performed to a final voltage of 3.0 V. The discharge capacity at this time was determined as 2C discharge capacity. The 2C discharge capacity with respect to the 0.2C discharge capacity was calculated as 100 fractions.
[0072]
<High temperature storage characteristics>
The change of the battery size when the charged battery was stored at high temperature was evaluated. First, each battery was subjected to constant current and constant voltage charging at 23 ° C. for 10 hours up to an upper limit of 4.3 V. The thickness of each battery at this time was measured and set as the initial thickness. Then, after storing each battery in an 80 degreeC thermostat for 15 days, the battery thickness immediately after taking out from a thermostat was measured. The amount (change amount) obtained by subtracting the initial thickness from the thickness at this time was calculated as a 100-minute ratio with respect to the initial thickness, and the value obtained by subtracting it from the change rate of the untreated battery was calculated as the cell swelling reduction rate. .
[0073]
Table 1 shows the results of measuring the initial charge capacity reduction rate, cell swell reduction rate, and load characteristics for Examples 1 to 23 and Comparative Examples 1 to 9 described above.
[0074]
[Table 1]
Figure 0004193481
From Table 1, it has been found that cell swelling during high-temperature storage is suppressed by the fluorination treatment. However, when a composite oxide having an average particle diameter of 2 μm or a composite oxide having an average particle diameter of 25 μm or more is subjected to fluorination treatment, the rate of decrease in the initial charge capacity is increased as in Comparative Examples 2, 6, and 7. Or it turned out that an effect is small like the comparative examples 1 and 3. FIG. In addition, it was confirmed that the load characteristics generally decreased due to the fluorination treatment. However, when the fluorination treatment was performed on an active material having an average particle diameter of 25 μm or more, which originally had a low load characteristic, Comparative Examples 4 and 5 were used. 6, 8, 9, the load characteristics are further deteriorated, and the battery performance is deteriorated.
[0075]
On the other hand, in the case of each example in which a fluorination treatment was performed on a composite oxide having an appropriate average particle size and specific surface area, the initial charge capacity decrease rate was small, the cell thickness increase rate was suppressed, and the load The properties were also found to be excellent. That is, by subjecting an active material (a composite oxide of lithium and transition metal) having an average particle diameter of 3 μm to 24 μm to fluorination treatment, swelling during high-temperature storage can be suppressed and other battery characteristics are also satisfied. Was found to be obtained. In particular, Examples 1 to 3, Examples 6 to 8, Examples 11 and 12, Examples 17 and 18, and Examples 20 to 20 in which the fluorine amount after fluorine treatment is 0.2 wt% to 3.5 wt%. No. 22 is more suitable because it has a large cell swelling reduction rate and other characteristics are also high.
[0076]
【The invention's effect】
As is clear from the above explanation, the average particle diameter is 3 μm.~24μm, specific surface area is 0.10m2/G-0.92m2/ G composite oxideSurface ofIt is possible to obtain a highly reliable nonaqueous electrolyte secondary battery by using a fluorinated material as a positive electrode active material even when a film-like exterior is used with little gas expansion during high-temperature storage. . In particular, the treatment amount of fluorination is 0.2 with respect to the composite oxide which is an active material.weight%When it is ˜3.5% by weight, it is possible to realize a non-aqueous electrolyte secondary battery having a large cell swelling reduction rate and excellent battery characteristics such as charging capacity and load characteristics.
[Brief description of the drawings]
FIG. 1 is a schematic plan view of a gel electrolyte battery.
FIG. 2 is a schematic cross-sectional view of a gel electrolyte battery.
[Explanation of symbols]
1 Gel electrolyte battery
2 Positive electrode active material layer
3 Negative electrode active material layer
4 Gel electrolyte
5 Power generation elements
6 exterior film

Claims (8)

リチウムと遷移金属との複合酸化物を含み、その表面にフッ素化処理が施されており、
前記複合酸化物は、平均粒子径が3μm〜24μm、比表面積が0.10m2 /g〜0.92m2 /gであ正極活物質。
It contains a complex oxide of lithium and transition metal, and its surface has been fluorinated.
The composite oxide has an average particle diameter of 3Myuemu~24myuemu, specific surface area 0.10m 2 /g~0.92m 2 / g Der Ru positive electrode active material.
前記フッ素化処理により複合酸化物表面に0.2重量%〜3.5重量%のフッ素原子が存在する請求項1記載の正極活物質。Positive electrode active material Motomeko 1, wherein it exists is 0.2 wt% to 3.5 wt% of fluorine atoms in the composite oxide surface by the fluorination treatment. 平均粒子径が3μm〜24μm、比表面積が0.10m2 /g〜0.92m2 /gであるリチウムと遷移金属との複合酸化物の表面に対して、フッ素ガス分圧が5%以上のフッ素処理用ガスを接触させてフッ素処理を行う正極活物質の製造方法。Average particle diameter of 3Myuemu~24myuemu, a specific surface area to the surface of the composite oxide of lithium and transition metal is 0.10m 2 /g~0.92m 2 / g, a fluorine gas partial pressure is not less than 5% manufacturing method of contacting a fluorinated processing gas fluorination process rows UTadashi active material. リチウムと遷移金属との複合酸化物を正極活物質として含有する正極と、
リチウム金属、リチウム合金又はリチウムをドープ、脱ドープすることが可能な材料を含有する負極と、
非水電解質と、
これらを収容する外装容器とを備え、
前記複合酸化物の表面にフッ素化処理が施されており、
前記複合酸化物は、平均粒子径が3μm〜24μm、比表面積が0.10m2 /g〜0.92m2 /gであ非水電解質二次電池。
A positive electrode containing a composite oxide of lithium and a transition metal as a positive electrode active material;
A negative electrode containing a lithium metal, a lithium alloy or a material capable of doping and undoping lithium;
A non-aqueous electrolyte,
An exterior container for housing these,
The surface of the composite oxide has been subjected to fluorination treatment,
The composite oxide has an average particle diameter of 3Myuemu~24myuemu, specific surface area 0.10m 2 /g~0.92m 2 / g Der Ru nonaqueous electrolyte secondary battery.
前記フッ素化処理により複合酸化物表面に0.2重量%〜3.5重量%のフッ素原子が存在する請求項4記載の非水電解質二次電池。The non-aqueous electrolyte secondary battery Motomeko 4 wherein that exists is 0.2 wt% to 3.5 wt% fluorine atom in the composite oxide surface by the fluorination treatment. 前記複合酸化物は、一般式Lix y z 2 (MはCo又はNiであり、NはCo,Mn,Ni,Cr,Fe,V,Al,B,Mgから選ばれる少なくとも1種である。また、0.05≦x≦1.10,0<y,0.80≦y+z≦1.00である。)で表される化合物である請求項4記載の非水電解質二次電池。Said composite oxide is represented by the general formula Li x M y N z O 2 (M is Co or Ni, at least one N is Co, Mn, Ni, Cr, Fe, V, Al, B, selected from Mg is. also, 0.05 ≦ x ≦ 1.10,0 <y , 0.80 ≦ y + z ≦ 1.00. Ru compound der represented by) Motomeko 4 nonaqueous electrolyte secondary according Next battery. 前記非水電解質は、ゲル化されたマトリクス高分子を含む請求項4記載の非水電解質二次電池。The non-aqueous electrolyte, the nonaqueous electrolyte secondary battery of the gelled matrix polymer including請 Motomeko 4 wherein. 前記外装容器は、高分子フィルムと金属箔とにより構成される防湿性ラミネートフィルムからなる請求項4記載の非水電解質二次電池。The outer container is non-aqueous electrolyte secondary battery Motomeko 4 wherein ing from moistureproof laminated film composed of a polymer film and metal foil.
JP2002357887A 2002-12-10 2002-12-10 Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery Expired - Fee Related JP4193481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002357887A JP4193481B2 (en) 2002-12-10 2002-12-10 Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002357887A JP4193481B2 (en) 2002-12-10 2002-12-10 Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2004192896A JP2004192896A (en) 2004-07-08
JP4193481B2 true JP4193481B2 (en) 2008-12-10

Family

ID=32757765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002357887A Expired - Fee Related JP4193481B2 (en) 2002-12-10 2002-12-10 Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4193481B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9070931B2 (en) 2010-10-01 2015-06-30 Samsung Electronics Co., Ltd. Cathode, method of preparing the same, and lithium battery including the cathode

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI290781B (en) * 2004-09-02 2007-12-01 Lg Chemical Ltd Electrode active material with multi-element based oxide layers and preparation method thereof
JP5208353B2 (en) * 2005-03-31 2013-06-12 東洋炭素株式会社 Positive electrode active material and manufacturing method thereof
JP4938286B2 (en) 2005-11-02 2012-05-23 東洋炭素株式会社 Lithium ion secondary battery
JP2007171447A (en) * 2005-12-21 2007-07-05 Seiko Epson Corp Electro-optical device, method of manufacturing electro-optical device, and electronic apparatus
JP2008060033A (en) * 2006-09-04 2008-03-13 Sony Corp Positive-electrode active material, positive electrode using the same, nonaqueous electrolyte secondary battery, and positive-electrode active material manufacturing method
CN102290573B (en) 2007-03-30 2015-07-08 索尼株式会社 Cathode active material, cathode and nonaqueous electrolyte battery
JP5586837B2 (en) * 2007-10-11 2014-09-10 国立大学法人福井大学 Positive electrode material for non-aqueous electrolyte secondary battery
KR20110015021A (en) * 2009-02-06 2011-02-14 파나소닉 주식회사 Lithium ion secondary battery and method for manufacturing lithium ion secondary battery
JPWO2010090029A1 (en) * 2009-02-06 2012-08-09 パナソニック株式会社 Lithium ion secondary battery and method for producing lithium ion secondary battery
JP2009164138A (en) * 2009-04-20 2009-07-23 Toyo Tanso Kk Positive electrode active material for nonaqueous electrolyte secondary battery
JP2009164139A (en) * 2009-04-20 2009-07-23 Toyo Tanso Kk Method of manufacturing positive electrode active material for nonaqueous electrolyte secondary battery
JP5463754B2 (en) * 2009-06-23 2014-04-09 株式会社豊田中央研究所 Active material for lithium secondary battery, lithium secondary battery, and method for producing active material for lithium secondary battery
CA2777619A1 (en) * 2009-11-05 2011-05-12 Umicore Core-shell lithium transition metal oxides.
US9543577B2 (en) * 2010-12-16 2017-01-10 Semiconductor Energy Laboratory Co., Ltd. Active material, electrode including the active material and manufacturing method thereof, and secondary battery
JP2014075177A (en) * 2011-01-27 2014-04-24 Asahi Glass Co Ltd Positive electrode active material for lithium ion secondary battery and method for manufacturing the same
JP6371508B2 (en) * 2013-09-25 2018-08-08 住友化学株式会社 Positive electrode active material for lithium ion secondary battery and method for producing the same, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7000239B2 (en) * 2018-04-16 2022-01-19 トヨタ自動車株式会社 Method for manufacturing positive electrode active material particles, positive electrode, lithium ion secondary battery, and positive electrode active material particles
JP2020017373A (en) * 2018-07-24 2020-01-30 本田技研工業株式会社 Positive electrode active material, positive electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing positive electrode active material
JP2021086796A (en) * 2019-11-29 2021-06-03 Agc株式会社 Sulfide-based solid electrolyte powder to be used for lithium ion secondary battery, production method thereof, solid electrolyte layer, and lithium ion secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213014A (en) * 1995-02-06 1996-08-20 Sony Corp Nonaqueous electrolyte secondary battery
JP3157413B2 (en) * 1995-03-27 2001-04-16 三洋電機株式会社 Lithium secondary battery
JP2000113907A (en) * 1998-10-07 2000-04-21 Toshiba Battery Co Ltd Lithium ion secondary battery
JP3695366B2 (en) * 2001-03-21 2005-09-14 日亜化学工業株式会社 Positive electrode active material for lithium ion secondary battery and method for producing the same
JP3959333B2 (en) * 2001-11-20 2007-08-15 日本化学工業株式会社 Lithium cobalt based composite oxide, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP2004158352A (en) * 2002-11-07 2004-06-03 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9070931B2 (en) 2010-10-01 2015-06-30 Samsung Electronics Co., Ltd. Cathode, method of preparing the same, and lithium battery including the cathode

Also Published As

Publication number Publication date
JP2004192896A (en) 2004-07-08

Similar Documents

Publication Publication Date Title
JP4193481B2 (en) Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery
US8673488B2 (en) Lithium secondary battery
US7709142B2 (en) Electrolytic solution containing 4-fluoro-1, 3-dioxolane-2-one solvent
KR101560553B1 (en) Anode active material for lithium rechargeable battery its preparation and lithium battery using same
JP4541432B2 (en) Lithium secondary battery
KR20180083272A (en) Non-aqueous electrolyte solution and lithium secondary battery comprising the same
US20080233485A1 (en) Non-aqueous electrolyte secondary battery
JP4014816B2 (en) Lithium polymer secondary battery
CN110462909B (en) Lithium ion secondary battery
KR102517991B1 (en) A method for manufacturing an electrode comprising polymer-based solid electrolyte and an electrode manufactured thereby
US8377598B2 (en) Battery having an electrolytic solution containing difluoroethylene carbonate
JP4751502B2 (en) Polymer battery
KR100525278B1 (en) Method For Fabricating Lithium-Ion Polymer Battery With Interpenetrating Network Type Gel Polymer Electrolyte
KR20190127603A (en) A method for manufacturing an electrode comprising polymer-based solid electrolyte for all solid-state battery and an electrode manufactured thereby
JP2015144072A (en) Nonaqueous electrolyte secondary battery
KR20200088149A (en) Method for preparing negative electrode active material
JP2015111514A (en) Negative electrode active material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
KR20020079346A (en) Lithium secondary battery and method of preparing same
JP2005268206A (en) Positive electrode mixture, nonaqueous electrolyte secondary battery and its manufacturing method
WO2020184713A1 (en) Negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP2019164965A (en) Lithium ion secondary battery
JP4086939B2 (en) Polymer solid electrolyte, lithium secondary battery and electric double layer capacitor using the same
JP4186463B2 (en) Nonaqueous electrolyte secondary battery
JP2020149911A (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US20220131148A1 (en) Boron-containing chemicals as cathode additives, si anode additives, electrolyte additives or separator modifiers for li-ion batteries

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050530

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050802

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees