JP4601273B2 - Non-aqueous solvent type secondary battery - Google Patents
Non-aqueous solvent type secondary battery Download PDFInfo
- Publication number
- JP4601273B2 JP4601273B2 JP2003282197A JP2003282197A JP4601273B2 JP 4601273 B2 JP4601273 B2 JP 4601273B2 JP 2003282197 A JP2003282197 A JP 2003282197A JP 2003282197 A JP2003282197 A JP 2003282197A JP 4601273 B2 JP4601273 B2 JP 4601273B2
- Authority
- JP
- Japan
- Prior art keywords
- secondary battery
- electrolyte
- carbon dioxide
- negative electrode
- aqueous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
Description
本発明は、非水溶媒系二次電池に関し、更に詳しくは、サイクル特性、急速充電特性、急速放電特性に優れた非水溶媒系二次電池に関する。 The present invention relates to a non-aqueous solvent secondary battery, and more particularly to a non-aqueous solvent secondary battery excellent in cycle characteristics, quick charge characteristics, and rapid discharge characteristics.
携帯型の電子機器の急速な普及に伴い、それに使用される電池への要求仕様は、年々厳しくなり、特に小型・薄型化、高容量でサイクル特性が優れ、性能の安定したものが要求されている。そして、二次電池分野では他の電池に比べて高エネルギー密度であるリチウム非水溶媒系二次電池が注目され、このリチウム非水溶媒系二次電池の占める割合は二次電池市場において大きな伸びを示している。 With the rapid spread of portable electronic devices, the required specifications for the batteries used for them are becoming stricter year by year, and in particular, small and thin, high capacity, excellent cycle characteristics, and stable performance are required. Yes. In the field of secondary batteries, lithium non-aqueous solvent secondary batteries, which have a higher energy density than other batteries, are attracting attention. The proportion of lithium non-aqueous solvent secondary batteries accounts for a significant increase in the secondary battery market. Is shown.
このリチウム非水溶媒系二次電池は、細長いシート状の銅箔等からなる負極芯体(集電体)の両面に負極用活物質合剤を被膜状に塗布した負極と、細長いシート状のアルミニウム箔等からなる正極芯体の両面に正極用活物質合剤を被膜状に塗布した正極との間に、微多孔性ポリプロピレンフィルム等からなるセパレータを配置し、負極及び正極をセパレータにより互いに絶縁した状態で円柱状又は楕円形状に巻回した後、角型電池の場合は更に巻回電極体を押し潰して偏平状に形成し、負極及び正極の各所定部分にそれぞれ負極リード及び正極リードを接続して所定形状の外装内に収納した構成を有している。 This lithium non-aqueous solvent type secondary battery includes a negative electrode in which a negative electrode active material mixture is applied in a film form on both sides of a negative electrode core (current collector) made of an elongated sheet-like copper foil and the like, and an elongated sheet-like battery A separator made of a microporous polypropylene film or the like is placed between both sides of a positive electrode core made of aluminum foil or the like and coated with a positive electrode active material mixture in the form of a film, and the negative electrode and the positive electrode are insulated from each other by the separator. In the case of a rectangular battery, the wound electrode body is further crushed to form a flat shape, and a negative electrode lead and a positive electrode lead are respectively attached to predetermined portions of the negative electrode and the positive electrode. It has the structure which connected and accommodated in the exterior of a predetermined shape.
このような非水溶媒系二次電池に使用される非水系電解液の非水溶媒には、電解質を電離させるために誘電率が高い必要があること、及び、広い温度範囲でイオン伝導度が高い必要があるということから、プロピレンカーボネート、エチレンカーボネート等のカーボネート類、γ−ブチロラクトン等のラクトン類、その他、エーテル類、ケトン類、エステル類などの有機溶媒が使用されている。 The non-aqueous solvent of the non-aqueous electrolyte used for such a non-aqueous solvent secondary battery needs to have a high dielectric constant in order to ionize the electrolyte, and has an ionic conductivity in a wide temperature range. Because of the high necessity, carbonates such as propylene carbonate and ethylene carbonate, lactones such as γ-butyrolactone, and other organic solvents such as ethers, ketones and esters are used.
しかしながら、負極材料として黒鉛、非晶質炭素などの炭素質材料、珪素質材料、金属酸化物材料を用いると、充放電過程において電極表面で有機溶媒が還元分解され、ガスの発生、副反応生成物の堆積等により負極インピーダンスが増大し、充放電効率の低下、サイクル特性の劣化等を引き起すという問題点が存在していた。 However, if a carbonaceous material such as graphite or amorphous carbon, a siliconaceous material, or a metal oxide material is used as the negative electrode material, the organic solvent is reduced and decomposed on the electrode surface during the charge / discharge process, generating gas and generating side reactions. There has been a problem in that the negative electrode impedance increases due to the accumulation of objects and the like, resulting in a decrease in charge / discharge efficiency, deterioration in cycle characteristics, and the like.
そこで、従来から、有機溶媒の還元分解を抑制するために、様々な化合物を非水系電解液に添加して、負極活物質が有機溶媒と直接反応しないように、不動態化層とも称される負極表面被膜(SEI:Solid Electrolyte Interface. 以下、「SEI表面被膜」という。)を制御する技術が重要となっている。例えば、下記特許文献1には、非水溶媒系二次電池の非水系電解液として、非水系電解液中にビニレンカーボネート及びその誘導体から選択される少なくとも1種を添加し、これらの添加物により、最初の充電による負極へのリチウムの挿入前に、負極活物質層上に不動態化層を形成させ、リチウムイオンの周囲の溶媒分子の挿入を阻止するバリアーとして機能させるようになしたものが開示されている。 Therefore, conventionally, in order to suppress the reductive decomposition of the organic solvent, various compounds are added to the non-aqueous electrolyte so that the negative electrode active material does not directly react with the organic solvent. A technique for controlling a negative electrode surface coating (SEI: Solid Electrolyte Interface. Hereinafter referred to as “SEI surface coating”) is important. For example, in the following Patent Document 1, at least one selected from vinylene carbonate and derivatives thereof is added to a non-aqueous electrolyte solution as a non-aqueous electrolyte solution of a non-aqueous solvent-based secondary battery. Before the insertion of lithium into the negative electrode by the first charge, a passivation layer is formed on the negative electrode active material layer to function as a barrier that prevents the insertion of solvent molecules around lithium ions It is disclosed.
また、同様の目的で、下記特許文献2には非水系電解液中に添加剤としてビニルエチレンカーボネート化合物を添加したものが、同じく下記特許文献3にはケトン類を添加したものが、同じく下記特許文献4にはビニルエチレンカーボネートを含み、更にビニレンカーボネート、環状スルホン酸又は環状硫酸エステル、環状酸無水物からなる少なくとも1種を添加したものが、同じく下記特許文献5には環状酸無水物を添加したものが、同じく下記特許文献6には環状酸無水物及びビニルエチレンカーボネート化合物を添加したものが、それぞれ開示されている。 For the same purpose, the following Patent Document 2 includes a non-aqueous electrolyte in which a vinyl ethylene carbonate compound is added as an additive, and the following Patent Document 3 includes a ketone added to the same patent. Document 4 contains vinyl ethylene carbonate, and further added at least one kind of vinylene carbonate, cyclic sulfonic acid or cyclic sulfate, and cyclic acid anhydride. Similarly, Patent Document 5 adds cyclic acid anhydride. Similarly, the following Patent Document 6 discloses the addition of a cyclic acid anhydride and a vinyl ethylene carbonate compound, respectively.
しかしながら、下記特許文献1〜6に開示されている上述のような添加剤を非水系電解液中に添加することにより得られるSEI表面被膜は、依然としてリチウムイオン伝導性が低い高抵抗のものしか得られず、負極インピーダンスが著しく増大してしまうため、急速充電、急速放電性能が低下する欠点があった。 However, the SEI surface coating obtained by adding the above-described additives disclosed in Patent Documents 1 to 6 below to the non-aqueous electrolyte solution can still only have a high resistance with low lithium ion conductivity. In other words, the negative electrode impedance is remarkably increased, so that the quick charge and rapid discharge performance is deteriorated.
本発明者は、上述のSEI表面被膜の生成機構につき種々検討を重ねた結果、非水系電解液中に環状酸無水物を含有させる場合に、別途炭酸ガスを溶存させ、環状酸無水物として無水コハク酸又は無水ジグリコール酸を特定の割合で含有させておくと、SEI表面被膜のインピーダンスを低下させ、急速充電、急速放電性能を低下させることなく、サイクル特性を向上させることが可能となることを見出した。このような結果が得られる理由は、現在のところ定かではなく、今後の研究を待つ必要があるが、おそらくは充電時に炭酸ガスの還元により生成する炭酸リチウムを主成分とする無機被膜成分がリチウムイオン伝導性に優れたSEI被膜成長を促進したものと推測される。 The present inventor has made various studies on the generation mechanism of the SEI surface coating described above, and as a result, when the cyclic acid anhydride is contained in the non-aqueous electrolyte, carbon dioxide is separately dissolved , and the cyclic acid anhydride is anhydrous. When succinic acid or diglycolic anhydride is contained at a specific ratio, the impedance of the SEI surface coating is reduced, and the cycle characteristics can be improved without reducing the rapid charge and rapid discharge performance. I found. The reason why such a result can be obtained is not clear at present, and it is necessary to wait for further research. Probably, the inorganic coating component mainly composed of lithium carbonate produced by reduction of carbon dioxide during charging is lithium ion. It is presumed that SEI film growth with excellent conductivity was promoted.
したがって、本願発明の目的は、SEI表面被膜のインピーダンスを低下させて、サイクル特性、急速充電特性、急速放電特性に優れた非水溶媒系二次電池を提供することにある。 Accordingly, an object of the present invention is to provide a non-aqueous solvent secondary battery excellent in cycle characteristics, quick charge characteristics, and rapid discharge characteristics by reducing the impedance of the SEI surface coating.
本発明の上記目的は以下の構成により達成し得る。すなわち、本願の請求項1に係る非水溶媒系二次電池の発明は、少なくともリチウムを可逆的に吸蔵・放出する正極材料を有する正極と、リチウムを可逆的に吸蔵・放出する負極材料を有する負極と、非水系電解液とを備えた非水溶媒系二次電池において、前記非水系電解液に環状酸無水物を含有させると共に炭酸ガスを溶存させ、前記環状酸無水物は、無水コハク酸又は無水ジグリコール酸であり、前記非水系電解液中に0.01〜10質量%の割合で含有されていることを特徴とする。 The above object of the present invention can be achieved by the following configurations. That is, the invention of the nonaqueous solvent secondary battery according to claim 1 of the present application has at least a positive electrode having a positive electrode material reversibly occluding and releasing lithium and a negative electrode material reversibly occluding and releasing lithium. In a non-aqueous solvent secondary battery comprising a negative electrode and a non-aqueous electrolyte, the non-aqueous electrolyte contains a cyclic acid anhydride and carbon dioxide gas is dissolved, and the cyclic acid anhydride is succinic anhydride. Or it is diglycolic anhydride and is contained in the said nonaqueous electrolyte solution in the ratio of 0.01-10 mass%, It is characterized by the above-mentioned.
本発明の非水溶媒系二次電池においては、環状酸無水物の含有量は、0.01質量%未満であると酸無水物添加の効果が実質的に認められず、また、10質量%を超えても、その分だけ電解質の溶解量が減って電解質濃度が低下し、非水系電解液の電気伝導度が減少するために好ましくない。より望ましくは、環状酸無水物は非水系電解液中に0.05質量%〜5質量%の範囲である。 In the non-aqueous solvent type secondary battery of the present invention, if the content of the cyclic acid anhydride is less than 0.01% by mass, the effect of addition of the acid anhydride is not substantially recognized, and 10% by mass. Exceeding this value is not preferable because the amount of dissolved electrolyte is reduced by that amount, the electrolyte concentration is lowered, and the electrical conductivity of the nonaqueous electrolytic solution is reduced. More desirably, the cyclic acid anhydride is in the range of 0.05% by mass to 5% by mass in the non-aqueous electrolyte.
なお、本発明の非水溶媒系二次電池で使用し得る非水系電解液を構成する非水溶媒(有機溶媒)は、カーボネート類、ラクトン類、エーテル類、エステル類、芳香族炭化水素などが挙げられ、これらの中でカーボネート類、ラクトン類、エーテル類、ケトン類、エステル類などが好ましく、カーボネート類がさらに好適に用いられる。 The nonaqueous solvent (organic solvent) constituting the nonaqueous electrolytic solution that can be used in the nonaqueous solvent secondary battery of the present invention includes carbonates, lactones, ethers, esters, aromatic hydrocarbons, and the like. Among these, carbonates, lactones, ethers, ketones, esters and the like are preferable, and carbonates are more preferably used.
カーボネート類の具体例としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、γ−バレロラクトン、γ−ジメトキシエタン、テトラヒドロフラン、アニソール、1,4−ジオキサン、ジエチルカーボネートなどを挙げることができ、充放電効率を高める点からプロピレンカーボネート、エチレンカーボネートが好適に用いられる。なお、これら溶媒の2種類以上を混合して用いることもできる。 Specific examples of carbonates include propylene carbonate, ethylene carbonate, butylene carbonate, γ-butyrolactone, γ-valerolactone, γ-dimethoxyethane, tetrahydrofuran, anisole, 1,4-dioxane, diethyl carbonate, and the like. Propylene carbonate and ethylene carbonate are preferably used from the viewpoint of increasing charge / discharge efficiency. Two or more of these solvents can be mixed and used.
また、本発明の非水溶媒系二次電池で使用し得る非水系電解液を構成する電解質は、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、ホウフッ化リチウム(LiBF4)、六フッ化砒酸リチウム(LiAsF6)、トリフルオロメチルスルホン酸リチウム(LiCF3SO3)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CF3SO2)2]などのリチウム塩が挙げられる。中でもLiPF6、LiBF4を用いるのが好ましく、前記非水溶媒に対する溶解量は、0.5〜2.0モル/lとするのが好ましい。 The electrolyte constituting the nonaqueous electrolytic solution that can be used in non-aqueous solvent secondary battery of the present invention, lithium perchlorate (LiClO 4), lithium hexafluorophosphate (LiPF 6), lithium tetrafluoroborate ( LiBF 4 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium trifluoromethylsulfonate (LiCF 3 SO 3 ), lithium bistrifluoromethylsulfonylimide [LiN (CF 3 SO 2 ) 2 ] and the like can be mentioned. . Of these, LiPF 6 and LiBF 4 are preferably used, and the amount dissolved in the non-aqueous solvent is preferably 0.5 to 2.0 mol / l.
また、本発明の非水溶媒系二次電池で使用し得る正極活物質には、LixMO2(但し、MはCo、Ni、Mnの少なくとも1種である)で表されるリチウム遷移金属複合酸化物、すなわちLiCoO2、LiNiO2、LiNiCo1−yO2(y=0.01〜0.99)、Li0.5MnO2、LiMnO2、LiCoxMnyNizO2(x+y+z=1)などが一種単独もしくは複数種を混合して用いられる。 In addition, the positive electrode active material that can be used in the nonaqueous solvent secondary battery of the present invention includes LixMO 2 (wherein M is at least one of Co, Ni, and Mn), a lithium transition metal composite oxide. LiCoO 2 , LiNiO 2 , LiNiCo 1-y O 2 (y = 0.01 to 0.99), Li 0.5 MnO 2 , LiMnO 2 , LiCo x Mn y Ni z O 2 (x + y + z = 1) May be used singly or in combination.
また、本発明の非水溶媒系二次電池で使用し得る負極活物質には、リチウムを吸蔵・放出することが可能な炭素質物や珪素質物、金属酸化物からなる群から選ばれる少なくとも1種以上との混合物が用いられる。 Further, the negative electrode active material that can be used in the nonaqueous solvent secondary battery of the present invention is at least one selected from the group consisting of carbonaceous materials, siliconaceous materials, and metal oxides capable of occluding and releasing lithium. Mixtures of the above are used.
また、環状酸無水物を含有する非水系電解液に、炭酸ガスを溶存させる際には、非水系電解液の温度、炭酸ガスの分圧を一定に保ち、バブリングによって飽和させることが望ましい。 In addition, when carbon dioxide is dissolved in a non-aqueous electrolyte containing a cyclic acid anhydride, it is desirable to keep the temperature of the non-aqueous electrolyte and the partial pressure of the carbon dioxide constant and to saturate by bubbling.
また、本願の請求項2に係る発明は、前記請求項1に記載の非水溶媒系二次電池において、前記炭酸ガスは、炭酸ガスの分圧が1.01×104〜5.07×105pa(0.1〜5atm)の範囲で常温下に非水系電解液中にバブリングすることにより含有させたものであることを特徴とする。 The invention according to claim 2 of the present application is the nonaqueous solvent secondary battery according to claim 1, wherein the carbon dioxide has a partial pressure of carbon dioxide of 1.01 × 10 4 to 5.07 ×. It is characterized by being contained by bubbling in a non-aqueous electrolyte at room temperature within a range of 10 5 pa (0.1 to 5 atm).
バブリングする際の炭酸ガスの分圧は、低すぎると非水系電解質中に溶存される量が少なくなり、十分な効果が得られ難く、また、高すぎると溶存される量が多くなり、常圧に戻したときに激しく脱泡してしまうため、工程上取り扱いが難しくなる。 If the partial pressure of carbon dioxide gas during bubbling is too low, the amount dissolved in the non-aqueous electrolyte decreases, and it is difficult to obtain a sufficient effect. Since it is degassed violently when it is returned to, it becomes difficult to handle in the process.
また、本願の請求項3に係る発明は、前記請求項1に記載の非水溶媒系二次電池において、前記非水系電解液がゲル化されていることを特徴とする。 The invention according to claim 3 of the present application is characterized in that, in the non-aqueous solvent secondary battery according to claim 1, the non-aqueous electrolyte is gelled.
電解液がゲル化されている場合は、負極活物質表面にポリマー成分が付着しているため、負極界面抵抗が大きくなる。したがって、環状酸無水物の添加による界面抵抗増加によって、液状電解質を使用した非水溶媒系二次電池よりも著しく特性低下が引き起こされるため、本発明のような炭酸ガスの溶存による効果は顕著である。 When the electrolyte is gelled, the negative electrode interface resistance increases because the polymer component adheres to the surface of the negative electrode active material. Therefore, the increase in the interfacial resistance due to the addition of the cyclic acid anhydride causes a significant deterioration in characteristics as compared with the nonaqueous solvent secondary battery using the liquid electrolyte. Therefore, the effect of dissolving the carbon dioxide gas as in the present invention is remarkable. is there.
また、本願の請求項4に係る発明は、前記請求項3に記載の非水溶媒系二次電池において、前記ゲル化されている非水系電解液における電解液の含有量は、ゲル化されている非水系電解液の総量に対して50質量%以上99.5質量%以下であることを特徴とする。 The invention according to claim 4 of the present application is the nonaqueous solvent secondary battery according to claim 3 , wherein the content of the electrolyte in the gelled nonaqueous electrolyte is gelled. It is characterized by being 50 mass% or more and 99.5 mass% or less with respect to the total amount of the non-aqueous electrolyte solution.
ゲル化されている非水系電解液における電解液の含有量が50質量%未満と少なすぎるとイオン伝導度が低下して高負荷放電容量が低下する。より好ましくはゲル状電解質の総量に対して75質量%以上である。さらに、電解液の含有量が、99.5質量%を超えると、ゲル化されている非水系電解液の機械的強度が得られない。 If the content of the electrolytic solution in the gelled non-aqueous electrolytic solution is too small, less than 50% by mass, the ionic conductivity is lowered and the high load discharge capacity is lowered. More preferably, it is 75 mass% or more with respect to the total amount of the gel electrolyte. Furthermore, when the content of the electrolytic solution exceeds 99.5% by mass, the mechanical strength of the gelled non-aqueous electrolytic solution cannot be obtained.
本発明の非水溶媒系二次電池で使用し得るゲル状電解質において電解液を保持する高分子としては、アルキレンオキシド系高分子や、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体のようなフッ素系高分子等の高分子が挙げられる。このような高分子材料を用いてゲル状電解質を形成する方法は、前記電解液をポリエチレンオキシド、ポリプロピレンオキシド、ポリアルキレンオキシドのイソシアネート架橋体等の重合体などに浸すことにより得ることができる。 In the gel electrolyte that can be used in the nonaqueous solvent secondary battery of the present invention, the polymer that holds the electrolytic solution includes an alkylene oxide polymer and a fluorine-based polymer such as a polyvinylidene fluoride-hexafluoropropylene copolymer. Examples thereof include a polymer such as a polymer. A method for forming a gel electrolyte using such a polymer material can be obtained by immersing the electrolytic solution in a polymer such as an isocyanate cross-linked product of polyethylene oxide, polypropylene oxide, or polyalkylene oxide.
また、重合性ゲル化剤を含有する電解液に紫外線硬化や熱硬化などの重合処理を施す方法や、常温でゲル状電解質を形成する高分子を電解液中に高温溶解したものを冷却する方法も好ましく用いられる。重合性ゲル化剤含有電解液を用いる場合、重合性ゲル化剤としては、例えば、アクリロイル基、メタクリロイル基、ビニル基、アリル基、等の不飽和二重結合を有するものや、エポキシ、オキセタン、ホルマール、等のカチオン重合性の環状エーテル基を有するものがあげられる。 In addition, a method of subjecting an electrolytic solution containing a polymerizable gelling agent to a polymerization treatment such as ultraviolet curing or thermosetting, or a method of cooling a solution obtained by dissolving a polymer that forms a gel electrolyte at room temperature at a high temperature. Are also preferably used. When using a polymerizable gelling agent-containing electrolyte, examples of the polymerizable gelling agent include those having an unsaturated double bond such as acryloyl group, methacryloyl group, vinyl group, allyl group, epoxy, oxetane, Examples thereof include those having a cationically polymerizable cyclic ether group such as formal.
具体的にはアクリル酸、アクリル酸メチル、アクリル酸エチル、エトキシエチルアクリレート、メトキシエチルアクリレート、エトキシエトキシエチルアクリレート、ポリエチレングリコールモノアクリレート、エトキシエチルメタクリレート、エトキシエチルメタクリレート、ポリエチレングリコールモノメタクリレート、N,N−ジエチルアミノエチルアクリレート、グリシジルアクリレート、アリルアクリレート、アクリロニトリル、ジエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、ポリエチレングリコールジメタクリレート、ポリプロピレングリコールジアクリレート、ポリプロピレングリコールジメタクリレート、ポリアルキレングリコールジメタクリレート、ポリアルキレングリコールジメタクリレート、トリメチロールプロパンアルコキシレートトリアクリレート、ペンタエリスリトールアルコキシレートトリアクリレート、ペンタエリスリトールアルコキシレートテトラアクリレートなどの不飽和二重結合を有するモノマー、メチルメタクリレートと(3−エチル−3−オキセタニル)メチルアクリレートの共重合ポリマー(分子量40万)、テトラエチレングリコールビスオキセタンなどの環状エーテル基含有化合物などが挙げられる。 Specifically, acrylic acid, methyl acrylate, ethyl acrylate, ethoxyethyl acrylate, methoxyethyl acrylate, ethoxyethoxyethyl acrylate, polyethylene glycol monoacrylate, ethoxyethyl methacrylate, ethoxyethyl methacrylate, polyethylene glycol monomethacrylate, N, N- Diethylaminoethyl acrylate, glycidyl acrylate, allyl acrylate, acrylonitrile, diethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, polypropylene glycol diacrylate, polypropylene glycol dimethacrylate, polyalkylene glycol dimethacrylate , Polyalkylene glycol dimethacrylate, trimethylolpropane alkoxylate triacrylate, pentaerythritol alkoxylate triacrylate, pentaerythritol alkoxylate tetraacrylate and other monomers having an unsaturated double bond, methyl methacrylate and (3-ethyl-3 -Oxetanyl) methyl acrylate copolymer (molecular weight 400,000), cyclic ether group-containing compounds such as tetraethylene glycol bisoxetane, and the like.
不飽和結合を有するモノマーは熱、紫外線、電子線などによって重合させることができるが、反応を効果的に進行させるため、電解液に重合開始剤を入れておくこともできる。重合開始剤としては、ベンゾイルパーオキサイド、t−ブチルパーオキシクメン、ラウロイルパーオキサイド、ジ−2−エチルヘキシルパーオキシジカーボネート、t−ブチルパーオキシピバレート、t−ヘキシルパーオキシイソプロピルモノカーボネートなどの有機過酸化物を使用できる。 A monomer having an unsaturated bond can be polymerized by heat, ultraviolet light, electron beam, or the like, but a polymerization initiator may be added to the electrolyte solution in order to effectively advance the reaction. Examples of the polymerization initiator include organic compounds such as benzoyl peroxide, t-butyl peroxycumene, lauroyl peroxide, di-2-ethylhexyl peroxydicarbonate, t-butyl peroxypivalate, and t-hexyl peroxyisopropyl monocarbonate. Peroxides can be used.
環状エーテル基含有化合物は電解液中のLi+や微量のH+によって、熱あるいは充放電により重合が開始される。 Polymerization of the cyclic ether group-containing compound is initiated by heat or charge / discharge due to Li + or a small amount of H + in the electrolyte.
一方、常温でゲル状電解質を形成する高分子を電解液中に高温溶解したものを冷却する方法は、このような高分子としては、電解液に対してゲルを形成し電池材料として安定なものであればどのようなものであってもよい。例えば、ポリビニルピリジン、ポリ−N−ビニルピロリドンなどの環を有するポリマー、;ポリアクリル酸メチル、ポリアクリル酸エチルなどのアクリル誘導体ポリマー、;ポリフッ化ビニル、ポリフッ化ビニリデンなどのフッ素系樹脂;ポリアクリロニトリル、ポリビニリデンシアニドなどのCN基含有ポリマー;ポリ酢酸ビニル、ポリビニルアルコールなどのポリビニルアルコール系ポリマー;ポリ塩化ビニル、ポリ塩化ビニリデンなどのハロゲン含有ポリマーなどが挙げられる。また、上記の高分子などとの混合物、変成体、誘導体、ランダム共重合体、グラフト共重合体、ブロック共重合体などであっても使用できる。これらの高分子の重量平均分子量は通常10000〜5000000の範囲である。分子量が低いとゲルを形成しにくくなる。分子量が高いと粘度が高くなりすぎて取り扱いが困難となる。 On the other hand, a method of cooling a polymer that forms a gel electrolyte at room temperature at a high temperature is dissolved in an electrolyte solution. As such a polymer, a gel is formed with respect to the electrolyte solution and is stable as a battery material. Anything may be used. For example, polymers having a ring such as polyvinyl pyridine and poly-N-vinyl pyrrolidone; acrylic derivative polymers such as methyl polyacrylate and polyethyl acrylate; fluorine-based resins such as polyvinyl fluoride and polyvinylidene fluoride; polyacrylonitrile CN group-containing polymers such as polyvinylidene cyanide; polyvinyl alcohol polymers such as polyvinyl acetate and polyvinyl alcohol; halogen-containing polymers such as polyvinyl chloride and polyvinylidene chloride. Moreover, it can be used even if it is a mixture with said polymer | macromolecule, a modified body, a derivative | guide_body, a random copolymer, a graft copolymer, a block copolymer etc. The weight average molecular weight of these polymers is usually in the range of 10,000 to 5,000,000. When the molecular weight is low, it is difficult to form a gel. If the molecular weight is high, the viscosity becomes too high and handling becomes difficult.
本発明は、非水系電解質に特定の環状酸無水物を含有させると共に、炭酸ガスを溶存させたことにより、SEI被膜のインピーダンスが非常に低くなるため、以下に詳細に述べるように、サイクル特性、急速充電特性及び急速放電特性に優れた非水溶媒系二次電池が得られる。 The present invention contains a specific cyclic acid anhydride in the non-aqueous electrolyte and dissolves carbon dioxide gas, so that the impedance of the SEI film becomes very low. As described in detail below, the cycle characteristics, A non-aqueous solvent secondary battery excellent in rapid charge characteristics and rapid discharge characteristics can be obtained.
以下、本願発明を実施するための最良の形態を実施例及び比較例を用いて詳細に説明するが、まず最初に実施例及び比較例に共通する非水溶媒系二次電池の具体的製造方法について説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the best mode for carrying out the present invention will be described in detail using examples and comparative examples. First, a specific method for producing a nonaqueous solvent secondary battery common to the examples and comparative examples will be described. Will be described.
<正極板の作製>
LiCoO2からなる正極活物質をアセチレンブラック、グラファイト等の炭素系導電剤(例えば5質量%)と、ポリビニリデンフルオライド(PVdF)よりなる結着剤(例えば3質量%)等を、N−メチルピロリドンからなる有機溶剤等に溶解したものを混合して、活物質スラリーあるいは活物質ペーストとする。これらの活物質スラリーあるいは活物質ペーストを、スラリーの場合はダイコーター、ドクターブレード等を用いて、ペーストの場合はローラコーティング法等により正極芯体(例えば、厚みが20μmのアルミニウム箔あるいはアルミニウムメッシュ)の両面に均一に塗付して活物質層を塗布した正極板を形成する。この後、活物質層を塗布した正極板を乾燥機中に通過させて、スラリーあるいはペースト作成時に必要であった有機溶剤を除去して乾燥させ、乾燥後にこの正極板をロールプレス機により圧延して、厚みが0.17mmの正極板とする。
<Preparation of positive electrode plate>
A positive electrode active material made of LiCoO 2 is a carbon-based conductive agent (for example, 5% by mass) such as acetylene black and graphite, and a binder (for example, 3% by mass) made of polyvinylidene fluoride (PVdF) is N-methyl. A material dissolved in an organic solvent made of pyrrolidone is mixed to obtain an active material slurry or an active material paste. These active material slurries or active material pastes, in the case of slurry using a die coater, a doctor blade, etc., in the case of paste, a positive electrode core (for example, an aluminum foil or aluminum mesh having a thickness of 20 μm) by a roller coating method or the like The positive electrode plate which apply | coated uniformly on both surfaces and apply | coated the active material layer is formed. Then, the positive electrode plate coated with the active material layer is passed through a dryer to remove and dry the organic solvent necessary for making the slurry or paste. After drying, the positive electrode plate is rolled with a roll press. The positive electrode plate has a thickness of 0.17 mm.
<負極板の作製>
天然黒鉛よりなる負極活物質、ポリビニリデンフルオライド(PVdF)よりなる結着剤(例えば3質量%)等と、N−メチルピロリドンからなる有機溶剤等に溶解したものを混合して、スラリーあるいはペーストとする。これらのスラリーあるいはペーストを、スラリーの場合はダイコーター、ドクターブレード等を用いて、ペーストの場合はローラコーティング法等により負極芯体(例えば、厚みが20μmの銅箔)の両面の全面にわたって均一に塗布して、活物質層を塗布した負極板を形成する。この後、活物質層を塗布した負極板を乾燥機中に通過させて、スラリーあるいはペースト作成時に必要であった有機溶剤を除去して乾燥させる。乾燥後、この乾燥負極板をロールプレス機により圧延して、厚みが0.14mmの負極板とする。
<Preparation of negative electrode plate>
A slurry or paste prepared by mixing a negative electrode active material made of natural graphite, a binder (for example, 3% by mass) made of polyvinylidene fluoride (PVdF) and an organic solvent made of N-methylpyrrolidone, etc. And These slurries or pastes, die coater in the case of the slurry using a doctor blade or the like, the negative electrode substrate in the case of a paste by a roller coating method (e.g., copper foil 20μm thick) evenly over both sides of the entire surface of The negative electrode plate which apply | coated and applied the active material layer is formed. Thereafter, the negative electrode plate coated with the active material layer is passed through a drier to remove the organic solvent that was necessary when making the slurry or paste and dry it. After drying, the dried negative electrode plate is rolled by a roll press to obtain a negative electrode plate having a thickness of 0.14 mm.
<電極体の作製>
上述のようにして作成した正極板と負極板を、有機溶媒との反応性が低く、かつ安価なポリオレフイン系樹脂からなる微多孔膜(例えば厚みが0.025mm)を間に挟んで、かつ、各極板の幅方向の中心線を一致させて重ね合わせる。この後、巻き取り機により捲回し、最外周をテープ止めして実施例及び比較例の渦巻状電極体とする。次いで、上述のようにして作製した電極体をアルミラミネートにより構成された外装体にそれぞれ挿入し、電極体より延出した正極集電タブ、負極集電タブを外装体と共に溶着する。
<Production of electrode body>
The positive electrode plate and the negative electrode plate prepared as described above are sandwiched with a microporous membrane (for example, a thickness of 0.025 mm) made of a polyolefin resin that is low in reactivity with an organic solvent and inexpensive, and The center lines in the width direction of each electrode plate are aligned and overlapped. Then, it winds with a winder and tapes the outermost periphery, and it is set as the spiral electrode body of an Example and a comparative example. Next, the electrode bodies produced as described above are inserted into the exterior bodies made of aluminum laminate, and the positive electrode current collecting tab and the negative electrode current collection tab extending from the electrode bodies are welded together with the exterior body.
<電解液の作製>
エチレンカーボネート(EC)/ジエチレンカーボネート(DEC)=30/70の質量比で混合した溶媒中に1.0M−LiPF6となる割合で溶解させて電解液を作成し、この電解液中に環状酸無水物を添加する場合は、その添加量を電解液質量に対する割合で1.0質量%とした。また、炭酸ガスの溶存は、23℃に保った3Lの前記電解液の液底よりバブリング(炭酸ガス分圧:1.01×105Pa;10L/min−30min)させて行った。
<Preparation of electrolyte>
An electrolyte is prepared by dissolving in a solvent mixed at a mass ratio of ethylene carbonate (EC) / diethylene carbonate (DEC) = 30/70 at a ratio of 1.0M-LiPF 6 and cyclic acid is added to the electrolyte. When the anhydride was added, the amount added was 1.0% by mass with respect to the mass of the electrolyte. Carbon dioxide was dissolved by bubbling (carbon dioxide partial pressure: 1.01 × 10 5 Pa; 10 L / min-30 min) from the bottom of 3 L of the electrolyte kept at 23 ° C.
<電池の作製>
次いで、各種電解液を外装体の開口部より必要量注液した後シールして、実施例及び比較例の全てについて設計容量が750mAhのリチウムイオン二次電池を作製した。
<Production of battery>
Next, necessary amounts of various electrolytes were injected from the opening of the outer package and sealed to prepare lithium ion secondary batteries having a design capacity of 750 mAh for all of the examples and comparative examples.
なお、用いた環状酸無水物は、
(a)無水コハク酸
(b)無水メチルコハク酸
(c)5−ノルボルネン−2,3−ジカルボン酸無水物
(d)無水ノネニルコハク酸
(e)無水グルタル酸
(f)無水マレイン酸
(g)無水ジグリコール酸
の7種類であり、それぞれについて炭酸ガスを溶存させなかったものを順に比較例1〜比較例7とし、また、それぞれについて炭酸ガスを溶存させたものを順に実施例1、参考例1〜5及び実施例2とし、更に、環状酸無水物を添加せずかつ炭酸ガスを溶存させなかったものを比較例8、環状酸無水物を添加せずかつ炭酸ガスを溶存させたものを比較例9とした。
The cyclic acid anhydride used is
(A) Succinic anhydride (b) Methyl succinic anhydride (c) 5-Norbornene-2,3-dicarboxylic anhydride (d) Nonenyl succinic anhydride (e) Glutaric anhydride (f) Maleic anhydride (g) Di-anhydride Seven types of glycolic acid, in which the carbon dioxide gas was not dissolved in each case, were sequentially designated as Comparative Example 1 to Comparative Example 7, and in each case the carbon dioxide gas was dissolved in the order of Example 1 and Reference Examples 1 to 1. 5 and Example 2, and Comparative Example 8 in which no cyclic acid anhydride was added and carbon dioxide was not dissolved Comparative Example 8 in which no cyclic acid anhydride was added and carbon dioxide was dissolved It was set to 9.
<充放電条件>
上述のようにして作製した実施例1及び2、参考例1〜5、比較例1〜比較例9の非水溶媒系二次電池のそれぞれについて、以下に示した充放電条件下で各種充放電試験を行った。なお、充放電試験時の周囲温度は全て25℃である。
<Charging / discharging conditions>
For each of the non-aqueous solvent secondary batteries of Examples 1 and 2, Reference Examples 1 to 5, and Comparative Examples 1 to 9 produced as described above, various charge / discharge conditions were performed under the following charge / discharge conditions. A test was conducted. The ambient temperature during the charge / discharge test is 25 ° C.
<初回放電容量の測定>
まず最初に、各電池について、1It=750mA(1C)の定電流で充電し、電池電圧が4.2Vに達した後は4.2Vの定電圧で3時間充電し、その後、1Itの定電流で電池電圧が2.75Vに達するまで放電を行い、この時の放電容量を初回放電容量として求めた。
<Measurement of initial discharge capacity>
First, each battery is charged with a constant current of 1 It = 750 mA (1 C), and after the battery voltage reaches 4.2 V, it is charged with a constant voltage of 4.2 V for 3 hours, and then a constant current of 1 It. The battery was discharged until the battery voltage reached 2.75 V, and the discharge capacity at this time was determined as the initial discharge capacity.
<サイクル特性の測定>
サイクル特性の測定は、初回充放電容量を測定した各電池について、1Itの定電流で電池電圧が4.2Vに達するまで充電した後に4.2Vの定電圧で3時間充電し、その後、1Itの定電流で電池電圧が2.75Vに達するまで放電することを1サイクルとし、300サイクルに達するまで繰返して300サイクル時の放電容量を求めた。そして、各電池について以下の計算式に基いて容量残存率(%)を求めた。結果を表1に示す。
容量残存率(%)=(300サイクル時の放電容量/初回放電容量)×100
<Measurement of cycle characteristics>
The cycle characteristics were measured by charging each battery whose initial charge / discharge capacity was measured at a constant current of 1 It until the battery voltage reached 4.2 V, then charging at a constant voltage of 4.2 V for 3 hours, and then 1 It of Discharging until the battery voltage reached 2.75 V at a constant current was taken as one cycle, and repeated until 300 cycles were reached, and the discharge capacity at 300 cycles was determined. And about each battery, capacity | capacitance residual rate (%) was calculated | required based on the following formulas. The results are shown in Table 1.
Capacity remaining rate (%) = (discharge capacity at 300 cycles / initial discharge capacity) × 100
<急速充電持性>
初回充放電容量を測定した各電池について、3Itの定電流で電池電圧が4.2Vに達するまで充電し、その際の充電容量をCC(定電流:Constant Current)充電容量として求めた。その後は4.2Vの定電圧で3時間充電し、この時点までに流れた電流値から全充電容量を求め、以下の計算式により急速充電特性としてのCC充電率(%)を求めた。結果を表1にまとめて示す。
CC充電率(%)=(CC充電容量/全充電容量)×100
<Quick chargeability>
Each battery whose initial charge / discharge capacity was measured was charged at a constant current of 3 It until the battery voltage reached 4.2 V, and the charge capacity at that time was determined as a CC (Constant Current) charge capacity. Thereafter, the battery was charged at a constant voltage of 4.2 V for 3 hours, and the total charge capacity was determined from the current value that had flowed up to this point. The results are summarized in Table 1.
CC charge rate (%) = (CC charge capacity / total charge capacity) × 100
<急速放電特性>
初回充放電容量を測定した各電池について、1Itの定電流で電池電圧が4.2Vに達するまで充電した後に4.2Vの定電圧で3時間充電した。その後、3Itの定電流で電池電圧が2.75Vとなるまで放電させてこの時の放電容量を3It放電容量として求め、別途同様の電池について0.2Itの定電流で電池電圧が2.75Vとなるまで放電させてこの時の放電容量を0.2It放電容量として求め、以下の計算式により急速放電効率を求めた。結果を表1にまとめて示す。
急速放電効率(%)=(3It放電容量/0.2It放電容量)×100
<Rapid discharge characteristics>
Each battery whose initial charge / discharge capacity was measured was charged at a constant current of 1 It until the battery voltage reached 4.2 V, and then charged at a constant voltage of 4.2 V for 3 hours. Thereafter, the battery is discharged at a constant current of 3 It until the battery voltage reaches 2.75 V, and the discharge capacity at this time is obtained as a 3 It discharge capacity. For a similar battery, the battery voltage is 2.75 V at a constant current of 0.2 It. The discharge capacity at this time was determined as a 0.2 It discharge capacity, and the rapid discharge efficiency was determined by the following formula. The results are summarized in Table 1.
Rapid discharge efficiency (%) = (3 It discharge capacity / 0.2 It discharge capacity) × 100
表1の結果から、非水系電解質中に環状酸無水物及び炭酸ガス共に含有していない比較例8の非水溶媒系二次電池の結果を基準とすると、以下のことがわかる。
(1)炭酸ガスのみを含有している比較例9の非水溶媒系二次電池は、僅かながらサイクル特性、急速充電特性及び急速放電特性共に比較例8の非水溶媒系二次電池よりも優れている。
(2)環状酸無水物のみを含有し、炭酸ガスを含有していない比較例1〜7の非水溶媒系二次電池は、いずれもサイクル特性は比較例8の非水系二次電池よりも優れているが、急速充電特性及び急速放電特性は比較例8の非水溶媒系二次電池よりも劣っている。
(3)環状酸無水物及び炭酸ガスの両者を含有している実施例1、参考例1〜5及び実施例2の非水溶媒系二次電池は、いずれもサイクル特性は比較例8の非水系二次電池よりも優れており、急速充電特性及び急速放電特性はいずれも比較例8の非水溶媒系二次電池と同程度の特性となっている。特に環状酸無水物として無水コハク酸又は無水ジグリコール酸を用いた実施例1及び2の結果は、他の還状酸無水物を用いた参考例1〜5の結果よりも、サイクル特性容量残存率、急速充放電特性放電効率などが優れている。
From the results of Table 1, the following can be seen based on the results of the non-aqueous solvent secondary battery of Comparative Example 8 in which neither the cyclic acid anhydride nor carbon dioxide is contained in the non-aqueous electrolyte.
(1) The non-aqueous solvent secondary battery of Comparative Example 9 containing only carbon dioxide is slightly more than the non-aqueous solvent secondary battery of Comparative Example 8 in terms of cycle characteristics, quick charge characteristics, and rapid discharge characteristics. Are better.
(2) The non-aqueous solvent secondary batteries of Comparative Examples 1 to 7 that contain only cyclic acid anhydrides and do not contain carbon dioxide gas have cycle characteristics that are higher than those of the non-aqueous secondary battery of Comparative Example 8. Although excellent, quick charge characteristics and rapid discharge characteristics are inferior to those of the non-aqueous solvent secondary battery of Comparative Example 8.
(3) The non-aqueous solvent type secondary batteries of Example 1 and Reference Examples 1 to 5 and Example 2 containing both cyclic acid anhydride and carbon dioxide gas have the same cycle characteristics as those of Comparative Example 8. It is superior to the water-based secondary battery, and both the quick charge characteristics and the rapid discharge characteristics are comparable to those of the nonaqueous solvent-type secondary battery of Comparative Example 8. In particular, the results of Examples 1 and 2 using succinic anhydride or diglycolic anhydride as the cyclic acid anhydride were more than the results of Reference Examples 1 to 5 using other reduced acid anhydrides, and the cycle characteristic capacity remaining. Rate, rapid charge / discharge characteristics and discharge efficiency are excellent .
加えて、実施例1、参考例1〜5及び実施例2の非水溶媒系二次電池は、炭酸ガスのみを含有している比較例9の非水溶媒系二次電池と比するとサイクル特性は優れており、急速充電特性及び急速放電特性は同程度となっている。また、実施例1、参考例1〜5及び実施例2の非水溶媒系二次電池は、それぞれ炭酸ガスを含有していない対応する比較例1〜7の非水溶媒系二次電池と比すると、サイクル特性は僅かに向上していることがわかる。 In addition, the non-aqueous solvent secondary battery of Example 1 , Reference Examples 1 to 5 and Example 2 has cycle characteristics as compared with the non-aqueous solvent secondary battery of Comparative Example 9 containing only carbon dioxide gas. Are excellent, and the rapid charge characteristics and rapid discharge characteristics are comparable. In addition, the nonaqueous solvent secondary batteries of Example 1 , Reference Examples 1 to 5 and Example 2 are respectively compared with the corresponding nonaqueous solvent secondary batteries of Comparative Examples 1 to 7 not containing carbon dioxide gas. Then, it can be seen that the cycle characteristics are slightly improved.
以上のことから、本発明においては、環状酸無水物として無水コハク酸又は無水ジグリコール酸、及び炭酸ガスの両者を含有させることで、環状酸無水物のみを添加した従来例のものと比すると、サイクル特性、急速充電特性及び急速放電特性に優れた非水溶媒系二次電池が得られる。 From the above, in the present invention, by including both succinic anhydride or diglycolic acid anhydride and carbon dioxide as the cyclic acid anhydride, compared with the conventional example in which only the cyclic acid anhydride is added. In addition, a non-aqueous solvent type secondary battery excellent in cycle characteristics, quick charge characteristics and rapid discharge characteristics can be obtained.
また、上記実施例1及び2では全て液状非水系電解液を使用した例のみを示したが、本発明の効果は負極の界面のSEIで生じる現象であるため、電解液の性状により変わるものではないので、前記非水系電解液がゲルされている場合も同様の効果が奏されることは当業者にとり自明であろう。 Further, in Examples 1 and 2 above, only examples using a liquid non-aqueous electrolyte were shown, but the effect of the present invention is a phenomenon caused by SEI at the interface of the negative electrode, so it does not vary depending on the properties of the electrolyte. Therefore, it will be apparent to those skilled in the art that the same effect can be obtained even when the non-aqueous electrolyte is gelled.
Claims (4)
前記非水系電解液に環状酸無水物を含有させると共に炭酸ガスを溶存させ、
前記環状酸無水物は、無水コハク酸又は無水ジグリコール酸であり、前記非水系電解液中に0.01〜10質量%の割合で含有されていることを特徴とする非水溶媒系二次電池。 In a nonaqueous solvent secondary battery comprising at least a positive electrode having a positive electrode material that reversibly occludes / releases lithium, a negative electrode having a negative electrode material that reversibly occludes / releases lithium, and a nonaqueous electrolyte solution,
Including the cyclic acid anhydride in the non-aqueous electrolyte solution and dissolving carbon dioxide gas ,
The cyclic acid anhydride is succinic anhydride or diglycolic anhydride, and is contained in the nonaqueous electrolytic solution in a proportion of 0.01 to 10% by mass. battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003282197A JP4601273B2 (en) | 2003-07-29 | 2003-07-29 | Non-aqueous solvent type secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003282197A JP4601273B2 (en) | 2003-07-29 | 2003-07-29 | Non-aqueous solvent type secondary battery |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2005050707A JP2005050707A (en) | 2005-02-24 |
JP2005050707A5 JP2005050707A5 (en) | 2006-06-15 |
JP4601273B2 true JP4601273B2 (en) | 2010-12-22 |
Family
ID=34267476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003282197A Expired - Fee Related JP4601273B2 (en) | 2003-07-29 | 2003-07-29 | Non-aqueous solvent type secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4601273B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021128205A1 (en) * | 2019-12-26 | 2021-07-01 | 宁德新能源科技有限公司 | Electrolyte and electrochemical device |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006066320A (en) * | 2004-08-30 | 2006-03-09 | Shin Kobe Electric Mach Co Ltd | Carboxylic acid anhydrous organic compound, non-water electrolyte and lithium secondary battery using it |
US8715852B2 (en) | 2005-08-18 | 2014-05-06 | Samsung Sdi Co., Ltd. | Electrolyte for lithium secondary battery and lithium secondary battery including the same |
JP4763407B2 (en) * | 2005-09-28 | 2011-08-31 | 日立ビークルエナジー株式会社 | Non-aqueous electrolyte and lithium secondary battery using the non-aqueous electrolyte |
JP5153200B2 (en) | 2007-04-27 | 2013-02-27 | 三洋電機株式会社 | Non-aqueous electrolyte secondary battery and manufacturing method thereof |
CA2625271A1 (en) | 2008-03-11 | 2009-09-11 | Hydro-Quebec | Method for preparing an electrochemical cell having a gel electrolyte |
EP2182574B1 (en) | 2008-10-29 | 2014-03-05 | Samsung Electronics Co., Ltd. | Electrolyte composition and catalyst ink used to form solid electrolyte membrane |
JP5633817B2 (en) * | 2010-04-22 | 2014-12-03 | 日油株式会社 | Non-aqueous electrolyte for electric device and secondary battery using the same |
CN108598574A (en) * | 2018-04-16 | 2018-09-28 | 东莞市杉杉电池材料有限公司 | A kind of lithium-ion battery electrolytes and the lithium ion battery containing the electrolyte |
WO2024130543A1 (en) * | 2022-12-20 | 2024-06-27 | 东莞新能源科技有限公司 | Electrolyte, electrochemical device and electronic device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003077539A (en) * | 2001-09-04 | 2003-03-14 | Mitsubishi Materials Corp | Gel polymer electrolyte and lithium polymer battery using the same |
JP2003109659A (en) * | 2001-09-27 | 2003-04-11 | Toshiba Corp | Nonaqueous electrolyte secondary battery |
-
2003
- 2003-07-29 JP JP2003282197A patent/JP4601273B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003077539A (en) * | 2001-09-04 | 2003-03-14 | Mitsubishi Materials Corp | Gel polymer electrolyte and lithium polymer battery using the same |
JP2003109659A (en) * | 2001-09-27 | 2003-04-11 | Toshiba Corp | Nonaqueous electrolyte secondary battery |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021128205A1 (en) * | 2019-12-26 | 2021-07-01 | 宁德新能源科技有限公司 | Electrolyte and electrochemical device |
Also Published As
Publication number | Publication date |
---|---|
JP2005050707A (en) | 2005-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4748930B2 (en) | Non-aqueous solvent type secondary battery | |
US9362592B2 (en) | Method of preparing gel polymer electrolyte secondary battery and gel polymer electrolyte secondary battery | |
JP5394239B2 (en) | Gel polymer electrolyte and electrochemical device provided with the same | |
JP4412840B2 (en) | Lithium polymer battery and manufacturing method thereof | |
KR20080101702A (en) | Secondary battery and manufacturing method of the same | |
JP4014816B2 (en) | Lithium polymer secondary battery | |
JP2013033692A (en) | Binder for lithium ion secondary battery negative electrode, and lithium ion secondary battery with binder for negative electrode | |
JP5169181B2 (en) | Non-aqueous electrolyte secondary battery | |
JP4601273B2 (en) | Non-aqueous solvent type secondary battery | |
JP2008112722A (en) | Lithium polymer battery | |
JP2012248544A (en) | Lithium polymer battery | |
JP4596763B2 (en) | Non-aqueous solvent type secondary battery | |
JP2005135755A (en) | Method of manufacturing carbon material for negative electrode of nonaqueous secondary battery and nonaqueous secondary battery using same | |
JP4707312B2 (en) | Non-aqueous solvent type secondary battery | |
JP7359337B1 (en) | Negative electrode binder composition, method for producing the same, negative electrode, and secondary battery | |
JP4707313B2 (en) | Non-aqueous solvent type secondary battery | |
JP7183183B2 (en) | Binder for non-aqueous electrolyte battery, binder aqueous solution and slurry composition using the same, electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery | |
JP2023523124A (en) | In situ polymerized hybrid polymer electrolytes for high voltage lithium batteries | |
JP2020145062A (en) | Negative electrode mixture for secondary battery, negative electrode for secondary battery, and secondary battery | |
JP4243964B2 (en) | Non-aqueous secondary battery | |
CN114142039A (en) | Binder and lithium ion battery comprising same | |
JP2009140647A (en) | Nonaqueous electrolyte secondary battery | |
JP7311059B2 (en) | Negative electrode binder composition, negative electrode, and secondary battery | |
JP4703155B2 (en) | Non-aqueous electrolyte battery | |
JP4878758B2 (en) | Non-aqueous secondary battery and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20030828 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20030828 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060421 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060421 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090123 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090908 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091106 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100831 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100928 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131008 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4601273 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131008 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |