JPH0899278A - Robot controller - Google Patents

Robot controller

Info

Publication number
JPH0899278A
JPH0899278A JP23629294A JP23629294A JPH0899278A JP H0899278 A JPH0899278 A JP H0899278A JP 23629294 A JP23629294 A JP 23629294A JP 23629294 A JP23629294 A JP 23629294A JP H0899278 A JPH0899278 A JP H0899278A
Authority
JP
Japan
Prior art keywords
speed
action
constant
feed
robot controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23629294A
Other languages
Japanese (ja)
Inventor
Takeshi Aizawa
毅 相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP23629294A priority Critical patent/JPH0899278A/en
Publication of JPH0899278A publication Critical patent/JPH0899278A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)
  • Feedback Control In General (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE: To improve precision and a response speed by employing a feed- forward controlling method in a robot controller controlling an interpolating action by which a robot is moved while drawing a linear or curved or bit between a moving point and another moving point. CONSTITUTION: A feed-forward controlling method is used for an interpolating action requiring precision and response speed, while an ordinary feedback controlling method is employed for a PTP action (an action in which movement between two positions is carried out at the shortest speed) requiring no precision and no response speed, so that stability of the action is improved. In the feed- forward controlling method, a command signal is processed in a such way as is shown in a position control block, and then, a position signal is outputted. Kpf represents a position feedback constant, Kv represents a servo-amplifire speed constant, Tv represents a servo-amplifier response delay time, Kp represent a speed/position conversion constant, Td represents a feedback loop waste time factor, and Kff represents a feed-forward compensation constant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ロボット制御装置に関
する。詳しくは、ロボットの制御性能を改善するように
したものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a robot controller. More specifically, the control performance of the robot is improved.

【0002】[0002]

【従来の技術】従来のロボット制御装置の一例を図3に
示す。同図中、1はCRTインターフェース部、2は制
御CPU、3は補間演算CPU、4はサーボ演算CP
U、5は専用キーインターフェース部、6はティーチン
グボックスインターフェース部、7はエンコーダインタ
ーフェース部、8はサーボインターフェース部、9はC
RT(ディスプレイ)、10は盤操作キー、11はティ
ーチングボックス、12はサーボアンプである。
2. Description of the Related Art An example of a conventional robot controller is shown in FIG. In the figure, 1 is a CRT interface unit, 2 is a control CPU, 3 is an interpolation calculation CPU, and 4 is a servo calculation CP.
U, 5 are dedicated key interface units, 6 is a teaching box interface unit, 7 is an encoder interface unit, 8 is a servo interface unit, and 9 is C.
RT (display), 10 is a panel operation key, 11 is a teaching box, and 12 is a servo amplifier.

【0003】ロボットの動作は、移動点と移動点を最短
速度で移動させるPTP動作と、移動点と移動点を直線
や円弧の軌道を描いて動作させる補間動作との二種類に
大別される。PTP動作は、始点と終点とを各軸ごと
に、台形速度パターンにより最短時間で同時制御するた
め、動作速度がかなり速くなるのに対し、補間動作は、
移動点の始点と終点を、直線や円弧により動作させるた
め、動作速度はPTP動作ほど速くないが、軌道のトレ
ース精度や適応制御時の応答速度が要求される。
The operation of the robot is roughly classified into two types, that is, a PTP operation for moving the moving point and the moving point at the shortest speed, and an interpolating operation for moving the moving point and the moving point by drawing a trajectory of a straight line or a circular arc. . In the PTP operation, since the start point and the end point are controlled simultaneously for each axis by the trapezoidal speed pattern in the shortest time, the operation speed is considerably high, while the interpolation operation is
Since the start point and the end point of the moving point are moved by a straight line or a circular arc, the operation speed is not as fast as the PTP operation, but the trace accuracy of the trajectory and the response speed during adaptive control are required.

【0004】[0004]

【発明が解決しようとする課題】上述したロボット制御
装置の位置制御方式としては、図4に示すように、フィ
ードバック制御方式が採用されている。ここで、各定数
は次の通りである。 Kpp:位置フィードバックループ、比例ゲイン Kv:サーボアンプ速度定数 Tv:サーボアンプ応答遅れ時間 Kp:速度/位置変換定数 Kpf:位置フィードバック定数
As a position control system of the above-mentioned robot controller, a feedback control system is adopted as shown in FIG. Here, each constant is as follows. K pp : Position feedback loop, proportional gain K v : Servo amplifier speed constant T v : Servo amplifier response delay time K p : Speed / position conversion constant K pf : Position feedback constant

【0005】しかし、フィードバック制御方式で補間動
作を行うと軌道のズレが発生する問題があり、また、適
用制御等に対する応答が遅いという問題もあった。本発
明は、上記従来技術に鑑みてなされたものであり、補間
動作におけるロボットの制御性能を改善したロボット制
御装置を提供することを目的とする。
However, there is a problem that a trajectory shift occurs when the interpolation operation is performed by the feedback control method, and there is a problem that the response to the applied control is slow. The present invention has been made in view of the above-described conventional art, and an object of the present invention is to provide a robot control device having improved robot control performance in interpolation operation.

【0006】[0006]

【課題を解決するための手段】斯かる目的を達成する本
発明の構成は、移動点と移動点との間を直線又は円弧の
軌道を描いてロボットを移動させる補間動作を行わせる
ロボット制御装置において、フィードフォワード制御方
式を採用したことを特徴とする。また、上記目的を達成
する本発明の構成は、移動点と移動点との間を直線又は
円弧の軌道を描いてロボットを移動させる補間動作又は
移動点と移動点とを最短時間で移動させるPTP動作を
行わせるロボット制御装置において、補間動作を行わせ
る場合にはフィードフォワード制御方式に切り換えるこ
とを特徴とする。
The structure of the present invention which achieves such an object is a robot control device for performing an interpolating operation for moving a robot by drawing a straight or circular trajectory between moving points. In the above, a feedforward control method is adopted. Further, the configuration of the present invention that achieves the above-mentioned object is an interpolation operation for moving a robot by drawing a straight or circular trajectory between moving points or a PTP for moving the moving points and the moving points in the shortest time. A feature of the robot controller for performing the operation is to switch to the feedforward control method when performing the interpolation operation.

【0007】[0007]

【作用】精度や応答速度を改善するのに役立つフィード
フォワード制御は、動作速度が大きい場合には、不安定
となる虞がある。そこで、精度や応答速度の要求される
補間動作では、フィードフォワード制御方式を採用し、
又は、フィードフォワード制御方式に切り換えることに
より、精度や応答速度が改善される。一方、精度や応答
速度の要求されないPTP動作では、通常のフィードバ
ック制御方式を採用することにより、安定性が高められ
る。
The feedforward control, which is useful for improving accuracy and response speed, may become unstable when the operating speed is high. Therefore, in the interpolation operation that requires accuracy and response speed, the feedforward control method is adopted,
Alternatively, the accuracy and response speed are improved by switching to the feedforward control method. On the other hand, in the PTP operation in which accuracy and response speed are not required, the stability is enhanced by adopting the normal feedback control method.

【0008】[0008]

【実施例】以下、本発明について、図面に示す実施例を
参照して詳細に説明する。本発明の一実施例を図1に示
す。同図に示すように、本実施例では、精度や応答速度
の要求される補間動作では、フィードフォワード制御方
式を採用したものである。ここで、各定数は次の通りで
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the embodiments shown in the drawings. One embodiment of the present invention is shown in FIG. As shown in the figure, in this embodiment, a feedforward control system is adopted in the interpolation operation which requires accuracy and response speed. Here, each constant is as follows.

【0009】Kpp:位置フィードバックループ、比例ゲ
イン Kv:サーボアンプ速度定数 Tv:サーボアンプ応答遅れ時間 Kp:速度/位置変換定数 Kpf:位置フィードバック定数 Td:フィードバックループ無駄時間要素 Kff:フィードフォワード補償定数
K pp : Position feedback loop, proportional gain K v : Servo amplifier speed constant T v : Servo amplifier response delay time K p : Speed / position conversion constant K pf : Position feedback constant T d : Feedback loop dead time element K ff : Feedforward compensation constant

【0010】このように、本実施例では、補間動作に対
してフィードフォワード制御方式を採用したため、精度
や応答速度を改善することができる他、次の効果を奏す
る。 (1)位置制御ブロックのゲインを上げることなく、補
間動作時の精度と応答速度を改善することができ、従っ
て、位置制御ブロックの安定性が高くなる。 (2)位置偏差パルスは、1/10程度に圧縮され、且
つ、応答は速度制御部の応答遅れ時間まで改善される
(1/4程度まで短縮される。)。
As described above, in this embodiment, since the feedforward control system is adopted for the interpolation operation, the accuracy and the response speed can be improved and the following effects can be obtained. (1) It is possible to improve the accuracy and the response speed during the interpolation operation without increasing the gain of the position control block, and thus the stability of the position control block is increased. (2) The position deviation pulse is compressed to about 1/10, and the response is improved to the response delay time of the speed control unit (shortened to about 1/4).

【0011】尚、フィードフォワード制御方式を、精度
や応答速度の要求されないPTP動作に適用しないの
は、動作速度が大きい場合には、不安定となる虞がある
ためである。
The feed-forward control method is not applied to the PTP operation in which accuracy and response speed are not required, because it may become unstable when the operation speed is high.

【0012】従って、PTP動作と補間動作の二つの動
作を行うロボット制御装置においては、動作の種類に応
じて、制御方式を切り換える必要がある。例えば、図2
に示すように、補間動作かPTP動作かを判定し、補間
動作の場合には、図1に示すようにフィードフォワード
制御方式に切り換え、また、PTP動作の場合には通常
の位置制御処理であるフィードバック制御方式に切り換
えると良い(図3参照)。
Therefore, in the robot controller which performs two operations, the PTP operation and the interpolation operation, it is necessary to switch the control method according to the type of operation. For example, in FIG.
As shown in FIG. 1, it is determined whether the operation is the interpolation operation or the PTP operation. In the case of the interpolation operation, the feedforward control method is switched to that shown in FIG. 1, and in the case of the PTP operation, the normal position control processing is performed. It is better to switch to the feedback control method (see FIG. 3).

【0013】[0013]

【発明の効果】以上、実施例に基づいて具体的に説明し
たように、本発明によれば、補間動作を行わせるロボッ
ト制御装置においては、フィードフォワード制御方式を
採用するため、精度や応答速度が改善されることにな
る。また、補間動作又はPTP動作を行わせるロボット
制御装置において、補間動作を行わせる場合には、フィ
ードフォワード制御方式に切り換えるため、精度や応答
速度が改善されることになる。
As described above in detail with reference to the embodiments, according to the present invention, since the feed-forward control system is adopted in the robot controller for performing the interpolation operation, the accuracy and the response speed are improved. Will be improved. Further, in the robot controller that performs the interpolation operation or the PTP operation, when the interpolation operation is performed, the feedforward control method is switched, so that the accuracy and the response speed are improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るロボット制御装置の位
置制御ブロック図である。
FIG. 1 is a position control block diagram of a robot controller according to an embodiment of the present invention.

【図2】本発明の一実施例に係るロボット制御装置の位
置制御を示すフローチャートである。
FIG. 2 is a flowchart showing position control of the robot controller according to the embodiment of the present invention.

【図3】従来のロボット制御装置の構成図である。FIG. 3 is a configuration diagram of a conventional robot controller.

【図4】従来のロボット制御装置の位置制御ブロック図
である。
FIG. 4 is a position control block diagram of a conventional robot controller.

【符号の説明】[Explanation of symbols]

1 CRTインターフェース部 2 制御CPU 3 補間演算CPU 4 サーボ演算CPU 5 専用キーインターフェース部 6 ティーチングボックスインターフェース部 7 エンコーダインターフェース部 8 サーボインターフェース部 9 CRT(ディスプレイ) 10 盤操作キー 11 ティーチングボックス 12 サーボアンプ 1 CRT interface section 2 Control CPU 3 Interpolation calculation CPU 4 Servo calculation CPU 5 Dedicated key interface section 6 Teaching box interface section 7 Encoder interface section 8 Servo interface section 9 CRT (display) 10 Panel operation key 11 Teaching box 12 Servo amplifier

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 移動点と移動点との間を直線又は円弧の
軌道を描いてロボットを移動させる補間動作を行わせる
ロボット制御装置において、フィードフォワード制御方
式を採用したことを特徴とするロボット制御装置。
1. A robot controller characterized by adopting a feedforward control system in a robot controller for performing an interpolating operation for moving a robot by drawing a trajectory of a straight line or an arc between the moving points. apparatus.
【請求項2】 移動点と移動点との間を直線又は円弧の
軌道を描いてロボットを移動させる補間動作又は移動点
と移動点とを最短時間で移動させるPTP動作を行わせ
るロボット制御装置において、補間動作を行わせる場合
にはフィードフォワード制御方式に切り換えることを特
徴とするロボット制御装置。
2. A robot controller for performing an interpolation operation for moving a robot by drawing a straight or circular trajectory between moving points and a PTP operation for moving the moving point and the moving point in the shortest time. A robot controller characterized by switching to a feedforward control method when performing an interpolation operation.
JP23629294A 1994-09-30 1994-09-30 Robot controller Pending JPH0899278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23629294A JPH0899278A (en) 1994-09-30 1994-09-30 Robot controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23629294A JPH0899278A (en) 1994-09-30 1994-09-30 Robot controller

Publications (1)

Publication Number Publication Date
JPH0899278A true JPH0899278A (en) 1996-04-16

Family

ID=16998636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23629294A Pending JPH0899278A (en) 1994-09-30 1994-09-30 Robot controller

Country Status (1)

Country Link
JP (1) JPH0899278A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135060A (en) * 2003-10-29 2005-05-26 Yaskawa Electric Corp Servo adjusting method of trace follow-up control
US6993413B2 (en) 2003-03-31 2006-01-31 Kabushiki Kaisha Toshiba Manipulator and its control apparatus and method
US7295893B2 (en) 2003-03-31 2007-11-13 Kabushiki Kaisha Toshiba Manipulator and its control apparatus and method
KR101141917B1 (en) * 2009-12-03 2012-05-03 한국과학기술원 Time delay control with gradient estimator for robot manipulator and robot manipulator controller using the same
CN105773623A (en) * 2016-04-29 2016-07-20 江南大学 SCARA robot trajectory tracking control method based on prediction indirect iterative learning

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6993413B2 (en) 2003-03-31 2006-01-31 Kabushiki Kaisha Toshiba Manipulator and its control apparatus and method
US7194335B2 (en) 2003-03-31 2007-03-20 Kabushiki Kaisha Toshiba Manipulator and its control apparatus and method
US7295893B2 (en) 2003-03-31 2007-11-13 Kabushiki Kaisha Toshiba Manipulator and its control apparatus and method
JP2005135060A (en) * 2003-10-29 2005-05-26 Yaskawa Electric Corp Servo adjusting method of trace follow-up control
KR101141917B1 (en) * 2009-12-03 2012-05-03 한국과학기술원 Time delay control with gradient estimator for robot manipulator and robot manipulator controller using the same
CN105773623A (en) * 2016-04-29 2016-07-20 江南大学 SCARA robot trajectory tracking control method based on prediction indirect iterative learning

Similar Documents

Publication Publication Date Title
JP3478946B2 (en) Servo adjustment method and device
JPH0899278A (en) Robot controller
JP2003044102A (en) Learning control method
JP3246559B2 (en) Servo control method
JP2600715B2 (en) Robot servo control method
JPH0764644A (en) Gain switching device for positioning servo mechanism
JP2577003B2 (en) Robot control method
JPH09258813A (en) Industrial robot
JP3130984B2 (en) Control method of DC servo mechanism
JPH06262560A (en) Robot controller
KR100387587B1 (en) Approximate Optimal Proportional-Integral-Derivative Control Action Values for Servo Motors
JPH06180606A (en) Controller for object to be driven
JPH04258502A (en) Driving control device for actuator
JPH01177604A (en) Servo device
JP2550648B2 (en) Master / slave manipulator control method
JPS58121407A (en) Positioning control method for industrial robot
JPH06339882A (en) Control device for industrial robot
JPH0320804A (en) Robot reproduction control method
JPH0899279A (en) Robot controller
JP2953925B2 (en) Control device for driving parts
JPS63271613A (en) Controller for robot
JPH081557A (en) Control device for industrial robot
JP2000000787A (en) Robot controller
JPH07175508A (en) Robot controller
JPH0699371A (en) Control method utilizing acceleration change of industrial robot

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010522