JPH06180606A - Controller for object to be driven - Google Patents

Controller for object to be driven

Info

Publication number
JPH06180606A
JPH06180606A JP33168092A JP33168092A JPH06180606A JP H06180606 A JPH06180606 A JP H06180606A JP 33168092 A JP33168092 A JP 33168092A JP 33168092 A JP33168092 A JP 33168092A JP H06180606 A JPH06180606 A JP H06180606A
Authority
JP
Japan
Prior art keywords
unit
movement amount
acceleration
movement
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33168092A
Other languages
Japanese (ja)
Inventor
Hideki Kimata
秀樹 木股
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP33168092A priority Critical patent/JPH06180606A/en
Publication of JPH06180606A publication Critical patent/JPH06180606A/en
Pending legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)

Abstract

PURPOSE:To provide the controller of an object to be driven in which working precision can be improved by suppressing the sudden load and vibration of a driving motor at the time of the start and end of movement, and suppressing the deviation of a moving locus. CONSTITUTION:This device is constituted of a rough interpolation processing part 4 equipped with a moving instruction discriminating part 5 which discriminates whether a moving instruction is transmitted from a driving instruction issuing part 1 which directly commands the moving instruction to a driving shaft, or an instruction decoding part 3 which decodes the instruction of a program storage part 2, and acceleration processing parts 21 and 20 which operate an acceleration processing to rough unit moving amounts per a rough interpolation unit time calculated by a rough unit moving amount calculating part 6 by the instruction, and vector moving amounts per a unit time outputted by a vector moving amount calculating part 8, and a precise interpolation processing part 11 equipped with a precise unit moving amount dividing part 12 which divides the moving amounts calculated by the rough interpolation processing part 4 into the moving amounts per a precise unit time, and an acceleration processing part 7 which operates the acceleration processing to the moving amounts divided by the precise unit moving amount dividing part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、駆動対象物を目的位
置に移動させる際の軌跡制御や速度制御を行う産業用ロ
ボット及び、各種工作機械等の駆動対象物の制御装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an industrial robot for controlling a trajectory and a speed when a driven object is moved to a target position, and a control device for the driven object such as various machine tools.

【0002】[0002]

【従来の技術】図7は、従来のロボット制御装置を示す
ブロック図である。図中、このロボット制御装置では、
移動命令のモードが手動モードで、顧客がティーチング
ボックス(以下T/Bと略す)等を用いて、ロボットを
任意の位置まで移動させる場合、T/B等からの移動指
令を直接命令指令部1が取り込むようになっている。移
動命令のモードが自動モードの場合は、ユーザが教示す
るかマニュアルデータ入力などによって作成したプログ
ラムがプログラム記憶部2に格納されている。現在実行
中のプログラムに書かれている命令を命令解読部3が解
読するようになっている。直接命令指令部1で取り込ん
だ命令や、命令解読部3で解読した命令などにより、粗
補間の単位時間当りの各駆動軸の移動量を粗補間処理部
4が算出する。
2. Description of the Related Art FIG. 7 is a block diagram showing a conventional robot controller. In the figure, this robot controller
When the movement command mode is the manual mode and the customer moves the robot to an arbitrary position using a teaching box (hereinafter abbreviated as T / B) or the like, the movement command from the T / B or the like is directly issued to the command instruction unit 1 Is designed to be imported. When the mode of the movement instruction is the automatic mode, the program taught by the user or created by manual data input is stored in the program storage unit 2. The instruction decoding section 3 decodes the instruction written in the program currently being executed. The coarse interpolation processing unit 4 calculates the amount of movement of each drive axis per unit time of the rough interpolation based on the command directly fetched by the command command unit 1 and the command decoded by the command decoding unit 3.

【0003】粗補間処理部4に与えられた命令が、直接
指令部1からの命令(以下、手動移動命令と記す)か、
命令解読部3からの命令(以下、自動移動命令と記す)
なのかを移動命令判定部5が判定するようになってい
る。移動命令判定部5の判定の結果が手動移動命令であ
った場合には、命令を受けた全ての軸の粗補間単位時間
当りの移動量を粗単位移動量算出部6で算出する。移動
命令判定部5の判定の結果が自動移動命令であった場合
には、この自動移動命令を基にして粗補間単位時間当り
のベクトル移動量をベクトル移動量算出部8が算出し、
このベクトル移動量に基づいて各軸の移動量を軸移動量
算出部10で算出する。精補間処理部11では、粗補間
処理部4で算出された粗補間単位時間当りの軸移動量を
受け取り、これを細分割して各駆動軸のモータ(図示せ
ず)に出力する。次いで精単位移動量分割部12が粗補
間単位時間当りの軸移動量を、精補間の単位時間当りの
移動量に細分割する。そして、精単位移動量分割部12
で細分割された移動量に加減速処理部7が加減速処理を
施す。13は、精補間処理部11の出力により動作する
各駆動軸モータを備えた産業用ロボット本体の一例であ
る。
Whether the command given to the rough interpolation processing unit 4 is a command from the direct command unit 1 (hereinafter referred to as a manual movement command),
Command from command decoder 3 (hereinafter referred to as automatic move command)
The movement command determination unit 5 determines whether or not. When the result of the determination by the movement command determination unit 5 is a manual movement command, the coarse unit movement amount calculation unit 6 calculates the movement amount per coarse interpolation unit time of all the axes that have received the instruction. If the result of the determination by the movement instruction determination unit 5 is an automatic movement instruction, the vector movement amount calculation unit 8 calculates the vector movement amount per coarse interpolation unit time based on this automatic movement instruction,
Based on this vector movement amount, the movement amount of each axis is calculated by the axis movement amount calculation unit 10. The fine interpolation processing unit 11 receives the axial movement amount per coarse interpolation unit time calculated by the rough interpolation processing unit 4, subdivides this, and outputs it to the motor (not shown) of each drive shaft. Next, the fine unit movement amount division unit 12 finely divides the axis movement amount per coarse interpolation unit time into movement amounts per fine interpolation unit time. Then, the precise unit movement amount division unit 12
The acceleration / deceleration processing unit 7 performs the acceleration / deceleration processing on the movement amount subdivided in (1). Reference numeral 13 is an example of an industrial robot main body including drive shaft motors that operate according to the output of the fine interpolation processing unit 11.

【0004】次に、このように構成されたロボット制御
装置の動作について説明する。移動命令のモードが手動
モードである場合、直接命令指令部1において、移動さ
せたい軸とその移動方向や速度を直接命令として粗補間
処理部4に指令する。粗補間処理部4では移動命令判定
部5によって命令の種類を判定する。手動移動命令と判
断すると粗単位移動量算出部6は命令を受けた軸毎に命
令された移動速度から粗補間単位時間当りの絶対移動量
を算出する。この絶対移動量に移動方向の符号を付加し
て精補間処理部11に出力する。また、移動命令のモー
ドが自動モードである場合は、プログラム記憶部2に格
納されているプログラムのうち、実行プログラムが選択
されると、命令解読部3がその選択されたプログラムの
解読を開始する。命令解読部3は、プログラムを1ステ
ップ毎に解読し、移動速度、目的位置までのベクトル移
動量や各軸の移動量を算出し、解読命令として粗補間処
理部4に指令する。粗補間処理部4では移動命令判定部
5によって命令の種類を判定する。自動移動命令と判断
するとベクトル移動量算出部8は、粗補間単位時間当り
のベクトル移動量を算出し、これを軸移動量算出部10
に出力する。軸移動量算出部10ではこのベクトル移動
量から粗補間の単位時間後に到達すべき位置を求め、そ
の位置と現在位置との差分から軸移動量を算出し、精補
間処理部11に出力する。
Next, the operation of the robot controller thus constructed will be described. When the mode of the movement command is the manual mode, the direct command command unit 1 commands the coarse interpolation processing unit 4 as a direct command regarding the axis to be moved and its moving direction and speed. In the coarse interpolation processing unit 4, the movement command determination unit 5 determines the type of command. If it is determined that the command is a manual movement command, the coarse unit movement amount calculation unit 6 calculates the absolute movement amount per coarse interpolation unit time from the movement speed instructed for each axis that has received the instruction. A sign of the moving direction is added to the absolute moving amount and output to the fine interpolation processing unit 11. Further, when the mode of the move instruction is the automatic mode, when the execution program is selected from the programs stored in the program storage unit 2, the instruction decoding unit 3 starts decoding the selected program. . The instruction decoding unit 3 decodes the program step by step, calculates the moving speed, the vector moving amount to the target position, and the moving amount of each axis, and instructs the rough interpolation processing unit 4 as a decoding instruction. In the coarse interpolation processing unit 4, the movement command determination unit 5 determines the type of command. When it is determined that the command is an automatic movement command, the vector movement amount calculation unit 8 calculates the vector movement amount per coarse interpolation unit time, and this is used as the axis movement amount calculation unit 10.
Output to. The axis movement amount calculation unit 10 obtains a position to be reached after a unit time of the rough interpolation from the vector movement amount, calculates the axis movement amount from the difference between the position and the current position, and outputs it to the fine interpolation processing unit 11.

【0005】次に精補間処理部11における動作を図8
を参考にして説明する。図8は駆動対象物がある距離を
一定速度で移動した場合の単位時間当りの移動量の推移
を示し、図8(a)は粗補間処理部4で算出した移動
量、図8(b)は精補間処理部11で算出した移動量を
示している。粗補間処理部4が算出した粗補間の単位時
間(t1)当りの移動量(1a)は精補間処理部11に
入力され、精補間の単位時間(t2)当りの移動量(2
a)に細分割される。この加減速処理部7によって駆動
対象物の始動動作時に加速処理を行い、終了動作時に減
速処理を行う。このようにして駆動軸のモータへの負荷
を緩和している。
Next, the operation of the fine interpolation processing section 11 will be described with reference to FIG.
Will be explained with reference to. FIG. 8 shows the transition of the movement amount per unit time when the driven object moves at a constant speed over a certain distance. FIG. 8A shows the movement amount calculated by the coarse interpolation processing unit 4, and FIG. Indicates the movement amount calculated by the fine interpolation processing unit 11. The movement amount (1a) per unit time (t1) of the coarse interpolation calculated by the coarse interpolation processing unit 4 is input to the fine interpolation processing unit 11 and the movement amount (2) per unit time (t2) of the fine interpolation.
It is subdivided into a). The acceleration / deceleration processing unit 7 performs acceleration processing during the starting operation of the driven object and deceleration processing during the ending operation. In this way, the load on the motor of the drive shaft is reduced.

【0006】また、粗補間処理部4が算出した移動量と
精補間処理部11で出力する移動量を粗補間単位時間で
比較する場合に加速処理時は図8(b)に示す移動残量
(3a)が発生し、これを減速処理時での移動量として
出力している。
Further, when comparing the movement amount calculated by the coarse interpolation processing unit 4 and the movement amount output by the fine interpolation processing unit 11 in the coarse interpolation unit time, the movement remaining amount shown in FIG. (3a) occurs, and this is output as the movement amount during the deceleration processing.

【0007】[0007]

【発明が解決しようとする課題】従来の産業用ロボット
等の駆動対象物へ移動指令する制御装置は以上のように
構成されており、移動速度が速くなるに伴い、加速動作
時や減速動作時において、急加速、急減速となり、駆動
モータへの負荷が増大し、駆動対象物が振動する問題が
あった。
The conventional control device for instructing the movement of the object to be driven such as the industrial robot is constructed as described above, and when the moving speed becomes faster, the accelerating operation or the decelerating operation is performed. In the above, there is a problem that sudden acceleration and deceleration occur, the load on the drive motor increases, and the driven object vibrates.

【0008】また、従来の制御装置の加減速処理では、
上述のように各軸毎に処理していたため、図9(a)に
示す円弧補間のように、粗補間単位で算出されるベクト
ル移動量のベクトル方向が逐次変化するような場合に
は、図8(b)に示す移動残量(3a)の分だけ移動量
が減少する。このため図9(b)に示すように移動軌跡
がずれ、加工精度が低下する問題があった。
Further, in the acceleration / deceleration processing of the conventional control device,
Since the processing is performed for each axis as described above, when the vector direction of the vector movement amount calculated in the coarse interpolation unit is sequentially changed as in the circular interpolation shown in FIG. The movement amount is reduced by the movement remaining amount (3a) shown in 8 (b). Therefore, as shown in FIG. 9B, there is a problem that the movement locus is deviated and the processing accuracy is lowered.

【0009】かかる問題を解決するために、特開昭60
−209812号、特開昭61−18009号によっ
て、精補間処理部に特性の異なる2つの加減速処理部を
直列に接続する制御方法が開示されている。しかし、こ
のような方法によるものは、精補間処理部で各軸毎に加
減速処理を行うため、どうしても、粗補間処理部からの
出力値とモータ出力との間に出力誤差が生じ、軌跡のず
れを引き起こす原因となっていた。
In order to solve such a problem, Japanese Patent Application Laid-Open No. Sho 60
JP-A-209812 and JP-A-61-188009 disclose a control method in which two acceleration / deceleration processing units having different characteristics are connected in series to a fine interpolation processing unit. However, in such a method, since the fine interpolation processing unit performs acceleration / deceleration processing for each axis, an output error is inevitably generated between the output value from the coarse interpolation processing unit and the motor output, and the trajectory It was the cause of the gap.

【0010】この発明は上記のような課題を解決するた
めになされたものであり、加減速時の駆動軸モータの負
荷を軽減し、振動を解消すると共に、移動軌跡のずれを
抑制し加工精度の向上をさせることができる駆動対象物
の制御装置を得ることを目的とする。
The present invention has been made in order to solve the above problems, and reduces the load on the drive shaft motor during acceleration / deceleration, eliminates vibration, and suppresses deviation of the movement locus to improve machining accuracy. It is an object of the present invention to obtain a control device for an object to be driven which can improve

【0011】[0011]

【課題を解決するための手段】この発明に係わる駆動対
象物の制御装置は、駆動軸に移動指令及び移動速度指令
を直接に出力する直接命令部と、該直接命令部からの指
令信号に基づいて、単位時間当りの各軸の移動量を算出
する粗単位移動量算出部と、該粗単位移動量算出部で算
出された移動量を細かい単位時間当りの移動量に分割す
る精単位移動量分割部と、該精単位移動量分割部で分割
した移動量に対し加減速処理を施す加減速処理部とを具
備した駆動対象物の制御装置において、前記粗単位移動
量算出部の算出結果に基づいて加減速処理を施す加減速
処理部を設けた。
A drive object control apparatus according to the present invention is based on a direct command section for directly outputting a movement command and a moving speed command to a drive shaft, and a command signal from the direct command section. A coarse unit movement amount calculation unit for calculating the movement amount of each axis per unit time, and a fine unit movement amount for dividing the movement amount calculated by the coarse unit movement amount calculation unit into fine movement amounts per unit time. In the control device for the driven object, which comprises a dividing unit and an acceleration / deceleration processing unit that performs acceleration / deceleration processing on the movement amount divided by the precise unit movement amount dividing unit, the calculation result of the coarse unit movement amount calculating unit is An acceleration / deceleration processing unit for performing the acceleration / deceleration processing based on the above is provided.

【0012】また、この発明に係わる駆動対象物の制御
装置は、目的位置への移動指令及び移動速度をプログラ
ムしたプログラム記憶部と、上記プログラムを解読する
命令解読部と、該命令解読部が解読した所定位置から目
的位置までの移動量と速度とから、単位時間当りのベク
トル移動量を算出するベクトル移動量算出部と、該ベク
トル移動量算出部の算出結果から各軸の移動量を算出す
る軸移動量算出部と、該軸移動量算出部で分割された移
動量を細かい単位時間当りの移動量に分割する精単位移
動量分割部と、該精単位移動量分割部で分割した移動量
に加減速処理を施す加減速処理部とを具備した駆動対象
物の制御装置において、前記ベクトル移動量算出部の算
出結果に基づいて加減速処理を施す加減速処理部を設け
たものである。
Further, in the control device for a driven object according to the present invention, a program storage unit programmed with a movement command to a target position and a movement speed, an instruction decoding unit for decoding the program, and the instruction decoding unit for decoding the program. The vector movement amount calculation unit that calculates the vector movement amount per unit time from the movement amount and the speed from the predetermined position to the target position, and the movement amount of each axis from the calculation result of the vector movement amount calculation unit An axis movement amount calculation unit, a fine unit movement amount division unit that divides the movement amount divided by the axis movement amount calculation unit into fine movement amounts per unit time, and a movement amount divided by the fine unit movement amount division unit. An acceleration / deceleration processing unit that performs acceleration / deceleration processing is provided in the control device for a driving target, and an acceleration / deceleration processing unit that performs acceleration / deceleration processing based on the calculation result of the vector movement amount calculation unit is provided.

【0013】[0013]

【作用】この発明に係わる駆動対象物の制御装置は、加
減速処理部を備えた粗補間処理部は、粗補間単位時間当
りの軸移動量に対して、粗補間単位時間当りの加減速処
理を施した各軸の移動量を算出し、精補間処理部に所定
の移動量を出力する。
In the control system for the driven object according to the present invention, the coarse interpolation processing unit including the acceleration / deceleration processing unit is configured to perform the acceleration / deceleration processing per coarse interpolation unit time with respect to the axial movement amount per coarse interpolation unit time. The moving amount of each axis subjected to is calculated and the predetermined moving amount is output to the fine interpolation processing unit.

【0014】また、加減速処理部を備えた粗補間処理部
は、粗補間単位時間当りのベクトル移動量に対して、粗
補間単位時間当りの加減速処理を施したベクトル移動量
を算出し、このベクトル移動量から粗補間の単位時間後
に到達すべき位置を求める。この位置と現在位置との差
分から軸移動量を算出し、精補間処理部に出力する。こ
のため手動モードの場合も、自動モードの場合も加減速
時の駆動軸モータの負荷を軽減して、振動を解消する。
また、移動軌跡のずれを抑制して加工精度を向上させ
る。
Further, the coarse interpolation processing unit including the acceleration / deceleration processing unit calculates a vector movement amount obtained by performing acceleration / deceleration processing per coarse interpolation unit time with respect to the vector movement amount per coarse interpolation unit time, From this vector movement amount, the position to be reached after a unit time of rough interpolation is obtained. The axial movement amount is calculated from the difference between this position and the current position, and is output to the fine interpolation processing unit. Therefore, in both the manual mode and the automatic mode, the load on the drive shaft motor during acceleration / deceleration is reduced to eliminate vibration.
Further, the deviation of the movement locus is suppressed to improve the processing accuracy.

【0015】[0015]

【実施例】【Example】

実施例1.以下、この発明の一実施例を図について説明
する。図1はこの発明の一実施例の制御装置を示すブロ
ック図である。図中、図7に示した従来の制御装置と同
様の部分は同符号を付して説明を省略する。図中20,
21は加減速処理部である。加減速処理部20,21が
ベクトル移動量算出部8や粗単位移動量算出部6からの
移動量に対して加減速処理を行っている。精単位移動量
分割部12からの移動量に対し、加減速処理を行ってい
る点は、図7と同様である。なお、図中、直接命令指令
部1、プログラム記憶部2、命令解読部3、及び精補間
処理部11の工程は図7と同様であるので説明は省略す
る。
Example 1. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing a control device according to an embodiment of the present invention. In the figure, the same parts as those of the conventional control device shown in FIG. 20, in the figure
Reference numeral 21 is an acceleration / deceleration processing unit. The acceleration / deceleration processing units 20 and 21 perform acceleration / deceleration processing on the movement amounts from the vector movement amount calculation unit 8 and the coarse unit movement amount calculation unit 6. Similar to FIG. 7, the acceleration / deceleration processing is performed on the movement amount from the fine unit movement amount dividing unit 12. In the figure, the steps of the direct instruction command section 1, the program storage section 2, the instruction decoding section 3, and the fine interpolation processing section 11 are the same as those in FIG.

【0016】次に図2のフローチャートを用いて動作に
ついて説明する。粗補間処理部4では、まず移動命令判
定部5で移動命令の種類を判定し(工程S1)、この判
定の結果により、「手動移動命令」と判断すると粗単位
移動量算出部6で次の処理を行う。粗単位移動量算出部
6では、命令を受けた軸毎に命令された移動速度から粗
補間単位時間当りの絶対移動量を求め、これに移動方向
の符号を付加して粗単位移動量を算出する(工程S
2)。この粗単位移動量に加減速処理部21で粗補間単
位での加減速処理を施す(工程S3)。
Next, the operation will be described with reference to the flowchart of FIG. In the coarse interpolation processing unit 4, first, the movement command determination unit 5 determines the type of the movement command (step S1), and if the result of this determination is "manual movement command", the coarse unit movement amount calculation unit 6 determines Perform processing. The coarse unit movement amount calculation unit 6 obtains the absolute movement amount per coarse interpolation unit time from the movement speed instructed for each axis that has received the instruction, and adds the sign of the movement direction to this to calculate the coarse unit movement amount. Yes (Step S
2). The acceleration / deceleration processing unit 21 performs acceleration / deceleration processing in coarse interpolation units on the coarse unit movement amount (step S3).

【0017】次に、移動命令判定部5で移動命令の種類
を判定し(工程S1)、この判定の結果により、「自動
移動命令」と判断すると、ベクトル移動量算出部8で次
の処理を行う。ベクトル移動量算出部8では、自動移動
命令を受け取り、粗補間単位時間当りの粗単位ベクトル
移動量を算出する(工程S4)。この粗単位ベクトル移
動量に加減速処理部20で、粗補間単位での加減速処理
を施す(工程S5)。軸移動量算出部10ではこのベク
トル移動量から粗補間の単位時間後に到達すべき位置を
求め、その位置と現在位置との差分から各軸の軸移動量
を算出する(工程S6)。
Next, the movement instruction determination unit 5 determines the type of movement instruction (step S1), and if the result of this determination is "automatic movement instruction", the vector movement amount calculation unit 8 performs the next processing. To do. The vector movement amount calculation unit 8 receives the automatic movement command and calculates the coarse unit vector movement amount per coarse interpolation unit time (step S4). The acceleration / deceleration processing unit 20 performs acceleration / deceleration processing in coarse interpolation units on the coarse unit vector movement amount (step S5). The axis movement amount calculation unit 10 obtains a position to be reached after a unit time of rough interpolation from the vector movement amount, and calculates the axis movement amount of each axis from the difference between the position and the current position (step S6).

【0018】次に、従来の処理とこの実施例の粗補間で
の処理の上述の差異を、X軸、Y軸の補間を例にとって
説明する。ここで、サンプリング周期(単位時間)をΔ
T、与えられた送り速度をF、X軸の移動量をΔx、Y
軸の移動量をΔy、接線方向の移動量をΔL(=√(Δ
2 +Δy2 ):直線補間の場合)とする。従来の処理
では、次の処理を行っている。 接線方向の単位時間当りの移動量を求める。 FΔT=ΔT・F 各軸(X,Y)の単位時間当りの移動量FxΔT、F
yΔTを求める。 ΔL(new) =ΔL(old) −FΔT FxΔT=Δx−ΔL(new) ・Δx/√(Δx2 +Δy
2 ) FyΔT=Δy−ΔL(new) ・Δy/√(Δx2 +Δy
2 ) Δx(new) =Δx(old) −FxΔT Δy(new) =Δy(old) −FyΔT 各軸単位時間当りの移動量FxΔT、FyΔTを精補
間処理部11へ出力する。これをブロック図で示すと図
3(a)のようになる。
Next, the above-mentioned difference between the conventional processing and the processing in the rough interpolation of this embodiment will be described by taking the X-axis and Y-axis interpolation as an example. Where the sampling period (unit time) is Δ
T, the given feed speed is F, the movement amount of the X axis is Δx, Y
The axis movement amount is Δy, and the tangential movement amount is ΔL (= √ (Δ
x 2 + Δy 2 ): In the case of linear interpolation). In the conventional processing, the following processing is performed. Find the amount of movement per unit time in the tangential direction. FΔT = ΔT · F Movement amount FxΔT, F of each axis (X, Y) per unit time
Calculate yΔT. ΔL (new) = ΔL (old) −FΔT FxΔT = Δx−ΔL (new) · Δx / √ (Δx 2 + Δy
2 ) FyΔT = Δy−ΔL (new) · Δy / √ (Δx 2 + Δy
2 ) Δx (new) = Δx (old) -FxΔT Δy (new) = Δy (old) -FyΔT The movement amounts FxΔT and FyΔT per unit time of each axis are output to the fine interpolation processing unit 11. This is shown in a block diagram as shown in FIG.

【0019】これに対して、この実施例では、従来、精
補間処理部11でのみ行っていた加減速処理を、粗補間
処理部4のベクトル移動量算出部8や粗単位移動量算出
部6の出力した移動量を処理するように、加えたこと
と、加減速処理の対象を各軸から、接線方向へ変更した
ことに特徴がある。これをブロック図で示すと図3
(b)のようになる。図中、FΔT’はベクトル移動量
算出部8の出力である接線方向の単位時間当りの移動量
FΔTについて加減速処理部20が処理をした結果であ
る。このFΔT’を用いて軸移動量算出部10は、Fx
ΔT’、FyΔT’を精補間処理部11に出力する。
On the other hand, in this embodiment, the acceleration / deceleration processing which is conventionally performed only by the fine interpolation processing unit 11 is performed by the vector movement amount calculation unit 8 and the coarse unit movement amount calculation unit 6 of the coarse interpolation processing unit 4. It is characterized in that it is added so as to process the movement amount output by, and that the object of acceleration / deceleration processing is changed from each axis in the tangential direction. This is shown in a block diagram in FIG.
It becomes like (b). In the figure, FΔT ′ is the result of the acceleration / deceleration processing unit 20 processing the tangential movement amount FΔT per unit time output from the vector movement amount calculation unit 8. Using this FΔT ′, the axis movement amount calculation unit 10 calculates Fx
It outputs ΔT ′ and FyΔT ′ to the fine interpolation processing unit 11.

【0020】従来の円弧補間では、上述した単位時間当
りの接線方向の移動量(FΔT)分だけ移動した後の円
周上の点から、単位時間当りの軸移動量(FxΔT、F
yΔT)を計算している。FxΔT、FyΔTを精補間
処理部11で加減速処理をしてからモータ出力値x、y
を出力したとすると、図4(a)に示すように出力誤差
が各々Ex、Eyだけ生じ、図9(b)に示すように移
動軌跡がずれる。この実施例では、加減速処理を粗補間
処理部4に設けて接線方向の単位時間当りの移動量FΔ
Tに加減速処理を施してFΔT’を算出する。この後F
xΔT’、FyΔT’を求めているので図4(b)に示
すように誤差はEx’、Ey’に減少し、図6(b)に
示すように従来の場合よりも軌跡のずれが抑制され加工
精度が改善される。更に図5は駆動対象物がある距離を
一定速度で移動した場合の単位時間当りの移動量の推移
を示し、そのうち図5(a)は粗補間処理部4で算出し
た移動量を表し、すでに加減速処理部21により加減速
処理が行われている、図5(b)は図5(a)の処理結
果を基にして加減速処理部7で再加減速処理を行った結
果を表している。この場合、急加速・急減速が解消さ
れ、駆動対象物の振動が抑制される。
In the conventional circular interpolation, the axial movement amount (FxΔT, F) per unit time is calculated from a point on the circumference after the movement amount of the tangential direction movement amount (FΔT) per unit time described above.
yΔT) is calculated. The precise interpolation processing unit 11 performs acceleration / deceleration processing on FxΔT and FyΔT, and then outputs the motor output values x and y.
Is output, output errors are caused by Ex and Ey, respectively, as shown in FIG. 4A, and the movement locus is displaced as shown in FIG. 9B. In this embodiment, the acceleration / deceleration processing is provided in the coarse interpolation processing unit 4 so that the movement amount FΔ per unit time in the tangential direction.
Acceleration / deceleration processing is performed on T to calculate FΔT ′. After this F
Since xΔT ′ and FyΔT ′ are obtained, the error is reduced to Ex ′ and Ey ′ as shown in FIG. 4B, and the deviation of the locus is suppressed as compared with the conventional case as shown in FIG. 6B. The processing accuracy is improved. Further, FIG. 5 shows the transition of the movement amount per unit time when the driven object moves at a certain speed at a certain speed, of which FIG. 5 (a) shows the movement amount calculated by the coarse interpolation processing unit 4, The acceleration / deceleration processing unit 21 is performing the acceleration / deceleration processing. FIG. 5B shows the result of the re-acceleration / deceleration processing performed by the acceleration / deceleration processing unit 7 based on the processing result of FIG. 5A. There is. In this case, the sudden acceleration / deceleration is eliminated, and the vibration of the driven object is suppressed.

【0021】[0021]

【発明の効果】以上説明したようにこの発明の駆動対象
物の制御装置によれば、粗補間処理部と精補間処理部の
2箇所で加減速処理を行うようにしたので、加減速時の
駆動軸モータの負荷を軽減し、振動を抑制する。
As described above, according to the drive object control apparatus of the present invention, the acceleration / deceleration processing is performed at two locations, the coarse interpolation processing section and the fine interpolation processing section. The load on the drive shaft motor is reduced and vibration is suppressed.

【0022】また、ベクトル移動量算出部で算出される
ベクトル移動量に加減速処理を施すことにより、円弧補
間等のようにベクトル移動量のベクトル方向が粗補間単
位で逐次変化するような場合は、結果的にベクトル方向
が修正され、移動軌跡のずれ幅が抑制され加工精度の向
上を図ることができる。
Further, when the vector movement amount calculated by the vector movement amount calculation unit is subjected to acceleration / deceleration processing, the vector direction of the vector movement amount is sequentially changed in coarse interpolation units, such as in circular interpolation. As a result, the vector direction is corrected, the deviation width of the movement locus is suppressed, and the processing accuracy can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例の制御装置のブロック図で
ある。
FIG. 1 is a block diagram of a control device according to an embodiment of the present invention.

【図2】この発明を施した粗補間処理部の処理を説明す
るフロー図である。
FIG. 2 is a flowchart illustrating processing of a coarse interpolation processing unit according to the present invention.

【図3】この発明の一実施例と従来の制御装置の粗補間
処理部での処理の差異を説明するブロック図である。
FIG. 3 is a block diagram illustrating a difference in processing between a coarse interpolation processing unit of an embodiment of the present invention and a conventional control device.

【図4】この発明の一実施例と従来の制御装置の円弧補
間時の処理の差異を説明する図である。
FIG. 4 is a diagram for explaining a difference in processing at the time of circular interpolation between an embodiment of the present invention and a conventional control device.

【図5】この発明の粗補間処理部及び、粗補間処理部が
算出する各補間単位での移動量の推移を示す図である。
FIG. 5 is a diagram showing a coarse interpolation processing unit of the present invention and a transition of a movement amount in each interpolation unit calculated by the coarse interpolation processing unit.

【図6】この発明のベクトル移動量に加減速処理を施し
たことによる効果を示す説明図である。
FIG. 6 is an explanatory diagram showing an effect obtained by performing acceleration / deceleration processing on the vector movement amount of the present invention.

【図7】従来の制御装置を示すブロック図である。FIG. 7 is a block diagram showing a conventional control device.

【図8】従来の粗補間処理部及び、粗補間処理部が算出
する各補間単位での移動量の推移を示す説明図である。
FIG. 8 is an explanatory diagram showing a conventional coarse interpolation processing unit and a transition of the movement amount in each interpolation unit calculated by the coarse interpolation processing unit.

【図9】従来の円弧補間の軌跡のずれを示す説明図であ
る。
FIG. 9 is an explanatory diagram showing a deviation of a trajectory of conventional circular interpolation.

【符号の説明】[Explanation of symbols]

1 直接指令部 2 プログラム記憶部 3 命令解読部 4 粗補間処理部 5 移動命令判定部 6 粗単位移動量算出部 7 加減速処理部 8 ベクトル移動量算出部 10 軸移動量算出部 11 精補間処理部 12 精単位移動量分割部 13 産業用ロボット(駆動対象物) 1 Direct Command Section 2 Program Storage Section 3 Command Decoding Section 4 Coarse Interpolation Processing Section 5 Movement Command Judgment Section 6 Coarse Unit Movement Amount Calculation Section 7 Acceleration / Deceleration Processing Section 8 Vector Movement Amount Calculation Section 10 Axis Movement Amount Calculation Section 11 Fine Interpolation Processing Part 12 Precision unit movement amount division part 13 Industrial robot (driving target)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 駆動軸に移動指令及び移動速度指令を直
接に出力する直接命令部と、該直接命令部からの指令信
号に基づいて、単位時間当りの各軸の移動量を算出する
粗単位移動量算出部と、該粗単位移動量算出部で算出さ
れた移動量を細かい単位時間当りの移動量に分割する精
単位移動量分割部と、該精単位移動量分割部で分割した
移動量に対し加減速処理を施す加減速処理部とを具備し
た駆動対象物の制御装置において、前記粗単位移動量算
出部の算出結果に基づいて加減速処理を施す加減速処理
部を設けたことを特徴とする駆動対象物の制御装置。
1. A direct command unit for directly outputting a movement command and a moving speed command to a drive axis, and a coarse unit for calculating a movement amount of each axis based on a command signal from the direct command unit. A movement amount calculation unit, a fine unit movement amount division unit that divides the movement amount calculated by the coarse unit movement amount calculation unit into fine movement amounts per unit time, and a movement amount divided by the fine unit movement amount division unit. In the control device for the driven object including the acceleration / deceleration processing unit for performing the acceleration / deceleration processing, the acceleration / deceleration processing unit for performing the acceleration / deceleration processing based on the calculation result of the coarse unit movement amount calculation unit is provided. A control device of a driving object that is a feature.
【請求項2】 目的位置への移動指令及び移動速度をプ
ログラムしたプログラム記憶部と、上記プログラムを解
読する命令解読部と、該命令解読部が解読した所定位置
から目的位置までの移動量と速度とから、単位時間当り
のベクトル移動量を算出するベクトル移動量算出部と、
該ベクトル移動量算出部の算出結果から各軸の移動量を
算出する軸移動量算出部と、該軸移動量算出部で分割さ
れた移動量を細かい単位時間当りの移動量に分割する精
単位移動量分割部と、該精単位移動量分割部で分割した
移動量に加減速処理を施す加減速処理部とを具備した駆
動対象物の制御装置において、前記ベクトル移動量算出
部の算出結果に基づいて加減速処理を施す加減速処理部
を設けたことを特徴とする駆動対象物の制御装置。
2. A program storage unit programmed with a movement command and a movement speed to a target position, an instruction decoding unit for decoding the program, and a movement amount and speed from a predetermined position decoded by the instruction decoding unit to the target position. From, from the vector movement amount calculation unit for calculating the vector movement amount per unit time,
An axis movement amount calculation unit that calculates the movement amount of each axis from the calculation result of the vector movement amount calculation unit, and a fine unit that divides the movement amount divided by the axis movement amount calculation unit into fine movement amounts per unit time. In the control device of the driven object, which comprises a movement amount dividing unit and an acceleration / deceleration processing unit that performs acceleration / deceleration processing on the movement amount divided by the precise unit movement amount dividing unit, the calculation result of the vector movement amount calculation unit is An acceleration / deceleration processing unit for performing acceleration / deceleration processing based on the control object.
JP33168092A 1992-12-11 1992-12-11 Controller for object to be driven Pending JPH06180606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33168092A JPH06180606A (en) 1992-12-11 1992-12-11 Controller for object to be driven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33168092A JPH06180606A (en) 1992-12-11 1992-12-11 Controller for object to be driven

Publications (1)

Publication Number Publication Date
JPH06180606A true JPH06180606A (en) 1994-06-28

Family

ID=18246382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33168092A Pending JPH06180606A (en) 1992-12-11 1992-12-11 Controller for object to be driven

Country Status (1)

Country Link
JP (1) JPH06180606A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11149306A (en) * 1997-11-14 1999-06-02 Fanuc Ltd Controller for finishing machine
WO2003014848A1 (en) * 2001-08-11 2003-02-20 Dr. Johannes Heidenhain Gmbh Array for generating reference input variables for regulating circuits of a numerically controlled machine
JP2008080865A (en) * 2006-09-26 2008-04-10 Honda Motor Co Ltd Vehicular automatic steering device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5962909A (en) * 1982-10-01 1984-04-10 Fanuc Ltd Accelerating and decelerating circuit
JPS60105012A (en) * 1983-11-11 1985-06-10 Toyoda Mach Works Ltd Feed control method for numerically controlled machine tool
JPS63211405A (en) * 1986-12-01 1988-09-02 アクチエンゲゼルシヤフト フユール インヅストリエル エレクトロニク アギー ローソネ バイ ロカルノ Numerical controller for high dynamic process
JPH03219306A (en) * 1990-01-25 1991-09-26 Fanuc Ltd Method for controlling feeding speed of numerical controller
JP4082703B2 (en) * 2005-03-01 2008-04-30 日本航空電子工業株式会社 Optical connector device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5962909A (en) * 1982-10-01 1984-04-10 Fanuc Ltd Accelerating and decelerating circuit
JPS60105012A (en) * 1983-11-11 1985-06-10 Toyoda Mach Works Ltd Feed control method for numerically controlled machine tool
JPS63211405A (en) * 1986-12-01 1988-09-02 アクチエンゲゼルシヤフト フユール インヅストリエル エレクトロニク アギー ローソネ バイ ロカルノ Numerical controller for high dynamic process
JPH03219306A (en) * 1990-01-25 1991-09-26 Fanuc Ltd Method for controlling feeding speed of numerical controller
JP4082703B2 (en) * 2005-03-01 2008-04-30 日本航空電子工業株式会社 Optical connector device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11149306A (en) * 1997-11-14 1999-06-02 Fanuc Ltd Controller for finishing machine
US6401006B1 (en) 1997-11-14 2002-06-04 Fanuc Ltd. Machine controller with primary and secondary interpolation
WO2003014848A1 (en) * 2001-08-11 2003-02-20 Dr. Johannes Heidenhain Gmbh Array for generating reference input variables for regulating circuits of a numerically controlled machine
US6772020B2 (en) 2001-08-11 2004-08-03 Johannes Heidenhain Gmbh Arrangement for generating command variables for control loops of a numerically controlled machine
JP2008080865A (en) * 2006-09-26 2008-04-10 Honda Motor Co Ltd Vehicular automatic steering device

Similar Documents

Publication Publication Date Title
JP3478946B2 (en) Servo adjustment method and device
JP6435872B2 (en) Numerical control device and control method
US5477117A (en) Motion controller and synchronous control process therefor
JPH11149306A (en) Controller for finishing machine
JPS61157909A (en) System for correcting route error of robot
US6539275B1 (en) Machine controller and process with two-step interpolation
JP6984790B1 (en) Numerical control device and numerical control method
JPH0732979B2 (en) Acceleration / deceleration control device
JP7376260B2 (en) numerical control device
EP0797135A1 (en) Numerical controller
JPH05282019A (en) Method and device for acceleration control of servo system
JP2017076211A (en) Numerical control device performing positioning for avoiding interference with work
JPH06180606A (en) Controller for object to be driven
WO2022158428A9 (en) Numerical control device
JPH07210225A (en) Numerical controller
JP6871280B2 (en) Numerical control device
JP4982170B2 (en) Machining control device and machining control program
JP3578634B2 (en) Creating an arc command
JP2558580B2 (en) Method and apparatus for controlling acceleration in servo system
JP2001312309A (en) Numerical control working machine and acceleration/ deceleration control method therefor
JP2000148251A (en) Positioning control device and method
JP2925414B2 (en) Speed control method and apparatus for numerically controlled machine tool
JP2001154719A (en) Method for interpolating free curve
JP3188396B2 (en) Feed rate control method and apparatus in numerical control
JPS62130412A (en) Numerical control method