JP2005135060A - Servo adjusting method of trace follow-up control - Google Patents
Servo adjusting method of trace follow-up control Download PDFInfo
- Publication number
- JP2005135060A JP2005135060A JP2003368506A JP2003368506A JP2005135060A JP 2005135060 A JP2005135060 A JP 2005135060A JP 2003368506 A JP2003368506 A JP 2003368506A JP 2003368506 A JP2003368506 A JP 2003368506A JP 2005135060 A JP2005135060 A JP 2005135060A
- Authority
- JP
- Japan
- Prior art keywords
- speed
- control
- gain
- arc radius
- control loop
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Numerical Control (AREA)
- Feedback Control In General (AREA)
- Control Of Position Or Direction (AREA)
Abstract
Description
本発明は、形状輪郭に沿って移動する軌跡追従制御のサーボ調整方法に関する。 The present invention relates to a servo adjustment method for trajectory tracking control that moves along a shape contour.
従来の形状輪郭に沿って移動する軌跡追従制御のサーボ調整方法では、オーバーシュート量や振動を測定して位置制御部の位置制御ゲインの調整を行い、円弧軌跡での形状誤差については、あらかじめ設定された目標円弧半径縮小量以内となるように移動速度を調整していた。例えば特開平8−137536は、速度制御がIP制御の場合に、許容半径縮小量と位置制御ゲインおよび速度制御積分時定数から式(3)を用いて移動速度を制限している。
ただし、ΔR:円弧半径縮小量[mm]、R:円弧半径[mm]、V:送り速度[mm/s]、Kp:位置制御ループゲイン[1/s]、Ti:速度制御ループ積分時定数[sec]
In the conventional servo adjustment method of trajectory tracking control that moves along the shape contour, the position control gain of the position control unit is adjusted by measuring the overshoot amount and vibration, and the shape error in the arc trajectory is set in advance. The moving speed was adjusted to be within the target arc radius reduction amount. For example, in Japanese Patent Laid-Open No. 8-137536, when the speed control is IP control, the moving speed is limited using the expression (3) from the allowable radius reduction amount, the position control gain, and the speed control integration time constant.
Where ΔR: arc radius reduction amount [mm], R: arc radius [mm], V: feed rate [mm / s], Kp: position control loop gain [1 / s], Ti: speed control loop integration time constant [Sec]
図3は、従来技術のブロック図である。
図3において、31は加工プログラムを解析し、円弧補間指令か否かを判断する加工プログラム解析部、32は加工プログラム解析部により解析された円弧補間の指令半径と許容半径縮小量とサーボ制御装置の位置制御ループゲインおよび速度制御ループの積分時定数から式(3)を用いて最大移動速度を算出する最大移動速度算出部、33は加工プログラム解析部により解析された指令速度と、32で演算された最大移動速度を比較して小さい方を最終指令速度とする最終指令速度選択部、34は最終指令速度に基づいて加工プログラムの加工軌跡の補間演算を行う補間部である。
FIG. 3 is a block diagram of the prior art.
In FIG. 3, 31 is a machining program analysis unit that analyzes a machining program and determines whether or not it is a circular interpolation command, 32 is a circular interpolation command radius, an allowable radius reduction amount, and a servo control device analyzed by the machining program analysis unit. The maximum movement speed calculation unit 33 calculates the maximum movement speed from the position control loop gain and the integration time constant of the speed control loop using the equation (3), 33 is a command speed analyzed by the machining program analysis unit, and 32 is calculated. A final command speed selection unit 34 that compares the maximum movement speeds that are set and sets the smaller one as the final command speed, and 34 is an interpolation unit that performs interpolation calculation of the machining locus of the machining program based on the final command speed.
図4は従来技術の処理手順を示すフローチャートである。
図4において、はじめに、今回解析された加工プログラムが円弧補間指令か否かを加工プログラム解析部にて判断する(ステップ1)。次に、加工プログラム解析部にて円弧補間と判断された場合、式(3)に基づいて最大移動速度を算出する(ステップ2)。ここで加工プログラム解析部において円弧補間指令でないと判別された場合は、最大移動速度は算出されない。次に、加工プログラムによる指令速度と最大移動速度を比較し、小さい方を最終移動速度とする(ステップ3〜5)。次に、最終移動速度に基づいて加工プログラムの補間演算を行い、各制御軸の移動指令を算出する(ステップ6)。そして、各制御軸の移動指令をサーボ制御装置に出力する(ステップ7)。
In FIG. 4, first, the machining program analysis unit determines whether or not the machining program analyzed this time is a circular interpolation command (step 1). Next, when it is determined that the circular interpolation is performed by the machining program analysis unit, the maximum moving speed is calculated based on the equation (3) (step 2). Here, when the machining program analysis unit determines that the command is not the circular interpolation command, the maximum moving speed is not calculated. Next, the command speed by the machining program is compared with the maximum movement speed, and the smaller one is set as the final movement speed (steps 3 to 5). Next, an interpolation calculation of the machining program is performed based on the final movement speed, and a movement command for each control axis is calculated (step 6). Then, a movement command for each control axis is output to the servo control device (step 7).
しかしながら、従来の形状輪郭に沿って移動する軌跡追従制御でのサーボ調整方法では、円弧補間指令のみ移動速度が制限され、円弧補間でない場合は、移動速度は制限されないため、例えば微小連続直線での円弧形状指令の場合、移動速度が制限されず、指令速度のまま加工されるため形状誤差が大きくなるという問題があった。
また、式(3)には、形状誤差低減のために通常使用される速度フィードフォワードが考慮されていないため、速度フィードフォワードを使用したした場合には形状誤差を低減させるサーボ調整ができないという問題もあった。
本発明は、指令プログラムや移動速度によらず、また、速度フィードフォワードを使用した場合でも、形状誤差が目標の円弧半径縮小量となるようにサーボを簡単に調整する方法を提供することを目的とする。
However, in the servo adjustment method in the trajectory follow-up control that moves along the contour of the conventional shape, the moving speed is limited only for the circular interpolation command, and if the circular interpolation is not performed, the moving speed is not limited. In the case of the arc shape command, there is a problem that the moving speed is not limited and the shape error increases because the machining is performed at the command speed.
In addition, the equation (3) does not take into account the speed feed forward that is normally used for reducing the shape error, and therefore, when the speed feed forward is used, the servo adjustment for reducing the shape error cannot be performed. There was also.
It is an object of the present invention to provide a method for easily adjusting a servo so that a shape error becomes a target arc radius reduction amount regardless of a command program or a moving speed, and even when speed feedforward is used. And
上記問題を解決するため、本発明は、位置指令を入力し、比例要素を用いた位置制御部と比例および積分要素を用いた速度制御部と、前記位置指令の微分値を基に作成された速度フィードフォワードゲインを速度制御部の入力に加算する速度フィードフォワード部を有し、前記位置指令に追従して形状輪郭に沿って移動する軌跡追従制御のサーボ調整方法において、オーバーシュートを目標値以内に抑制するまで位置決め動作を繰り返し実行し速度フィードフォワードゲインを調整するステップと、目標円弧半径縮小量および前記速度フィードフォワードゲインから演算で前記位置制御部の位置制御ループゲインを求めるステップを備えることを特徴とするものである。 In order to solve the above problem, the present invention was created based on a position control unit using a proportional element, a speed control unit using a proportional and integral element, and a differential value of the position command. In the servo adjustment method of trajectory follow-up control that has a speed feedforward unit that adds the speed feedforward gain to the input of the speed control unit and moves along the shape contour following the position command, overshoot is within the target value A step of repetitively executing a positioning operation until it is suppressed to a predetermined value and adjusting a speed feedforward gain, and a step of obtaining a position control loop gain of the position controller by calculation from a target arc radius reduction amount and the speed feedforward gain. It is a feature.
本発明の方法によれば、数式に基づいて位置制御ループゲインを求めるため、形状誤差が目標円弧半径縮小量となるような軌跡追従制御のサーボ調整が、速度フィードフォワードゲインを使用してオーバーシュートの調整をするだけで簡単に行うことができる。その上、指令プログラムや移動速度によらず、フィードフォワードを使用した場合にも、形状誤差を目標の円弧半径縮小量にする事ができるという効果がある。 According to the method of the present invention, in order to obtain the position control loop gain based on the mathematical formula, the servo adjustment of the trajectory tracking control in which the shape error becomes the target arc radius reduction amount is performed using the velocity feedforward gain. It can be done simply by adjusting. In addition, even when feedforward is used regardless of the command program and the moving speed, there is an effect that the shape error can be made the target arc radius reduction amount.
以下、本発明の方法の具体的実施例について、図に基づいて説明する。 Hereinafter, specific examples of the method of the present invention will be described with reference to the drawings.
図2は、本発明の方法を実施するサーボ制御装置の制御ブロック図である。図において20は位置制御部で、位置指令と位置フィードバックを入力とし、位置指令と位置フィードバックの偏差値に位置制御ループゲイン21を乗算し、速度指令を速度制御部22へ出力する。22は速度指令をトルク指令とするための速度制御部であり、位置制御部20からの速度指令と、位置フィードバックを微分器28により微分して得られる速度フィードバック値と、位置指令を微分し速度フィードフォワードゲイン24を乗算した速度フィードフォワード値を入力とし、トルク指令を算出し駆動部23に出力する。駆動部23はトルク指令の入力によりサーボモータ26を回転させる。ここまでの構成は従来技術と同様の構成である。本発明では、この制御ブロックに位置制御ループゲイン算出部25を追加した。この位置制御ループゲイン算出部25では、速度フィードフォワードゲイン24と、あらかじめ設定された目標円弧半径縮小量と、その目標値となる送り速度と円弧半径から位置制御ループゲインを求める。 FIG. 2 is a control block diagram of a servo control apparatus that implements the method of the present invention. In the figure, reference numeral 20 denotes a position control unit which receives a position command and position feedback, multiplies a deviation value between the position command and position feedback by a position control loop gain 21, and outputs a speed command to the speed control unit 22. A speed control unit 22 uses the speed command as a torque command. The speed command from the position control unit 20, the speed feedback value obtained by differentiating the position feedback by the differentiator 28, and the position command are differentiated to obtain a speed. A speed feedforward value multiplied by the feedforward gain 24 is input, and a torque command is calculated and output to the drive unit 23. The drive unit 23 rotates the servo motor 26 in response to the input of a torque command. The configuration up to this point is the same as the conventional technology. In the present invention, a position control loop gain calculation unit 25 is added to this control block. The position control loop gain calculation unit 25 obtains a position control loop gain from the speed feedforward gain 24, a preset target arc radius reduction amount, a feed speed and an arc radius as the target values.
ここで、位置制御ループを計算する式(1)、(2)について説明する。
図5に速度制御がPI制御の場合の制御ブロック図、図6に速度制御がIP制御の場合の制御ブロック図を示す。速度制御が図5に示すようなPI制御の場合、位置指令から位置応答までの伝達関数は式(4)で示される。
Here, equations (1) and (2) for calculating the position control loop will be described.
FIG. 5 shows a control block diagram when the speed control is PI control, and FIG. 6 shows a control block diagram when the speed control is IP control. When the speed control is the PI control as shown in FIG. 5, the transfer function from the position command to the position response is expressed by Expression (4).
ただし、Kv:速度制御ループゲイン[1/s]、Kp:位置制御ループゲイン[1/s]、Vff:速度フィードフォワードゲイン、Ti:速度制御ループ積分時定数[sec]、s:ラプラス演算子
Where, Kv: speed control loop gain [1 / s], Kp: position control loop gain [1 / s], Vff : speed feedforward gain, Ti: speed control loop integration time constant [sec], s: Laplace calculation Child
円弧半径縮小量ΔRは、 ΔR=(1−|G|)R で求められるため、式(4)から|G|を求め、整理すると式(5)を得る。 Since the arc radius reduction amount ΔR is obtained by ΔR = (1− | G |) R, the equation (5) is obtained by obtaining | G |
ただし、V:送り速度[mm/sec]、R:円弧半径[mm]
Where V: feed rate [mm / sec], R: arc radius [mm]
式(5)をKpについて解くと数式(1)を得る。 When equation (5) is solved for Kp, equation (1) is obtained.
また、速度制御が図6に示すようなIP制御の場合、位置指令から位置応答までの伝達関数は,数式(6)で示される。 When the speed control is the IP control as shown in FIG. 6, the transfer function from the position command to the position response is expressed by Equation (6).
PI制御の場合と同様に、式(6)から|G|を求め,ΔR=(1−|G|)Rに代入すると、円弧半径縮小量ΔRは式(7)となる。 As in the case of PI control, when | G | is obtained from Expression (6) and is substituted into ΔR = (1− | G |) R, the arc radius reduction amount ΔR becomes Expression (7).
式(7)をKpについて解くと式(2)を得る。 When equation (7) is solved for Kp, equation (2) is obtained.
よって式(1)および式(2)を用いることによって目標円弧半径縮小量となる位置ループゲインを求めることができる。 Therefore, the position loop gain that becomes the target arc radius reduction amount can be obtained by using the equations (1) and (2).
図1は本発明の、処理手順を示すフローチャートである。この図を用いて、以下に本発明の方法の詳細を説明する。
本発明では、機械のセットアップ等でサーボを調整するときに、速度フィードフォワードゲインを使用してオーバーシュートを調整すれば、位置制御ループゲインを目標半径縮小量から自動的に計算する。
FIG. 1 is a flowchart showing a processing procedure of the present invention. The details of the method of the present invention will be described below with reference to this figure.
In the present invention, when adjusting the servo in the machine setup or the like, if the overshoot is adjusted using the speed feed forward gain, the position control loop gain is automatically calculated from the target radius reduction amount.
はじめに、あらかじめ設定されたパラメータにて位置制御ループゲインを自動計算によって求めるか否かを判別し(ステップ1)、自動計算しない場合はそのまま処理を抜ける。位置制御ループを自動計算する場合は、オーバーシュートを測定しながら、速度フィードフォワードゲインを調整する(ステップ2)。次に速度制御がPI制御かIP制御かを判別し(ステップ3)、速度制御がPI制御の場合は式(1)を、IP制御の場合は式(2)を使用して、あらかじめパラメータで設定された目標円弧半径縮小量と速度フィードフォワードゲインから位置制御ループゲインを計算する(ステップ4、5)。ここで目標円弧半径縮小量を決めるには、その目標値を実現するときの送り速度と円弧半径が必要であり、例えば、送り速度10000mm/minで半径50mmの円弧補間を行った場合の円弧半径縮小量というように値を設定し、位置制御ループゲインを計算する。この送り速度と円弧半径は、ある固定値でも良いがあらかじめパラメータで設定しても良い。そして、オーバーシュートが許容値以内になるまでステップ2からステップ5を繰り返す(ステップ6)。 First, it is determined whether or not the position control loop gain is to be obtained by automatic calculation using preset parameters (step 1). When automatically calculating the position control loop, the speed feedforward gain is adjusted while measuring overshoot (step 2). Next, it is determined whether the speed control is PI control or IP control (step 3). If the speed control is PI control, use Equation (1), and if IP control, use Equation (2). A position control loop gain is calculated from the set target arc radius reduction amount and speed feed forward gain (steps 4 and 5). Here, in order to determine the target arc radius reduction amount, the feed speed and the arc radius when the target value is realized are required. A value is set like a reduction amount, and a position control loop gain is calculated. The feed speed and the arc radius may be fixed values or may be set in advance by parameters. Then, step 2 to step 5 are repeated until the overshoot falls within the allowable value (step 6).
このように、数式に基づいて位置制御ループゲインを求めるため、形状誤差が目標円弧半径縮小量となるような軌跡追従制御のサーボ調整が、速度フィードフォワードゲインを使用してオーバーシュートの調整をするだけで簡単に行うことができる。その上、指令プログラムや移動速度によらず、フィードフォワードを使用した場合にも、形状誤差を目標の円弧半径縮小量にする事ができる。 In this way, in order to obtain the position control loop gain based on the mathematical expression, the servo adjustment of the trajectory tracking control in which the shape error becomes the target arc radius reduction amount adjusts the overshoot using the speed feedforward gain. Just can be done easily. In addition, the shape error can be made the target arc radius reduction amount even when the feed forward is used regardless of the command program and the moving speed.
20 位置制御部
21、53、63 位置制御ループゲイン
22 速度制御部
23 サーボモータ駆動部
24、52、62 速度フィードフォワードゲイン
25 位置制御ループゲイン算出部
26 サーボモータ
27 位置検出器
28、51、61 微分器
29 速度フィードフォワード部
31 加工プログラム解析部
32 最大移動速度算出部
33 最終指令速度選択部
34 補間部
54、65 速度制御ループゲイン
55、64 速度ループ積分器
56、57、66、67 積分器
20 Position control unit 21, 53, 63 Position control loop gain 22 Speed control unit 23 Servo motor drive unit 24, 52, 62 Speed feed forward gain 25 Position control loop gain calculation unit 26 Servo motor 27 Position detectors 28, 51, 61 Differentiator 29 Speed feedforward unit 31 Machining program analysis unit 32 Maximum moving speed calculation unit 33 Final command speed selection unit 34 Interpolation unit 54, 65 Speed control loop gain 55, 64 Speed loop integrators 56, 57, 66, 67 Integrator
Claims (3)
前記位置指令の微分値を基に作成された速度フィードフォワードゲインを速度制御部の入力に加算する速度フィードフォワード部を有し、
前記位置指令に追従して形状輪郭に沿って移動する軌跡追従制御のサーボ調整方法において、
オーバーシュートを目標値以内に抑制するまで位置決め動作を繰り返し実行し前記速度フィードフォワードゲインを調整するステップと、
目標円弧半径縮小量および前記速度フィードフォワードゲインから演算で前記位置制御部の位置制御ループゲインを求めるステップを備えることを特徴とする軌跡追従制御のサーボ調整方法。 A position command is input, a position control unit using a proportional element, a speed control unit using a proportional and integral element,
A speed feedforward unit that adds a speed feedforward gain created based on the differential value of the position command to the input of the speed control unit;
In the servo adjustment method of trajectory tracking control that moves along the shape contour following the position command,
Repetitively executing a positioning operation until the overshoot is suppressed within a target value to adjust the speed feedforward gain; and
A servo adjustment method for trajectory tracking control, comprising: calculating a position control loop gain of the position control unit by calculation from a target arc radius reduction amount and the velocity feedforward gain.
ただし、ΔR:円弧半径縮小量[mm]、R:円弧半径[mm]、V:送り速度[mm/s]、Vff:速度フィードフォワードゲイン、Kp:位置制御ループゲイン[1/s]、Ti:速度制御ループ積分時定数[sec] Wherein the position control loop gain K P, when the IP control the speed control, the servo adjustment method of the trajectory tracking control according to claim 1, wherein a obtained by the following equation (2).
Where ΔR: arc radius reduction amount [mm], R: arc radius [mm], V: feed speed [mm / s], V ff : speed feed forward gain, Kp: position control loop gain [1 / s], Ti: Speed control loop integration time constant [sec]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003368506A JP4362762B2 (en) | 2003-10-29 | 2003-10-29 | Servo control device and adjustment method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003368506A JP4362762B2 (en) | 2003-10-29 | 2003-10-29 | Servo control device and adjustment method thereof |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2005135060A true JP2005135060A (en) | 2005-05-26 |
JP2005135060A5 JP2005135060A5 (en) | 2006-08-24 |
JP4362762B2 JP4362762B2 (en) | 2009-11-11 |
Family
ID=34646148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003368506A Expired - Fee Related JP4362762B2 (en) | 2003-10-29 | 2003-10-29 | Servo control device and adjustment method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4362762B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016171531A (en) * | 2015-03-13 | 2016-09-23 | 株式会社東芝 | Waveform shaping filter, integrated circuit, and radiation detection device, and time constant adjustment method and gain adjustment method for waveform shaping filter |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112083687B (en) * | 2020-09-11 | 2021-06-11 | 苏州浩智工业控制技术有限公司 | Over-quadrant compensation method and device based on speed feedforward of field bus |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62204311A (en) * | 1986-03-04 | 1987-09-09 | Toshiba Mach Co Ltd | Arithmetic method for circular arc interpolation of numerical control |
JPS62212801A (en) * | 1986-03-14 | 1987-09-18 | Toshiba Mach Co Ltd | Complete follow-up servo system |
JPH0227409A (en) * | 1988-07-18 | 1990-01-30 | Hitachi Ltd | Control device for servo motor |
JPH0340008A (en) * | 1989-07-06 | 1991-02-20 | Yaskawa Electric Mfg Co Ltd | Position controller using feedforward compensation |
JPH0784647A (en) * | 1993-09-17 | 1995-03-31 | Yaskawa Electric Corp | Position control device |
JPH07152417A (en) * | 1993-11-29 | 1995-06-16 | Fanuc Ltd | Tool path and tool feeding speed control system for numerical controller |
JPH0899278A (en) * | 1994-09-30 | 1996-04-16 | Meidensha Corp | Robot controller |
JPH0916265A (en) * | 1995-06-27 | 1997-01-17 | Fanuc Ltd | Acceleration and deceleration control system for servomotor |
JPH09167024A (en) * | 1995-12-15 | 1997-06-24 | Yaskawa Electric Corp | Servo control method |
JPH09244748A (en) * | 1996-03-11 | 1997-09-19 | Matsushita Electric Ind Co Ltd | Position controller |
JP2002317680A (en) * | 2001-04-24 | 2002-10-31 | Denso Corp | Fuel injection control device of internal combustion engine |
JP2002354857A (en) * | 2001-05-22 | 2002-12-06 | Yaskawa Electric Corp | Motor controller |
JP2003005838A (en) * | 2001-04-19 | 2003-01-08 | Toshiba Mach Co Ltd | Method for servo control |
JP2003061377A (en) * | 2001-08-17 | 2003-02-28 | Yaskawa Electric Corp | Motor control apparatus with auto-tuning function |
-
2003
- 2003-10-29 JP JP2003368506A patent/JP4362762B2/en not_active Expired - Fee Related
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62204311A (en) * | 1986-03-04 | 1987-09-09 | Toshiba Mach Co Ltd | Arithmetic method for circular arc interpolation of numerical control |
JPS62212801A (en) * | 1986-03-14 | 1987-09-18 | Toshiba Mach Co Ltd | Complete follow-up servo system |
JPH0227409A (en) * | 1988-07-18 | 1990-01-30 | Hitachi Ltd | Control device for servo motor |
JPH0340008A (en) * | 1989-07-06 | 1991-02-20 | Yaskawa Electric Mfg Co Ltd | Position controller using feedforward compensation |
JPH0784647A (en) * | 1993-09-17 | 1995-03-31 | Yaskawa Electric Corp | Position control device |
JPH07152417A (en) * | 1993-11-29 | 1995-06-16 | Fanuc Ltd | Tool path and tool feeding speed control system for numerical controller |
JPH0899278A (en) * | 1994-09-30 | 1996-04-16 | Meidensha Corp | Robot controller |
JPH0916265A (en) * | 1995-06-27 | 1997-01-17 | Fanuc Ltd | Acceleration and deceleration control system for servomotor |
JPH09167024A (en) * | 1995-12-15 | 1997-06-24 | Yaskawa Electric Corp | Servo control method |
JPH09244748A (en) * | 1996-03-11 | 1997-09-19 | Matsushita Electric Ind Co Ltd | Position controller |
JP2003005838A (en) * | 2001-04-19 | 2003-01-08 | Toshiba Mach Co Ltd | Method for servo control |
JP2002317680A (en) * | 2001-04-24 | 2002-10-31 | Denso Corp | Fuel injection control device of internal combustion engine |
JP2002354857A (en) * | 2001-05-22 | 2002-12-06 | Yaskawa Electric Corp | Motor controller |
JP2003061377A (en) * | 2001-08-17 | 2003-02-28 | Yaskawa Electric Corp | Motor control apparatus with auto-tuning function |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016171531A (en) * | 2015-03-13 | 2016-09-23 | 株式会社東芝 | Waveform shaping filter, integrated circuit, and radiation detection device, and time constant adjustment method and gain adjustment method for waveform shaping filter |
Also Published As
Publication number | Publication date |
---|---|
JP4362762B2 (en) | 2009-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8843237B2 (en) | Method and device for controlling a manipulator | |
JP4665096B2 (en) | Motion controller used in machine tool with sliding mode controller | |
US11592789B2 (en) | Output device, control device, and method for outputting evaluation functions and machine learning results | |
EP1439440A2 (en) | Servo motor drive control device | |
US9636774B2 (en) | Controller for laser beam machining for controlling approaching operation of machining head | |
JP2007257515A (en) | Method for controlling servo motor | |
JP6386516B2 (en) | Robot device with learning function | |
WO2007046257A1 (en) | Motor control device, method, and program storage medium | |
JP4424350B2 (en) | POSITION CONTROL DEVICE AND ITS CONTROL METHOD | |
JPH1063325A (en) | Servomotor control method | |
JPH07104856A (en) | Vibration control method | |
JP2005293564A (en) | Position control device having sliding mode controller | |
JP2003058213A (en) | Numerical controller | |
JPH03289385A (en) | Regulating method for gain of motor control | |
JP2002091570A (en) | Servo control method | |
JP2820820B2 (en) | Servo motor control device | |
JP2005135060A (en) | Servo adjusting method of trace follow-up control | |
JP5494378B2 (en) | Thread cutting control method and apparatus | |
JP3599849B2 (en) | Distribution method of movement command in servo control | |
JP5660482B2 (en) | Control method and control device for feed drive system of machine tool | |
JP2005135060A5 (en) | ||
JP4636271B2 (en) | Servo control device and adjustment method thereof | |
JP2003235280A (en) | Motor controller | |
JP2010048740A (en) | Material testing machine | |
JPH10105247A (en) | Overshoot preventing method for servomotor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060706 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060706 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090430 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090507 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090630 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090723 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090805 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120828 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130828 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140828 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |