JPH0899001A - Method for removing heavy metal included in living body and its device - Google Patents

Method for removing heavy metal included in living body and its device

Info

Publication number
JPH0899001A
JPH0899001A JP6234846A JP23484694A JPH0899001A JP H0899001 A JPH0899001 A JP H0899001A JP 6234846 A JP6234846 A JP 6234846A JP 23484694 A JP23484694 A JP 23484694A JP H0899001 A JPH0899001 A JP H0899001A
Authority
JP
Japan
Prior art keywords
cathode
organism
anode
electrolytic cell
heavy metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6234846A
Other languages
Japanese (ja)
Other versions
JP2667986B2 (en
Inventor
Yoichi Sakuta
庸一 作田
Keiichi Tomita
恵一 富田
Satoomi Wakasugi
郷臣 若杉
Katsumi Fujishima
勝美 藤島
Hideo Murakami
英穂 村上
Hiroshi Saito
斎藤  弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6234846A priority Critical patent/JP2667986B2/en
Publication of JPH0899001A publication Critical patent/JPH0899001A/en
Application granted granted Critical
Publication of JP2667986B2 publication Critical patent/JP2667986B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE: To remove heavy metals from a living body in a relatively short time, to make the removing ratio extremely high, to make the processing time adjustable, to miniaturize the device to make the amt. of use of water relatively small and to perform easily water discharge processing. CONSTITUTION: An anode 13 and a cathode 14 are arranged at a specified interval in an electrolytic cell 12 wherein midgud glands 11c of scallops contg. heavy metals and an electrolyte 15 can be stored and a DC electric source 16 electrically connected with the anode 13 and the cathode 14 applies an electric voltage between the anode 13 and the cathode 14. The electrolyte is a sulfuric acid soln. with a concn. of 5vol.% and the cathode 14 is formed of a stainless steel. A stirring means 17 for stirring and mixing the midgut glands 11c and the electrolyte 15 is installed in an electrolytic cell 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水産物、農産物等の生物
体に含まれる重金属を生物体から除去する方法及びその
装置に関する。更に詳しくはホタテガイに含まれるカド
ミウムやヒ素等の重金属を除去するに適する方法及びそ
の装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for removing heavy metals contained in organisms such as marine products and agricultural products from the organisms. More specifically, the present invention relates to a method and apparatus suitable for removing heavy metals such as cadmium and arsenic contained in scallops.

【0002】[0002]

【従来の技術】これまでホタテガイのウロと呼ばれる中
腸線や貝柱側面に付着する腎臓には高濃度のカドミウム
やヒ素等の重金属が蓄積していることが認められてい
る。特に中腸線内のカドミウムやヒ素の濃度は数十pp
mに達しており、この数値は農林水産省の指導基準を越
えるため、上記中腸線や腎臓を何等処理せずに飼肥料に
利用することは不可能であって、穴を掘って埋設したり
或いは焼却していた。しかし、上記中腸線や腎臓を埋設
又は焼却するには、多くの経費を要する問題点があり、
埋設用地の確保も限界に達している。更に埋設された中
腸線や腎臓に含まれる重金属が地下水に侵入し地下水を
汚染する恐れがあった。
2. Description of the Related Art Up to now, it has been recognized that high concentrations of heavy metals such as cadmium and arsenic are accumulated in the midgut line called uro of scallop and the kidney attached to the side of the scallop. Especially, the concentration of cadmium and arsenic in the midgut is several tens of pp
Since this value exceeds the guidance standard of the Ministry of Agriculture, Forestry and Fisheries, it is impossible to use the above-mentioned midgut line or kidney for feed fertilizer without any treatment. Or it was incinerated. However, there is a problem that it costs a lot of money to bury or incinerate the above-mentioned midgut line and kidneys,
Reservation of buried land has reached its limit. Further, there is a possibility that heavy metals contained in the buried midgut and kidney may infiltrate the groundwater and contaminate the groundwater.

【0003】これらの点を解消するために、北海道立工
業試験場はホタテガイの中腸線等の軟体部を硫酸溶液中
に浸漬した後、別の水槽で3回水洗して中腸線からカド
ミウムを除去する脱カドミウム処理を行い、その結果を
平成5年度共同研究(重点)報告書に「ホタテガイ副産
物の処理・利用技術に関する研究開発」(北海道立中央
水産試験場、同工業試験場、同衛生研究所、同中央農業
試験場及び同滝川畜産試験場)として発表した。この処
理は中腸線等の軟体部を硫酸溶液に24時間浸漬した
後、上記軟体部を5時間ずつ3回水洗することにより行
われ、上記処理により軟体部から98%のカドミウムを
除去することができる。
In order to eliminate these points, the Hokkaido Industrial Research Institute immerses the soft body part such as the scallop midgut wire in a sulfuric acid solution and then rinses it with water 3 times in another water tank to remove cadmium from the midgut wire. The cadmium-free treatment was carried out, and the results are reported in the FY1993 joint research (priority) report, "Research and development on treatment and utilization technology of scallop by-products" (Hokkaido Central Fisheries Experimental Station, Industrial Testing Station, Sanitation Research Center, Central Research Institute). Agricultural Experiment Station and Takigawa Livestock Experiment Station). This treatment is carried out by immersing the soft body part such as the midgut line in a sulfuric acid solution for 24 hours, and then washing the soft body part with water 3 times for 5 hours each, whereby 98% of cadmium can be removed from the soft body part by the above treatment. it can.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来の脱
カドミウム処理では、処理時間が39時間と極めて長い
不具合があった。また一度に大量の中腸線等の軟体部を
処理しようとすると装置が大型化する問題点があった。
更に、水洗時に多量の水を必要とし、その後の排水処理
も大がかりになる問題点もあった。
However, the above-mentioned conventional decadmium treatment has a problem that the treatment time is extremely long, 39 hours. Further, there is a problem that the apparatus becomes large in size when it is attempted to process a large amount of soft body parts such as the midgut line at one time.
Further, there is a problem that a large amount of water is required at the time of washing with water and the subsequent wastewater treatment becomes large-scale.

【0005】本発明の目的は、比較的短時間で生物体か
ら重金属を除去でき、その除去率が極めて高く、かつ処
理時間を調整できる生物体に含まれる重金属を除去する
方法及びその装置を提供することにある。また本発明の
別の目的は、装置を小型化でき、水の使用量が比較的少
なくて済み、排水処理も容易になる生物体に含まれる重
金属を除去する方法及びその装置を提供することにあ
る。
An object of the present invention is to provide a method and an apparatus for removing heavy metals contained in living organisms, which can remove heavy metals from living organisms in a relatively short time, have an extremely high removal rate, and can adjust the treatment time. To do. Another object of the present invention is to provide a method and apparatus for removing heavy metals contained in living organisms, which can reduce the size of the apparatus, use relatively little water, and facilitate wastewater treatment. is there.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明の構成を、実施例に対応する図1、図3及び図
12を用いて説明する。本発明の第1の方法は、図1及
び図3に示すように陽極13と陰極14を有する電解槽
12に生体内に重金属が含まれる生物体11と電解液1
5を供給し重金属を電解液15に溶出させる工程と、陽
極13と陰極14に直流電圧を印加して重金属を陰極1
4に析出させる工程とを含む。本発明の第2の方法は、
陽極13と陰極14を有し電解液15が貯えられた電解
槽12に生体内に重金属が含まれる生物体11を供給し
かつ重金属を電解液15に溶出させる工程と、陽極13
と陰極14に直流電圧を印加して重金属を陰極14に析
出させる工程とを含む。本発明の生物体に含まれる重金
属を除去する装置は、図12に示すように陽極73と陰
極74が所定の間隔をあけて配設され生体内に重金属が
含まれる生物体11fと電解液15とを貯留可能な電解
槽72と、陽極73と陰極74に電気的に接続され陽極
73及び陰極74間に電圧を印加する直流電源76とを
備える。
The structure of the present invention for achieving the above object will be described with reference to FIGS. 1, 3 and 12 corresponding to the embodiments. The first method of the present invention is, as shown in FIGS. 1 and 3, in an electrolytic cell 12 having an anode 13 and a cathode 14, a living organism 11 containing a heavy metal in a living body and an electrolytic solution 1.
5 is supplied to dissolve the heavy metal into the electrolytic solution 15, and a DC voltage is applied to the anode 13 and the cathode 14 to remove the heavy metal from the cathode 1.
4 to deposit. The second method of the present invention is
A step of supplying a living body 11 containing a heavy metal in a living body and eluting the heavy metal into the electrolytic solution 15 into an electrolytic cell 12 having an anode 13 and a cathode 14 and storing an electrolytic solution 15;
And a step of applying a DC voltage to the cathode 14 to deposit a heavy metal on the cathode 14. As shown in FIG. 12, an apparatus for removing heavy metals contained in a living organism of the present invention has an anode 73 and a cathode 74 arranged at a predetermined interval and a living organism 11f containing a heavy metal in a living body and an electrolyte solution 15 And a DC power supply 76 that is electrically connected to the anode 73 and the cathode 74 and applies a voltage between the anode 73 and the cathode 74.

【0007】[0007]

【作用】図1及び図3に示される装置では、生物体11
に含まれる重金属は電解液15に浸漬することにより徐
々に電解液15中に溶出して陽イオンとなる。陽極13
と陰極14に直流電圧を印加すると、陽イオンとなった
重金属が陰極14に析出し、かつ生物体11に含まれる
重金属の電解液15中への電離が促進されるので、比較
的短時間に生物体に含まれる重金属の殆ど全てを陰極1
4に析出させることができる。
In the device shown in FIGS. 1 and 3, the living body 11
By immersing the heavy metal contained in the electrolyte solution 15 in the electrolyte solution 15, the heavy metal is gradually eluted into the electrolyte solution 15 and becomes a cation. Anode 13
When a DC voltage is applied to the cathode 14 and the cathode 14, the heavy metal turned into cations is deposited on the cathode 14 and the ionization of the heavy metal contained in the organism 11 into the electrolyte solution 15 is promoted. Almost all heavy metals contained in living organisms are cathodes 1
4 can be deposited.

【0008】[0008]

【実施例】次に本発明の実施例を図面に基づいて詳しく
説明する。 <実施例1>図3に示すように、ホタテガイ11の貝柱
11aと靭帯11bとの間にはウロと呼ばれる中腸線1
1cが位置し、この中腸線11c内には高濃度(数十p
pm)のカドミウム(Cd)が蓄積されている。また1
1dはヒモと呼ばれる外套膜であり、11eは腎臓であ
る。図1及び図2に示すように、陽極13と陰極14が
所定の間隔をあけて配設された電解槽12に上記中腸線
11cと電解液15とが貯留され、陽極13と陰極14
には直流電源16が電気的に接続される。中腸線11c
は図示しないがプラスチック製かごに入れたまま電解槽
12の電解液15に浸される。また電解槽12内の電解
液15は撹拌手段17により撹拌される。陽極13及び
陰極14はこの例では長さ65mm、幅50mmのグラ
ファイト及びステンレススチールによりそれぞれ形成さ
れ、陽極13及び陰極14の間隔は70mmである。電
解槽12はこの例では1リットルのガラス製ビーカーで
あり、電解液15は濃度が5容量%の硫酸溶液である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described in detail with reference to the drawings. <Example 1> As shown in FIG. 3, the midgut line 1 called a uro is located between the scallop 11a and the ligament 11b of the scallop 11.
1c is located in this midgut line 11c and has a high concentration (tens of p
pm) cadmium (Cd) is accumulated. Again 1
1d is a mantle called a string, and 11e is a kidney. As shown in FIGS. 1 and 2, the midgut line 11c and the electrolytic solution 15 are stored in an electrolytic cell 12 in which an anode 13 and a cathode 14 are arranged at a predetermined interval, and the anode 13 and the cathode 14 are stored.
A DC power supply 16 is electrically connected to the. Midgut line 11c
Although not shown, it is immersed in the electrolytic solution 15 in the electrolytic cell 12 while being placed in a plastic basket. Further, the electrolytic solution 15 in the electrolytic bath 12 is stirred by the stirring means 17. In this example, the anode 13 and the cathode 14 are made of graphite and stainless steel having a length of 65 mm and a width of 50 mm, respectively, and the distance between the anode 13 and the cathode 14 is 70 mm. The electrolytic cell 12 is a 1 liter glass beaker in this example, and the electrolytic solution 15 is a sulfuric acid solution having a concentration of 5% by volume.

【0009】また撹拌手段17は電解槽12内の底中央
に位置する撹拌羽根17aと、電解槽12の下面を受け
る駆動手段17bとを有する。撹拌羽根17aはマグネ
ットにより形成され、駆動手段17bは図示しないがモ
ータにより回転可能なマグネットが内蔵される。モータ
が回転すると駆動手段17b内のマグネットが回転し、
この回転に引きずられて撹拌羽根17aが回転すること
により、電解液15を撹拌するようになっている。電解
槽12には800mlの電解液15が注入され、この電
解液15中には202.21gの中腸線11cがプラス
チック製かごに入れたまま供給される。この中腸線11
cには乾燥した中腸線1kg当り63.2mgのカドミ
ウムを含む(以下、Cd含有量63.2mg/乾kgと
いう)。
The stirring means 17 has a stirring blade 17a located in the center of the bottom of the electrolytic cell 12 and a driving means 17b for receiving the lower surface of the electrolytic cell 12. The stirring blade 17a is formed by a magnet, and the driving means 17b has a magnet (not shown) rotatable by a motor. When the motor rotates, the magnet in the driving means 17b rotates,
The stirring blade 17a is rotated by being dragged by this rotation, whereby the electrolyte solution 15 is stirred. 800 ml of the electrolytic solution 15 is injected into the electrolytic cell 12, and 202.21 g of the midgut line 11c is supplied to the electrolytic solution 15 while being put in a plastic basket. This midgut line 11
c contains 63.2 mg of cadmium per 1 kg of dried midgut (hereinafter, referred to as Cd content of 63.2 mg / dry kg).

【0010】<実施例2>図4及び図5に示すように、
陽極13と陰極14がそれぞれセパレータ28により包
囲されたことを除いて上記実施例1と同一である。セパ
レータ28はこの例ではグラスウール紙により形成され
たフィルタであり、重金属イオンの通過を許容しかつ陰
極14に析出した重金属の通過を阻止するようになって
いる。この例では中腸線11c内に含まれるカドミウム
が電解液15に溶出して生成されたカドミウム陽イオン
はセパレータ28を通過できるが、陰極14に析出した
カドミウムはセパレータ28を殆ど通過できないように
なっている。図4及び図5において図1及び図2と同一
符号は同一部品を示す。
<Embodiment 2> As shown in FIGS. 4 and 5,
The same as Example 1 except that the anode 13 and the cathode 14 were surrounded by the separators 28, respectively. The separator 28 is a filter formed of glass wool paper in this example, and is designed to allow the passage of heavy metal ions and prevent the passage of heavy metal deposited on the cathode 14. In this example, the cadmium contained in the midgut 11c is eluted into the electrolytic solution 15 and the generated cadmium cations can pass through the separator 28, but the cadmium deposited on the cathode 14 can hardly pass through the separator 28. There is. 4 and 5, the same reference numerals as those in FIGS. 1 and 2 indicate the same parts.

【0011】<実施例3>図6及び図7に示すように、
円柱状に形成された陽極33が電解槽12の中央に挿入
され、電解槽12の内径より僅かに小径の円筒状のカド
ミウムにより形成された陰極34が陽極33を中心とし
て電解槽12に挿入され、更に陰極34より僅かに小径
の円筒状に形成されたセパレータ38が陽極33を中心
として陰極34の内側に位置するように電解槽12に挿
入されたことを除いて上記実施例1と同一である。中腸
線11cはセパレータ38の内側に供給され、陰極34
はセパレータ38により中腸線11cから区画される。
図6及び図7において図1及び図2と同一符号は同一部
品を示す。
<Embodiment 3> As shown in FIGS. 6 and 7,
A column-shaped anode 33 is inserted in the center of the electrolytic cell 12, and a cathode 34 made of cylindrical cadmium having a diameter slightly smaller than the inner diameter of the electrolytic cell 12 is inserted into the electrolytic cell 12 with the anode 33 as the center. Further, the same as Example 1 except that a separator 38 formed in a cylindrical shape having a diameter slightly smaller than that of the cathode 34 is inserted into the electrolytic cell 12 so as to be located inside the cathode 34 with the anode 33 as a center. is there. The midgut line 11c is supplied to the inside of the separator 38 and the cathode 34
Is separated from the midgut line 11c by the separator 38.
6 and 7, the same reference numerals as those in FIGS. 1 and 2 indicate the same parts.

【0012】<比較試験と評価>実施例1〜3の陽極及
び陰極間にそれぞれ5Vの直流電圧を印加し、各電解液
15に流れる電流を0.8〜1.0Aに24時間保ち、
この間電解液15を撹拌手段17の撹拌羽根17aによ
り撹拌する。
<Comparison Test and Evaluation> A DC voltage of 5 V was applied between the anode and cathode of Examples 1 to 3, and the current flowing in each electrolyte solution 15 was maintained at 0.8 to 1.0 A for 24 hours.
During this time, the electrolytic solution 15 is stirred by the stirring blade 17a of the stirring means 17.

【0013】[0013]

【表1】 [Table 1]

【0014】処理前及び処理後のカドミウムの含有量を
それぞれ測定し、表1のような結果を得た。表1から明
らかなように、中腸線11cに含まれるカドミウムは電
解液15中に溶出して陽イオンとなり、この陽イオンは
陰極14又は34に析出して、比較的短時間に中腸線1
1cに含まれるカドミウムの殆ど全てを陰極14又は3
4に析出する。実施例2の方が実施例1よりカドミウム
の除去率がよいのは、実施例2では陰極14に析出した
カドミウムがセパレータ28を通過して中腸線11cに
再び付着することが殆どないためであると考えられる。
また実施例3の方が実施例2よりカドミウムの除去率が
よいのは、実施例3では陰極34をカドミウムにより形
成したので、一旦陰極34に析出したカドミウムが陰極
34から離脱しないためであると考えられる。
The content of cadmium before and after the treatment was measured, and the results shown in Table 1 were obtained. As is clear from Table 1, cadmium contained in the midgut line 11c is eluted into the electrolytic solution 15 to become a cation, and this cation is deposited on the cathode 14 or 34, and the midgut line 1 is relatively short.
Almost all of the cadmium contained in 1c was converted to the cathode 14 or 3
4 is deposited. The reason why the removal rate of cadmium in Example 2 is better than that in Example 1 is that in Example 2, cadmium deposited on the cathode 14 hardly passes through the separator 28 and reattaches to the midgut line 11c. it is conceivable that.
Further, the reason why the removal rate of cadmium is better in Example 3 than in Example 2 is that in Example 3, since the cathode 34 was formed of cadmium, the cadmium once deposited on the cathode 34 does not separate from the cathode 34. Conceivable.

【0015】<実施例4>図8に示すように、電解槽4
2は塩化ビニール樹脂により直方体の箱状に形成され、
陽極43及び陰極44はそれぞれ所定の間隔をあけて交
互に配設されかつ電解槽42に挿入可能に形成される。
陽極43はこの例では不溶性金属電極である金めっきさ
れたチタン板により形成され、陰極44はステンレスス
チール板により形成される。陽極43及び陰極44の上
端は一対の電極保持具46,47によりそれぞれ保持さ
れ、一対の電極保持具46,47は電解槽42の両端外
部に立設された一対の支柱48,48に上下動可能に保
持される。陽極43及び陰極44は一対の電極保持具4
6,47を介して直流電源16に電気的に接続される。
また電解槽42には実施例1と同一の電解液15が貯留
され、この電解槽42にはホタテガイの食用となる貝柱
や外套膜以外の中腸線や腎臓11fが図示しない絶縁材
料からなる網に入れた状態で供給される。図8において
図1と同一符号は同一部品を示す。
<Embodiment 4> As shown in FIG.
2 is made of vinyl chloride resin in the shape of a rectangular box,
The anodes 43 and the cathodes 44 are alternately arranged at predetermined intervals and are formed so as to be inserted into the electrolytic cell 42.
The anode 43 is formed of a gold-plated titanium plate which is an insoluble metal electrode in this example, and the cathode 44 is formed of a stainless steel plate. The upper ends of the anode 43 and the cathode 44 are held by a pair of electrode holders 46 and 47, respectively, and the pair of electrode holders 46 and 47 move up and down on a pair of columns 48 and 48 that are erected outside both ends of the electrolytic cell 42. Retained as possible. The anode 43 and the cathode 44 are a pair of electrode holders 4.
It is electrically connected to the DC power supply 16 via 6, 47.
In addition, the same electrolytic solution 15 as that of the first embodiment is stored in the electrolytic bath 42, and in this electrolytic bath 42, the midgut line other than the scallops and mantles used for scallops and the kidney 11f are formed into a net made of an insulating material (not shown). Supplied as supplied. 8, the same reference numerals as those in FIG. 1 indicate the same parts.

【0016】このように構成された重金属を除去する装
置では、陽極43及び陰極44を支柱に沿って電解槽4
2の上方に上昇させた状態でホタテガイの中腸線や腎臓
11fを網(図示せず)に入れたまま電解槽42に投入
し、この状態で陽極43及び陰極44を下降させて電解
槽42に挿入する。ホタテガイの中腸線や腎臓11fに
含まれるカドミウムやヒ素等の重金属は電解液15に浸
漬することにより徐々に電解液15中に溶出して陽イオ
ンとなる。直流電源16をオンして陽極43と陰極44
に直流電圧を印加すると、陽イオンとなった重金属が陰
極44に析出し、同時に中腸線や腎臓11fに含まれる
重金属の電解液15中への電離が促進される。この結
果、比較的短時間に中腸線や腎臓11fに含まれる重金
属の殆ど全てを陰極44に析出させることができる。所
定時間経過後、直流電源16をオフして陽極43及び陰
極44を支柱に沿って上昇させ、網を引き上げて中腸線
や腎臓11fを電解槽42から出し、水洗いを行い、必
要に応じて中和処理をすると、飼肥料として使用可能な
ホタテガイの中腸線や腎臓11fが得られる。
In the apparatus for removing heavy metals thus constructed, the anode 43 and the cathode 44 are connected to the electrolytic cell 4 along the columns.
In the state of being raised above 2, the scallop midgut line and the kidney 11f are put into the electrolytic bath 42 while being kept in the net (not shown), and in this state, the anode 43 and the cathode 44 are lowered to the electrolytic bath 42. insert. Heavy metals such as cadmium and arsenic contained in the midgut of the scallop and the kidney 11f are gradually dissolved in the electrolytic solution 15 by being immersed in the electrolytic solution 15 to become cations. The DC power source 16 is turned on to turn on the anode 43 and the cathode 44.
When a DC voltage is applied to the cathode, the heavy metal that has become positive ions is deposited on the cathode 44, and at the same time, the ionization of the heavy metal contained in the midgut line and the kidney 11f into the electrolytic solution 15 is promoted. As a result, almost all the heavy metals contained in the midgut and the kidney 11f can be deposited on the cathode 44 in a relatively short time. After a lapse of a predetermined time, the DC power supply 16 is turned off, the anode 43 and the cathode 44 are raised along the support columns, the net is pulled up, the midgut line and the kidney 11f are taken out from the electrolytic bath 42, and washed with water. By the Japanese treatment, the midgut line and kidney 11f of the scallop, which can be used as a fertilizer, are obtained.

【0017】<実施例5>図9〜図11に示すように、
電解槽52は塩化ビニール樹脂により開口部52aを有
する円筒の箱状に形成される。陽極53は不溶性金属電
極である金めっきされたチタン棒により形成され電解槽
52の中央に立設され、陰極54は電解槽52の内径よ
り僅かに小径の円筒状のステンレススチールにより形成
される(図9)。電解槽52は撹拌手段57により電解
槽52の軸心を中心に回転可能に保持され、撹拌手段5
7は支持具56により支持される(図9〜図11)。撹
拌手段57は略U字状の第1保持具57aと、この保持
具57aと一体的に形成されたリング状の第2保持具5
7bと(図10及び図11)、電解槽52の底面中央か
ら突設されたシャフト52b及び第1保持具57a間に
設けられた第1軸受57cと、電解槽52の開口部52
a近傍の外周面及び第2保持具57b間に設けられた大
径の第2軸受57dとを有し(図9)、これらの部材に
より電解槽52は回転可能に保持される。また電解槽5
2の底面近傍の外周面にはリングギヤ57eが固着さ
れ、第1保持具57aの底面から突設されたアーム57
fの先端には電動モータ57gが固定され、このモータ
57gの出力軸57hには上記ギヤ57eに噛合するピ
ニオン57iが固着される。
<Embodiment 5> As shown in FIGS.
The electrolytic cell 52 is formed of a vinyl chloride resin into a cylindrical box shape having an opening 52a. The anode 53 is formed of a gold-plated titanium rod, which is an insoluble metal electrode, and stands upright in the center of the electrolytic cell 52. The cathode 54 is formed of cylindrical stainless steel having a diameter slightly smaller than the inner diameter of the electrolytic cell 52 ( (FIG. 9). The electrolytic cell 52 is held by an agitating means 57 so as to be rotatable around the axis of the electrolytic cell 52.
7 is supported by a support 56 (FIGS. 9 to 11). The stirring means 57 includes a substantially U-shaped first holder 57a and a ring-shaped second holder 5 integrally formed with the holder 57a.
7b (FIGS. 10 and 11), a shaft 52b protruding from the center of the bottom surface of the electrolytic cell 52, and a first bearing 57c provided between the first holder 57a, and an opening 52 of the electrolytic cell 52.
It has a large diameter second bearing 57d provided between the outer peripheral surface in the vicinity of a and the second holder 57b (FIG. 9), and these members hold the electrolytic cell 52 rotatably. Electrolyzer 5
The ring gear 57e is fixed to the outer peripheral surface near the bottom surface of the second arm 57, and the arm 57 protrudes from the bottom surface of the first holder 57a.
An electric motor 57g is fixed to the end of f, and a pinion 57i that meshes with the gear 57e is fixed to an output shaft 57h of the motor 57g.

【0018】第1保持具57aの中央には軸57jが突
設され、この軸57jは支持具56の上端に回動可能に
保持される(図10及び図11)。また軸57jにはウ
ォームホイール58が固着され、支持具56から突設さ
れたブラケット56aには減速機付きモータ59が固定
され、このモータ59の出力軸59aには上記ホイール
58に噛合するウォーム61が固着される。62は陽極
53に電気的に接続されたスリップリングであり、63
は陰極54に電気的に接続されたスリップリングである
(図9)。これらのリング62,63はブラシ64,6
4を介して直流電源16に電気的に接続される。図9に
おいて図8と同一符号は同一部品を示す。
A shaft 57j is projectingly provided at the center of the first holder 57a, and the shaft 57j is rotatably held on the upper end of the support 56 (FIGS. 10 and 11). A worm wheel 58 is fixed to the shaft 57j, a motor 59 with a reduction gear is fixed to a bracket 56a protruding from the support tool 56, and a worm 61 meshing with the wheel 58 is attached to an output shaft 59a of the motor 59. Is fixed. 62 is a slip ring electrically connected to the anode 53, and 63
Is a slip ring electrically connected to the cathode 54 (FIG. 9). These rings 62, 63 are brushes 64, 6
4 and is electrically connected to a DC power supply 16. 9, the same reference numerals as those in FIG. 8 indicate the same parts.

【0019】このように構成された重金属を除去する装
置では、減速機付きモータ59を作動させて電解槽52
の開口部52aを上方に向けた状態で(図11)、予め
ホタテガイの中腸線や腎臓11fが混合された電解液1
5を開口部52aから投入した後、減速機付きモータ5
9を作動させて開口部52aを斜め上方に向くように傾
斜させる(図9)。この状態で電動モータ57gを作動
させて電解槽52を回転させると、中腸線や腎臓11f
と電解液15は撹拌されて均一に混合され、直流電流1
6をオンすると、中腸線や腎臓11fの重金属は陰極5
4に析出する。処理が終了すると、直流電源16をオフ
して減速機付きモータ59をオンし、電解槽52の開口
部52aを斜め下方に向くように傾斜させて中腸線や腎
臓11f及び電解液15を排出する(図10)。
In the apparatus for removing heavy metals configured as described above, the motor 59 with a speed reducer is operated to operate the electrolytic cell 52.
Electrolyte solution 1 in which the midgut line of the scallop and the kidney 11f were mixed in advance with the opening 52a of the shell facing upward (FIG. 11)
5 through the opening 52a, and then the motor 5
9 to tilt the opening 52a so as to face obliquely upward (FIG. 9). In this state, when the electric motor 57g is operated to rotate the electrolytic cell 52, the midgut line and the kidney 11f
And the electrolyte solution 15 are agitated and uniformly mixed, and a direct current of 1
When 6 is turned on, the heavy metal of the midgut line and the kidney 11f becomes the cathode 5
4 is deposited. When the processing is completed, the DC power supply 16 is turned off, the motor 59 with a speed reducer is turned on, the opening 52a of the electrolytic cell 52 is inclined so as to face obliquely downward, and the midgut line, the kidney 11f, and the electrolytic solution 15 are discharged. (FIG. 10).

【0020】<実施例6>図12〜図14に示すよう
に、電解槽72は塩化ビニール樹脂により水平に延びる
四角筒状に形成される。この電解槽72の一端にはホタ
テガイの中腸線や腎臓11f及び電解液15を供給する
供給口72aが形成され、この供給口72aには漏斗7
2bが接続される(図12)。電解槽72の他端には中
腸線や腎臓11f及び電解液15を排出する排出口72
cが形成され、この排出口72cには排出タンク72d
が接続される。排出タンク72d内には処理された中腸
線や腎臓11fを排出する傾斜コンベヤ79が設置さ
れ、排出タンク72dの隣には傾斜コンベヤ79により
搬送された中腸線や腎臓11fを受けて容器82に搬送
する水平コンベヤ81が設けられる。83は水平コンベ
ヤ81上の中腸線や腎臓11fに付着した電解液15を
受ける受皿である。陽極73は不溶性金属電極により形
成されたスクリューコンベヤであり、不溶性金属電極は
この例では金めっきされたチタンである。この陽極73
は電解槽72の長手方向に延びて水平に挿通され一対の
軸受84,84を介して回転可能に保持されたシャフト
73aと、このシャフト73aの電解槽72に挿入され
た部分のうち供給口72aに対向する部分以外に固着さ
れた螺旋羽根73bとを有する。またシャフト73aの
供給口72aに対向する部分には撹拌手段77である撹
拌羽根が固着される。
<Embodiment 6> As shown in FIGS. 12 to 14, the electrolytic cell 72 is formed of a vinyl chloride resin in a horizontally extending rectangular tube shape. A supply port 72a for supplying the midgut line of the scallop, the kidney 11f and the electrolytic solution 15 is formed at one end of the electrolytic cell 72, and the funnel 7 is provided in the supply port 72a.
2b is connected (FIG. 12). At the other end of the electrolytic cell 72, there is a discharge port 72 for discharging the midgut line, the kidney 11f and the electrolytic solution 15.
c is formed, and a discharge tank 72d is provided at the discharge port 72c.
Are connected. An inclined conveyor 79 for discharging the treated midgut line and kidney 11f is installed in the discharge tank 72d, and next to the discharge tank 72d, the midgut line and kidney 11f conveyed by the inclined conveyor 79 are received and conveyed to the container 82. A horizontal conveyor 81 is provided. Reference numeral 83 is a pan for receiving the electrolytic solution 15 attached to the midgut line and the kidney 11f on the horizontal conveyor 81. The anode 73 is a screw conveyor formed by an insoluble metal electrode, which in this example is gold plated titanium. This anode 73
Is a shaft 73a which extends in the longitudinal direction of the electrolytic cell 72 and is inserted horizontally and is rotatably held via a pair of bearings 84, 84, and a supply port 72a of a portion of the shaft 73a inserted into the electrolytic cell 72. And a spiral blade 73b that is fixed to a portion other than the portion opposed to. A stirring blade, which is stirring means 77, is fixed to the portion of the shaft 73a facing the supply port 72a.

【0021】電解槽72から突出したシャフト73aの
端部にはカップリング86を介して減速機付きモータ8
7の出力軸87aが接続され、カップリング86近傍の
シャフト73aにはスリップリング88が固着される。
電解槽72の両側壁72e,72eのうち螺旋羽根73
bに対向する部分の内面に沿って一対の陰極74,74
が配設される。これらの陰極74,74はこの例では電
解槽72の長手方向に沿って3分割され、供給口72a
から排出口72cに向って第1陰極74a、第2陰極7
4b及び第3陰極74cとする。これらの陰極74,7
4は一対のセパレータ78,78により陽極73と中腸
線や腎臓11fとに区画される。スリップリング88及
び第1陰極74a間は第1電流制御器91を介して直流
電源76に接続され、スリップリング88及び第2陰極
74b間は第2電流制御器92を介して直流電源76に
接続され、スリップリング88及び第3陰極74c間は
第3電流制御器93を介して直流電源76に接続され
る。
At the end of the shaft 73a protruding from the electrolytic cell 72, a motor 8 with a reducer is provided via a coupling 86.
7 is connected to the output shaft 87a, and a slip ring 88 is fixed to the shaft 73a near the coupling 86.
Of the side walls 72e, 72e of the electrolytic cell 72, the spiral blade 73
a pair of cathodes 74, 74 along the inner surface of the portion facing b
Is provided. In this example, these cathodes 74, 74 are divided into three along the longitudinal direction of the electrolytic cell 72, and the supply port 72a
From the discharge port 72c toward the first cathode 74a and the second cathode 7
4b and the third cathode 74c. These cathodes 74,7
4 is divided into the anode 73 and the midgut line or kidney 11f by a pair of separators 78,78. Slip ring 88 and first cathode 74a are connected to DC power supply 76 via first current controller 91, and slip ring 88 and second cathode 74b are connected to DC power supply 76 via second current controller 92. The connection between the slip ring 88 and the third cathode 74c is connected to the DC power supply 76 via the third current controller 93.

【0022】直流電源76は公知の電源であり、図14
に詳しく示すように入力電圧100V〜200Vの交流
を位相制御回路中の可変抵抗器RVを調整することによ
り0V〜150Vの直流に変換できるようになってい
る。図14中、C1〜C9はコンデンサ、R1〜R5は抵
抗、TDはトリガダイオード、SSは2方向3端子サイ
リスタ、T1はトランス、F1及びF2はヒューズ、D1
4はダイオード、CHはチョークコイルをそれぞれ示
す。第1〜第3電流制御器91〜93はスリップリング
88及び第1〜第3陰極74a〜74cにそれぞれ流れ
る電流を後述するコントローラ94により制御可能に構
成される(図12)。
The DC power supply 76 is a known power supply and is shown in FIG.
As shown in detail in FIG. 2, an AC having an input voltage of 100 V to 200 V can be converted to a DC of 0 V to 150 V by adjusting a variable resistor R V in the phase control circuit. In FIG. 14, C 1 to C 9 are capacitors, R 1 to R 5 are resistors, TD is a trigger diode, SS is a bidirectional three-terminal thyristor, T 1 is a transformer, F 1 and F 2 are fuses, and D 1 to
D 4 is diode, CH denotes a choke coil, respectively. The first to third current controllers 91 to 93 are configured so that the currents flowing through the slip ring 88 and the first to third cathodes 74a to 74c can be controlled by a controller 94 described later (FIG. 12).

【0023】電解槽72には第1〜第3センサ101〜
103が挿入される。第1センサ101は供給口72a
と第1陰極74aとの間に挿入され、第2センサ102
は第1陰極74aと第2陰極74bとの間に挿入され、
第3センサ103は第2陰極74bと第3陰極74cと
の間に挿入される。これらのセンサ101〜103はそ
れぞれ電解槽72内の電解液15の温度を検出する温度
センサと、電解槽72内の電解液15のpHを検出する
pHセンサと、電解槽72内の電解液15の電気伝導度
を検出する伝導度センサとを有する。第1〜第3センサ
101〜103の各検出出力はコントローラ94の制御
入力に接続され、コントローラ94の制御出力は第1〜
第3電流制御器91〜93に接続される。
The electrolytic cell 72 has first to third sensors 101 to 101.
103 is inserted. The first sensor 101 has a supply port 72a.
Between the first cathode 74a and the second sensor 102
Is inserted between the first cathode 74a and the second cathode 74b,
The third sensor 103 is inserted between the second cathode 74b and the third cathode 74c. These sensors 101 to 103 are a temperature sensor for detecting the temperature of the electrolytic solution 15 in the electrolytic bath 72, a pH sensor for detecting the pH of the electrolytic solution 15 in the electrolytic bath 72, and an electrolytic solution 15 in the electrolytic bath 72, respectively. And a conductivity sensor for detecting the electrical conductivity of the sample. The detection outputs of the first to third sensors 101 to 103 are connected to the control input of the controller 94, and the control outputs of the controller 94 are the first to third
It is connected to the third current controllers 91 to 93.

【0024】ホタテガイの中腸線や腎臓11fは生物体
槽96に貯留され、電解液15は電解液槽97に貯留さ
れる。上記中腸線や腎臓11fと電解液15とが所定の
割合で投入される混合槽98には撹拌機99が挿入さ
れ、この撹拌機99により中腸線や腎臓11fと電解液
15とが均一になるように撹拌される。混合槽98の下
部に一端が接続された供給パイプ98aの他端は漏斗7
2bに臨む。また混合槽98にはこの槽98内の電解液
15のpHを検出するpHセンサ116と、この槽98
内の電解液15の電気伝導度を検出する伝導度センサ1
17とが挿入される。104及び106は電動バルブで
あり、107は電磁バルブであり、バルブ104,10
6,107は上記センサ116,117の各検出出力に
基づいてコントローラ94により制御される。
The midgut line and kidney 11f of the scallop are stored in the organism tank 96, and the electrolytic solution 15 is stored in the electrolytic solution tank 97. A stirrer 99 is inserted into the mixing tank 98 in which the midgut line or kidney 11f and the electrolytic solution 15 are charged at a predetermined ratio, and the stirrer 99 makes the midgut line or kidney 11f and the electrolytic solution 15 uniform. Is stirred as. One end of the supply pipe 98a connected to the lower portion of the mixing tank 98 has a funnel 7 at the other end.
Face 2b. Further, in the mixing tank 98, a pH sensor 116 for detecting the pH of the electrolytic solution 15 in this tank 98, and this tank 98
Conductivity sensor 1 for detecting the electrical conductivity of the electrolyte solution 15 in
17 and 17 are inserted. Reference numerals 104 and 106 are electric valves, 107 is an electromagnetic valve, and valves 104, 10 are provided.
6, 107 are controlled by the controller 94 based on the detection outputs of the sensors 116, 117.

【0025】また排出タンク72dのオーバフローパイ
プ72f及び排出パイプ72gと受皿83の排出パイプ
83aは排液処理槽108に接続され、この排液処理槽
108にて浄化された電解液15は電解槽72の供給口
72a側にポンプ109によりリターンパイプ111を
介して戻されるようになっている。112は電解槽72
の電解液15がリターンパイプ111を介して排液処理
槽108に流入するのを阻止する逆止弁であり、113
〜115は電磁バルブである。また図13に詳しく示す
ように電解槽72の上壁72hにはガス抜き孔72iが
形成され、電解槽72の側壁72eと陰極74との間の
底壁72jには重金属濃度の濃い電解液15を排出可能
な排出パイプ72kが接続される。図12において図8
と同一符号は同一部品を示す。
Further, the overflow pipe 72f and the discharge pipe 72g of the discharge tank 72d and the discharge pipe 83a of the tray 83 are connected to a drainage treatment tank 108, and the electrolytic solution 15 purified in this drainage treatment tank 108 is electrolytic bath 72. The pump 109 returns the gas to the supply port 72a side through the return pipe 111. 112 is the electrolytic cell 72
Is a check valve for preventing the electrolyte 15 from flowing into the drainage treatment tank 108 via the return pipe 111.
˜115 are electromagnetic valves. Further, as shown in detail in FIG. 13, a gas vent hole 72i is formed in the upper wall 72h of the electrolytic cell 72, and the bottom wall 72j between the side wall 72e of the electrolytic cell 72 and the cathode 74 is provided with the electrolytic solution 15 having a heavy metal concentration. A discharge pipe 72k capable of discharging is connected. In FIG.
The same reference numerals denote the same parts.

【0026】このように構成された重金属を除去する装
置では、混合層98で混合されたホタテガイの中腸線や
腎臓11fと電解液15が供給パイプ98a及び漏斗7
2bを介して電解槽72の供給口72aに投入され、撹
拌手段77により撹拌された後、スクリューコンベヤを
兼ねる陽極73により排出口72cに向ってゆっくり搬
送される。中腸線や腎臓11fを混合した電解液15が
第1陰極74に対向する位置に到来すると、第1センサ
101のpHセンサが5容量%に近い電解液15の濃度
を検出するので、コントローラ94は第1センサ101
の検出出力に基づいて第1電流制御器91を制御し、ス
リップリング88及び第1陰極74a間に所定の電圧を
かけて電解液15に所定の電流を流す。
In the device for removing heavy metals thus constructed, the midgut line 11f of the scallop and the kidney 11f and the electrolyte solution 15 mixed in the mixing layer 98 are supplied to the supply pipe 98a and the funnel 7.
After being charged into the supply port 72a of the electrolytic cell 72 via 2b and stirred by the stirring means 77, it is slowly conveyed toward the discharge port 72c by the anode 73 also serving as a screw conveyor. When the electrolytic solution 15 mixed with the midgut or the kidney 11f arrives at the position facing the first cathode 74, the pH sensor of the first sensor 101 detects the concentration of the electrolytic solution 15 close to 5% by volume. First sensor 101
The first current controller 91 is controlled on the basis of the detection output of, and a predetermined current is applied to the electrolytic solution 15 by applying a predetermined voltage between the slip ring 88 and the first cathode 74a.

【0027】第2陰極74bに対向する位置に到来した
電解液15の濃度はスリップリング88及び第1陰極7
4a間の電解作用により薄くなり、コントローラ94は
第2センサ102の検出出力に基づいて第2電流制御器
92を制御し、スリップリング88及び第2陰極74b
間に所定の電圧より大きい電圧をかけて電解液15に所
定の電流を流す。更に第3陰極74cに対向する位置に
到来した電解液15の濃度は更に薄くなり、コントロー
ラ94は第3センサ103の検出出力に基づいて第3電
流制御器93を制御し、スリップリング88及び第3陰
極74c間に所定の電圧より更に大きい電圧をかけて電
解液15に所定の電流を流す。中腸線や腎臓11fに含
まれる重金属は電解槽72の排出口72cに向うに従っ
て除去されて第1〜第3陰極74a〜74cに析出し、
排出タンク72dに達した中腸線や腎臓11fには殆ど
重金属は含まれず、飼肥料として使用可能になる。この
ようにホタテガイの中腸線や腎臓11fから重金属を自
動的にかつ連続して除去処理できる。
The concentration of the electrolytic solution 15 arriving at a position facing the second cathode 74b is determined by the slip ring 88 and the first cathode 7
It becomes thin due to the electrolytic action between 4a, the controller 94 controls the second current controller 92 based on the detection output of the second sensor 102, and the slip ring 88 and the second cathode 74b.
A voltage larger than a predetermined voltage is applied between them to flow a predetermined current through the electrolytic solution 15. Further, the concentration of the electrolytic solution 15 that has reached the position facing the third cathode 74c becomes further thinner, and the controller 94 controls the third current controller 93 based on the detection output of the third sensor 103, and the slip ring 88 and the first A voltage higher than a predetermined voltage is applied between the three cathodes 74c to flow a predetermined current through the electrolytic solution 15. Heavy metals contained in the midgut line and kidney 11f are removed as they go to the outlet 72c of the electrolytic cell 72 and are deposited on the first to third cathodes 74a to 74c,
The midgut line and the kidney 11f reaching the discharge tank 72d contain almost no heavy metals, and can be used as feed fertilizer. In this way, heavy metals can be automatically and continuously removed from the midgut of the scallop and the kidney 11f.

【0028】<実施例7>図15及び図16に示すよう
に、電解槽122は横長の箱状に形成され、陽極123
は電解槽122の長手方向に沿って延びるベルトコンベ
ヤに形成される。この陽極123は導電性の弾性体によ
り形成されたベルト123aと、ベルト123aの外周
面に所定の間隔をあけて突設された多数の羽根123b
とを有する。羽根123bは不溶性金属電極である金め
っきされたチタンにより形成される。陰極124は電解
槽122の両側壁122a,122aの内側に沿って設
けられ、上記実施例6と同様に3分割される。ベルト1
23aと陰極124とは図示しない第1〜第3電流制御
器を介して直流電源76に電気的に接続される。図15
において図12と同一符号は同一部品を示す。このよう
に構成された重金属を除去する装置の動作は上記実施例
6と略同様であるので、繰返しの説明を省略する。
<Embodiment 7> As shown in FIGS. 15 and 16, the electrolytic cell 122 is formed in a horizontally long box shape, and the anode 123 is formed.
Is formed on a belt conveyor extending along the length of the electrolytic cell 122. The anode 123 includes a belt 123a formed of a conductive elastic body, and a large number of blades 123b protruding from the outer peripheral surface of the belt 123a with a predetermined gap.
Have and. The blade 123b is formed of gold-plated titanium which is an insoluble metal electrode. The cathode 124 is provided along the inside of both side walls 122a, 122a of the electrolytic cell 122, and is divided into three as in the sixth embodiment. Belt 1
23a and the cathode 124 are electrically connected to the DC power supply 76 via first to third current controllers (not shown). FIG.
12, the same reference numerals as those in FIG. 12 indicate the same parts. The operation of the apparatus configured to remove heavy metals configured as described above is substantially the same as that of the sixth embodiment, and a description thereof will not be repeated.

【0029】なお、上記実施例1〜7では重金属を含む
生物体としてホタテガイを挙げたが、これは一例であっ
て重金属を含めば他の水産物、動物、農産物又は植物等
の生物体でもよい。また、上記実施例1〜3では生物体
に含まれる重金属としてカドミウムを挙げたが、これに
限らずヒ素、水銀、銅、亜鉛、ニッケル、クロム、マン
ガン等の重金属でもよい。また、上記実施例1〜7では
電解液として硫酸溶液を用いたが、電解液であれば水酸
化ナトリウム溶液、塩化ナトリウム溶液、塩酸溶液又は
硝酸溶液でもよい。また、上記実施例1〜7では濃度が
5容量%の硫酸溶液を用いたが、濃度が0.5〜20容
量%、好ましくは2〜10容量%の範囲内にあればよ
い。濃度を0.5〜20容量%としたのは、濃度が0.
5容量%未満では生物体に含まれる重金属を効率的に陰
極に析出できず、また濃度が20容量%を越えると中腸
線や腎臓が変質したり、後段の中和処理に多くの時間を
要する不具合があるからである。
In the above-mentioned Examples 1 to 7, scallops were mentioned as the organism containing heavy metals, but this is only an example, and organisms such as other marine products, animals, agricultural products or plants may be used as long as they contain heavy metals. Further, although cadmium was mentioned as the heavy metal contained in the organism in the above-mentioned Examples 1 to 3, the present invention is not limited to this, and heavy metals such as arsenic, mercury, copper, zinc, nickel, chromium and manganese may be used. In Examples 1 to 7, the sulfuric acid solution was used as the electrolytic solution. However, as long as the electrolytic solution was used, a sodium hydroxide solution, a sodium chloride solution, a hydrochloric acid solution, or a nitric acid solution may be used. Further, in Examples 1 to 7, the sulfuric acid solution having a concentration of 5% by volume was used, but the concentration may be in the range of 0.5 to 20% by volume, preferably 2 to 10% by volume. The concentration of 0.5 to 20% by volume means that the concentration is 0.
If it is less than 5% by volume, the heavy metals contained in the organism cannot be efficiently deposited on the cathode, and if the concentration exceeds 20% by volume, the midgut line and kidney will be deteriorated, and much time will be required for the subsequent neutralization treatment. This is because there is a defect.

【0030】また、上記実施例1、実施例2及び実施例
4〜7では陰極をステンレススチールにより形成し、実
施例3では陰極をカドミウムにより形成したが、銅、亜
鉛又はこれらの合金等により形成しても、或いは銅又は
ステンレススチールにカドミウムをめっきして形成して
もよい。また、上記実施例1〜3では陽極をグラファイ
トにより形成し、実施例4〜7では陽極を金めっきされ
たチタンにより形成したが、導電性フェライト、プラチ
ナ、金、不溶性金属電極である白金めっきされたチタ
ン、グラファイトがコーティングされたチタン等により
形成してもよい。また、上記実施例1〜3では電解槽を
ガラスにより形成し、実施例4〜7では電解槽を塩化ビ
ニール樹脂により形成したが、ポリスチロール樹脂、ポ
リエチレン樹脂、FRP又はアクリル樹脂により形成し
てよい。また、セパレータをグラスウール紙により形成
したが、アスベストウール、素焼きのセラミックス、浸
透膜等により形成してもよい。
In the first, second and fourth to seventh embodiments, the cathode is formed of stainless steel. In the third embodiment, the cathode is formed of cadmium. However, the cathode is formed of copper, zinc, or an alloy thereof. Alternatively, it may be formed by plating copper or stainless steel with cadmium. Further, although the anode was formed of graphite in Examples 1 to 3 and the anode was formed of gold-plated titanium in Examples 4 to 7, conductive ferrite, platinum, gold, or a platinum-plated insoluble metal electrode was used. It may be formed of titanium, titanium coated with graphite, or the like. Further, although the electrolytic bath is formed of glass in Examples 1 to 3 and the electrolytic bath is formed of vinyl chloride resin in Examples 4 to 7, it may be formed of polystyrene resin, polyethylene resin, FRP or acrylic resin. . Further, although the separator is formed of glass wool paper, it may be formed of asbestos wool, unglazed ceramics, permeation film, or the like.

【0031】また、上記実施例4の電解槽中の電解液を
循環したり或いはバブリングしたりして撹拌してもよ
い。また、上記実施例6では陰極を3分割したが、分割
しなくても、或いは2分割しても又は4分割以上しても
よい。また陽極を陰極に対応して電気的に分割してもよ
い。この場合、絶縁体でシャフト及び螺旋羽根を製作し
た後、導電性材料をコーティングすることにより電気的
に分割することができる。更に、上記実施例6では陽極
を電流制御器に電気的に接続するためにスリップリング
を用いたが、スリップリングを用いずにシャフトの軸受
に電流制御器を接続してもよい。
Further, the electrolytic solution in the electrolytic cell of Example 4 may be circulated or bubbled to stir. Further, although the cathode is divided into three in the sixth embodiment, it may be divided into two, divided into two, or divided into four or more. Further, the anode may be electrically divided corresponding to the cathode. In this case, the shaft and the spiral blade may be made of an insulating material and then coated with a conductive material for electrical division. Further, although the slip ring is used to electrically connect the anode to the current controller in the sixth embodiment, the current controller may be connected to the bearing of the shaft without using the slip ring.

【0032】[0032]

【発明の効果】以上述べたように、本発明によれば、陽
極と陰極を有する電解槽に生体内に重金属が含まれる生
物体と電解液を供給して重金属を電解液に溶出させ、陽
極と陰極に直流電圧を印加して重金属を陰極に析出させ
るように構成したので、比較的短時間で生物体から重金
属を除去でき、その除去率が極めて高くなる。また従来
の脱カドミウム処理と比較して、低濃度の電解液で重金
属の除去が可能となることから、処理後の生物体の水洗
は短時間で済み、水の使用量が少なくて済む。また陽極
と陰極を有し電解液が貯えられた電解槽に生体内に重金
属が含まれる生物体を供給しかつ重金属を電解液に溶出
させ、陽極と陰極に直流電圧を印加して重金属を陰極に
析出させるように構成しても、上記と同様の効果が得ら
れる。
As described above, according to the present invention, an organism having a heavy metal contained in a living body and an electrolytic solution are supplied to an electrolytic cell having an anode and a cathode to elute the heavy metal into the electrolytic solution. Since a DC voltage is applied to the cathode to deposit the heavy metal on the cathode, the heavy metal can be removed from the organism in a relatively short time, and the removal rate is extremely high. Further, compared to the conventional decadmium treatment, it is possible to remove heavy metals with a low-concentration electrolytic solution, so that the organisms after treatment can be washed with water in a short time and the amount of water used can be small. In addition, an organism containing heavy metals in the living body is supplied to an electrolytic cell having an anode and a cathode and an electrolyte is stored therein, and the heavy metals are eluted into the electrolyte, and a DC voltage is applied to the anode and the cathode to apply the heavy metals to the cathode. The same effect as described above can be obtained even if it is constituted so as to precipitate.

【0033】また陽極と陰極が所定の間隔をあけて配設
された電解槽に生体内に重金属が含まれる生物体と電解
液とを貯留し、陽極と陰極に電気的に接続された直流電
源が陽極及び陰極間に電圧を印加するように構成しても
上記と同様の効果が得られる。また生物体をかごや網等
に入れて電解槽に貯留し、電解液のみを撹拌すれば、生
物体を破損することなく重金属を除去することができ
る。また撹拌手段が電解槽に貯留された生物体と電解液
を撹拌して混合するように構成すれば、生物体に含まれ
る重金属の陰極への析出時間を更に短縮することができ
る。また、生物体の生体内に含まれる重金属が電解液に
溶出して生成された重金属イオンの通過を許容しかつ陰
極に析出した重金属の通過を阻止するセパレータを生物
体から陰極を区画するように電解槽に挿入すれば、陰極
に析出した重金属が生物体に再び付着することを防止で
きる。
A direct current power source in which a living body containing a heavy metal and an electrolytic solution are stored in an electrolytic cell in which an anode and a cathode are arranged with a predetermined gap, and which is electrically connected to the anode and the cathode. Even if it is configured to apply a voltage between the anode and the cathode, the same effect as described above can be obtained. Further, if the organism is put in a cage, a net or the like and stored in the electrolytic cell and only the electrolytic solution is stirred, the heavy metal can be removed without damaging the organism. Further, when the stirring means is configured to stir and mix the organism stored in the electrolytic cell with the electrolytic solution, the deposition time of the heavy metal contained in the organism on the cathode can be further shortened. In addition, a heavy metal contained in the living body of a living body separates the cathode from the living body by a separator that allows the passage of heavy metal ions generated by elution in the electrolytic solution and prevents the passage of heavy metal deposited on the cathode. If it is inserted into the electrolytic cell, the heavy metal deposited on the cathode can be prevented from reattaching to the organism.

【0034】また、生体内に重金属が含まれる生物体を
電解槽に供給する供給口と生物体を電解槽から排出する
排出口とを電解槽に設け、陽極を生物体を供給口から排
出口に搬送するコンベヤにすれば、連続的に生物体から
重金属を除去でき、装置を小型化できる。更に、生体内
に重金属が含まれる生物体が混合された電解液の温度を
検出する温度センサと、電解液のpHを検出するpHセ
ンサと、電解液の電気伝導度を検出する電気伝導度セン
サとの各検出出力に基づいてコントローラが直流電源を
制御するように構成すれば、電解液に流れる電流を調整
することにより生物体に含まれる重金属を除去する時間
を調整できる。
Further, the electrolytic cell is provided with a supply port for supplying a living body containing a heavy metal in the living body to the electrolytic cell and an outlet for discharging the biological body from the electrolytic cell, and an anode is provided for discharging the biological body from the supply port. By using a conveyor that conveys to, the heavy metal can be continuously removed from the organism, and the device can be downsized. Furthermore, a temperature sensor that detects the temperature of an electrolytic solution in which organisms containing heavy metals in the living body are detected, a pH sensor that detects the pH of the electrolytic solution, and an electrical conductivity sensor that detects the electrical conductivity of the electrolytic solution. If the controller is configured to control the DC power supply on the basis of each detection output of the above, the time for removing the heavy metal contained in the organism can be adjusted by adjusting the current flowing in the electrolytic solution.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例1の生物体に含まれる重金属を除
去する装置の縦断面構成図。
FIG. 1 is a vertical cross-sectional configuration diagram of an apparatus for removing heavy metals contained in a living organism according to a first embodiment of the present invention.

【図2】図1のA−A線断面図。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】生体内に重金属が含まれるホタテガイの解剖
図。
FIG. 3 is an anatomical view of a scallop containing heavy metals in the living body.

【図4】本発明の実施例2を示す図1に対応する縦断面
構成図。
FIG. 4 is a vertical cross-sectional configuration diagram corresponding to FIG. 1 showing a second embodiment of the present invention.

【図5】図4のB−B線断面図。FIG. 5 is a sectional view taken along line BB of FIG. 4;

【図6】本発明の実施例3を示す図1に対応する縦断面
構成図。
FIG. 6 is a vertical cross-sectional configuration diagram corresponding to FIG. 1 showing a third embodiment of the present invention.

【図7】図6のC−C線断面図。7 is a cross-sectional view taken along the line CC of FIG.

【図8】本発明の実施例4を示す図1に対応する縦断面
構成図。
FIG. 8 is a vertical cross-sectional configuration diagram corresponding to FIG. 1, showing a fourth embodiment of the present invention.

【図9】本発明の実施例5を示す図1に対応する縦断面
構成図。
FIG. 9 is a longitudinal sectional view corresponding to FIG. 1, showing a fifth embodiment of the present invention.

【図10】その電解槽からホタテガイの中腸線及び電解
液を排出している状態を示すその装置の側面図。
FIG. 10 is a side view of the apparatus showing a state in which scallop midgut lines and an electrolytic solution are being discharged from the electrolytic cell.

【図11】その電解槽にホタテガイの中腸線を混合した
電解液を供給する直前の状態を示す図6に対応するその
装置の側面図。
FIG. 11 is a side view of the apparatus corresponding to FIG. 6, showing a state immediately before supplying an electrolytic solution in which the scallop midgut wire is mixed to the electrolytic cell.

【図12】本発明の実施例6を示す図1に対応する縦断
面構成図。
FIG. 12 is a longitudinal sectional view corresponding to FIG. 1, showing a sixth embodiment of the present invention.

【図13】図12のD−D線断面図。13 is a cross-sectional view taken along line DD of FIG.

【図14】その装置の直流電源を示す電気回路図。FIG. 14 is an electric circuit diagram showing a DC power source of the apparatus.

【図15】本発明の実施例7を示す図1に対応する縦断
面図。
FIG. 15 is a vertical sectional view corresponding to FIG. 1, showing a seventh embodiment of the present invention.

【図16】図15のE−E線断面図。16 is a cross-sectional view taken along the line EE of FIG.

【符号の説明】[Explanation of symbols]

11 ホタテガイ(生物体) 11c ホタテガイの中腸線 11f ホタテガイの中腸線や腎臓 12,42,52,72,122 電解槽 13,33,43,53,73,123 陽極 14,34,44,54,74,124 陰極 15 電解液 16,76 直流電源 17,57,77 撹拌手段 28,38,78 セパレータ 72a 電解槽の供給口 72c 電解槽の排出口 94 コントローラ 101 第1センサ(温度センサ、pHセンサ、伝導度
センサ) 102 第2センサ(温度センサ、pHセンサ、伝導度
センサ) 103 第3センサ(温度センサ、pHセンサ、伝導度
センサ)
11 Scallop (living body) 11c Scallop midgut line 11f Scallop midgut line and kidney 12,42,52,72,122 Electrolyzer 13,33,43,53,73,123 Anode 14,34,44,54,74 , 124 cathode 15 electrolytic solution 16,76 direct current power supply 17, 57, 77 stirring means 28, 38, 78 separator 72a electrolytic cell supply port 72c electrolytic cell discharge port 94 controller 101 first sensor (temperature sensor, pH sensor, conduction) Temperature sensor) 102 second sensor (temperature sensor, pH sensor, conductivity sensor) 103 third sensor (temperature sensor, pH sensor, conductivity sensor)

【手続補正書】[Procedure amendment]

【提出日】平成6年10月18日[Submission date] October 18, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0021】電解槽72から突出したシャフト73aの
端部にはカップリング86を介して減速機付きモータ8
7の出力軸87aが接続され、カップリング86近傍の
シャフト73aにはスリップリング88が固着される。
電解槽72の両側壁72e,72eのうち螺旋羽根73
bに対向する部分の内面に沿って一対の陰極74,74
が配設される。これらの陰極74,74はこの例では電
解槽72の長手方向に沿って3分割され、供給口72a
から排出口72cに向って第1陰極74a、第2陰極7
4b及び第3陰極74cとする。これらの陰極74,7
4は一対のセパレータ78,78により陽極73と中腸
線や腎臓11fから区画される。スリップリング88及
び第1陰極74a間は第1電流制御器91を介して直流
電源76に接続され、スリップリング88及び第2陰極
74b間は第2電流制御器92を介して直流電源76に
接続され、スリップリング88及び第3陰極74c間は
第3電流制御器93を介して直流電源76に接続され
る。 ─────────────────────────────────────────────────────
At the end of the shaft 73a protruding from the electrolytic cell 72, a motor 8 with a reducer is provided via a coupling 86.
7 is connected to the output shaft 87a, and a slip ring 88 is fixed to the shaft 73a near the coupling 86.
Of the side walls 72e, 72e of the electrolytic cell 72, the spiral blade 73
a pair of cathodes 74, 74 along the inner surface of the portion facing b
Is provided. In this example, these cathodes 74, 74 are divided into three along the longitudinal direction of the electrolytic cell 72, and the supply port 72a
From the discharge port 72c toward the first cathode 74a and the second cathode 7
4b and the third cathode 74c. These cathodes 74,7
4 is partitioned from the anode 73 and the midgut line and kidney 11f by a pair of separators 78,78. Slip ring 88 and first cathode 74a are connected to DC power supply 76 via first current controller 91, and slip ring 88 and second cathode 74b are connected to DC power supply 76 via second current controller 92. The connection between the slip ring 88 and the third cathode 74c is connected to the DC power supply 76 via the third current controller 93. ─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年8月10日[Submission date] August 10, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0002[Name of item to be corrected] 0002

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0002】[0002]

【従来の技術】これまでホタテガイのウロと呼ばれる中
や貝柱側面に付着する腎臓には高濃度のカドミウム
やヒ素等の重金属が蓄積していることが認められてい
る。特に中腸内のカドミウムやヒ素の濃度は数十pp
mに達しており、この数値は農林水産省の指導基準を越
えるため、上記中腸や腎臓を何等処理せずに飼肥料に
利用することは不可能であって、穴を掘って埋設したり
或いは焼却していた。しかし、上記中腸や腎臓を埋設
又は焼却するには、多くの経費を要する問題点があり、
埋設用地の確保も限界に達している。更に埋設された中
や腎臓に含まれる重金属が地下水に侵入し地下水を
汚染する恐れがあった。
2. Description of the Related Art Up to now, it has been recognized that high concentrations of heavy metals such as cadmium and arsenic are accumulated in the midgut gland called uro of scallops and the kidney attached to the side of the scallop. Especially, the concentration of cadmium and arsenic in the midgut gland is several tens of pp
Since this value exceeds the guidance standard of the Ministry of Agriculture, Forestry and Fisheries, it is impossible to use the above-mentioned midgut glands and kidneys for feed fertilizer without any treatment. Or it was incinerated. However, burying or burning the midgut gland and kidney has a problem that requires a lot of cost,
Reservation of buried land has reached its limit. Further, heavy metals contained in the buried midgut glands and kidneys may infiltrate the groundwater and contaminate the groundwater.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Name of item to be corrected] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0003】これらの点を解消するために、北海道立工
業試験場はホタテガイの中腸等の軟体部を硫酸溶液中
に浸漬した後、別の水槽で3回水洗して中腸からカド
ミウムを除去する脱カドミウム処理を行い、その結果を
平成5年度共同研究(重点)報告書に「ホタテガイ副産
物の処理・利用技術に関する研究開発」(北海道立中央
水産試験場、同工業試験場、同衛生研究所、同中央農業
試験場及び同滝川畜産試験場)として発表した。この処
理は中腸等の軟体部を硫酸溶液に24時間浸漬した
後、上記軟体部を5時間ずつ3回水洗することにより行
われ、上記処理により軟体部から98%のカドミウムを
除去することができる。
[0003] In order to solve these problems, the Hokkaido Prefectural Industrial Research Institute has immersed the soft part of the scallop, such as the midgut gland , in a sulfuric acid solution and washed it three times with another water tank to remove cadmium from the midgut gland. The cadmium removal treatment was conducted, and the results were reported in the 1993 joint research (important) report, "R & D on Scallop By-product Processing and Utilization Technology" (Hokkaido Prefectural Central Fisheries Experimental Station, Industrial Experimental Station, Sanitary Research Institute, Central Agricultural Experiment Station and Takigawa Livestock Experiment Station). This treatment is carried out by immersing the soft body part such as the midgut gland in a sulfuric acid solution for 24 hours, and then washing the soft body part 3 times for 5 hours each time to remove 98% of cadmium from the soft body part. Can be.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来の脱
カドミウム処理では、処理時間が39時間と極めて長い
不具合があった。また一度に大量の中腸等の軟体部を
処理しようとすると装置が大型化する問題点があった。
更に、水洗時に多量の水を必要とし、その後の排水処理
も大がかりになる問題点もあった。
However, the above-mentioned conventional decadmium treatment has a problem that the treatment time is extremely long, 39 hours. Further, there is a problem that the apparatus becomes large-sized when processing a large amount of soft body parts such as the midgut gland at a time.
Further, there is a problem that a large amount of water is required at the time of washing with water and the subsequent wastewater treatment becomes large-scale.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】[0008]

【実施例】次に本発明の実施例を図面に基づいて詳しく
説明する。 <実施例1>図3に示すように、ホタテガイ11の貝柱
11aと靭帯11bとの間にはウロと呼ばれる中腸
1cが位置し、この中腸11c内には高濃度(数十p
pm)のカドミウム(Cd)が蓄積されている。また1
1dはヒモと呼ばれる外套膜であり、11eは腎臓であ
る。図1及び図2に示すように、陽極13と陰極14が
所定の間隔をあけて配設された電解槽12に上記中腸
11cと電解液15とが貯留され、陽極13と陰極14
には直流電源16が電気的に接続される。中腸11c
は図示しないがプラスチック製かごに入れたまま電解槽
12の電解液15に浸される。また電解槽12内の電解
液15は撹拌手段17により撹拌される。陽極13及び
陰極14はこの例では長さ65mm、幅50mmのグラ
ファイト及びステンレススチールによりそれぞれ形成さ
れ、陽極13及び陰極14の間隔は70mmである。電
解槽12はこの例では1リットルのガラス製ビーカーで
あり、電解液15は濃度が5容量%の硫酸溶液である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described in detail with reference to the drawings. <Example 1> As shown in FIG. 3, the midgut gland 1 called a uro is located between the scallop 11a and the ligament 11b of the scallop 11.
1c is located in this midgut gland 11c and has a high concentration (tens of p
pm) cadmium (Cd) is accumulated. Again 1
1d is a mantle called a string, and 11e is a kidney. As shown in FIG. 1 and FIG. 2, the midgut gland 11c and the electrolytic solution 15 are stored in an electrolytic cell 12 in which an anode 13 and a cathode 14 are arranged at a predetermined interval, and the anode 13 and the cathode 14 are stored.
A DC power supply 16 is electrically connected to the. Midgut gland 11c
Although not shown, it is immersed in the electrolytic solution 15 in the electrolytic cell 12 while being placed in a plastic basket. Further, the electrolytic solution 15 in the electrolytic bath 12 is stirred by the stirring means 17. In this example, the anode 13 and the cathode 14 are made of graphite and stainless steel having a length of 65 mm and a width of 50 mm, respectively, and the distance between the anode 13 and the cathode 14 is 70 mm. The electrolytic cell 12 is a 1 liter glass beaker in this example, and the electrolytic solution 15 is a sulfuric acid solution having a concentration of 5% by volume.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0009】また撹拌手段17は電解槽12内の底中央
に位置する撹拌羽根17aと、電解槽12の下面を受け
る駆動手段17bとを有する。撹拌羽根17aはマグネ
ットにより形成され、駆動手段17bは図示しないがモ
ータにより回転可能なマグネットが内蔵される。モータ
が回転すると駆動手段17b内のマグネットが回転し、
この回転に引きずられて撹拌羽根17aが回転すること
により、電解液15を撹拌するようになっている。電解
槽12には800mlの電解液15が注入され、この電
解液15中には202.21gの中腸11cがプラス
チック製かごに入れたまま供給される。この中腸11
cには乾燥した中腸1kg当り63.2mgのカドミ
ウムを含む(以下、Cd含有量63.2mg/乾kgと
いう)。
The stirring means 17 has a stirring blade 17a located in the center of the bottom of the electrolytic cell 12 and a driving means 17b for receiving the lower surface of the electrolytic cell 12. The stirring blade 17a is formed by a magnet, and the driving means 17b has a magnet (not shown) rotatable by a motor. When the motor rotates, the magnet in the driving means 17b rotates,
The stirring blade 17a is rotated by being dragged by this rotation, whereby the electrolyte solution 15 is stirred. 800 ml of the electrolytic solution 15 is injected into the electrolytic cell 12, and 202.21 g of the midgut gland 11c is supplied into the electrolytic solution 15 in a plastic basket. This midgut gland 11
c contains 63.2 mg of cadmium per kg of dried midgut gland (hereinafter referred to as Cd content 63.2 mg / dry kg).

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】<実施例2>図4及び図5に示すように、
陽極13と陰極14がそれぞれセパレータ28により包
囲されたことを除いて上記実施例1と同一である。セパ
レータ28はこの例ではグラスウール紙により形成され
たフィルタであり、重金属イオンの通過を許容しかつ陰
極14に析出した重金属の通過を阻止するようになって
いる。この例では中腸11c内に含まれるカドミウム
が電解液15に溶出して生成されたカドミウム陽イオン
はセパレータ28を通過できるが、陰極14に析出した
カドミウムはセパレータ28を殆ど通過できないように
なっている。図4及び図5において図1及び図2と同一
符号は同一部品を示す。
<Embodiment 2> As shown in FIGS. 4 and 5,
The same as Example 1 except that the anode 13 and the cathode 14 were surrounded by the separators 28, respectively. The separator 28 is a filter formed of glass wool paper in this example, and is designed to allow the passage of heavy metal ions and prevent the passage of heavy metal deposited on the cathode 14. Cadmium contained in the midgut gland 11c in this example cadmium cations generated eluted into the electrolytic solution 15 can pass through the separator 28, cadmium deposited on the cathode 14 so as hardly pass through the separator 28 ing. 4 and 5, the same reference numerals as those in FIGS. 1 and 2 indicate the same parts.

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】<実施例3>図6及び図7に示すように、
円柱状に形成された陽極33が電解槽12の中央に挿入
され、電解槽12の内径より僅かに小径の円筒状のカド
ミウムにより形成された陰極34が陽極33を中心とし
て電解槽12に挿入され、更に陰極34より僅かに小径
の円筒状に形成されたセパレータ38が陽極33を中心
として陰極34の内側に位置するように電解槽12に挿
入されたことを除いて上記実施例1と同一である。中腸
11cはセパレータ38の内側に供給され、陰極34
はセパレータ38により中腸11cから区画される。
図6及び図7において図1及び図2と同一符号は同一部
品を示す。
<Embodiment 3> As shown in FIGS. 6 and 7,
A column-shaped anode 33 is inserted in the center of the electrolytic cell 12, and a cathode 34 made of cylindrical cadmium having a diameter slightly smaller than the inner diameter of the electrolytic cell 12 is inserted into the electrolytic cell 12 with the anode 33 as the center. Further, the same as Example 1 except that a separator 38 formed in a cylindrical shape having a diameter slightly smaller than that of the cathode 34 is inserted into the electrolytic cell 12 so as to be located inside the cathode 34 with the anode 33 as a center. is there. Midgut
The gland 11c is supplied to the inside of the separator 38, and the cathode 34
Is separated from the midgut gland 11c by the separator 38.
6 and 7, the same reference numerals as those in FIGS. 1 and 2 indicate the same parts.

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】処理前及び処理後のカドミウムの含有量を
それぞれ測定し、表1のような結果を得た。表1から明
らかなように、中腸11cに含まれるカドミウムは電
解液15中に溶出して陽イオンとなり、この陽イオンは
陰極14又は34に析出して、比較的短時間に中腸
1cに含まれるカドミウムの殆ど全てを陰極14又は3
4に析出する。実施例2の方が実施例1よりカドミウム
の除去率がよいのは、実施例2では陰極14に析出した
カドミウムがセパレータ28を通過して中腸11cに
再び付着することが殆どないためであると考えられる。
また実施例3の方が実施例2よりカドミウムの除去率が
よいのは、実施例3では陰極34をカドミウムにより形
成したので、一旦陰極34に析出したカドミウムが陰極
34から離脱しないためであると考えられる。
The content of cadmium before and after the treatment was measured, and the results shown in Table 1 were obtained. As is evident from Table 1, Cadmium in hepatopancreas 11c becomes cations eluted in the electrolyte solution 15, the cations are deposited on the cathode 14 or 34, a relatively short time midgut gland 1
Almost all of the cadmium contained in 1c was converted to the cathode 14 or 3
4 is deposited. The reason why the cadmium removal rate of the second embodiment is higher than that of the first embodiment is that the cadmium deposited on the cathode 14 hardly adheres to the midgut gland 11c through the separator 28 in the second embodiment. It is believed that there is.
Further, the reason why the removal rate of cadmium is better in Example 3 than in Example 2 is that in Example 3, since the cathode 34 was formed of cadmium, the cadmium once deposited on the cathode 34 does not separate from the cathode 34. Conceivable.

【手続補正9】[Procedure Amendment 9]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Name of item to be corrected] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0015】<実施例4>図8に示すように、電解槽4
2は塩化ビニール樹脂により直方体の箱状に形成され、
陽極43及び陰極44はそれぞれ所定の間隔をあけて交
互に配設されかつ電解槽42に挿入可能に形成される。
陽極43はこの例では不溶性金属電極である金めっきさ
れたチタン板により形成され、陰極44はステンレスス
チール板により形成される。陽極43及び陰極44の上
端は一対の電極保持具46,47によりそれぞれ保持さ
れ、一対の電極保持具46,47は電解槽42の両端外
部に立設された一対の支柱48,48に上下動可能に保
持される。陽極43及び陰極44は一対の電極保持具4
6,47を介して直流電源16に電気的に接続される。
また電解槽42には実施例1と同一の電解液15が貯留
され、この電解槽42にはホタテガイの食用となる貝柱
や外套膜以外の中腸や腎臓11fが図示しない絶縁材
料からなる網に入れた状態で供給される。図8において
図1と同一符号は同一部品を示す。
<Embodiment 4> As shown in FIG.
2 is made of vinyl chloride resin in the shape of a rectangular box,
The anodes 43 and the cathodes 44 are alternately arranged at predetermined intervals and are formed so as to be inserted into the electrolytic cell 42.
The anode 43 is formed of a gold-plated titanium plate which is an insoluble metal electrode in this example, and the cathode 44 is formed of a stainless steel plate. The upper ends of the anode 43 and the cathode 44 are held by a pair of electrode holders 46 and 47, respectively, and the pair of electrode holders 46 and 47 move up and down on a pair of columns 48 and 48 that are erected outside both ends of the electrolytic cell 42. Retained as possible. The anode 43 and the cathode 44 are a pair of electrode holders 4.
It is electrically connected to the DC power supply 16 via 6, 47.
In addition, the same electrolytic solution 15 as that of the first embodiment is stored in the electrolytic bath 42, and in the electrolytic bath 42, the midgut glands other than the scallops and mantles used for scallops and the kidney 11f are made of a net made of an insulating material (not shown). Supplied in the state of being put in. 8, the same reference numerals as those in FIG. 1 indicate the same parts.

【手続補正10】[Procedure Amendment 10]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0016】このように構成された重金属を除去する装
置では、陽極43及び陰極44を支柱に沿って電解槽4
2の上方に上昇させた状態でホタテガイの中腸や腎臓
11fを網(図示せず)に入れたまま電解槽42に投入
し、この状態で陽極43及び陰極44を下降させて電解
槽42に挿入する。ホタテガイの中腸や腎臓11fに
含まれるカドミウムやヒ素等の重金属は電解液15に浸
漬することにより徐々に電解液15中に溶出して陽イオ
ンとなる。直流電源16をオンして陽極43と陰極44
に直流電圧を印加すると、陽イオンとなった重金属が陰
極44に析出し、同時に中腸や腎臓11fに含まれる
重金属の電解液15中への電離が促進される。この結
果、比較的短時間に中腸や腎臓11fに含まれる重金
属の殆ど全てを陰極44に析出させることができる。所
定時間経過後、直流電源16をオフして陽極43及び陰
極44を支柱に沿って上昇させ、網を引き上げて中腸
や腎臓11fを電解槽42から出し、水洗いを行い、必
要に応じて中和処理をすると、飼肥料として使用可能な
ホタテガイの中腸や腎臓11fが得られる。
In the apparatus for removing heavy metals thus constructed, the anode 43 and the cathode 44 are connected to the electrolytic cell 4 along the columns.
2, the midgut gland and kidney 11f of the scallop are put into the electrolytic bath 42 while being kept in the net (not shown), and in this state, the anode 43 and the cathode 44 are lowered to drop the electrolytic bath 42. To insert. Heavy metals such as cadmium and arsenic contained in the midgut gland of the scallop and the kidney 11f are gradually dissolved in the electrolytic solution 15 by being immersed in the electrolytic solution 15 to become cations. The DC power source 16 is turned on to turn on the anode 43 and the cathode 44.
When a DC voltage is applied to the negative electrode, the heavy metal that has become positive ions is deposited on the cathode 44, and at the same time, the heavy metal contained in the midgut gland and the kidney 11f is promoted to be ionized into the electrolytic solution 15. As a result, almost all the heavy metals contained in the midgut gland and the kidney 11f can be deposited on the cathode 44 in a relatively short time. After a lapse of a predetermined time, the DC power supply 16 is turned off, the anode 43 and the cathode 44 are raised along the pillars, the net is pulled up, the midgut gland and the kidney 11f are taken out from the electrolytic bath 42, and washed with water. If necessary, a neutralization treatment is performed to obtain the midgut gland and kidney 11f of the scallop, which can be used as fertilizer.

【手続補正11】[Procedure Amendment 11]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】このように構成された重金属を除去する装
置では、減速機付きモータ59を作動させて電解槽52
の開口部52aを上方に向けた状態で(図11)、予め
ホタテガイの中腸や腎臓11fが混合された電解液1
5を開口部52aから投入した後、減速機付きモータ5
9を作動させて開口部52aを斜め上方に向くように傾
斜させる(図9)。この状態で電動モータ57gを作動
させて電解槽52を回転させると、中腸や腎臓11f
と電解液15は撹拌されて均一に混合され、直流電流1
6をオンすると、中腸や腎臓11fの重金属は陰極5
4に析出する。処理が終了すると、直流電源16をオフ
して減速機付きモータ59をオンし、電解槽52の開口
部52aを斜め下方に向くように傾斜させて中腸や腎
臓11f及び電解液15を排出する(図10)。
In the apparatus for removing heavy metals configured as described above, the motor 59 with a speed reducer is operated to operate the electrolytic cell 52.
Electrolyte solution 1 in which the midgut gland and kidney 11f of the scallop were mixed in advance with the opening 52a of the shell facing upward (FIG. 11).
5 through the opening 52a, and then the motor 5
9 to tilt the opening 52a so as to face obliquely upward (FIG. 9). In this state, when the electric motor 57g is operated to rotate the electrolytic cell 52, the midgut gland and the kidney 11f
And the electrolyte solution 15 are agitated and uniformly mixed, and a direct current of 1
When 6 is turned on, the heavy metal of the midgut gland and the kidney 11f becomes the cathode 5
4 is deposited. When the processing is completed, the DC power supply 16 is turned off, the motor 59 with a speed reducer is turned on, the opening 52a of the electrolytic cell 52 is inclined so as to face obliquely downward, and the midgut gland , the kidney 11f, and the electrolytic solution 15 are discharged. (Fig. 10).

【手続補正12】[Procedure Amendment 12]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0020】<実施例6>図12〜図14に示すよう
に、電解槽72は塩化ビニール樹脂により水平に延びる
四角筒状に形成される。この電解槽72の一端にはホタ
テガイの中腸や腎臓11f及び電解液15を供給する
供給口72aが形成され、この供給口72aには漏斗7
2bが接続される(図12)。電解槽72の他端には中
や腎臓11f及び電解液15を排出する排出口72
cが形成され、この排出口72cには排出タンク72d
が接続される。排出タンク72d内には処理された中腸
や腎臓11fを排出する傾斜コンベヤ79が設置さ
れ、排出タンク72dの隣には傾斜コンベヤ79により
搬送された中腸や腎臓11fを受けて容器82に搬送
する水平コンベヤ81が設けられる。83は水平コンベ
ヤ81上の中腸や腎臓11fに付着した電解液15を
受ける受皿である。陽極73は不溶性金属電極により形
成されたスクリューコンベヤであり、不溶性金属電極は
この例では金めっきされたチタンである。この陽極73
は電解槽72の長手方向に延びて水平に挿通され一対の
軸受84,84を介して回転可能に保持されたシャフト
73aと、このシャフト73aの電解槽72に挿入され
た部分のうち供給口72aに対向する部分以外に固着さ
れた螺旋羽根73bとを有する。またシャフト73aの
供給口72aに対向する部分には撹拌手段77である撹
拌羽根が固着される。
<Embodiment 6> As shown in FIGS. 12 to 14, the electrolytic cell 72 is formed of a vinyl chloride resin in a horizontally extending rectangular tube shape. A supply port 72a for supplying the midgut gland and kidney 11f of the scallop and the electrolytic solution 15 is formed at one end of the electrolytic cell 72, and the funnel 7 is provided in the supply port 72a.
2b is connected (FIG. 12). At the other end of the electrolytic cell 72, a discharge port 72 for discharging the midgut gland and kidney 11f and the electrolytic solution 15
c is formed, and a discharge tank 72d is provided at the discharge port 72c.
Are connected. Treated middle intestine in the discharge tank 72d
An inclined conveyor 79 that discharges the gland and the kidney 11f is installed, and a horizontal conveyor 81 that receives the midgut gland and the kidney 11f that are conveyed by the inclined conveyor 79 and conveys them to the container 82 is provided next to the discharge tank 72d. Reference numeral 83 is a tray for receiving the electrolytic solution 15 attached to the midgut gland and the kidney 11f on the horizontal conveyor 81. The anode 73 is a screw conveyor formed by an insoluble metal electrode, which in this example is gold plated titanium. This anode 73
Is a shaft 73a which extends in the longitudinal direction of the electrolytic cell 72 and is inserted horizontally and is rotatably held via a pair of bearings 84, 84, and a supply port 72a of a portion of the shaft 73a inserted into the electrolytic cell 72. And a spiral blade 73b that is fixed to a portion other than the portion opposed to. A stirring blade, which is stirring means 77, is fixed to the portion of the shaft 73a facing the supply port 72a.

【手続補正13】[Procedure Amendment 13]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0021】電解槽72から突出したシャフト73aの
端部にはカップリング86を介して減速機付きモータ8
7の出力軸87aが接続され、カップリング86近傍の
シャフト73aにはスリップリング88が固着される。
電解槽72の両側壁72e,72eのうち螺旋羽根73
bに対向する部分の内面に沿って一対の陰極74,74
が配設される。これらの陰極74,74はこの例では電
解槽72の長手方向に沿って3分割され、供給口72a
から排出口72cに向って第1陰極74a、第2陰極7
4b及び第3陰極74cとする。これらの陰極74,7
4は一対のセパレータ78,78により陽極73と中腸
や腎臓11fから区画される。スリップリング88及
び第1陰極74a間は第1電流制御器91を介して直流
電源76に接続され、スリップリング88及び第2陰極
74b間は第2電流制御器92を介して直流電源76に
接続され、スリップリング88及び第3陰極74c間は
第3電流制御器93を介して直流電源76に接続され
る。
At the end of the shaft 73a protruding from the electrolytic cell 72, a motor 8 with a reducer is provided via a coupling 86.
7 is connected to the output shaft 87a, and a slip ring 88 is fixed to the shaft 73a near the coupling 86.
Of the side walls 72e, 72e of the electrolytic cell 72, the spiral blade 73
a pair of cathodes 74, 74 along the inner surface of the portion facing b
Is provided. In this example, these cathodes 74, 74 are divided into three along the longitudinal direction of the electrolytic cell 72, and the supply port 72a
From the discharge port 72c toward the first cathode 74a and the second cathode 7
4b and the third cathode 74c. These cathodes 74,7
4 is a pair of separators 78, 78 for the anode 73 and middle intestine
It is divided from the gland and the kidney 11f. Slip ring 88 and first cathode 74a are connected to DC power supply 76 via first current controller 91, and slip ring 88 and second cathode 74b are connected to DC power supply 76 via second current controller 92. The connection between the slip ring 88 and the third cathode 74c is connected to the DC power supply 76 via the third current controller 93.

【手続補正14】[Procedure Amendment 14]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Name of item to be corrected] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0024】ホタテガイの中腸や腎臓11fは生物体
槽96に貯留され、電解液15は電解液槽97に貯留さ
れる。上記中腸や腎臓11fと電解液15とが所定の
割合で投入される混合槽98には撹拌機99が挿入さ
れ、この撹拌機99により中腸や腎臓11fと電解液
15とが均一になるように撹拌される。混合槽98の下
部に一端が接続された供給パイプ98aの他端は漏斗7
2bに臨む。また混合槽98にはこの槽98内の電解液
15のpHを検出するpHセンサ116と、この槽98
内の電解液15の電気伝導度を検出する伝導度センサ1
17とが挿入される。104及び106は電動バルブで
あり、107は電磁バルブであり、バルブ104,10
6,107は上記センサ116,117の各検出出力に
基づいてコントローラ94により制御される。
The midgut gland and the kidney 11f of the scallop are stored in a biological tank 96, and the electrolyte 15 is stored in an electrolyte tank 97. A stirrer 99 is inserted into the mixing tank 98 into which the midgut gland or kidney 11f and the electrolytic solution 15 are charged at a predetermined ratio, and the stirrer 99 allows the midgut gland or kidney 11f and the electrolytic solution 15 to be uniform. It is stirred to become. One end of the supply pipe 98a connected to the lower portion of the mixing tank 98 has a funnel 7 at the other end.
Face 2b. Further, in the mixing tank 98, a pH sensor 116 for detecting the pH of the electrolytic solution 15 in this tank 98, and this tank 98
Conductivity sensor 1 for detecting the electrical conductivity of the electrolyte solution 15 in
17 and 17 are inserted. Reference numerals 104 and 106 are electric valves, 107 is an electromagnetic valve, and valves 104, 10 are provided.
6, 107 are controlled by the controller 94 based on the detection outputs of the sensors 116, 117.

【手続補正15】[Procedure Amendment 15]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0026】このように構成された重金属を除去する装
置では、混合層98で混合されたホタテガイの中腸
腎臓11fと電解液15が供給パイプ98a及び漏斗7
2bを介して電解槽72の供給口72aに投入され、撹
拌手段77により撹拌された後、スクリューコンベヤを
兼ねる陽極73により排出口72cに向ってゆっくり搬
送される。中腸や腎臓11fを混合した電解液15が
第1陰極74に対向する位置に到来すると、第1センサ
101のpHセンサが5容量%に近い電解液15の濃度
を検出するので、コントローラ94は第1センサ101
の検出出力に基づいて第1電流制御器91を制御し、ス
リップリング88及び第1陰極74a間に所定の電圧を
かけて電解液15に所定の電流を流す。
In the thus configured apparatus for removing heavy metals, the mid-gut gland and kidney 11f of the scallop mixed in the mixing layer 98 and the electrolyte 15 are supplied to the supply pipe 98a and the funnel 7a.
After being charged into the supply port 72a of the electrolytic cell 72 via 2b and stirred by the stirring means 77, it is slowly conveyed toward the discharge port 72c by the anode 73 also serving as a screw conveyor. When the electrolytic solution 15 in which the midgut gland and the kidney 11f are mixed arrives at the position facing the first cathode 74, the pH sensor of the first sensor 101 detects the concentration of the electrolytic solution 15 close to 5% by volume. Is the first sensor 101
The first current controller 91 is controlled on the basis of the detection output of, and a predetermined current is applied to the electrolytic solution 15 by applying a predetermined voltage between the slip ring 88 and the first cathode 74a.

【手続補正16】[Procedure Amendment 16]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0027[Name of item to be corrected] 0027

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0027】第2陰極74bに対向する位置に到来した
電解液15の濃度はスリップリング88及び第1陰極7
4a間の電解作用により薄くなり、コントローラ94は
第2センサ102の検出出力に基づいて第2電流制御器
92を制御し、スリップリング88及び第2陰極74b
間に所定の電圧より大きい電圧をかけて電解液15に所
定の電流を流す。更に第3陰極74cに対向する位置に
到来した電解液15の濃度は更に薄くなり、コントロー
ラ94は第3センサ103の検出出力に基づいて第3電
流制御器93を制御し、スリップリング88及び第3陰
極74c間に所定の電圧より更に大きい電圧をかけて電
解液15に所定の電流を流す。中腸や腎臓11fに含
まれる重金属は電解槽72の排出口72cに向うに従っ
て除去されて第1〜第3陰極74a〜74cに析出し、
排出タンク72dに達した中腸や腎臓11fには殆ど
重金属は含まれず、飼肥料として使用可能になる。この
ようにホタテガイの中腸や腎臓11fから重金属を自
動的にかつ連続して除去処理できる。
The concentration of the electrolytic solution 15 arriving at a position facing the second cathode 74b is determined by the slip ring 88 and the first cathode 7
It becomes thin due to the electrolytic action between 4a, the controller 94 controls the second current controller 92 based on the detection output of the second sensor 102, and the slip ring 88 and the second cathode 74b.
A voltage larger than a predetermined voltage is applied between them to flow a predetermined current through the electrolytic solution 15. Further, the concentration of the electrolytic solution 15 that has reached the position facing the third cathode 74c becomes further thinner, and the controller 94 controls the third current controller 93 based on the detection output of the third sensor 103, and the slip ring 88 and the first A voltage higher than a predetermined voltage is applied between the three cathodes 74c to flow a predetermined current through the electrolytic solution 15. Heavy metals contained in the midgut gland and kidney 11f are removed as they go to the outlet 72c of the electrolytic cell 72 and are deposited on the first to third cathodes 74a to 74c,
The midgut glands and the kidney 11f that have reached the discharge tank 72d contain almost no heavy metals and can be used as feed fertilizer. In this way, heavy metals can be automatically and continuously removed from the midgut gland and kidney 11f of the scallop.

【手続補正17】[Procedure Amendment 17]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Name of item to be corrected] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0029】なお、上記実施例1〜7では重金属を含む
生物体としてホタテガイを挙げたが、これは一例であっ
て重金属を含めば他の水産物、動物、農産物又は植物等
の生物体でもよい。また、上記実施例1〜3では生物体
に含まれる重金属としてカドミウムを挙げたが、これに
限らずヒ素、水銀、銅、亜鉛、ニッケル、クロム、マン
ガン等の重金属でもよい。また、上記実施例1〜7では
電解液として硫酸溶液を用いたが、電解液であれば水酸
化ナトリウム溶液、塩化ナトリウム溶液、塩酸溶液又は
硝酸溶液でもよい。また、上記実施例1〜7では濃度が
5容量%の硫酸溶液を用いたが、濃度が0.5〜20容
量%、好ましくは2〜10容量%の範囲内にあればよ
い。濃度を0.5〜20容量%としたのは、濃度が0.
5容量%未満では生物体に含まれる重金属を効率的に陰
極に析出できず、また濃度が20容量%を越えると中腸
や腎臓が変質したり、後段の中和処理に多くの時間を
要する不具合があるからである。
In the above-mentioned Examples 1 to 7, scallops were mentioned as the organism containing heavy metals, but this is only an example, and organisms such as other marine products, animals, agricultural products or plants may be used as long as they contain heavy metals. Further, although cadmium was mentioned as the heavy metal contained in the organism in the above-mentioned Examples 1 to 3, the present invention is not limited to this, and heavy metals such as arsenic, mercury, copper, zinc, nickel, chromium and manganese may be used. In Examples 1 to 7, the sulfuric acid solution was used as the electrolytic solution. However, as long as the electrolytic solution was used, a sodium hydroxide solution, a sodium chloride solution, a hydrochloric acid solution, or a nitric acid solution may be used. Further, in Examples 1 to 7, the sulfuric acid solution having a concentration of 5% by volume was used, but the concentration may be in the range of 0.5 to 20% by volume, preferably 2 to 10% by volume. The concentration of 0.5 to 20% by volume means that the concentration is 0.
If less than 5% by volume, heavy metals contained in organisms cannot be efficiently deposited on the cathode, and if the concentration exceeds 20% by volume, the midgut
This is because the glands and kidneys are denatured and there is a problem that a lot of time is required for the subsequent neutralization treatment.

【手続補正18】[Procedure 18]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例1の生物体に含まれる重金属を除
去する装置の縦断面構成図。
FIG. 1 is a vertical cross-sectional configuration diagram of an apparatus for removing heavy metals contained in a living organism according to a first embodiment of the present invention.

【図2】図1のA−A線断面図。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】生体内に重金属が含まれるホタテガイの解剖
図。
FIG. 3 is an anatomical view of a scallop containing heavy metals in the living body.

【図4】本発明の実施例2を示す図1に対応する縦断面
構成図。
FIG. 4 is a vertical cross-sectional configuration diagram corresponding to FIG. 1 showing a second embodiment of the present invention.

【図5】図4のB−B線断面図。FIG. 5 is a sectional view taken along line BB of FIG. 4;

【図6】本発明の実施例3を示す図1に対応する縦断面
構成図。
FIG. 6 is a vertical cross-sectional configuration diagram corresponding to FIG. 1 showing a third embodiment of the present invention.

【図7】図6のC−C線断面図。7 is a cross-sectional view taken along the line CC of FIG.

【図8】本発明の実施例4を示す図1に対応する縦断面
構成図。
FIG. 8 is a vertical cross-sectional configuration diagram corresponding to FIG. 1, showing a fourth embodiment of the present invention.

【図9】本発明の実施例5を示す図1に対応する縦断面
構成図。
FIG. 9 is a longitudinal sectional view corresponding to FIG. 1, showing a fifth embodiment of the present invention.

【図10】その電解槽からホタテガイの中腸及び電解
液を排出している状態を示すその装置の側面図。
FIG. 10 is a side view of the device showing a state in which the midgut gland and the electrolyte of the scallop are discharged from the electrolytic cell.

【図11】その電解槽にホタテガイの中腸を混合した
電解液を供給する直前の状態を示す図6に対応するその
装置の側面図。
FIG. 11 is a side view of the apparatus corresponding to FIG. 6, showing a state immediately before supplying an electrolytic solution mixed with the scallop midgut gland to the electrolytic cell.

【図12】本発明の実施例6を示す図1に対応する縦断
面構成図。
FIG. 12 is a longitudinal sectional view corresponding to FIG. 1, showing a sixth embodiment of the present invention.

【図13】図12のD−D線断面図。13 is a cross-sectional view taken along line DD of FIG.

【図14】その装置の直流電源を示す電気回路図。FIG. 14 is an electric circuit diagram showing a DC power source of the apparatus.

【図15】本発明の実施例7を示す図1に対応する縦断
面図。
FIG. 15 is a vertical sectional view corresponding to FIG. 1, showing a seventh embodiment of the present invention.

【図16】図15のE−E線断面図。16 is a cross-sectional view taken along the line EE of FIG.

【符号の説明】 11 ホタテガイ(生物体) 11c ホタテガイの中腸 11f ホタテガイの中腸や腎臓 12,42,52,72,122 電解槽 13,33,43,53,73,123 陽極 14,34,44,54,74,124 陰極 15 電解液 16,76 直流電源 17,57,77 撹拌手段 28,38,78 セパレータ 72a 電解槽の供給口 72c 電解槽の排出口 94 コントローラ 101 第1センサ(温度センサ、pHセンサ、伝導度
センサ) 102 第2センサ(温度センサ、pHセンサ、伝導度
センサ) 103 第3センサ(温度センサ、pHセンサ、伝導度
センサ)
[EXPLANATION OF SYMBOLS] 11 scallops (organisms) 11c intestinal gland and kidney in in the intestine glands 11f scallops scallop 12,42,52,72,122 electrolyzer 13,33,43,53,73,123 anode 14, 34,44,54,74,124 Cathode 15 Electrolyte solution 16,76 DC power supply 17,57,77 Stirring means 28,38,78 Separator 72a Electrolyte tank inlet 72c Electrolyzer outlet 94 Controller 101 First sensor ( Temperature sensor, pH sensor, conductivity sensor) 102 Second sensor (temperature sensor, pH sensor, conductivity sensor) 103 Third sensor (temperature sensor, pH sensor, conductivity sensor)

【手続補正19】[Procedure Amendment 19]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 FIG.

【手続補正20】[Procedure amendment 20]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図4[Name of item to be corrected] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図4】 [Figure 4]

【手続補正21】[Procedure correction 21]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図6[Name of item to be corrected] Figure 6

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図6】 [Figure 6]

【手続補正22】[Procedure correction 22]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図8[Correction target item name] Figure 8

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図8】 [Figure 8]

【手続補正23】[Procedure amendment 23]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図9[Correction target item name] Figure 9

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図9】 [Figure 9]

【手続補正24】[Procedure correction 24]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図12[Name of item to be corrected] Fig. 12

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図12】 [Fig. 12]

フロントページの続き (71)出願人 594161840 藤島 勝美 札幌市北区北19条西11丁目1番地 北海道 立工業試験場内 (71)出願人 594161851 村上 英穂 札幌市中央区南11条西6丁目5番11号 (71)出願人 591013355 斎藤 弘 東京都杉並区阿佐谷南3丁目38番13号 (72)発明者 作田 庸一 札幌市北区北19条西11丁目1番地 北海道 立工業試験場内 (72)発明者 富田 恵一 札幌市北区北19条西11丁目1番地 北海道 立工業試験場内 (72)発明者 若杉 郷臣 札幌市北区北19条西11丁目1番地 北海道 立工業試験場内 (72)発明者 藤島 勝美 札幌市北区北19条西11丁目1番地 北海道 立工業試験場内 (72)発明者 村上 英穂 札幌市中央区南11条西6丁目5番11号 (72)発明者 斎藤 弘 東京都杉並区阿佐谷南3丁目38番13−201 号Continuation of the front page (71) Applicant 594161840 Katsumi Fujishima Kita-ku Kita-ku, Kita-ku, Kita-ku 11 West 11-chome, Hokkaido Industrial Research Institute (71) Applicant 594161851 Murakami Hideho, Chuo-ku, Chuo-ku, Sapporo 6-5-5 No. 11 (71) Applicant 591013355 Hiroshi Saito 3-38-13, Minami Asaya, Suginami-ku, Tokyo (72) Inventor Yoichi Sakuda 11-chome, Kita-ku, Kita-ku, Kita-ku, Sapporo 11 Hokkaido Industrial Research Institute (72) Inventor Keiichi Tomita 11-chome, Kita-ku, Kita-ku, Sapporo 11-chome, Hokkaido Industrial Test Station (72) Inventor Gosumi Wakasugi 11-chome, Kita-ku, Kita-ku, Kita-ku 11, Hokkaido (72) Invention Person Katsumi Fujishima 11-chome, Kita-ku, Kita-ku, Kita-ku, Sapporo 11 Hokkaido Industrial Test Station (72) Inventor Hideho Murakami 6-11-5, Minami 11-jo Nishi, Chuo-ku, Sapporo (72) Inventor Hiroshi Saito Tokyo No. 38-13-201, 3-38, Asaya Minami, Suginami-ku, Miyako

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 陽極(13,33,43,53,73,123)と陰極(14,3
4,44,54,74,124)を有する電解槽(12,42,52,72,122)に生
体内に重金属が含まれる生物体(11)と電解液(15)を供給
し前記重金属を前記電解液(15)に溶出させる工程と、 前記陽極(13,33,43,53,73,123)と前記陰極(14,34,44,5
4,74,124)に直流電圧を印加して前記重金属を陰極(14,3
4,44,54,74,124)に析出させる工程とを含む生物体に含
まれる重金属を除去する方法。
1. An anode (13,33,43,53,73,123) and a cathode (14,3)
4,44,54,74,124) with an electrolytic cell (12,42,52,72,122) having a heavy metal in the living organism in the living body (11) and an electrolytic solution (15) and supplying the heavy metal to the electrolytic solution ( 15) elution step, the anode (13,33,43,53,73,123) and the cathode (14,34,44,5
A DC voltage is applied to the heavy metal to form the cathode (14,3,4,124).
4, 44, 54, 74, 124) and a step of removing heavy metals contained in an organism.
【請求項2】 陽極(13,33,43,53,73,123)と陰極(14,3
4,44,54,74,124)を有し電解液(15)が貯えられた電解槽
(15)に生体内に重金属が含まれる生物体(11)を供給しか
つ前記重金属を前記電解液(15)に溶出させる工程と、 前記陽極(13,33,43,53,73,123)と前記陰極(14,34,44,5
4,74,124)に直流電圧を印加して前記重金属を陰極(14,3
4,44,54,74,124)に析出させる工程とを含む生物体に含
まれる重金属を除去する方法。
2. Anode (13,33,43,53,73,123) and cathode (14,3
4,44,54,74,124) and has an electrolytic solution (15)
Supplying an organism (11) containing a heavy metal in the living body (15) and eluting the heavy metal into the electrolytic solution (15), the anode (13,33,43,53,73,123) and the Cathode (14,34,44,5
A DC voltage is applied to the heavy metal to form the cathode (14,3,4,124).
4, 44, 54, 74, 124) and a step of removing heavy metals contained in an organism.
【請求項3】 陽極(13,33,43,53,73,123)と陰極(14,3
4,44,54,74,124)が所定の間隔をあけて配設され生体内
に重金属が含まれる生物体(11)と電解液(15)とを貯留可
能な電解槽(12,42,52,72,122)と、 前記陽極(13,33,43,53,73,123)と前記陰極(14,34,44,5
4,74,124)に電気的に接続され前記陽極(13,33,43,53,7
3,123)及び前記陰極(14,34,44,54,74,124)間に電圧を印
加する直流電源(16,76)とを備えた生物体に含まれる重
金属を除去する装置。
3. Anode (13,33,43,53,73,123) and cathode (14,3
4,44,54,74,124) is an electrolytic cell (12,42,52,) capable of storing an organism (11) and an electrolytic solution (15) in which a heavy metal is contained in a living body and arranged at predetermined intervals. 72,122), the anode (13,33,43,53,73,123) and the cathode (14,34,44,5
4,74,124) electrically connected to the anode (13,33,43,53,7
3,123) and a DC power supply (16,76) for applying a voltage between the cathodes (14,34,44,54,74,124) for removing heavy metals contained in living organisms.
【請求項4】 電解液(15)が硫酸溶液、塩酸溶液、水酸
化ナトリウム溶液又は塩化ナトリウム溶液である請求項
3記載の生物体に含まれる重金属を除去する装置。
4. An apparatus for removing heavy metals contained in a living organism according to claim 3, wherein the electrolytic solution (15) is a sulfuric acid solution, a hydrochloric acid solution, a sodium hydroxide solution or a sodium chloride solution.
【請求項5】 硫酸溶液(15)の濃度が0.5〜20容量
%である請求項4記載の生物体に含まれる重金属を除去
する装置。
5. An apparatus for removing heavy metals contained in an organism according to claim 4, wherein the sulfuric acid solution (15) has a concentration of 0.5 to 20% by volume.
【請求項6】 少なくとも陰極(14,34,44,54,74,124)の
表面がステンレススチール、カドミウム、銅、亜鉛又は
これらの合金により形成された請求項3記載の生物体に
含まれる重金属を除去する装置。
6. The heavy metal contained in the organism according to claim 3, wherein at least the surface of the cathode (14, 34, 44, 54, 74, 124) is formed of stainless steel, cadmium, copper, zinc or alloys thereof. Device to do.
【請求項7】 電解槽(12,52,72)に貯留された生体内に
重金属が含まれる生物体(11)と電解液(15)を撹拌して混
合する撹拌手段(17,57,77)を備えた請求項3記載の生物
体に含まれる重金属を除去する装置。
7. A stirring means (17,57,77) for stirring and mixing an organism (11) containing a heavy metal in a living body stored in an electrolytic cell (12,52,72) and an electrolyte solution (15). The apparatus for removing heavy metals contained in the organism according to claim 3, further comprising:
【請求項8】 生物体(11)の生体内に含まれる重金属が
電解液(15)に溶出して生成された重金属イオンの通過を
許容しかつ陰極(14,34,74,124)に析出した前記重金属の
通過を阻止するセパレータ(28,38,78)が前記陰極(14,3
4,74,124)を前記生物体(11)から区画するように電解槽
(12,72,122)に挿入された請求項3記載の生物体に含ま
れる重金属を除去する装置。
8. The heavy metal contained in the living body of the organism (11) is allowed to pass through the heavy metal ions produced by being eluted into the electrolytic solution (15) and is deposited on the cathode (14,34,74,124). The separator (28, 38, 78) that blocks the passage of heavy metals is the cathode (14, 3
4,74,124) to separate the organism (11) from the electrolyzer
The device for removing heavy metals contained in the organism according to claim 3, which is inserted into (12, 72, 122).
【請求項9】 生体内に重金属が含まれる生物体(11)を
電解槽(72,122)に供給する供給口(72a)と前記生物体(1
1)を電解槽(12,42,52,72,122)から排出する排出口(72c)
とが電解槽(72,122)に設けられ、陽極(73,123)が前記生
物体(11)を前記供給口(72a)から前記排出口(72c)に搬送
するコンベヤである請求項3記載の生物体に含まれる重
金属を除去する装置。
9. A supply port (72a) for supplying an organism (11) containing a heavy metal in a living body to an electrolytic cell (72,122) and the organism (1).
Discharge port (72c) for discharging 1) from the electrolytic cell (12, 42, 52, 72, 122)
4. The organism according to claim 3, wherein and are provided in the electrolytic cell (72, 122), and the anode (73, 123) is a conveyor that conveys the organism (11) from the supply port (72a) to the discharge port (72c). Equipment for removing contained heavy metals.
【請求項10】 電解槽(72)に挿入され生体内に重金属
が含まれる生物体(11)が混合された電解液(15)の温度を
検出する温度センサ(101,102,103)と、 前記電解槽(72)に挿入され前記電解液(15)のpHを検出
するpHセンサ(101,102,103)と、 前記電解槽(72)に挿入され前記電解液(15)の電気伝導度
を検出する伝導度センサ(101,102,103)と、 前記温度センサ(101,102,103)と前記pHセンサ(101,10
2,103)と前記伝導度センサ(101,102,103)の各検出出力
に基づいて直流電源(76)を制御するコントローラ(94)と
を備えた請求項3記載の生物体に含まれる重金属を除去
する装置。
10. A temperature sensor (101, 102, 103) for detecting the temperature of an electrolytic solution (15), which is inserted into an electrolytic cell (72) and mixed with a living organism (11) containing a heavy metal in a living body, 72) pH sensor (101, 102, 103) inserted into the electrolytic solution (15) to detect the pH, and a conductivity sensor (101, 102, 103) inserted into the electrolytic cell (72) to detect the electrical conductivity of the electrolytic solution (15). ), The temperature sensor (101, 102, 103) and the pH sensor (101, 10
The apparatus for removing heavy metals contained in living organisms according to claim 3, comprising: a controller (94) for controlling a DC power supply (76) based on each detection output of the conductivity sensor (101, 102, 103).
JP6234846A 1994-09-29 1994-09-29 Method and apparatus for removing heavy metals contained in organisms Expired - Fee Related JP2667986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6234846A JP2667986B2 (en) 1994-09-29 1994-09-29 Method and apparatus for removing heavy metals contained in organisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6234846A JP2667986B2 (en) 1994-09-29 1994-09-29 Method and apparatus for removing heavy metals contained in organisms

Publications (2)

Publication Number Publication Date
JPH0899001A true JPH0899001A (en) 1996-04-16
JP2667986B2 JP2667986B2 (en) 1997-10-27

Family

ID=16977284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6234846A Expired - Fee Related JP2667986B2 (en) 1994-09-29 1994-09-29 Method and apparatus for removing heavy metals contained in organisms

Country Status (1)

Country Link
JP (1) JP2667986B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6251258B1 (en) * 1998-12-11 2001-06-26 Hitachi Plant Engineering & Construction Co., Ltd. Method and apparatus for removing toxic substances from waste marine products
JP2006158987A (en) * 2004-12-02 2006-06-22 Miyoshi Oil & Fat Co Ltd Method for removing heavy metal in marine product processing residue
JP2008012372A (en) * 2006-07-03 2008-01-24 Kumamoto Technology & Industry Foundation Method of removing heavy metals from animal tissues, or animal organs
CN109604296A (en) * 2017-10-04 2019-04-12 株式会社神户制钢所 The processing method of living marine resources

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4846147A (en) * 1971-10-15 1973-07-02
JPH06106155A (en) * 1992-09-09 1994-04-19 Mutsumi Shoji Removal of heavy metals from amino acid solution of fishes and shellfishes
JPH06153863A (en) * 1992-11-17 1994-06-03 Mutsumi Shoji Preparation of fish and shellfish extract prepared by removing heavy metal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4846147A (en) * 1971-10-15 1973-07-02
JPH06106155A (en) * 1992-09-09 1994-04-19 Mutsumi Shoji Removal of heavy metals from amino acid solution of fishes and shellfishes
JPH06153863A (en) * 1992-11-17 1994-06-03 Mutsumi Shoji Preparation of fish and shellfish extract prepared by removing heavy metal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6251258B1 (en) * 1998-12-11 2001-06-26 Hitachi Plant Engineering & Construction Co., Ltd. Method and apparatus for removing toxic substances from waste marine products
KR100375351B1 (en) * 1998-12-11 2003-03-19 히다찌 플랜트 겐세쓰 가부시키가이샤 Method and apparatus for removing toxic substances from marine products
JP2006158987A (en) * 2004-12-02 2006-06-22 Miyoshi Oil & Fat Co Ltd Method for removing heavy metal in marine product processing residue
JP4632350B2 (en) * 2004-12-02 2011-02-16 ミヨシ油脂株式会社 Removal of heavy metals from fishery processing residue
JP2008012372A (en) * 2006-07-03 2008-01-24 Kumamoto Technology & Industry Foundation Method of removing heavy metals from animal tissues, or animal organs
CN109604296A (en) * 2017-10-04 2019-04-12 株式会社神户制钢所 The processing method of living marine resources

Also Published As

Publication number Publication date
JP2667986B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
JP6131342B2 (en) Method for producing sterilized cultured water and method for culturing flowing water-sterilized water fish using the same
JP4040028B2 (en) Method and system for treating water to be treated containing organic matter and nitrogen compound
NO132722B (en)
CA2167360A1 (en) Washing and disinfecting method and apparatus for artificial dialyzer using acid water electrolytically made
TW583146B (en) Device for treating water
CN108367949A (en) The reaction unit being used in conjunction with water repair system and water treatment system and the method for repairing and/or handling aqueous technique stream
WO2010089800A1 (en) Electrode block and fluid reformer using the electrode block
EP1337473A1 (en) Electrochemical cell and electrochemical treatment of contaminated water
JPH0899001A (en) Method for removing heavy metal included in living body and its device
CN1252317C (en) Parahalogen acid generating process and appts. thereof
US3477926A (en) Electrolytic process and apparatus for recovering metals
JP2004181329A (en) Wastewater treatment method and apparatus therefor
CN212050891U (en) High-concentration fluorine-containing wastewater treatment device
JPH0947257A (en) Removal of heavy metal contained in organism and device therefor
KR20140008781A (en) Electrolysis pipe in mixer electrode
CN110040887A (en) A kind of organic liquid waste processing method and processing device
CN215559589U (en) Electric flocculation-electro-Fenton coupling reactor
JP2006198619A (en) Process for treatment of liquid and apparatus therefor
CN212770008U (en) Laboratory waste liquid electrolytic device
CN208471831U (en) A kind of high concentration wastewater treatment equipment
CN102089247A (en) Integrated electrolytic and chemical method for producing clean treated water wherein cyanide species concentration is less than 1 milligram per liter
Bejan et al. Electrochemical deodorization and disinfection of hog manure
JP2008114209A (en) Method for treating sludge
IL153900A (en) Process and method for recovery of halogens
JP2930947B1 (en) Equipment for removing heavy metals from living organisms

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees