JP2667986B2 - Method and apparatus for removing heavy metals contained in organisms - Google Patents

Method and apparatus for removing heavy metals contained in organisms

Info

Publication number
JP2667986B2
JP2667986B2 JP6234846A JP23484694A JP2667986B2 JP 2667986 B2 JP2667986 B2 JP 2667986B2 JP 6234846 A JP6234846 A JP 6234846A JP 23484694 A JP23484694 A JP 23484694A JP 2667986 B2 JP2667986 B2 JP 2667986B2
Authority
JP
Japan
Prior art keywords
cathode
solution
electrolytic
anode
heavy metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6234846A
Other languages
Japanese (ja)
Other versions
JPH0899001A (en
Inventor
庸一 作田
恵一 富田
郷臣 若杉
勝美 藤島
英穂 村上
斎藤  弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Prefecture
Original Assignee
Hokkaido Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Prefecture filed Critical Hokkaido Prefecture
Priority to JP6234846A priority Critical patent/JP2667986B2/en
Publication of JPH0899001A publication Critical patent/JPH0899001A/en
Application granted granted Critical
Publication of JP2667986B2 publication Critical patent/JP2667986B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • General Preparation And Processing Of Foods (AREA)
  • Meat, Egg Or Seafood Products (AREA)
  • Processing Of Solid Wastes (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は水産物、農産物等の生物
体に含まれる重金属を生物体から除去する方法及びその
装置に関する。更に詳しくはホタテガイに含まれるカド
ミウムやヒ素等の重金属を除去するに適する方法及びそ
の装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for removing heavy metals contained in organisms such as marine products and agricultural products from the organisms. More specifically, the present invention relates to a method and apparatus suitable for removing heavy metals such as cadmium and arsenic contained in scallops.

【0002】[0002]

【従来の技術】これまでホタテガイのウロと呼ばれる中
や貝柱側面に付着する腎臓には高濃度のカドミウム
やヒ素等の重金属が蓄積していることが認められてい
る。特に中腸内のカドミウムやヒ素の濃度は数十pp
mに達しており、この数値は農林水産省の指導基準を越
えるため、上記中腸や腎臓を何等処理せずに飼肥料に
利用することは不可能であって、穴を掘って埋設したり
或いは焼却していた。しかし、上記中腸や腎臓を埋設
又は焼却するには、多くの経費を要する問題点があり、
埋設用地の確保も限界に達している。更に埋設された中
や腎臓に含まれる重金属が地下水に侵入し地下水を
汚染する恐れがあった。
2. Description of the Related Art Up to now, it has been recognized that high concentrations of heavy metals such as cadmium and arsenic are accumulated in the midgut gland called uro of scallops and the kidney attached to the side of the scallop. Especially, the concentration of cadmium and arsenic in the midgut gland is several tens of pp
Since this value exceeds the guidance standard of the Ministry of Agriculture, Forestry and Fisheries, it is impossible to use the above-mentioned midgut glands and kidneys for feed fertilizer without any treatment. Or was incinerated. However, burying or burning the midgut gland and kidney has a problem that requires a lot of cost,
Reservation of buried land has reached its limit. Furthermore, heavy metals contained in the buried midgut glands and kidneys may infiltrate the groundwater and contaminate the groundwater.

【0003】これらの点を解消するために、北海道立工
業試験場はホタテガイの中腸等の軟体部を硫酸溶液中
に浸漬した後、別の水槽で3回水洗して中腸からカド
ミウムを除去する脱カドミウム処理を行い、その結果を
平成5年度共同研究(重点)報告書に「ホタテガイ副産
物の処理・利用技術に関する研究開発」(北海道立中央
水産試験場、同工業試験場、同衛生研究所、同中央農業
試験場及び同滝川畜産試験場)として発表した。この処
理は中腸等の軟体部を硫酸溶液に24時間浸漬した
後、上記軟体部を5時間ずつ3回水洗することにより行
われ、上記処理により軟体部から98%のカドミウムを
除去することができる。
[0003] In order to solve these problems, the Hokkaido Prefectural Industrial Research Institute has immersed the soft part of the scallop, such as the midgut gland , in a sulfuric acid solution and washed it three times with another water tank to remove cadmium from the midgut gland. The cadmium removal treatment was conducted, and the results were reported in the 1993 joint research (important) report, "R & D on Scallop By-product Processing and Utilization Technology" (Hokkaido Prefectural Central Fisheries Experimental Station, Industrial Experimental Station, Sanitary Research Institute, Central Agricultural Experiment Station and Takigawa Livestock Experiment Station). This treatment is carried out by immersing the soft body part such as the midgut gland in a sulfuric acid solution for 24 hours, and then washing the soft body part 3 times for 5 hours each time to remove 98% of cadmium from the soft body part. Can be.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来の脱
カドミウム処理では、処理時間が39時間と極めて長い
不具合があった。また一度に大量の中腸等の軟体部を
処理しようとすると装置が大型化する問題点があった。
更に、水洗時に多量の水を必要とし、その後の排水処理
も大がかりになる問題点もあった。
However, the above-mentioned conventional decadmium treatment has a problem that the treatment time is extremely long, 39 hours. Further, there is a problem that the apparatus becomes large-sized when processing a large amount of soft body parts such as the midgut gland at a time.
Further, there is a problem that a large amount of water is required at the time of washing with water and the subsequent wastewater treatment becomes large-scale.

【0005】本発明の目的は、比較的短時間で生物体を
破損することなく生物体から重金属を除去でき、その除
去率が極めて高く、かつ処理時間を調整できる生物体に
含まれる重金属を除去する方法及びその装置を提供する
ことにある。また本発明の別の目的は、装置を小型化で
き、水の使用量が比較的少なくて済み、排水処理も容易
になる生物体に含まれる重金属を除去する方法及びその
装置を提供することにある。
[0005] An object of the present invention is to produce an organism in a relatively short time.
An object of the present invention is to provide a method and an apparatus for removing heavy metals contained in living organisms, which can remove heavy metals from living organisms without damaging them, have an extremely high removal rate, and can adjust the treatment time. Another object of the present invention is to provide a method and apparatus for removing heavy metals contained in living organisms, which can reduce the size of the apparatus, use relatively little water, and facilitate wastewater treatment. is there.

【0006】上記目的を達成するための本発明の構成
を、実施例に対応する図1、図3及び図12を用いて説
明する。本発明の第1の方法は、図1及び図3に示すよ
うに陽極13と陰極14を有する電解槽12に生体内に
重金属が含まれる生物体11と重金属を溶解してイオン
化する硫酸溶液、塩酸溶液、水酸化ナトリウム溶液又は
塩化ナトリウム溶液からなる電解液15を供給する工程
と、生物体が浸された電解液15を撹拌して生体内に含
まれる重金属を電解液15陽イオンとして溶出させ
る工程と、陽極13と陰極14に直流電圧を印加して
解液15中に溶出した重金属の陽イオンを陰極14に析
出させる工程とを含む。本発明の第2の方法は、陽極1
3と陰極14を有し重金属を溶解してイオン化する硫酸
溶液、塩酸溶液、水酸化ナトリウム溶液又は塩化ナトリ
ウム溶液からなる電解液15が貯えられた電解槽12に
生体内に重金属が含まれる生物体11を供給する工程
と、生物体が浸された電解液15を撹拌して生体内に含
まれる重金属を電解液15中に陽イオンとして溶出させ
る工程と、陽極13と陰極14に直流電圧を印加して
解液15中に溶出した重金属の陽イオンを陰極14に析
出させる工程とを含む。本発明の生物体に含まれる重金
属を除去する装置は、図12に示すように陽極73と陰
極74が所定の間隔をあけて配設され生体内に重金属が
含まれる生物体11と重金属を溶解してイオン化する硫
酸溶液、塩酸溶液、水酸化ナトリウム溶液又は塩化ナト
リウム溶液からなる電解液15とを貯留可能な電解槽7
2と、電解槽72内の生物体11が浸された電解液15
を撹拌して生体内に含まれる重金属を電解液15中に陽
イオンとして溶出させる撹拌手段77と、陽極73と陰
極74に電気的に接続され陽極73及び陰極74間に電
圧を印加して電解液15中に溶出した重金属の陽イオン
を陰極74に析出させる直流電源76とを備える。
A configuration of the present invention for achieving the above object will be described with reference to FIGS. 1, 3 and 12 corresponding to the embodiment. As shown in FIGS. 1 and 3, the first method of the present invention is to dissolve an organism 11 containing a heavy metal in a living body and a heavy metal into an electrolytic cell 12 having an anode 13 and a cathode 14 to dissolve ions.
Sulfuric acid solution, hydrochloric acid solution, sodium hydroxide solution or
A step of supplying the electrolytic solution 15 consisting of sodium chloride solution
To stir the electrolytic solution 15 impregnated with the living body into the living body.
A step of eluting the Murrell heavy metals in the electrolytic solution 15 as the cation, applied to electrostatic DC voltage to the anode 13 and cathode 14
Depositing the heavy metal cations eluted in the solution 15 on the cathode 14. The second method of the present invention comprises the steps of:
Sulfuric acid having 3 and a cathode 14 to dissolve and ionize heavy metals
Solution, hydrochloric acid solution, sodium hydroxide solution or sodium chloride
A step of supplying the organism 11 electrolytic solution 15 consisting um solution contains heavy metals in the body in the electrolytic cell 12, which is stored
To stir the electrolytic solution 15 impregnated with the living body into the living body.
A step of eluting the Murrell heavy metals in the electrolytic solution 15 as the cation, applied to electrostatic DC voltage to the anode 13 and cathode 14
Depositing the heavy metal cations eluted in the solution 15 on the cathode 14. As shown in FIG. 12, the apparatus for removing heavy metals contained in living organisms according to the present invention dissolves the living organisms 11 containing heavy metals and the heavy metals in the living body by disposing an anode 73 and a cathode 74 at predetermined intervals. To be ionized
Acid solution, hydrochloric acid solution, sodium hydroxide solution or sodium chloride
Electrolyzer 7 capable of storing an electrolyte solution 15 composed of a lithium solution
2 and the electrolytic solution 15 in which the organism 11 in the electrolytic cell 72 is immersed.
To mix heavy metals contained in the living body into the electrolyte 15.
A cation of a heavy metal that is electrically connected to the agitating means 77 and the anode 73 and the cathode 74 , which are eluted as ions, and a voltage is applied between the anode 73 and the cathode 74 to elute into the electrolytic solution 15.
And a DC power supply 76 for depositing the

【0007】[0007]

【作用】図1及び図3に示される装置では、生物体11
に含まれる重金属は撹拌される電解液15に浸漬するこ
とにより徐々に電解液15中に溶出して陽イオンとな
る。陽極13と陰極14に直流電圧を印加すると、陽イ
オンとなった重金属が陰極14に析出し、かつ生物体1
1に含まれる重金属の電解液15中への電離が促進され
るので、生物体11を破損することなく、比較的短時間
に生物体に含まれる重金属の殆ど全てを陰極14に析出
させることができる。
In the device shown in FIGS. 1 and 3, the living body 11
By immersing the heavy metal contained in the electrolyte solution 15 in the stirred electrolyte solution 15, the heavy metal is gradually eluted into the electrolyte solution 15 and becomes a cation. When a DC voltage is applied to the anode 13 and the cathode 14, the heavy metal that has become positive ions is deposited on the cathode 14 and the organism 1
Since the ionization of the heavy metal contained in 1 into the electrolytic solution 15 is promoted, almost all of the heavy metal contained in the organism can be deposited on the cathode 14 in a relatively short time without damaging the organism 11. it can.

【0008】[0008]

【実施例】次に本発明の実施例を図面に基づいて詳しく
説明する。 <実施例1> 図3に示すように、ホタテガイ11の貝柱11aと靭帯
11bとの間にはウロと呼ばれる中腸11cが位置
し、この中腸11c内には高濃度(数十ppm)のカ
ドミウム(Cd)が蓄積されている。また11dはヒモ
と呼ばれる外套膜であり、11eは腎臓である。図1及
び図2に示すように、陽極13と陰極14が所定の間隔
をあけて配設された電解槽12に上記中腸11cと電
解液15とが貯留され、陽極13と陰極14には直流電
源16が電気的に接続される。中腸11cは図示しな
いがプラスチック製かごに入れたまま電解槽12の電解
液15に浸される。また電解槽12内の電解液15は撹
拌手段17により撹拌される。陽極13及び陰極14は
この例では長さ65mm、幅50mmのグラファイト及
びステンレススチールによりそれぞれ形成され、陽極1
3及び陰極14の間隔は70mmである。電解槽12は
この例では1リットルのガラス製ビーカーであり、電解
液15は濃度が5容量%の硫酸溶液である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described in detail with reference to the drawings. <Example 1> As shown in Fig. 3, a midgut gland 11c called uro is located between a scallop 11a and a ligament 11b of a scallop 11, and a high concentration (several tens of ppm) is contained in the midgut gland 11c. ) Cadmium (Cd) is accumulated. 11d is a mantle called a string, and 11e is a kidney. As shown in FIGS. 1 and 2, the midgut gland 11 c and the electrolyte 15 are stored in an electrolytic cell 12 in which an anode 13 and a cathode 14 are arranged at a predetermined interval. Is connected to a DC power supply 16 electrically. Although not shown, the midgut gland 11c is immersed in the electrolytic solution 15 in the electrolytic cell 12 while being kept in a plastic basket. The electrolytic solution 15 in the electrolytic cell 12 is stirred by the stirring means 17. In this example, the anode 13 and the cathode 14 are made of graphite and stainless steel having a length of 65 mm and a width of 50 mm, respectively.
The distance between the cathode 3 and the cathode 14 is 70 mm. The electrolytic cell 12 is a 1-liter glass beaker in this example, and the electrolytic solution 15 is a sulfuric acid solution having a concentration of 5% by volume.

【0009】また撹拌手段17は電解槽12内の底中央
に位置する撹拌羽根17aと、電解槽12の下面を受け
る駆動手段17bとを有する。撹拌羽根17aはマグネ
ットにより形成され、駆動手段17bは図示しないがモ
ータにより回転可能なマグネットが内蔵される。モータ
が回転すると駆動手段17b内のマグネットが回転し、
この回転に引きずられて撹拌羽根17aが回転すること
により、電解液15を撹拌するようになっている。電解
槽12には800mlの電解液15が注入され、この電
解液15中には202.21gの中腸11cがプラス
チック製かごに入れたまま供給される。この中腸11
cには乾燥した中腸1kg当り63.2mgのカドミ
ウムを含む(以下、Cd含有量63.2mg/乾kgと
いう)。
The stirring means 17 has stirring blades 17a located at the center of the bottom in the electrolytic cell 12, and driving means 17b for receiving the lower surface of the electrolytic cell 12. The stirring blade 17a is formed by a magnet, and the driving means 17b includes a magnet (not shown) rotatable by a motor. When the motor rotates, the magnet in the driving means 17b rotates,
The stirring blade 17a is rotated by being dragged by this rotation, whereby the electrolyte solution 15 is stirred. 800 ml of the electrolytic solution 15 is injected into the electrolytic cell 12, and 202.21 g of the midgut gland 11c is supplied into the electrolytic solution 15 in a plastic basket. This midgut gland 11
c contains 63.2 mg of cadmium per kg of dried midgut gland (hereinafter referred to as Cd content 63.2 mg / dry kg).

【0010】<実施例2> 図4及び図5に示すように、陽極13と陰極14がそれ
ぞれセパレータ28により包囲されたことを除いて上記
実施例1と同一である。セパレータ28はこの例ではグ
ラスウール紙により形成されたフィルタであり、重金属
イオンの通過を許容しかつ陰極14に析出した重金属の
通過を阻止するようになっている。この例では中腸
1c内に含まれるカドミウムが電解液15に溶出して生
成されたカドミウム陽イオンはセパレータ28を通過で
きるが、陰極14に析出したカドミウムはセパレータ2
8を殆ど通過できないようになっている。図4及び図5
において図1及び図2と同一符号は同一部品を示す。
<Embodiment 2> As shown in FIGS. 4 and 5, the anode 13 and the cathode 14 are the same as the above-mentioned embodiment 1 except that they are respectively surrounded by a separator 28. The separator 28 is a filter formed of glass wool paper in this example, and is designed to allow the passage of heavy metal ions and prevent the passage of heavy metal deposited on the cathode 14. Midgut gland 1 in this example
Cadmium cations generated by elution of cadmium contained in 1c into the electrolytic solution 15 can pass through the separator 28, but cadmium deposited on the cathode 14 is separated by the separator 2.
8 can hardly be passed. 4 and 5
1 and 2 denote the same parts.

【0011】<実施例3> 図6及び図7に示すように、円柱状に形成された陽極3
3が電解槽12の中央に挿入され、電解槽12の内径よ
り僅かに小径の円筒状のカドミウムにより形成された陰
極34が陽極33を中心として電解槽12に挿入され、
更に陰極34より僅かに小径の円筒状に形成されたセパ
レータ38が陽極33を中心として陰極34の内側に位
置するように電解槽12に挿入されたことを除いて上記
実施例1と同一である。中腸11cはセパレータ38
の内側に供給され、陰極34はセパレータ38により中
11cから区画される。図6及び図7において図1
及び図2と同一符号は同一部品を示す。
Example 3 As shown in FIGS. 6 and 7, the anode 3 formed in a cylindrical shape.
3 is inserted into the center of the electrolytic cell 12, and a cathode 34 formed of a cylindrical cadmium having a slightly smaller diameter than the inner diameter of the electrolytic cell 12 is inserted into the electrolytic cell 12 around the anode 33,
Further, it is the same as the first embodiment except that a cylindrical separator 38 having a diameter slightly smaller than that of the cathode 34 is inserted into the electrolytic cell 12 so as to be located inside the cathode 34 with the anode 33 as the center. . The midgut gland 11c is a separator 38
The cathode 34 is separated from the midgut gland 11c by the separator 38. 6 and FIG.
2 and FIG. 2 indicate the same parts.

【0012】<比較試験と評価>実施例1〜3の陽極及
び陰極間にそれぞれ5Vの直流電圧を印加し、各電解液
15に流れる電流を0.8〜1.0Aに24時間保ち、
この間電解液15を撹拌手段17の撹拌羽根17aによ
り撹拌する。
<Comparative Test and Evaluation> A DC voltage of 5 V was applied between the anode and the cathode in Examples 1 to 3, and the current flowing through each electrolytic solution 15 was maintained at 0.8 to 1.0 A for 24 hours.
During this time, the electrolytic solution 15 is stirred by the stirring blade 17a of the stirring means 17.

【0013】[0013]

【表1】 [Table 1]

【0014】処理前及び処理後のカドミウムの含有量を
それぞれ測定し、表1のような結果を得た。表1から明
らかなように、中腸11cに含まれるカドミウムは電
解液15中に溶出して陽イオンとなり、この陽イオンは
陰極14又は34に析出して、比較的短時間に中腸
1cに含まれるカドミウムの殆ど全てを陰極14又は3
4に析出する。実施例2の方が実施例1よりカドミウム
の除去率がよいのは、実施例2では陰極14に析出した
カドミウムがセパレータ28を通過して中腸11cに
再び付着することが殆どないためであると考えられる。
また実施例3の方が実施例2よりカドミウムの除去率が
よいのは、実施例3では陰極34をカドミウムにより形
成したので、一旦陰極34に析出したカドミウムが陰極
34から離脱しないためであると考えられる。
The content of cadmium before and after the treatment was measured, and the results shown in Table 1 were obtained. As is evident from Table 1, Cadmium in hepatopancreas 11c becomes cations eluted in the electrolyte solution 15, the cations are deposited on the cathode 14 or 34, a relatively short time midgut gland 1
Almost all of the cadmium contained in 1c was converted to the cathode 14 or 3
4 is deposited. The reason why the cadmium removal rate of the second embodiment is higher than that of the first embodiment is that the cadmium deposited on the cathode 14 hardly adheres to the midgut gland 11c through the separator 28 in the second embodiment. It is believed that there is.
The reason why the cadmium removal rate of the third embodiment is higher than that of the second embodiment is that the cadmium once deposited on the cathode 34 does not separate from the cathode 34 because the cathode 34 is formed of cadmium in the third embodiment. Conceivable.

【0015】<実施例4> 図8に示すように、電解槽42は塩化ビニール樹脂によ
り直方体の箱状に形成され、陽極43及び陰極44はそ
れぞれ所定の間隔をあけて交互に配設されかつ電解槽4
2に挿入可能に形成される。陽極43はこの例では不溶
性金属電極である金めっきされたチタン板により形成さ
れ、陰極44はステンレススチール板により形成され
る。陽極43及び陰極44の上端は一対の電極保持具4
6,47によりそれぞれ保持され、一対の電極保持具4
6,47は電解槽42の両端外部に立設された一対の支
柱48,48に上下動可能に保持される。陽極43及び
陰極44は一対の電極保持具46,47を介して直流電
源16に電気的に接続される。また電解槽42には実施
例1と同一の電解液15が貯留され、この電解槽42に
はホタテガイの食用となる貝柱や外套膜以外の中腸腺や
腎臓11fが図示しない絶縁材料からなる網に入れた状
態で供給される。また電解槽42中の電解液15は図示
しない撹拌手段にて循環したり或はバブリングしたりす
ることにより撹拌されるように構成される。図8におい
て図1と同一符号は同一部品を示す。
<Embodiment 4> As shown in FIG. 8, the electrolytic cell 42 is made of vinyl chloride resin in the shape of a rectangular parallelepiped box, and the anodes 43 and the cathodes 44 are alternately arranged at predetermined intervals. Electrolyzer 4
2 so as to be insertable. The anode 43 is formed of a gold-plated titanium plate which is an insoluble metal electrode in this example, and the cathode 44 is formed of a stainless steel plate. The upper ends of the anode 43 and the cathode 44 are a pair of electrode holders 4.
6, 47, respectively, and a pair of electrode holders 4
Reference numerals 6 and 47 are vertically movably held by a pair of support columns 48 and 48 which are erected outside the both ends of the electrolytic cell 42. The anode 43 and the cathode 44 are electrically connected to the DC power supply 16 via a pair of electrode holders 46 and 47. The same electrolytic solution 15 as that of the first embodiment is stored in the electrolytic cell 42. In the electrolytic cell 42, the gut and the kidney 11f other than the scallop and the mantle used for scallop are made of an insulating material (not shown). Supplied in a state. The electrolytic solution 15 in the electrolytic cell 42 is shown
Circulate or bubbling with agitating means
It is constituted so that it may be stirred by doing. 8, the same reference numerals as those in FIG. 1 indicate the same parts.

【0016】このように構成された重金属を除去する装
置では、陽極43及び陰極44を支柱に沿って電解槽4
2の上方に上昇させた状態でホタテガイの中腸腺や腎臓
11fを網(図示せず)に入れたまま電解槽42に投入
し、この状態で陽極43及び陰極44を下降させて電解
槽42に挿入する。ホタテガイの中腸腺や腎臓11fに
含まれるカドミウムやヒ素等の重金属は、電解液15を
図示しない撹拌手段にて撹拌することにより徐々に電解
液15中に溶出して陽イオンとなる。直流電源16をオ
ンして陽極43と陰極44に直流電圧を印加すると、陽
イオンとなった重金属が陰極44に析出し、同時に中腸
腺や腎臓11fに含まれる重金属の電解液15中への電
離が促進される。この結果、比較的短時間に中腸腺や腎
臓11fに含まれる重金属の殆ど全てを陰極44に析出
させることができる。所定時間経過後、直流電源16を
オフして陽極43及び陰極44を支柱に沿って上昇さ
せ、網を引き上げて中腸腺や腎臓11fを電解槽42か
ら出し、水洗いを行い、必要に応じて中和処理をする
と、飼肥料として使用可能なホタテガイの中腸腺や腎臓
11fが得られる。
In the apparatus for removing heavy metals thus constructed, the anode 43 and the cathode 44 are connected to the electrolytic cell 4 along the columns.
2 and put into the electrolytic cell 42 with the scallop midgut gland and the kidney 11f remaining in a net (not shown). In this state, the anode 43 and the cathode 44 are lowered to remove the electrolytic cell 42. Insert Heavy metals such as cadmium and arsenic contained in the midgut glands of the scallop and the kidney 11f are
By stirring with a stirring means (not shown), it gradually elutes into the electrolytic solution 15 and becomes a cation. When the DC power supply 16 is turned on and a DC voltage is applied to the anode 43 and the cathode 44, the heavy metal that has become a cation precipitates on the cathode 44, and at the same time, the heavy metal contained in the midgut gland and the kidney 11 f flows into the electrolyte 15. Ionization is promoted. As a result, almost all of the heavy metals contained in the midgut gland and the kidney 11f can be deposited on the cathode 44 in a relatively short time. After a lapse of a predetermined time, the DC power supply 16 is turned off to raise the anode 43 and the cathode 44 along the support columns, and the net is pulled up to take out the midgut gland and the kidney 11f from the electrolytic bath 42 and wash them with water, if necessary. When the neutralization treatment is performed, the midgut gland and the kidney 11f that can be used as a fertilizer are obtained.

【0017】<実施例5>図9〜図11に示すように、
電解槽52は塩化ビニール樹脂により開口部52aを有
する円筒の箱状に形成される。陽極53は不溶性金属電
極である金めっきされたチタン棒により形成され電解槽
52の中央に立設され、陰極54は電解槽52の内径よ
り僅かに小径の円筒状のステンレススチールにより形成
される(図9)。電解槽52は撹拌手段57により電解
槽52の軸心を中心に回転可能に保持され、撹拌手段5
7は支持具56により支持される(図9〜図11)。撹
拌手段57は略U字状の第1保持具57aと、この保持
具57aと一体的に形成されたリング状の第2保持具5
7bと(図10及び図11)、電解槽52の底面中央か
ら突設されたシャフト52b及び第1保持具57a間に
設けられた第1軸受57cと、電解槽52の開口部52
a近傍の外周面及び第2保持具57b間に設けられた大
径の第2軸受57dとを有し(図9)、これらの部材に
より電解槽52は回転可能に保持される。また電解槽5
2の底面近傍の外周面にはリングギヤ57eが固着さ
れ、第1保持具57aの底面から突設されたアーム57
fの先端には電動モータ57gが固定され、このモータ
57gの出力軸57hには上記ギヤ57eに噛合するピ
ニオン57iが固着される。
<Embodiment 5> As shown in FIGS.
The electrolytic cell 52 is formed of a vinyl chloride resin into a cylindrical box shape having an opening 52a. The anode 53 is formed of a gold-plated titanium rod, which is an insoluble metal electrode, and stands upright in the center of the electrolytic cell 52. The cathode 54 is formed of cylindrical stainless steel having a diameter slightly smaller than the inner diameter of the electrolytic cell 52 ( (FIG. 9). The electrolytic cell 52 is held by an agitating means 57 so as to be rotatable around the axis of the electrolytic cell 52.
7 is supported by a support 56 (FIGS. 9 to 11). The stirring means 57 includes a substantially U-shaped first holder 57a and a ring-shaped second holder 5 integrally formed with the holder 57a.
7b (FIGS. 10 and 11), a shaft 52b protruding from the center of the bottom surface of the electrolytic cell 52, and a first bearing 57c provided between the first holder 57a, and an opening 52 of the electrolytic cell 52.
a large-diameter second bearing 57d provided between the outer peripheral surface in the vicinity of a and the second holder 57b (FIG. 9), and the electrolytic bath 52 is rotatably held by these members. Electrolyzer 5
The ring gear 57e is fixed to the outer peripheral surface near the bottom surface of the second arm 57, and the arm 57 protrudes from the bottom surface of the first holder 57a.
An electric motor 57g is fixed to the end of f, and a pinion 57i that meshes with the gear 57e is fixed to an output shaft 57h of the motor 57g.

【0018】第1保持具57aの中央には軸57jが突
設され、この軸57jは支持具56の上端に回動可能に
保持される(図10及び図11)。また軸57jにはウ
ォームホイール58が固着され、支持具56から突設さ
れたブラケット56aには減速機付きモータ59が固定
され、このモータ59の出力軸59aには上記ホイール
58に噛合するウォーム61が固着される。62は陽極
53に電気的に接続されたスリップリングであり、63
は陰極54に電気的に接続されたスリップリングである
(図9)。これらのリング62,63はブラシ64,6
4を介して直流電源16に電気的に接続される。図9に
おいて図8と同一符号は同一部品を示す。
A shaft 57j projects from the center of the first holding member 57a, and is rotatably held at the upper end of the supporting member 56 (FIGS. 10 and 11). A worm wheel 58 is fixed to the shaft 57j, and a motor 59 with a speed reducer is fixed to a bracket 56a protruding from the support member 56. A worm 61 meshing with the wheel 58 is attached to an output shaft 59a of the motor 59. Is fixed. 62 is a slip ring electrically connected to the anode 53, and 63
Is a slip ring electrically connected to the cathode 54 (FIG. 9). These rings 62 and 63 are brushes 64 and 6
4 and is electrically connected to a DC power supply 16. 9, the same reference numerals as those in FIG. 8 indicate the same parts.

【0019】このように構成された重金属を除去する装
置では、減速機付きモータ59を作動させて電解槽52
の開口部52aを上方に向けた状態で(図11)、予め
ホタテガイの中腸腺や腎臓11fが混合された電解液1
5を開口部52aから投入した後、減速機付きモータ5
9を作動させて開口部52aを斜め上方に向くように傾
斜させる(図9)。この状態で電動モータ57gを作動
させて電解槽52を回転させると、中腸腺や腎臓11f
と電解液15は撹拌されて均一に混合され、ホタテガイ
の中腸腺や腎臓11fに含まれるカドミウムやヒ素等の
重金属は徐々に電解液15中に溶出して陽イオンとな
る。この状態で直流電16をオンすると、上記陽イオ
ンとなった重金属は陰極54に析出する。処理が終了す
ると、直流電源16をオフして減速機付きモータ59を
オンし、電解槽52の開口部52aを斜め下方に向くよ
うに傾斜させて中腸腺や腎臓11f及び電解液15を排
出する(図10)。
In the apparatus for removing heavy metals configured as described above, the motor 59 with a speed reducer is operated to operate the electrolytic cell 52.
With the opening 52a of the scallop facing upward (FIG. 11), the electrolyte solution 1 in which the midgut gland and the kidney 11f of the scallop are mixed in advance.
5 through the opening 52a, and then the motor 5
9 to tilt the opening 52a so as to face obliquely upward (FIG. 9). In this state, when the electric motor 57g is operated to rotate the electrolytic cell 52, the midgut gland and the kidney 11f
And the electrolyte solution 15 are stirred and uniformly mixed, and scallop
Such as cadmium and arsenic contained in the midgut gland and kidney 11f
Heavy metals are gradually eluted into the electrolyte solution 15 to form cations.
You. When turning on the DC power source 16 in this state, the positive ion
The heavy metal that has turned on is deposited on the cathode 54. When the processing is completed, the DC power supply 16 is turned off, the motor 59 with a speed reducer is turned on, the opening 52a of the electrolytic cell 52 is inclined so as to face obliquely downward, and the midgut gland, the kidney 11f, and the electrolytic solution 15 are discharged. (FIG. 10).

【0020】<実施例6> 図12〜図14に示すように、電解槽72は塩化ビニー
ル樹脂により水平に延びる四角筒状に形成される。この
電解槽72の一端にはホタテガイの中腸や腎臓11f
及び電解液15を供給する供給口72aが形成され、こ
の供給口72aには漏斗72bが接続される(図1
2)。電解槽72の他端には中腸や腎臓11f及び電
解液15を排出する排出口72cが形成され、この排出
口72cには排出タンク72dが接続される。排出タン
ク72d内には処理された中腸や腎臓11fを排出す
る傾斜コンベヤ79が設置され、排出タンク72dの隣
には傾斜コンベヤ79により搬送された中腸や腎臓1
1fを受けて容器82に搬送する水平コンベヤ81が設
けられる。83は水平コンベヤ81上の中腸や腎臓1
1fに付着した電解液15を受ける受皿である。陽極7
3は不溶性金属電極により形成されたスクリューコンベ
ヤであり、不溶性金属電極はこの例では金めっきされた
チタンである。この陽極73は電解槽72の長手方向に
延びて水平に挿通され一対の軸受84,84を介して回
転可能に保持されたシャフト73aと、このシャフト7
3aの電解槽72に挿入された部分のうち供給口72a
に対向する部分以外に固着された螺旋羽根73bとを有
する。またシャフト73aの供給口72aに対向する部
分には撹拌手段77である撹拌羽根が固着される。
<Embodiment 6> As shown in FIGS. 12 to 14, the electrolytic cell 72 is formed in a rectangular tube shape extending horizontally by vinyl chloride resin. At one end of the electrolytic cell 72, the midgut gland and the kidney 11f of the scallop
And a supply port 72a for supplying the electrolytic solution 15 is formed, and a funnel 72b is connected to the supply port 72a (FIG. 1).
2). At the other end of the electrolytic cell 72, a discharge port 72c for discharging the midgut gland , the kidney 11f and the electrolytic solution 15 is formed, and a discharge tank 72d is connected to the discharge port 72c. An inclined conveyor 79 for discharging the treated midgut gland and kidney 11f is installed in the discharge tank 72d, and the midgut gland and kidney 1 conveyed by the inclined conveyor 79 are installed next to the discharge tank 72d.
A horizontal conveyor 81 that receives 1f and conveys it to a container 82 is provided. 83 is the midgut gland and kidney 1 on the horizontal conveyor 81
This is a tray for receiving the electrolytic solution 15 attached to 1f. Anode 7
Reference numeral 3 denotes a screw conveyor formed by an insoluble metal electrode, which in this example is gold-plated titanium. The anode 73 extends in the longitudinal direction of the electrolytic cell 72, is inserted horizontally, and is rotatably held via a pair of bearings 84, 84;
The supply port 72a of the portion inserted into the electrolytic cell 72 of FIG.
And a spiral blade 73b that is fixed to a portion other than the portion opposed to. A stirring blade, which is stirring means 77, is fixed to the portion of the shaft 73a facing the supply port 72a.

【0021】電解槽72から突出したシャフト73aの
端部にはカップリング86を介して減速機付きモータ8
7の出力軸87aが接続され、カップリング86近傍の
シャフト73aにはスリップリング88が固着される。
電解槽72の両側壁72e,72eのうち螺旋羽根73
bに対向する部分の内面に沿って一対の陰極74,74
が配設される。これらの陰極74,74はこの例では電
解槽72の長手方向に沿って3分割され、供給口72a
から排出口72cに向って第1陰極74a、第2陰極7
4b及び第3陰極74cとする。これらの陰極74,7
4は一対のセパレータ78,78により陽極73と中腸
や腎臓11fから区画される。スリップリング88及
び第1陰極74a間は第1電流制御器91を介して直流
電源76に接続され、スリップリング88及び第2陰極
74b間は第2電流制御器92を介して直流電源76に
接続され、スリップリング88及び第3陰極74c間は
第3電流制御器93を介して直流電源76に接続され
る。
At the end of the shaft 73a protruding from the electrolytic cell 72, a motor 8 with a reducer is provided via a coupling 86.
7 is connected to the output shaft 87a, and a slip ring 88 is fixed to the shaft 73a near the coupling 86.
Spiral blade 73 of both side walls 72e, 72e of electrolytic cell 72
a pair of cathodes 74, 74 along the inner surface of the portion facing b
Is arranged. In this example, these cathodes 74, 74 are divided into three along the longitudinal direction of the electrolytic cell 72, and the supply port 72a
From the discharge port 72c toward the first cathode 74a and the second cathode 7
4b and the third cathode 74c. These cathodes 74, 7
4 is a pair of separators 78, 78 for the anode 73 and middle intestine
It is divided from the gland and the kidney 11f. Slip ring 88 and first cathode 74a are connected to DC power supply 76 via first current controller 91, and slip ring 88 and second cathode 74b are connected to DC power supply 76 via second current controller 92. The connection between the slip ring 88 and the third cathode 74c is connected to the DC power supply 76 via the third current controller 93.

【0022】直流電源76は公知の電源であり、図14
に詳しく示すように入力電圧100V〜200Vの交流
を位相制御回路中の可変抵抗器RVを調整することによ
り0V〜150Vの直流に変換できるようになってい
る。図14中、C1〜C9はコンデンサ、R1〜R5は抵
抗、TDはトリガダイオード、SSは2方向3端子サイ
リスタ、T1はトランス、F1及びF2はヒューズ、D1
4はダイオード、CHはチョークコイルをそれぞれ示
す。第1〜第3電流制御器91〜93はスリップリング
88及び第1〜第3陰極74a〜74cにそれぞれ流れ
る電流を後述するコントローラ94により制御可能に構
成される(図12)。
The DC power supply 76 is a known power supply and is shown in FIG.
As shown in detail in FIG. 2, an AC having an input voltage of 100 V to 200 V can be converted to a DC of 0 V to 150 V by adjusting a variable resistor R V in the phase control circuit. In FIG. 14, C 1 to C 9 are capacitors, R 1 to R 5 are resistors, TD is a trigger diode, SS is a bidirectional three-terminal thyristor, T 1 is a transformer, F 1 and F 2 are fuses, and D 1 to
D 4 is diode, CH denotes a choke coil, respectively. The first to third current controllers 91 to 93 are configured so that currents flowing through the slip ring 88 and the first to third cathodes 74a to 74c can be controlled by a controller 94 described later (FIG. 12).

【0023】電解槽72には第1〜第3センサ101〜
103が挿入される。第1センサ101は供給口72a
と第1陰極74aとの間に挿入され、第2センサ102
は第1陰極74aと第2陰極74bとの間に挿入され、
第3センサ103は第2陰極74bと第3陰極74cと
の間に挿入される。これらのセンサ101〜103はそ
れぞれ電解槽72内の電解液15の温度を検出する温度
センサと、電解槽72内の電解液15のpHを検出する
pHセンサと、電解槽72内の電解液15の電気伝導度
を検出する伝導度センサとを有する。第1〜第3センサ
101〜103の各検出出力はコントローラ94の制御
入力に接続され、コントローラ94の制御出力は第1〜
第3電流制御器91〜93に接続される。
The electrolytic cell 72 has first to third sensors 101 to 101.
103 is inserted. The first sensor 101 has a supply port 72a.
Between the first cathode 74a and the second sensor 102
Is inserted between the first cathode 74a and the second cathode 74b,
The third sensor 103 is inserted between the second cathode 74b and the third cathode 74c. These sensors 101 to 103 are a temperature sensor for detecting the temperature of the electrolytic solution 15 in the electrolytic bath 72, a pH sensor for detecting the pH of the electrolytic solution 15 in the electrolytic bath 72, and an electrolytic solution 15 in the electrolytic bath 72, respectively. And a conductivity sensor for detecting the electrical conductivity of the sample. The detection outputs of the first to third sensors 101 to 103 are connected to the control input of the controller 94, and the control outputs of the controller 94 are the first to third
It is connected to the third current controllers 91 to 93.

【0024】ホタテガイの中腸や腎臓11fは生物体
槽96に貯留され、電解液15は電解液槽97に貯留さ
れる。上記中腸や腎臓11fと電解液15とが所定の
割合で投入される混合槽98には撹拌機99が挿入さ
れ、この撹拌機99により中腸や腎臓11fと電解液
15とが均一になるように撹拌される。混合槽98の下
部に一端が接続された供給パイプ98aの他端は漏斗7
2bに臨む。また混合槽98にはこの槽98内の電解液
15のpHを検出するpHセンサ116と、この槽98
内の電解液15の電気伝導度を検出する伝導度センサ1
17とが挿入される。104及び106は電動バルブで
あり、107は電磁バルブであり、バルブ104,10
6,107は上記センサ116,117の各検出出力に
基づいてコントローラ94により制御される。
The midgut gland and the kidney 11f of the scallop are stored in a biological tank 96, and the electrolyte 15 is stored in an electrolyte tank 97. A stirrer 99 is inserted into the mixing tank 98 into which the midgut gland or kidney 11f and the electrolytic solution 15 are charged at a predetermined ratio, and the stirrer 99 allows the midgut gland or kidney 11f and the electrolytic solution 15 to be uniform. It is stirred to become. One end of the supply pipe 98a connected to the lower portion of the mixing tank 98 has a funnel 7 at the other end.
Face 2b. Further, in the mixing tank 98, a pH sensor 116 for detecting the pH of the electrolytic solution 15 in this tank 98, and this tank 98
Conductivity sensor 1 for detecting the electric conductivity of the electrolyte 15 in the inside
17 are inserted. Reference numerals 104 and 106 are electric valves, 107 is an electromagnetic valve, and valves 104, 10 are provided.
6, 107 are controlled by the controller 94 based on the detection outputs of the sensors 116, 117.

【0025】また排出タンク72dのオーバフローパイ
プ72f及び排出パイプ72gと受皿83の排出パイプ
83aは排液処理槽108に接続され、この排液処理槽
108にて浄化された電解液15は電解槽72の供給口
72a側にポンプ109によりリターンパイプ111を
介して戻されるようになっている。112は電解槽72
の電解液15がリターンパイプ111を介して排液処理
槽108に流入するのを阻止する逆止弁であり、113
〜115は電磁バルブである。また図13に詳しく示す
ように電解槽72の上壁72hにはガス抜き孔72iが
形成され、電解槽72の側壁72eと陰極74との間の
底壁72jには重金属濃度の濃い電解液15を排出可能
な排出パイプ72kが接続される。図12において図8
と同一符号は同一部品を示す。
Further, the overflow pipe 72f and the discharge pipe 72g of the discharge tank 72d and the discharge pipe 83a of the tray 83 are connected to a drainage treatment tank 108, and the electrolytic solution 15 purified in this drainage treatment tank 108 is electrolytic bath 72. Is returned to the supply port 72a side by the pump 109 via the return pipe 111. 112 is an electrolytic cell 72
Is a check valve for preventing the electrolyte 15 from flowing into the drainage treatment tank 108 via the return pipe 111.
Numerals 115 are electromagnetic valves. Further, as shown in detail in FIG. 13, a gas vent hole 72i is formed in the upper wall 72h of the electrolytic cell 72, and the bottom wall 72j between the side wall 72e of the electrolytic cell 72 and the cathode 74 is provided with the electrolytic solution 15 having a heavy metal concentration. Is connected to a discharge pipe 72k capable of discharging the water. In FIG.
The same reference numerals indicate the same parts.

【0026】このように構成された重金属を除去する装
置では、混合層98で混合されたホタテガイの中腸
腎臓11fと電解液15が供給パイプ98a及び漏斗7
2bを介して電解槽72の供給口72aに投入され、撹
拌手段77により撹拌された後、スクリューコンベヤを
兼ねる陽極73により排出口72cに向ってゆっくり搬
送される。中腸や腎臓11fを混合した電解液15が
第1陰極74に対向する位置に到来すると、第1センサ
101のpHセンサが5容量%に近い電解液15の濃度
を検出するので、コントローラ94は第1センサ101
の検出出力に基づいて第1電流制御器91を制御し、ス
リップリング88及び第1陰極74a間に所定の電圧を
かけて電解液15に所定の電流を流す。
In the thus configured apparatus for removing heavy metals, the mid-gut gland and kidney 11f of the scallop mixed in the mixing layer 98 and the electrolyte 15 are supplied to the supply pipe 98a and the funnel 7a.
After being charged into the supply port 72a of the electrolytic cell 72 via the 2b and stirred by the stirring means 77, it is slowly conveyed toward the discharge port 72c by the anode 73 also serving as a screw conveyor. When the electrolyte 15 mixed with the midgut gland and the kidney 11f reaches the position facing the first cathode 74, the pH sensor of the first sensor 101 detects the concentration of the electrolyte 15 close to 5% by volume. Is the first sensor 101
The first current controller 91 is controlled on the basis of the detection output of, and a predetermined voltage is applied between the slip ring 88 and the first cathode 74a to flow a predetermined current through the electrolyte 15.

【0027】第2陰極74bに対向する位置に到来した
電解液15の濃度はスリップリング88及び第1陰極7
4a間の電解作用により薄くなり、コントローラ94は
第2センサ102の検出出力に基づいて第2電流制御器
92を制御し、スリップリング88及び第2陰極74b
間に所定の電圧より大きい電圧をかけて電解液15に所
定の電流を流す。更に第3陰極74cに対向する位置に
到来した電解液15の濃度は更に薄くなり、コントロー
ラ94は第3センサ103の検出出力に基づいて第3電
流制御器93を制御し、スリップリング88及び第3陰
極74c間に所定の電圧より更に大きい電圧をかけて電
解液15に所定の電流を流す。中腸や腎臓11fに含
まれる重金属は電解槽72の排出口72cに向うに従っ
て除去されて第1〜第3陰極74a〜74cに析出し、
排出タンク72dに達した中腸や腎臓11fには殆ど
重金属は含まれず、飼肥料として使用可能になる。この
ようにホタテガイの中腸や腎臓11fから重金属を自
動的にかつ連続して除去処理できる。
The concentration of the electrolytic solution 15 arriving at a position facing the second cathode 74b is determined by the slip ring 88 and the first cathode 7
4a, the controller 94 controls the second current controller 92 based on the detection output of the second sensor 102, and the slip ring 88 and the second cathode 74b
A predetermined current is caused to flow through the electrolytic solution 15 by applying a voltage higher than the predetermined voltage in between. Further, the concentration of the electrolytic solution 15 that has reached the position facing the third cathode 74c becomes further thinner, and the controller 94 controls the third current controller 93 based on the detection output of the third sensor 103, and the slip ring 88 and the first A voltage higher than a predetermined voltage is applied between the three cathodes 74c to flow a predetermined current through the electrolytic solution 15. Heavy metals contained in the midgut gland and the kidney 11f are removed toward the outlet 72c of the electrolytic cell 72 and deposited on the first to third cathodes 74a to 74c,
The midgut gland and the kidney 11f reaching the discharge tank 72d hardly contain heavy metals, and can be used as a fertilizer. In this way, heavy metals can be automatically and continuously removed from the midgut gland and kidney 11f of the scallop.

【0028】<実施例7> 図15及び図16に示すように、電解槽122は横長の
箱状に形成され、陽極123は電解槽122の長手方向
に沿って延びるベルトコンベヤに形成される。この陽極
123は導電性の弾性体により形成されたベルト123
aと、ベルト123aの外周面に所定の間隔をあけて突
設された多数の羽根123bとを有する。羽根123b
は不溶性金属電極である金めっきされたチタンにより形
成され、ホタテガイの中腸腺や腎臓を搬送するとともに
電解液15を撹拌する撹拌手段としての機能も有する。
陰極124は電解槽122の両側壁122a,122a
の内側に沿って設けられ、上記実施例6と同様に3分割
される。ベルト123aと陰極124とは図示しない第
1〜第3電流制御器を介して直流電源76に電気的に接
続される。図15において図12と同一符号は同一部品
を示す。このように構成された重金属を除去する装置の
動作は上記実施例6と略同様であるので、繰返しの説明
を省略する。
Embodiment 7 As shown in FIGS. 15 and 16, the electrolytic cell 122 is formed in a horizontally elongated box shape, and the anode 123 is formed on a belt conveyor extending along the longitudinal direction of the electrolytic cell 122. The anode 123 is a belt 123 made of a conductive elastic material.
a and a large number of blades 123b projectingly provided on the outer peripheral surface of the belt 123a with a predetermined gap. Feather 123b
Is made of gold-plated titanium, which is an insoluble metal electrode, and transports the midgut glands and kidneys of scallops.
That Yusuke also function as a stirring means for stirring the electrolyte 15.
The cathode 124 is formed on both side walls 122 a, 122 a of the electrolytic cell 122.
Are provided along the inside, and are divided into three like the sixth embodiment. The belt 123a and the cathode 124 are electrically connected to the DC power supply 76 via first to third current controllers (not shown). 15, the same reference numerals as those in FIG. 12 indicate the same parts. The operation of the apparatus configured to remove heavy metals configured as described above is substantially the same as that of the sixth embodiment, and a description thereof will not be repeated.

【0029】なお、上記実施例1〜7では重金属を含む
生物体としてホタテガイを挙げたが、これは一例であっ
て重金属を含めば他の水産物、動物、農産物又は植物等
の生物体でもよい。また、上記実施例1〜3では生物体
に含まれる重金属としてカドミウムを挙げたが、これに
限らずヒ素、水銀、銅、亜鉛、ニッケル、クロム、マン
ガン等の重金属でもよい。また、上記実施例1〜7では
電解液として硫酸溶液を用いたが、電解液であれば水酸
化ナトリウム溶液、塩化ナトリウム溶液、塩酸溶液又は
硝酸溶液でもよい。また、上記実施例1〜7では濃度が
5容量%の硫酸溶液を用いたが、濃度が0.5〜20容
量%、好ましくは2〜10容量%の範囲内にあればよ
い。濃度を0.5〜20容量%としたのは、濃度が0.
5容量%未満では生物体に含まれる重金属を効率的に陰
極に析出できず、また濃度が20容量%を越えると中腸
や腎臓が変質したり、後段の中和処理に多くの時間を
要する不具合があるからである。
In the above-mentioned Examples 1 to 7, scallops were mentioned as the organism containing heavy metals, but this is only an example, and organisms such as other marine products, animals, agricultural products or plants may be used as long as they contain heavy metals. In addition, in the above Examples 1 to 3, cadmium is cited as a heavy metal contained in living organisms, but the present invention is not limited to this, and heavy metals such as arsenic, mercury, copper, zinc, nickel, chromium, and manganese may be used. In Examples 1 to 7, the sulfuric acid solution was used as the electrolytic solution. However, as long as the electrolytic solution was used, a sodium hydroxide solution, a sodium chloride solution, a hydrochloric acid solution, or a nitric acid solution may be used. Further, in Examples 1 to 7, the sulfuric acid solution having a concentration of 5% by volume was used, but the concentration may be in the range of 0.5 to 20% by volume, preferably 2 to 10% by volume. The concentration of 0.5 to 20% by volume means that the concentration is 0.
If the concentration is less than 5% by volume, heavy metals contained in living organisms cannot be efficiently deposited on the cathode.
This is because the glands and kidneys are denatured and there is a problem that a lot of time is required for the subsequent neutralization treatment.

【0030】また、上記実施例1、実施例2及び実施例
4〜7では陰極をステンレススチールにより形成し、実
施例3では陰極をカドミウムにより形成したが、銅、亜
鉛又はこれらの合金等により形成しても、或いは銅又は
ステンレススチールにカドミウムをめっきして形成して
もよい。また、上記実施例1〜3では陽極をグラファイ
トにより形成し、実施例4〜7では陽極を金めっきされ
たチタンにより形成したが、導電性フェライト、プラチ
ナ、金、不溶性金属電極である白金めっきされたチタ
ン、グラファイトがコーティングされたチタン等により
形成してもよい。また、上記実施例1〜3では電解槽を
ガラスにより形成し、実施例4〜7では電解槽を塩化ビ
ニール樹脂により形成したが、ポリスチロール樹脂、ポ
リエチレン樹脂、FRP又はアクリル樹脂により形成し
てよい。また、セパレータをグラスウール紙により形成
したが、アスベストウール、素焼きのセラミックス、浸
透膜等により形成してもよい。
In the first, second and fourth to seventh embodiments, the cathode is formed of stainless steel. In the third embodiment, the cathode is formed of cadmium. However, the cathode is formed of copper, zinc, or an alloy thereof. Alternatively, it may be formed by plating copper or stainless steel with cadmium. In Examples 1 to 3 above, the anode was formed of graphite, and in Examples 4 to 7, the anode was formed of gold-plated titanium. However, conductive ferrite, platinum, gold, and platinum plating which are insoluble metal electrodes were used. It may be formed of titanium or graphite coated titanium. Further, although the electrolytic bath is formed of glass in Examples 1 to 3 and the electrolytic bath is formed of vinyl chloride resin in Examples 4 to 7, it may be formed of polystyrene resin, polyethylene resin, FRP or acrylic resin. . Although the separator is formed of glass wool paper, it may be formed of asbestos wool, unfired ceramics, a permeable membrane, or the like.

【0031】た、上記実施例6では陰極を3分割した
が、分割しなくても、或いは2分割しても又は4分割以
上してもよい。また陽極を陰極に対応して電気的に分割
してもよい。この場合、絶縁体でシャフト及び螺旋羽根
を製作した後、導電性材料をコーティングすることによ
り電気的に分割することができる。更に、上記実施例6
では陽極を電流制御器に電気的に接続するためにスリッ
プリングを用いたが、スリップリングを用いずにシャフ
トの軸受に電流制御器を接続してもよい。
[0031] Also, although divided into three cathode In Embodiment 6, even without division, or may be even or 4 or more divisions divided into two parts. Further, the anode may be electrically divided corresponding to the cathode. In this case, the shaft and the spiral blade may be made of an insulating material and then coated with a conductive material for electrical division. Example 6
Although the slip ring is used to electrically connect the anode to the current controller in the above, the current controller may be connected to the shaft bearing without using the slip ring.

【0032】[0032]

【発明の効果】以上述べたように、本発明によれば、陽
極と陰極を有する電解槽に生体内に重金属が含まれる生
物体と重金属を溶解してイオン化する電解液を供給し、
生物体が浸された電解液を撹拌して生体内に含まれる
金属を電解液に溶出させ、更に陽極と陰極に直流電圧を
印加して電解液に溶出した重金属の陽イオンを陰極に析
出させたので、比較的短時間で生物体を破損することな
生物体から重金属を除去でき、その除去率が極めて高
くなる。また従来の脱カドミウム処理と比較して、低濃
度の電解液で重金属の除去が可能となることから、処理
後の生物体の水洗は短時間で済み、水の使用量が少なく
て済む。また陽極と陰極を有し重金属を溶解してイオン
化する電解液が貯えられた電解槽に生体内に重金属が含
まれる生物体を供給し、生物体が浸された電解液を撹拌
して生体内に含まれる重金属を電解液中に陽イオンとし
溶出させ、陽極と陰極に直流電圧を印加して電解液中
に溶出した重金属の陽イオンを陰極に析出させても、上
記と同様の効果が得られる。
As described above, according to the present invention, an organism containing a heavy metal in a living body and an electrolytic solution for ionizing the heavy metal are supplied to an electrolytic cell having an anode and a cathode ,
The heavy metal cations eluted in the electrolyte by stirring the electrolyte in which the organism is immersed to elute the heavy metals contained in the living body into the electrolyte, and further applying a DC voltage to the anode and the cathode. Since it was deposited on the cathode, it does not damage organisms in a relatively short time.
Ku can remove heavy metals from the organism, its removal rate is extremely high. Further, compared to the conventional decadmium treatment, it is possible to remove heavy metals with a low-concentration electrolytic solution, so that the organisms after treatment can be washed with water in a short time and the amount of water used can be small. It has an anode and a cathode and dissolves heavy metals
Supplying organism that contains a heavy metal in vivo to the electrolytic cell the electrolyte has been stored for reduction, stirring the electrolytic solution organism is immersed
To convert heavy metals contained in the living body into cations in the electrolyte.
In the electrolyte by applying a DC voltage to the anode and cathode.
Cations eluted heavy metals to precipitate on the cathode as well, the same effect can be obtained.

【0033】また陽極と陰極が所定の間隔をあけて配設
された電解槽に生体内に重金属が含まれる生物体と
金属を溶解してイオン化する電解液とを貯留し、電解槽
内の生物体が浸された電解液を撹拌手段が撹拌して生体
内に含まれる重金属を電解液中に陽イオンとして溶出さ
せ、陽極と陰極に電気的に接続された直流電源が陽極及
び陰極間に電圧を印加して電解液中に溶出した重金属の
陽イオンを陰極に析出させるように構成しても上記と同
様の効果が得られる。また生物体をかごや網等に入れて
電解槽に貯留し、電解液のみを撹拌すれば、生物体を
破損させずに重金属を除去することができる た、
生物体の生体内に含まれる重金属が電解液に溶出して生
成された重金属イオンの通過を許容しかつ陰極に析出し
た重金属の通過を阻止するセパレータを生物体から陰極
を区画するように電解槽に挿入すれば、陰極に析出した
重金属が生物体に再び付着することを防止できる。
Further the electrolytic cell anode and cathode are arranged with a predetermined interval, organisms and heavy that contain heavy metals in the body
By dissolving the metal storing the electrolytic solution for ionizing electrolyzer
The stirring means stirs the electrolytic solution impregnated with the living organisms in the living organism.
The heavy metals contained in the electrolyte are eluted as cations in the electrolyte.
A direct current power supply electrically connected to the anode and cathode applies a voltage between the anode and cathode to remove heavy metals eluted into the electrolyte.
It is configured to so that precipitating cation cathode same effect as described above can be obtained. In addition, if organisms are placed in a basket or net and stored in an electrolytic cell and only the electrolyte is agitated, all organisms can be removed.
Ku it is possible to remove the heavy metals without causing damage. Also,
An electrolytic cell that separates the cathode from the organism by providing a separator that allows the passage of heavy metal ions generated by elution of the heavy metal contained in the living body of the organism into the electrolytic solution and prevents the passage of heavy metal deposited on the cathode. If it is inserted into, it is possible to prevent the heavy metal deposited on the cathode from reattaching to the organism.

【0034】に、生体内に重金属が含まれる生物体が
混合された電解液の温度を検出する温度センサと、電解
液のpHを検出するpHセンサと、電解液の電気伝導度
を検出する電気伝導度センサとの各検出出力に基づいて
コントローラが直流電源を制御するように構成すれば、
電解液に流れる電流を調整することにより生物体に含ま
れる重金属を除去する時間を調整できる。
[0034] Further, the detecting a temperature sensor for detecting the temperature of the electrolyte organism containing the heavy metal is mixed into the body, and a pH sensor for detecting the pH of the electrolyte solution, the electrical conductivity of the electrolyte If the controller is configured to control the DC power supply based on each detection output with the electric conductivity sensor,
By adjusting the electric current flowing through the electrolytic solution, the time for removing the heavy metal contained in the organism can be adjusted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施例1の生物体に含まれる重金属を除
去する装置の縦断面構成図。
FIG. 1 is a vertical cross-sectional configuration diagram of an apparatus for removing heavy metals contained in a living organism according to a first embodiment of the present invention.

【図2】図1のA−A線断面図。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】生体内に重金属が含まれるホタテガイの解剖
図。
FIG. 3 is an anatomical view of a scallop containing a heavy metal in a living body.

【図4】本発明の実施例2を示す図1に対応する縦断面
構成図。
FIG. 4 is a longitudinal sectional view corresponding to FIG. 1, showing a second embodiment of the present invention.

【図5】図4のB−B線断面図。FIG. 5 is a sectional view taken along line BB of FIG. 4;

【図6】本発明の実施例3を示す図1に対応する縦断面
構成図。
FIG. 6 is a longitudinal sectional view corresponding to FIG. 1, showing a third embodiment of the present invention.

【図7】図6のC−C線断面図。FIG. 7 is a sectional view taken along line CC of FIG. 6;

【図8】本発明の実施例4を示す図1に対応する縦断面
構成図。
FIG. 8 is a longitudinal sectional view corresponding to FIG. 1, showing a fourth embodiment of the present invention.

【図9】本発明の実施例5を示す図1に対応する縦断面
構成図。
FIG. 9 is a longitudinal sectional view corresponding to FIG. 1, showing a fifth embodiment of the present invention.

【図10】その電解槽からホタテガイの中腸及び電解
液を排出している状態を示すその装置の側面図。
FIG. 10 is a side view of the device showing a state in which the midgut gland and the electrolyte of the scallop are discharged from the electrolytic cell.

【図11】その電解槽にホタテガイの中腸を混合した
電解液を供給する直前の状態を示す図6に対応するその
装置の側面図。
FIG. 11 is a side view of the apparatus corresponding to FIG. 6, showing a state immediately before supplying an electrolytic solution mixed with the scallop midgut gland to the electrolytic cell.

【図12】本発明の実施例6を示す図1に対応する縦断
面構成図。
FIG. 12 is a longitudinal sectional view corresponding to FIG. 1, showing a sixth embodiment of the present invention.

【図13】図12のD−D線断面図。FIG. 13 is a sectional view taken along line DD of FIG. 12;

【図14】その装置の直流電源を示す電気回路図。FIG. 14 is an electric circuit diagram showing a DC power source of the apparatus.

【図15】本発明の実施例7を示す図1に対応する縦断
面図。
FIG. 15 is a vertical sectional view corresponding to FIG. 1, showing a seventh embodiment of the present invention.

【図16】図15のE−E線断面図。16 is a cross-sectional view taken along the line EE of FIG.

【符号の説明】[Explanation of symbols]

11 ホタテガイ(生物体) 11c ホタテガイの中腸腺 11f ホタテガイの中腸腺や腎臓 12,42,52,72,122 電解槽 13,33,43,53,73,123 陽極 14,34,44,54,74,124 陰極 15 電解液 16,76 直流電源 17,57,77,123b 撹拌手段 28,38,78 セパレータ 72a 電解槽の供給口 72c 電解槽の排出口 94 コントローラ 101 第1センサ(温度センサ、pHセンサ、伝導度
センサ) 102 第2センサ(温度センサ、pHセンサ、伝導度
センサ) 103 第3センサ(温度センサ、pHセンサ、伝導度
センサ)
11 Scallop (organism) 11c Midgut gland of scallop 11f Midgut gland and kidney of scallop 12,42,52,72,122 Electrolyzer 13,33,43,53,73,123 Anode 14,34,44,54 , 74, 124 Cathode 15 Electrolyte 16 , 76 DC power supply 17 , 57 , 77 , 123 Stirring means 28 , 38 , 78 Separator 72a Electrolyte supply port 72c Electrolyte discharge 94 Controller 101 First sensor (temperature sensor, pH sensor, conductivity sensor 102 Second sensor (temperature sensor, pH sensor, conductivity sensor) 103 Third sensor (temperature sensor, pH sensor, conductivity sensor)

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C25C 1/16 B09B 5/00 E (72)発明者 藤島 勝美 札幌市北区北19条西11丁目1番地 北海 道立工業試験場内 (72)発明者 村上 英穂 札幌市中央区南14条西6丁目5番11号 (72)発明者 斎藤 弘 東京都杉並区阿佐谷南3丁目38番13号 (56)参考文献 特開 昭48−46147(JP,A) 特開 平6−153863(JP,A) 特開 平6−106155(JP,A)Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location C25C 1/16 B09B 5/00 E (72) Inventor Katsumi Fujishima 11-1 Nishi, Kita-ku, Sapporo City (72) Inventor: Hideho Murakami, 6-14-11, Minami 14-jo Nishi, Chuo-ku, Sapporo City (72) Inventor: Hiroshi Saito 3-38-13, Asaya-minami, Suginami-ku, Tokyo (56) References JP-A-48-46147 (JP, A) JP-A-6-153863 (JP, A) JP-A-6-106155 (JP, A)

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 陽極(13,33,43,53,73,123)と陰極(14,3
4,44,54,74,124)を有する電解槽(12,42,52,72,122)に生
体内に重金属が含まれる生物体(11)と前記重金属を溶解
してイオン化する硫酸溶液、塩酸溶液、水酸化ナトリウ
ム溶液又は塩化ナトリウム溶液からなる電解液(15)を供
する工程と、 前記生物体が浸された電解液(15)を撹拌して前記生体内
に含まれる重金属を前記電解液(15)陽イオンとして
溶出させる工程と、 前記陽極(13,33,43,53,73,123)と前記陰極(14,34,44,5
4,74,124)に直流電圧を印加して前記電解液(15)中に溶
出した重金属の陽イオンを陰極(14,34,44,54,74,124)に
析出させる工程とを含む生物体に含まれる重金属を除去
する方法。
An anode (13, 33, 43, 53, 73, 123) and a cathode (14, 3
An organism (11) containing a heavy metal in a living body and the heavy metal are dissolved in an electrolytic cell (12, 42, 52, 72, 122) having a 4,44,54,74,124).
Sulfuric acid solution, hydrochloric acid solution, sodium hydroxide
Beam solution or electrolyte solution consisting of sodium chloride solution (15) comprising the steps of supplying the organism is immersed electrolyte (15) within said living body stirring
The included a step of the heavy metals in the electrolyte (15) is <br/> eluted as cations are, the anode (13,33,43,53,73,123) to the cathode (14,34,44,5
4,74,124) by applying a DC voltage to dissolve it in the electrolyte solution (15).
Method for removing heavy metals contained in the organism and a step of precipitating the cations out heavy metal in the cathode (14,34,44,54,74,124).
【請求項2】 陽極(13,33,43,53,73,123)と陰極(14,3
4,44,54,74,124)を有し重金属を溶解してイオン化する
硫酸溶液、塩酸溶液、水酸化ナトリウム溶液又は塩化ナ
トリウム溶液からなる電解液(15)が貯えられた電解槽(1
2)に生体内に前記重金属が含まれる生物体(11)を供給
る工程と、 前記生物体が浸された電解液(15)を撹拌して前記生体内
に含まれる重金属を前記電解液(15)中に陽イオンとして
溶出させる工程と、 前記陽極(13,33,43,53,73,123)と前記陰極(14,34,44,5
4,74,124)に直流電圧を印加して前記電解液(15)中に溶
出した重金属の陽イオンを陰極(14,34,44,54,74,124)に
析出させる工程とを含む生物体に含まれる重金属を除去
する方法。
2. An anode (13,33,43,53,73,123) and a cathode (14,3
4,44,54,74,124), which dissolves heavy metals and ionizes them
Sulfuric acid solution, hydrochloric acid solution, sodium hydroxide solution or sodium chloride
An electrolytic cell (1) containing an electrolytic solution (15) consisting of thorium solution
It is supplied to 2) organisms that contain the heavy metals in the body (11)
And a step of stirring the electrolyte solution (15) in which the organism is immersed in the living body.
A step of eluting the heavy metal contained in the electrolyte solution (15) as a cation , the anode (13,33,43,53,73,123) and the cathode (14,34,44,5).
4,74,124) by applying a DC voltage to dissolve it in the electrolyte solution (15).
Method for removing heavy metals contained in the organism and a step of precipitating the cations out heavy metal in the cathode (14,34,44,54,74,124).
【請求項3】 陽極(13,33,43,53,73,123)と陰極(14,3
4,44,54,74,124)が所定の間隔をあけて配設され生体内
に重金属が含まれる生物体(11)と前記重金属を溶解して
イオン化する硫酸溶液、塩酸溶液、水酸化ナトリウム溶
液又は塩化ナトリウム溶液からなる電解液(15)とを貯留
可能な電解槽(12,42,52,72,122)と、前記電解槽(12,42,52,72,122)内の前記生物体(11)が浸
された電解液(15)を撹拌して前記生体内に含まれる重金
属を前記電解液(15)中に陽イオンとして溶出させる撹拌
手段(17,57,77,123b)と、 前記陽極(13,33,43,53,73,123)と前記陰極(14,34,44,5
4,74,124)に電気的に接続され前記陽極(13,33,43,53,7
3,123)及び前記陰極(14,34,44,54,74,124)間に電圧を印
して前記電解液(15)中に溶出した重金属の陽イオンを
陰極(14,34,44,54,74,124)に析出させる直流電源(16,7
6)とを備えた生物体に含まれる重金属を除去する装置。
3. An anode (13,33,43,53,73,123) and a cathode (14,3
4,44,54,74,124) are disposed at a predetermined interval and the living body (11) containing a heavy metal in the living body and the heavy metal are dissolved.
Sulfuric acid solution, hydrochloric acid solution, sodium hydroxide solution to be ionized
Solution or an electrolytic solution comprising a sodium chloride solution (15) and an electrolytic tank (12, 42, 52, 72, 122) capable of storing the biological cell (11) in the electrolytic tank (12, 42, 52, 72, 122). Is soaked
Stirring the electrolyte solution (15), the heavy metal contained in the living body
Agitation to elute the genus as a cation in the electrolyte (15)
Means (17,57,77,123b), the anode (13,33,43,53,73,123) and the cathode (14,34,44,5)
4,74,124) and the anode (13,33,43,53,7)
3,123) and the cathode (14, 34, 44, 54, 74, 124) to apply a voltage between the heavy metal cations eluted in the electrolyte (15).
DC power source (16, 7 ) deposited on the cathode (14, 34, 44, 54, 74, 124)
6) An apparatus for removing heavy metals contained in a living organism, comprising:
【請求項4】 生体内に重金属が含まれる生物体(11)と
前記重金属を溶解してイオン化する硫酸溶液、塩酸溶
液、水酸化ナトリウム溶液又は塩化ナトリウム溶液から
なる電解液(15)とを貯留可能な電解槽(42)と、 前記電解槽(42)に挿入可能に形成されそれぞれ所定の間
隔をあけて交互に配設された陽極(43)及び陰極(44)と、 前記電解槽(42)外部に立設され前記陽極(43)及び前記陰
極(44)を上下動可能に保持する支柱(48,48)と、 前記電解槽(42)中の電解液(15)を循環又はバブリングに
より撹拌する撹拌手段と、 前記陽極(43)と前記陰極(44)に電気的に接続され前記陽
極(43)及び前記陰極(44)間に電圧を印加して前記電解液
(15)中に溶出した重金属の陽イオンを陰極(44)に析出さ
せる直流電源(16)と を備えた 生物体に含まれる重金属を
除去する装置
4. An organism (11) containing a heavy metal in a living body,
Sulfuric acid solution and hydrochloric acid solution that dissolve and ionize the heavy metals
Liquid, sodium hydroxide solution or sodium chloride solution
And an electrolytic bath (42) capable of storing an electrolytic solution (15), and formed between the electrolytic bath (42) so that it can be inserted into a predetermined space.
An anode (43) and a cathode (44), which are alternately arranged at an interval, and the anode (43) and the cathode which are erected outside the electrolytic cell (42).
A column (48, 48) for holding the pole (44) so as to be vertically movable, and circulating or bubbling the electrolyte (15) in the electrolytic cell (42).
A stirring means for further stirring, and the anode (43) and the cathode (44) electrically connected to the positive
Electrolyte by applying a voltage between the pole (43) and the cathode (44)
The heavy metal cations eluted in (15) are deposited on the cathode (44).
A device for removing heavy metals contained in living organisms, which is provided with a direct current power supply (16) .
【請求項5】 一端に開口部(52a)を有する筒状に形成
され生体内に重金属が含まれる生物体(11)と前記重金属
を溶解してイオン化する硫酸溶液、塩酸溶液、水酸化ナ
トリウム溶液又は塩化ナトリウム溶液からなる電解液(1
5)とを貯留可能な電解槽(52)と、 前記電解槽(52)の中央に立設された陽極(53)と、 前記電解槽(52)の内周面に沿って設けられた陰極(54)
と、 前記電解槽(52)をこの電解槽(52)の軸心を中心に回転可
能に保持し、前記電解槽(52)内の前記生物体(11)が浸さ
れた電解液(15)を撹拌して前記生体内に含まれる重金属
を前記電解液(15)中に陽イオンとして溶出させる撹拌手
段(57)と、 前記撹拌手段(57)を水平方向に突設された軸(57j)を介
して回動可能に支持する支持具(56)と、 前記陽極(53)と前記陰極(54)に電気的に接続され前記陽
極(53)及び前記陰極(5 4)間に電圧を印加して前記電解液
(15)中に溶出した重金属の陽イオンを陰極(54)に析出さ
せる直流電源(16)と を備えた 生物体に含まれる重金属を
除去する装置
5. A cylindrical shape having an opening (52a) at one end.
Organisms containing heavy metals in the living body (11) and the heavy metals
To dissolve and ionize sulfuric acid, hydrochloric acid solution, sodium hydroxide
Electrolyte consisting of thorium solution or sodium chloride solution (1
5) an electrolytic cell (52) capable of storing, an anode (53) standing upright in the center of the electrolytic cell (52), and a cathode provided along the inner peripheral surface of the electrolytic cell (52) (54)
The electrolytic cell (52) can be rotated around the axis of the electrolytic cell (52).
And the organism (11) in the electrolytic cell (52) is immersed.
Stirring the electrolyte solution (15), the heavy metals contained in the living body.
Stirrer that elutes as a cation into the electrolytic solution (15)
The step (57) and the stirring means (57) are connected via a shaft (57j) projecting in the horizontal direction.
Supporter (56) for rotatably supporting the positive electrode (53) and the positive electrode (53) and the negative electrode (54) that are electrically connected.
A voltage is applied between the electrode (53) and the cathode (54) to apply the electrolytic solution.
The heavy metal cations eluted in (15) were deposited on the cathode (54).
A device for removing heavy metals contained in living organisms, which is provided with a direct current power supply (16) .
【請求項6】 陽極(73,123)と陰極(74,124)が所定の間
隔をあけて配設され生体内に重金属が含まれる生物体(1
1)と前記重金属を溶解してイオン化する硫酸溶液、塩酸
溶液、水酸化ナトリウム溶液又は塩化ナトリウム溶液か
らなる電解液(15)とを貯留可能な電解槽(72,122)と、 前記電解槽(72,122)に設けられ前記生物体(11)を前記電
解槽(72,122)に供給する供給口(72a)と、 前記電解槽(72,122)に設けられ前記生物体(11)を電解槽
(72,122)から排出する排出口(72c)と、 前記陽極(73,123)と前記陰極(74,124)に電気的に接続さ
れ前記陽極(73,123)及び前記陰極(74,124)間に電圧を印
加する直流電源(76)と を備えた生物体に含まれる重金属
を除去する装置であって、 前記陽極(73,123)が前記生物体(11)を前記供給口(72a)
から前記排出口(72c)に搬送して前記電解槽(72,122)内
の前記生物体(11)が浸された電解液(15)を撹拌して前記
生体内に含まれる重金属を前記電解液(15)中に陽イオン
として溶出させるコンベヤからなり、 前記直流電源(76)が印加時に前記電解液(15)中に溶出し
た重金属の陽イオンを陰極(74,124)に析出させるように
構成されたことを特徴とする 生物体に含まれる重金属を
除去する装置。
6. A predetermined interval between the anode (73,123) and the cathode (74,124)
Biological organisms (1
1) and sulfuric acid solution that dissolves and ionizes the heavy metal, hydrochloric acid
Solution, sodium hydroxide solution or sodium chloride solution
An electrolytic cell (72, 122) capable of storing an electrolytic solution (15) made of the same, and the living organism (11) provided in the electrolytic cell (72, 122).
A supply port (72a) for supplying to the thawing tank (72, 122), and the living organism (11) provided in the electrolyzing tank (72, 122);
(72, 122), the outlet (72c), the anode (73, 123) and the cathode (74, 124).
A voltage is applied between the anode (73,123) and the cathode (74,124).
Heavy metals contained in living organisms with a direct current power supply (76)
A device for removing the anode (73, 123) the organism (11) the supply port (72a)
From the electrolytic cell (72, 122)
The electrolyte (15) in which the organism (11) of
The heavy metal contained in the living body is converted into a cation in the electrolytic solution (15).
The DC power supply (76) elutes in the electrolyte solution (15) when the DC power supply (76) is applied.
To deposit heavy metal cations on the cathode (74,124)
An apparatus for removing heavy metals contained in a living organism, wherein the apparatus is configured.
【請求項7】 硫酸溶液(15)の濃度が0.5〜20容量
%である請求項3ないし6いずれか記載の生物体に含ま
れる重金属を除去する装置。
7. The apparatus for removing heavy metals contained in living organisms according to claim 3 , wherein the concentration of the sulfuric acid solution (15) is 0.5 to 20% by volume.
【請求項8】 少なくとも陰極(44,54,74,124)の表面が
ステンレススチール、カドミウム、銅、亜鉛又はこれら
の合金により形成された請求項3ないし6いずれか記載
の生物体に含まれる重金属を除去する装置。
8. remove heavy metals at least the surface of the cathode (44,54,74,124) is contained in stainless steel, cadmium, copper, zinc or organisms of claims 3 formed by these alloys 6 wherein any Equipment to do.
【請求項9】 生物体(11)の生体内に含まれる重金属が
電解液(15)に溶出して生成された重金属イオンの通過を
許容しかつ陰極(74,124)に析出した前記重金属の通過を
阻止するセパレータ(78)が前記陰極(74,124)を前記生物
体(11)から区画するように電解槽(72,122)に挿入された
請求項3記載の生物体に含まれる重金属を除去する装
置。
9. A heavy metal contained in the living body of a living organism (11) is allowed to pass through a heavy metal ion produced by eluting into an electrolytic solution (15), and a heavy metal deposited on a cathode (74,124) is allowed to pass through. An apparatus for removing heavy metals contained in living organisms according to claim 3, wherein a blocking separator (78) is inserted into the electrolytic cell (72, 122) so as to partition the cathode (74, 124) from the living organism (11).
【請求項10】 電解槽(72)に挿入され生体内に重金属
が含まれる生物体(11)が混合された電解液(15)の温度を
検出する温度センサ(101,102,103)と、 前記電解槽(72)に挿入され前記電解液(15)のpHを検出
するpHセンサ(101,102,103)と、 前記電解槽(72)に挿入され前記電解液(15)の電気伝導度
を検出する伝導度センサ(101,102,103)と、 前記温度センサ(101,102,103)と前記pHセンサ(101,10
2,103)と前記伝導度センサ(101,102,103)の各検出出力
に基づいて直流電源(76)を制御するコントローラ(94)と
を備えた請求項3記載の生物体に含まれる重金属を除去
する装置。
10. A temperature sensor (101, 102, 103) inserted into an electrolytic cell (72) and detecting a temperature of an electrolytic solution (15) mixed with a living body (11) containing a heavy metal in a living body; 72) pH sensor (101, 102, 103) inserted into the electrolytic solution (15) to detect the pH, and a conductivity sensor (101, 102, 103) inserted into the electrolytic cell (72) to detect the electrical conductivity of the electrolytic solution (15). ), The temperature sensor (101, 102, 103) and the pH sensor (101, 10
The apparatus for removing heavy metals contained in living organisms according to claim 3, comprising: a controller (94) for controlling a DC power supply (76) based on each detection output of the conductivity sensor (101, 102, 103).
JP6234846A 1994-09-29 1994-09-29 Method and apparatus for removing heavy metals contained in organisms Expired - Fee Related JP2667986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6234846A JP2667986B2 (en) 1994-09-29 1994-09-29 Method and apparatus for removing heavy metals contained in organisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6234846A JP2667986B2 (en) 1994-09-29 1994-09-29 Method and apparatus for removing heavy metals contained in organisms

Publications (2)

Publication Number Publication Date
JPH0899001A JPH0899001A (en) 1996-04-16
JP2667986B2 true JP2667986B2 (en) 1997-10-27

Family

ID=16977284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6234846A Expired - Fee Related JP2667986B2 (en) 1994-09-29 1994-09-29 Method and apparatus for removing heavy metals contained in organisms

Country Status (1)

Country Link
JP (1) JP2667986B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3055544B2 (en) * 1998-12-11 2000-06-26 日立プラント建設株式会社 Method and apparatus for removing heavy metals from biopolymer
JP4632350B2 (en) * 2004-12-02 2011-02-16 ミヨシ油脂株式会社 Removal of heavy metals from fishery processing residue
JP4858828B2 (en) * 2006-07-03 2012-01-18 亮太 篠原 Methods for removing heavy metals from animal tissues or organs
JP6875973B2 (en) * 2017-10-04 2021-05-26 株式会社神戸製鋼所 How to treat marine biological resources

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4846147A (en) * 1971-10-15 1973-07-02
JP3268657B2 (en) * 1992-09-09 2002-03-25 睦 庄司 How to remove heavy metals from amino acid solution of fish and shellfish
JPH06153863A (en) * 1992-11-17 1994-06-03 Mutsumi Shoji Preparation of fish and shellfish extract prepared by removing heavy metal

Also Published As

Publication number Publication date
JPH0899001A (en) 1996-04-16

Similar Documents

Publication Publication Date Title
WO2017088534A1 (en) Wastewater treatment device and method for treating wastewater by means of device
WO2007003003A1 (en) Water treatment apparatus
NO132722B (en)
SK7622000A3 (en) Waste water treatment method and apparatus
JP2000500397A (en) Liquid sterilizer
CN102642955B (en) Electrochemical removal method for heavy metals in breeding circulating seawater
CN108545810A (en) The electrolytic processing apparatus and method of big flow open type recirculated cooling water
JP2667986B2 (en) Method and apparatus for removing heavy metals contained in organisms
EP1337473A1 (en) Electrochemical cell and electrochemical treatment of contaminated water
US20070207083A1 (en) Process and method for recovery of halogens
US3477926A (en) Electrolytic process and apparatus for recovering metals
JPH0947257A (en) Removal of heavy metal contained in organism and device therefor
JPH07116667A (en) Method and apparatus for waste fluid treatment
CN212770008U (en) Laboratory waste liquid electrolytic device
CN102089247A (en) Integrated electrolytic and chemical method for producing clean treated water wherein cyanide species concentration is less than 1 milligram per liter
TW401379B (en) The treatment for the phosphoric ion acid-containing waste water
CN208471831U (en) A kind of high concentration wastewater treatment equipment
CN211611721U (en) Device of heavy metal in desorption reagent
JP2017506151A (en) Yield optimization method for electrolytic extraction of heavy metals in high salt concentration aqueous solution and apparatus for carrying it out
JPH02227182A (en) Water sterilizing apparatus
JP5852916B2 (en) Precious metal recovery method
CN214654391U (en) Contain salt sludge treatment equipment
AU2001272231B2 (en) Process and method for recovery of halogens
JPH10504490A (en) Liquid processing method and apparatus
SU535929A1 (en) Installation for the maintenance of aquatic organisms

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees