JPH0897419A - Mos type transistor and its manufacture - Google Patents

Mos type transistor and its manufacture

Info

Publication number
JPH0897419A
JPH0897419A JP23393594A JP23393594A JPH0897419A JP H0897419 A JPH0897419 A JP H0897419A JP 23393594 A JP23393594 A JP 23393594A JP 23393594 A JP23393594 A JP 23393594A JP H0897419 A JPH0897419 A JP H0897419A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
region
gate electrode
insulating film
drain region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23393594A
Other languages
Japanese (ja)
Inventor
Toshiyuki Toda
利之 遠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23393594A priority Critical patent/JPH0897419A/en
Publication of JPH0897419A publication Critical patent/JPH0897419A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE: To acquire a MOSFET such that the reverse short channel effect is weakened and which can be further microminiaturized by making the level of the lower end of the source region different from that of the drain region. CONSTITUTION: The title MOS type transistor has a semiconductor substrate 1 with a groove, a gate electrode 5 which is buried in a surface of the semiconductor substrate 1 with an insulation film 4 therebetween and a source region 2 and a drain region 3 which are formed on both side-sides of a channel region of the semiconductor substrate 1 below the gate electrode 5 and have different depths.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、MOS型トランジスタ
に係り、特に、微細化に伴うしきい電圧の変動を抑制し
たMOS型トランジスタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a MOS type transistor, and more particularly to a MOS type transistor which suppresses a change in threshold voltage due to miniaturization.

【0002】[0002]

【従来の技術】従来、MOS型トランジスタ(以下、M
OSFETと称す)の微細化に伴うしきい電圧の変動を
抑制するために、溝型MOSFETが用いられてきた。
図6は溝型MOSFETの構造を示す断面図である。
2. Description of the Related Art Conventionally, MOS type transistors (hereinafter referred to as M
A trench MOSFET has been used in order to suppress the fluctuation of the threshold voltage due to the miniaturization of an OSFET).
FIG. 6 is a sectional view showing the structure of the trench MOSFET.

【0003】溝型MOSFETはP型シリコン基板1
と、P型シリコン基板1の表面に形成されたN型ソース
領域2及びN型ドレイン領域3と、P型シリコン基板1
の表面をくりぬいた後形成したゲート絶縁膜4と、この
ゲート絶縁膜4の上に形成されたゲート電極5からな
る。
The trench MOSFET is a P-type silicon substrate 1
An N-type source region 2 and an N-type drain region 3 formed on the surface of the P-type silicon substrate 1, and a P-type silicon substrate 1.
The gate insulating film 4 is formed after the surface of the gate insulating film is hollowed out, and the gate electrode 5 is formed on the gate insulating film 4.

【0004】次に、この溝型MOSFETの基本動作に
ついて説明する。従来の溝型MOSFETではP型シリ
コン基板1及びN型ソース領域2を接地し、N型ドレイ
ン領域3に正の一定電圧を印加した状態でゲート電極5
に印加する電圧を変化させる。すると、ゲート絶縁膜4
とP型シリコン基板1の界面に発生する電子の密度が変
化し、N型ドレイン領域3を流れる電流が変化する。特
にドレイン領域3に電流が流れ始める状態でゲート電極
5に印加されている電圧をしきい電圧と呼ぶ。
Next, the basic operation of this trench MOSFET will be described. In the conventional trench MOSFET, the P-type silicon substrate 1 and the N-type source region 2 are grounded, and the gate electrode 5 is applied with a constant positive voltage applied to the N-type drain region 3.
The voltage applied to is changed. Then, the gate insulating film 4
The density of the electrons generated at the interface between the and P-type silicon substrate 1 changes, and the current flowing through the N-type drain region 3 changes. In particular, the voltage applied to the gate electrode 5 when the current starts flowing in the drain region 3 is called a threshold voltage.

【0005】しかしながら、従来の溝型MOSFETで
は、微細化に伴い単位ゲート当たりの空乏層の領域(体
積)が増加し、逆短チャネル効果が生じるためにしきい
電圧が変動する問題があった。
However, the conventional trench MOSFET has a problem that the threshold voltage fluctuates because the region (volume) of the depletion layer per unit gate increases with the miniaturization and the reverse short channel effect occurs.

【0006】[0006]

【発明が解決しようとする課題】本発明は前記事情に鑑
みて為されたものであり、逆短チャネル効果を抑制する
ことにより微細化を容易にするMOSFETを提供する
ことを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a MOSFET that facilitates miniaturization by suppressing the reverse short channel effect.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明の第1は、溝部を有する半導体基板と、前記溝
部表面に絶縁膜を介して埋め込まれたゲート電極と、前
記ゲート電極下の前記半導体基板のチャネル領域を挟ん
で形成され、それぞれの深さが異なるソース領域とドレ
イン領域とを具備するMOS型トランジスタを提供す
る。
In order to achieve the above object, a first aspect of the present invention is to provide a semiconductor substrate having a groove, a gate electrode buried in the surface of the groove with an insulating film, and a gate electrode (3) A MOS transistor having a source region and a drain region which are formed so as to sandwich the channel region of the semiconductor substrate and have different depths.

【0008】本発明の第2は、表面に段差を設けた半導
体基板と、前記半導体基板の段差部に絶縁膜を介して埋
め込まれたゲート電極と、前記ゲート電極下の前記半導
体基板のチャネル領域を挟んで形成されるソース領域と
ドレイン領域とを具備するMOS型トランジスタを提供
する。
A second aspect of the present invention is to provide a semiconductor substrate having a step on its surface, a gate electrode embedded in the step of the semiconductor substrate via an insulating film, and a channel region of the semiconductor substrate below the gate electrode. Provided is a MOS-type transistor having a source region and a drain region sandwiched between.

【0009】望ましくは、前記ソース領域とドレイン領
域の厚さが実質的に同一であるとよい。本発明の第3
は、半導体基板と、前記半導体基板の表面に絶縁膜を介
して埋め込まれたゲート電極と、前記ゲート電極下の前
記半導体基板のチャネル領域を挟んで形成されるソース
領域とドレイン領域とを具備するMOS型トランジスタ
において、前記ゲート電極にしきい電圧を印加し、前記
ソース領域及び前記ドレイン領域にそれぞれ所定の電圧
を印加した動作状態の際に、前記ソース領域に形成され
る空乏層の下端と、前記チャネル領域に形成される空乏
層の下端と、前記ドレイン領域に形成される空乏層の下
端とが実質的に同じ深さに形成されるMOS型トランジ
スタを提供する。
It is desirable that the source region and the drain region have substantially the same thickness. Third of the present invention
Includes a semiconductor substrate, a gate electrode embedded in the surface of the semiconductor substrate via an insulating film, and a source region and a drain region formed with a channel region of the semiconductor substrate below the gate electrode sandwiched therebetween. In a MOS transistor, in the operating state in which a threshold voltage is applied to the gate electrode and predetermined voltages are applied to the source region and the drain region, respectively, a lower end of a depletion layer formed in the source region, and Provided is a MOS transistor in which a lower end of a depletion layer formed in a channel region and a lower end of a depletion layer formed in the drain region are formed at substantially the same depth.

【0010】本発明の第4は、半導体基板表面に溝を形
成する工程と、前記半導体基板溝の内面に絶縁膜を形成
する工程と、前記溝内に絶縁膜を介して多結晶シリコン
を堆積し、ゲート電極を形成する工程と、前記半導体基
板全面にイオン注入により前記溝を挟んでソース・ドレ
イン領域を形成する工程と、前記ドレイン領域にレジス
トをパターニング形成した後、再び前記ソース領域にイ
オン注入を行う工程とを有するMOS型トランジスタの
製造方法を提供する。
In a fourth aspect of the present invention, a step of forming a groove on the surface of the semiconductor substrate, a step of forming an insulating film on the inner surface of the groove of the semiconductor substrate, and a step of depositing polycrystalline silicon in the groove via the insulating film. Then, a step of forming a gate electrode, a step of forming a source / drain region by ion implantation on the entire surface of the semiconductor substrate with the groove interposed therebetween, and a step of forming a resist in the drain region by patterning, and then again forming an ion in the source region. Provided is a method for manufacturing a MOS transistor having a step of implanting.

【0011】本発明の第5は、半導体基板表面に溝を形
成する工程と、前記半導体基板表面に絶縁膜を形成する
工程と、前記絶縁膜上に多結晶シリコンを堆積し、ゲー
ト電極を形成する工程と、前記ソース予定領域を開口部
とするレジストをパターニングした後、前記開口部のエ
ッチングを行う工程と、前記レジストを除去して後、全
面にイオン注入を行う工程とを有するMOS型トランジ
スタの製造方法を提供する。
A fifth aspect of the present invention is to form a groove on the surface of the semiconductor substrate, to form an insulating film on the surface of the semiconductor substrate, and to deposit polycrystalline silicon on the insulating film to form a gate electrode. And a step of etching the opening after patterning a resist having the source planned region as an opening, and a step of performing ion implantation on the entire surface after removing the resist. A method for manufacturing the same is provided.

【0012】[0012]

【作用】MOSFETの逆短チャネル効果は電荷分布の
考え方により理解できる。図7は図6に示した従来の溝
型MOSFETの電荷分布の様子を示す模式図である。
なお、N型ソース領域2及びP型シリコン領域1を接地
し、N型ドレイン領域3に正のドレイン電圧を印加し、
ゲート電極5にしきい電圧を印加した状態を示す。P型
シリコン基板1に形成される空乏層は次の3つの領域に
分割される。即ち、N型ソース領域2の形成する空乏層
6、ゲート電極5の形成する空乏層7、9、10、N型
ドレイン領域3の形成する空乏層8である。
The reverse short channel effect of MOSFET can be understood from the idea of charge distribution. FIG. 7 is a schematic diagram showing the state of charge distribution in the conventional trench MOSFET shown in FIG.
The N-type source region 2 and the P-type silicon region 1 are grounded, and a positive drain voltage is applied to the N-type drain region 3,
A state in which a threshold voltage is applied to the gate electrode 5 is shown. The depletion layer formed on the P-type silicon substrate 1 is divided into the following three regions. That is, the depletion layer 6 formed by the N-type source region 2, the depletion layers 7, 9, 10 formed by the gate electrode 5, and the depletion layer 8 formed by the N-type drain region 3.

【0013】逆短チャネル効果を抑制するためには、ゲ
ート電極5の長さが短くなった時に、ゲート電極5の形
成する空乏層7、9、10に含まれる電荷の量がゲート
電極5の長さに比例して少なくなる事が必要である。即
ち、ゲート電極5の形成する空乏層7の領域を増し、ゲ
ート電極5の側面に生じる空乏層9及び10は削ること
が望ましい。何故なら、空乏層9及び10の領域はゲー
ト電極5の長さが短くなっても殆ど変化しないからであ
る。
In order to suppress the reverse short channel effect, when the length of the gate electrode 5 is shortened, the amount of charges contained in the depletion layers 7, 9, 10 formed by the gate electrode 5 becomes smaller than that of the gate electrode 5. It is necessary to decrease in proportion to the length. That is, it is desirable to increase the region of the depletion layer 7 formed by the gate electrode 5 and remove the depletion layers 9 and 10 generated on the side surface of the gate electrode 5. This is because the regions of the depletion layers 9 and 10 hardly change even if the length of the gate electrode 5 is shortened.

【0014】本発明のMOSFETはN型ソース領域2
の下端とN型ドレイン領域の下端の高さを変えることに
より、空乏層9及び10の領域を同時に削減することが
できる。
The MOSFET of the present invention has an N-type source region 2
The regions of the depletion layers 9 and 10 can be simultaneously reduced by changing the heights of the lower end of the N type drain region and the lower end of the N-type drain region.

【0015】また、本発明のMOSFETはN型ソース
領域2の上端とN型ドレイン領域3の上端の高さを変え
ることにより、N型ソース領域2とN型ドレイン領域3
を同一の製造工程により形成することができる。
In the MOSFET of the present invention, the heights of the upper ends of the N-type source region 2 and the N-type drain region 3 are changed to change the heights of the N-type source region 2 and the N-type drain region 3.
Can be formed by the same manufacturing process.

【0016】[0016]

【実施例】以下本発明の実施例のついて図面を用いて詳
細に説明する。図1は本発明のMOSFETの一実施例
であるN型MOSFETの構造を示す断面図である。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a sectional view showing the structure of an N-type MOSFET which is an embodiment of the MOSFET of the present invention.

【0017】このN型MOSFETは、P型シリコン基
板1と、P型シリコン基板の表面に形成されたN型ソー
ス領域2と、P型シリコン基板の表面に形成されたN型
ドレイン領域3と、P型シリコン基板の表面を局所的に
削った表面に形成されたゲート絶縁膜4と、ゲート絶縁
膜4の表面に形成されたゲート電極5からなる。ここ
で、P型シリコン基板の表面に形成されたN型ソース領
域2の下端は、P型シリコン基板の表面に形成されたN
型ドレイン領域3の下端よりも深い。
This N-type MOSFET includes a P-type silicon substrate 1, an N-type source region 2 formed on the surface of a P-type silicon substrate, an N-type drain region 3 formed on the surface of a P-type silicon substrate, The gate insulating film 4 is formed on the surface of the P-type silicon substrate that is locally ground, and the gate electrode 5 is formed on the surface of the gate insulating film 4. Here, the lower end of the N-type source region 2 formed on the surface of the P-type silicon substrate is the N formed on the surface of the P-type silicon substrate.
It is deeper than the lower end of the mold drain region 3.

【0018】図2は、このN型MOSFETの製造工程
を示す断面図である。P型シリコン基板1の表面にチャ
ネル領域を開口部とするレジスト11をパターニングす
る。次に、異方性エッチング法によってP型シリコン基
板1のチャネル領域をエッチングする(図2(a))。
次に、レジスト11を除去した後、P型シリコン基板1
表面を熱酸化し、ゲート絶縁膜4を形成する(図2
(b))。その後、ゲート絶縁膜4の上に多結晶シリコ
ンを堆積し、燐を拡散した後、平坦化技術によりゲート
電極5を形成する(図2(c))。
FIG. 2 is a sectional view showing a manufacturing process of this N-type MOSFET. A resist 11 having a channel region as an opening is patterned on the surface of the P-type silicon substrate 1. Next, the channel region of the P-type silicon substrate 1 is etched by the anisotropic etching method (FIG. 2A).
Next, after removing the resist 11, the P-type silicon substrate 1
The surface is thermally oxidized to form the gate insulating film 4 (see FIG. 2).
(B)). After that, polycrystalline silicon is deposited on the gate insulating film 4, phosphorus is diffused, and then a gate electrode 5 is formed by a planarization technique (FIG. 2C).

【0019】次に、基板全面に燐を加速電圧15kV、
ドーズ量5×1015cm-2でイオン注入する(図2
(d))。さらに、N型ソース領域2を開口部とするレ
ジスト12をパターニングしたのち、再び燐を加速電圧
20kV、ドーズ量1×1015cm-2イオン注入する
(図2(e))。
Next, phosphorus is applied to the entire surface of the substrate at an accelerating voltage of 15 kV,
Ion implantation is performed at a dose of 5 × 10 15 cm -2 (Fig. 2
(D)). Further, after patterning the resist 12 having the N-type source region 2 as an opening, phosphorus is ion-implanted again with an acceleration voltage of 20 kV and a dose of 1 × 10 15 cm −2 (FIG. 2E).

【0020】その後、レジスト12を除去し、900
℃、1時間のアニールを行うことにより燐の活性化を行
い、N型ソース領域2及びN型ドレイン領域3を形成す
る(図2(f))。
After that, the resist 12 is removed and 900
Phosphorus is activated by annealing at 1 ° C. for 1 hour to form the N-type source region 2 and the N-type drain region 3 (FIG. 2F).

【0021】本発明の方法によればソース領域、ドレイ
ン領域の下端の深さに差を設けることが容易にできる。
よって、ソース、ドレイン領域に形成される空乏層の下
端と、チャネル領域に形成される空乏層の下端とを同じ
深さに形成することができる。
According to the method of the present invention, it is easy to provide a difference in the depth of the lower ends of the source region and the drain region.
Therefore, the lower end of the depletion layer formed in the source and drain regions and the lower end of the depletion layer formed in the channel region can be formed at the same depth.

【0022】図3は、本実施例のN型MOSFETと、
従来技術による溝型MOSFETと、従来技術による表
面型MOSFETのしきい電圧の実効ゲート長依存性を
示す図である。なお、ドレイン電極には+3Vのドレイ
ン電圧を印加した。
FIG. 3 shows the N-type MOSFET of this embodiment,
It is a figure which shows the effective gate length dependence of the threshold voltage of the groove | channel MOSFET by the prior art, and the surface type MOSFET by the prior art. A drain voltage of + 3V was applied to the drain electrode.

【0023】従来技術による溝型MOSFETの構造断
面図を図6に、また、表面型MOSFETの構造断面図
を図8に示す。図6において、実効ゲート長とは、ゲー
ト絶縁膜とN型シリコン基板の界面に沿って測った、N
型ソース領域とN型ドレイン領域の間隔である。図3か
ら、本実施例のMOSFETであるN型MOSFETは
逆短チャネル効果が抑制されていることがわかる。即
ち、MOSFETの微細化に適する。
FIG. 6 shows a structural sectional view of a groove type MOSFET according to the prior art, and FIG. 8 shows a structural sectional view of a surface type MOSFET. In FIG. 6, the effective gate length is N, which is measured along the interface between the gate insulating film and the N-type silicon substrate.
The distance between the type source region and the N-type drain region. It can be seen from FIG. 3 that the reverse short channel effect is suppressed in the N-type MOSFET which is the MOSFET of this embodiment. That is, it is suitable for miniaturization of MOSFET.

【0024】図4は本発明のMOSFETの他の実施例
であるN型MOSFETの構造を示す断面図である。こ
のN型MOSFETは、P型シリコン基板1と、P型シ
リコン基板の表面に形成されたN型ソース領域2と、P
型シリコン基板の表面に形成されたN型ドレイン領域3
と、P型シリコン基板の表面を局所的に削った表面に形
成されたゲート絶縁膜4と、ゲート絶縁膜4の表面に形
成されたゲート電極5からなる。ここで、P型シリコン
基板の表面に形成されたN型ソース領域2の上端は、P
型シリコン基板の表面に形成されたN型ドレイン領域3
の上端よりも低い。
FIG. 4 is a sectional view showing the structure of an N-type MOSFET which is another embodiment of the MOSFET of the present invention. This N-type MOSFET includes a P-type silicon substrate 1, an N-type source region 2 formed on the surface of the P-type silicon substrate, and a P-type silicon substrate.
-Type drain region 3 formed on the surface of a silicon substrate
And a gate insulating film 4 formed on the surface of the P-type silicon substrate which is locally ground, and a gate electrode 5 formed on the surface of the gate insulating film 4. Here, the upper end of the N-type source region 2 formed on the surface of the P-type silicon substrate is P
-Type drain region 3 formed on the surface of a silicon substrate
Lower than the top of.

【0025】図5は、N型MOSFETの製造工程を示
す図である。P型シリコン基板1の表面にチャネル領域
を開口部とするレジスト11をパターニングする。次
に、異方性エッチング法によってP型シリコン基板1の
チャネル領域をエッチングする(図5(a))。次に、
レジスト11を除去した後、チャネル領域のP型シリコ
ン基板1表面を周知の方法により酸化し、ゲート絶縁膜
4を形成する(図5(b))。その後、ゲート絶縁膜4
の上に多結晶シリコンを堆積し、更に燐を拡散した後、
平坦化技術によりゲート電極5を形成する(図5
(c))。
FIG. 5 is a diagram showing a manufacturing process of the N-type MOSFET. A resist 11 having a channel region as an opening is patterned on the surface of the P-type silicon substrate 1. Next, the channel region of the P-type silicon substrate 1 is etched by the anisotropic etching method (FIG. 5A). next,
After removing the resist 11, the surface of the P-type silicon substrate 1 in the channel region is oxidized by a known method to form the gate insulating film 4 (FIG. 5B). After that, the gate insulating film 4
After depositing polycrystalline silicon on top of it and further diffusing phosphorus,
The gate electrode 5 is formed by the flattening technique (FIG. 5).
(C)).

【0026】次に、再度レジスト12をパターニング
し、N型ソース領域を0.1μmの深さで異方性エッチ
ングする(図5(d))。その後、レジスト12を除去
し、燐を15kV、ドーズ量5×1015cm-2でイオン
注入し、900℃、1時間のアニールを行うことにより
燐の活性化を行い、N型ソース領域2及びN型ドレイン
領域3を形成する(図5(e))。
Next, the resist 12 is patterned again, and the N-type source region is anisotropically etched to a depth of 0.1 μm (FIG. 5D). After that, the resist 12 is removed, phosphorus is ion-implanted at 15 kV and a dose amount of 5 × 10 15 cm -2 , and annealing is performed at 900 ° C. for 1 hour to activate phosphorus, and the N-type source region 2 and The N-type drain region 3 is formed (FIG. 5E).

【0027】本発明の方法によればソース領域をあらか
じめエッチングすることにより、一介のイオン注入で、
ソース、ドレイン領域に形成される空乏層の下端と、チ
ャネル領域に形成される空乏層の下端とを同じ深さにす
ることができる。
By pre-etching the source region according to the method of the present invention, the ion implantation in one step,
The lower end of the depletion layer formed in the source / drain regions and the lower end of the depletion layer formed in the channel region can have the same depth.

【0028】本実施例においても、しきい電圧の実効ゲ
ート長依存性は図3のようになった。よって、本発明の
MOSFETであるN型MOSFETは逆短チャネル効
果が抑制されていることがわかる。即ち、MOSFET
の微細化に適する。その他、本発明をの要旨を逸脱しな
い範囲で種々変形実施可能である。
Also in this embodiment, the dependence of the threshold voltage on the effective gate length is as shown in FIG. Therefore, it is understood that the reverse short channel effect is suppressed in the N-type MOSFET which is the MOSFET of the present invention. That is, MOSFET
Suitable for miniaturization of. In addition, the present invention can be variously modified without departing from the scope of the invention.

【0029】[0029]

【発明の効果】以上説明したように本発明によれば、ソ
ース領域の下端とドレイン領域の下端の高さを変えるこ
とにより、逆短チャネル効果の抑制された、容易に微細
化できるMOSFETを提供できる。
As described above, according to the present invention, it is possible to provide an easily miniaturized MOSFET in which the reverse short channel effect is suppressed by changing the heights of the lower end of the source region and the lower end of the drain region. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明のMOSFETの一実施例に係るMO
SFETの断面図。
FIG. 1 is an MO according to one embodiment of a MOSFET of the present invention.
Sectional drawing of SFET.

【図2】 本発明のMOSFETの一実施例に係るMO
SFETの工程断面図。
FIG. 2 is an MO according to one embodiment of the MOSFET of the present invention.
Process sectional drawing of SFET.

【図3】 本発明のMOSFETと、従来技術に係る溝
型及び表面型MOSFETとのしきい電圧の実効ゲート
長依存性を示す特性図。
FIG. 3 is a characteristic diagram showing the effective gate length dependence of the threshold voltage of the MOSFET of the present invention and the conventional groove-type and surface-type MOSFETs.

【図4】 本発明のMOSFETの他の実施例に係るM
OSFETの断面図。
FIG. 4 shows an M according to another embodiment of the MOSFET of the present invention.
Sectional drawing of OSFET.

【図5】 本発明のMOSFETの他の実施例に係るM
OSFETの工程断面図。
FIG. 5 shows an M according to another embodiment of the MOSFET of the present invention.
3 is a process sectional view of OSFET. FIG.

【図6】 従来技術に係る溝型MOSFETの断面図。FIG. 6 is a cross-sectional view of a trench MOSFET according to a conventional technique.

【図7】 従来技術に係る溝型MOSFETの電荷分布
を示す模式図。
FIG. 7 is a schematic diagram showing a charge distribution of a trench MOSFET according to a conventional technique.

【図8】 従来技術に係る表面型MOSFETの断面
図。
FIG. 8 is a cross-sectional view of a surface type MOSFET according to a conventional technique.

【符号の説明】[Explanation of symbols]

1・・・P型シリコン基板 2・・・N型ソース領域 3・・・N型ドレイン領域 4・・・ゲート絶縁膜 5・・・ゲート電極 6・・・N型ソース領域2の受け持つ空乏層領域 7・・・ゲート電極5の受け持つ空乏層領域 8・・・N型ドレイン領域3の受け持つ空乏層領域 9・・・ゲート電極5の側面に生じる空乏層領域その1 10・・・ゲート電極5の側面に生じる空乏層領域その
2 11・・・レジスト 12・・・レジスト
DESCRIPTION OF SYMBOLS 1 ... P-type silicon substrate 2 ... N-type source region 3 ... N-type drain region 4 ... Gate insulating film 5 ... Gate electrode 6 ... N-type source region 2 depletion layer Region 7 ... Depletion layer region that the gate electrode 5 covers 8 ... Depletion layer region that the N-type drain region 3 covers 9 ... Depletion layer region 1 on the side surface of the gate electrode 5 10 ... Gate electrode 5 Region of the depletion layer formed on the side surface of the wafer 2 11 ... Resist 12 ... Resist

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 溝部を有する半導体基板と、前記溝部表
面に絶縁膜を介して埋め込まれたゲート電極と、前記ゲ
ート電極下の前記半導体基板のチャネル領域を挟んで形
成され、それぞれの深さが異なるソース領域とドレイン
領域とを具備することを特徴とするMOS型トランジス
タ。
1. A semiconductor substrate having a groove portion, a gate electrode buried in the surface of the groove portion with an insulating film interposed therebetween, and a channel region of the semiconductor substrate below the gate electrode sandwiched between the semiconductor substrate and the respective depths. A MOS transistor having different source regions and drain regions.
【請求項2】 表面に段差を設けた半導体基板と、前記
半導体基板の段差部に絶縁膜を介して埋め込まれたゲー
ト電極と、前記ゲート電極下の前記半導体基板のチャネ
ル領域を挟んで形成されるソース領域とドレイン領域と
を具備することを特徴とするMOS型トランジスタ。
2. A semiconductor substrate having a stepped surface, a gate electrode embedded in the stepped portion of the semiconductor substrate with an insulating film interposed therebetween, and a channel region of the semiconductor substrate below the gate electrode. A MOS transistor having a source region and a drain region.
【請求項3】 前記ソース領域とドレイン領域の厚さが
実質的に同一であることを特徴とする請求項2記載のM
OS型トランジスタ。
3. The M of claim 2, wherein the source region and the drain region have substantially the same thickness.
OS type transistor.
【請求項4】 半導体基板と、前記半導体基板の表面に
絶縁膜を介して埋め込まれたゲート電極と、前記ゲート
電極下の前記半導体基板のチャネル領域を挟んで形成さ
れるソース領域とドレイン領域とを具備するMOS型ト
ランジスタにおいて、前記ゲート電極にしきい電圧を印
加し、前記ソース領域及び前記ドレイン領域にそれぞれ
所定の電圧を印加した動作状態の際に、前記ソース領域
に形成される空乏層の下端と、前記チャネル領域に形成
される空乏層の下端と、前記ドレイン領域に形成される
空乏層の下端とが実質的に同じ深さに形成されることを
特徴とするMOS型トランジスタ。
4. A semiconductor substrate, a gate electrode embedded in the surface of the semiconductor substrate via an insulating film, and a source region and a drain region formed with a channel region of the semiconductor substrate below the gate electrode sandwiched therebetween. A lower end of a depletion layer formed in the source region in an operating state in which a threshold voltage is applied to the gate electrode and predetermined voltages are applied to the source region and the drain region, respectively. And a lower end of the depletion layer formed in the channel region and a lower end of the depletion layer formed in the drain region are formed at substantially the same depth.
【請求項5】 半導体基板表面に溝を形成する工程と、
前記半導体基板溝の内面に絶縁膜を形成する工程と、前
記溝内に絶縁膜を介して多結晶シリコンを堆積し、ゲー
ト電極を形成する工程と、前記半導体基板全面にイオン
注入により前記溝を挟んでソース・ドレイン領域を形成
する工程と、前記ドレイン領域にレジストをパターニン
グ形成した後、再び前記ソース領域にイオン注入を行う
工程とを有することを特徴とするMOS型トランジスタ
の製造方法。
5. A step of forming a groove on the surface of a semiconductor substrate,
A step of forming an insulating film on the inner surface of the semiconductor substrate groove, a step of depositing polycrystalline silicon via the insulating film in the groove to form a gate electrode, and a step of forming the groove by ion implantation on the entire surface of the semiconductor substrate. A method of manufacturing a MOS transistor, comprising: a step of forming a source / drain region sandwiched therebetween; and a step of patterning a resist in the drain region and then performing ion implantation in the source region again.
【請求項6】 半導体基板表面に溝を形成する工程と、
前記半導体基板表面に絶縁膜を形成する工程と、前記絶
縁膜上に多結晶シリコンを堆積し、ゲート電極を形成す
る工程と、前記ソース予定領域を開口部とするレジスト
をパターニングした後、前記開口部のエッチングを行う
工程と、前記レジストを除去して後、全面にイオン注入
を行う工程とを有することを特徴とするMOS型トラン
ジスタの製造方法。
6. A step of forming a groove on the surface of a semiconductor substrate,
Forming an insulating film on the surface of the semiconductor substrate; depositing polycrystalline silicon on the insulating film to form a gate electrode; and patterning a resist having the source planned region as an opening, and then opening the opening. A method of manufacturing a MOS transistor, comprising: a step of etching a portion; and a step of performing ion implantation on the entire surface after removing the resist.
JP23393594A 1994-09-29 1994-09-29 Mos type transistor and its manufacture Pending JPH0897419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23393594A JPH0897419A (en) 1994-09-29 1994-09-29 Mos type transistor and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23393594A JPH0897419A (en) 1994-09-29 1994-09-29 Mos type transistor and its manufacture

Publications (1)

Publication Number Publication Date
JPH0897419A true JPH0897419A (en) 1996-04-12

Family

ID=16962924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23393594A Pending JPH0897419A (en) 1994-09-29 1994-09-29 Mos type transistor and its manufacture

Country Status (1)

Country Link
JP (1) JPH0897419A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261627A (en) * 2005-03-14 2006-09-28 Hynix Semiconductor Inc Manufacturing method of semiconductor device with recess channel and asymmetrical bonding structure
KR100663359B1 (en) * 2005-03-31 2007-01-02 삼성전자주식회사 One transistor floating body DRAM cell with recess channel transistor structure and method of fabricating the same
JP2007324408A (en) * 2006-06-01 2007-12-13 Fuji Electric Device Technology Co Ltd Semiconductor device and method of manufacturing the same
US7354827B2 (en) 2004-04-06 2008-04-08 Samsung Electronics Co., Ltd. Transistor having asymmetric channel region, semiconductor device including the same, and method of fabricating semiconductor device including the same
JP2008199027A (en) * 2007-02-13 2008-08-28 Qimonda Ag Integrated circuit having three-dimensional channel field-effect transistor and method of manufacturing the same
DE102007035587A1 (en) * 2007-07-05 2009-02-05 Qimonda Ag Integrated circuit and corresponding manufacturing process
JP2012212923A (en) * 2012-07-02 2012-11-01 Fuji Electric Co Ltd Semiconductor device manufacturing method
CN108735608A (en) * 2018-05-30 2018-11-02 长鑫存储技术有限公司 Semiconductor devices and preparation method thereof
WO2021171798A1 (en) * 2020-02-28 2021-09-02 ソニーセミコンダクタソリューションズ株式会社 Imaging device and light detection device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7354827B2 (en) 2004-04-06 2008-04-08 Samsung Electronics Co., Ltd. Transistor having asymmetric channel region, semiconductor device including the same, and method of fabricating semiconductor device including the same
JP2006261627A (en) * 2005-03-14 2006-09-28 Hynix Semiconductor Inc Manufacturing method of semiconductor device with recess channel and asymmetrical bonding structure
KR100663359B1 (en) * 2005-03-31 2007-01-02 삼성전자주식회사 One transistor floating body DRAM cell with recess channel transistor structure and method of fabricating the same
US7338862B2 (en) 2005-03-31 2008-03-04 Samsung Electronics Co., Ltd. Methods of fabricating a single transistor floating body DRAM cell having recess channel transistor structure
JP2007324408A (en) * 2006-06-01 2007-12-13 Fuji Electric Device Technology Co Ltd Semiconductor device and method of manufacturing the same
JP2008199027A (en) * 2007-02-13 2008-08-28 Qimonda Ag Integrated circuit having three-dimensional channel field-effect transistor and method of manufacturing the same
DE102007035587A1 (en) * 2007-07-05 2009-02-05 Qimonda Ag Integrated circuit and corresponding manufacturing process
US7952138B2 (en) 2007-07-05 2011-05-31 Qimonda Ag Memory circuit with field effect transistor and method for manufacturing a memory circuit with field effect transistor
JP2012212923A (en) * 2012-07-02 2012-11-01 Fuji Electric Co Ltd Semiconductor device manufacturing method
CN108735608A (en) * 2018-05-30 2018-11-02 长鑫存储技术有限公司 Semiconductor devices and preparation method thereof
CN108735608B (en) * 2018-05-30 2023-10-24 长鑫存储技术有限公司 Semiconductor device and method for manufacturing the same
WO2021171798A1 (en) * 2020-02-28 2021-09-02 ソニーセミコンダクタソリューションズ株式会社 Imaging device and light detection device

Similar Documents

Publication Publication Date Title
US6153455A (en) Method of fabricating ultra shallow junction CMOS transistors with nitride disposable spacer
US7799667B2 (en) Method for manufacturing semiconductor device with planer gate electrode and trench gate electrode
US5296401A (en) MIS device having p channel MOS device and n channel MOS device with LDD structure and manufacturing method thereof
US5510648A (en) Insulated gate semiconductor device and method of fabricating
US7883971B2 (en) Gate structure in a trench region of a semiconductor device and method for manufacturing the same
US5661048A (en) Method of making an insulated gate semiconductor device
JPS6055665A (en) Manufacture of semiconductor device
JPH0897419A (en) Mos type transistor and its manufacture
JP2008251853A (en) Semiconductor element and its manufacturing method
KR100488099B1 (en) A mos transistor having short channel and a manufacturing method thereof
KR100873356B1 (en) Method for forming the high voltage transistor
JP3298483B2 (en) Manufacturing method of high voltage MOSFET
JPH02196434A (en) Manufacture of mos transistor
JPH05343680A (en) Manufacturing method of semiconductor device
KR100273319B1 (en) Method for fabricating mos transistor
JP3153285B2 (en) Field effect transistor
JP2956635B2 (en) Semiconductor device and manufacturing method thereof
JPS5846648A (en) Manufacture of semiconductor device
JPH0590290A (en) Manufacture of semiconductor device
KR20010003206A (en) Method of manufacturing SOI device
KR100365091B1 (en) Manufacturing method of mos transistor
JPH0481339B2 (en)
JP2005032997A (en) Method for manufacturing semiconductor device having shallow trench isolation structure
JPH0684942A (en) Semiconductor device
JP3123598B2 (en) LSI and manufacturing method thereof