JPH0897140A - Compound semiconductor substrate and its manufacture - Google Patents

Compound semiconductor substrate and its manufacture

Info

Publication number
JPH0897140A
JPH0897140A JP22783694A JP22783694A JPH0897140A JP H0897140 A JPH0897140 A JP H0897140A JP 22783694 A JP22783694 A JP 22783694A JP 22783694 A JP22783694 A JP 22783694A JP H0897140 A JPH0897140 A JP H0897140A
Authority
JP
Japan
Prior art keywords
compound semiconductor
group
layer
gaas layer
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22783694A
Other languages
Japanese (ja)
Inventor
Hisashi Katahama
久 片浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP22783694A priority Critical patent/JPH0897140A/en
Publication of JPH0897140A publication Critical patent/JPH0897140A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE: To lessen the dislocation density and also, lessen the band structure and the change of carrier concentration by providing a III-V compound semiconductor 9 layer which contains group V atoms excessively within the specified range as compared with group III atoms by at least one layer or more. CONSTITUTION: A GaAs layer 12 epitaxially grown is made on an Si substrate 11. And, a GaAs layer 13 containing excessive As is made on the GaAs layer 12. During the growth, since the release of As from the surface of the GaAs layer 13 is suppressed, stoichimetically excessive As is taken into the GaAs layer 13. The content of excessive As within the GaAs layer 13 for reducing the density of dislocation 15a should be 0.2% or more, while the upper limit value is limited by growth method, so in molecular beam epitaxial growth method, 1.5% becomes the upper limit value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は化合物半導体基板及びそ
の製造方法に関し、より詳細には、例えば光または高速
電子デバイス等に使用される化合物半導体基板及びその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compound semiconductor substrate and a method for manufacturing the same, and more particularly to a compound semiconductor substrate used for, for example, an optical or high-speed electronic device and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、基板上にこれとは異種の化合物半
導体をエピタキシャル成長させ、前記基板及び化合物半
導体におけるそれぞれの長所を活用可能な化合物半導体
基板が研究されている。例えばシリコン(以下、Siと
記す)基板上にGaAsをエピタキシャル成長させるこ
とにより、Siが保有する機械的強度と、GaAsが保
有する高速応答性とを兼ね備えた化合物半導体基板が作
製されており、このような方法によって得られた化合物
半導体基板は電子デバイス、光デバイス等に応用されて
いる。しかしSiとGaAsとにおける格子定数及び熱
膨張係数には大きな差があり、この格子定数差に起因し
てSi基板とGaAs層との界面に転位が形成され易
く、また前記熱膨張係数差に基づいて発生した応力によ
り前記転位が前記GaAs層の表面に向かって伝播し易
い。この結果、前記GaAs層表面には前記転位が多く
存在し、前記GaAs層における表面近傍の結晶性が低
下し、デバイス等としての機能を良好に発揮させること
が難しいという問題があった。
2. Description of the Related Art In recent years, a compound semiconductor substrate has been studied in which a different type of compound semiconductor is epitaxially grown on a substrate and the respective advantages of the substrate and the compound semiconductor can be utilized. For example, by epitaxially growing GaAs on a silicon (hereinafter referred to as Si) substrate, a compound semiconductor substrate having both mechanical strength possessed by Si and high-speed response possessed by GaAs has been produced. Compound semiconductor substrates obtained by various methods are applied to electronic devices, optical devices, and the like. However, there is a large difference in the lattice constant and the coefficient of thermal expansion between Si and GaAs, and dislocations are easily formed at the interface between the Si substrate and the GaAs layer due to the difference in the lattice constant. The dislocation easily propagates toward the surface of the GaAs layer due to the generated stress. As a result, there are many dislocations on the surface of the GaAs layer, the crystallinity in the vicinity of the surface of the GaAs layer deteriorates, and there is a problem that it is difficult to sufficiently exhibit the function as a device or the like.

【0003】GaAs層表面近傍における転位密度を低
減する方法として、前記GaAs層中に転位の伝播を抑
制するための転位低減層を挿入することが試みられてい
る。この転位低減層にはGaAs層とは異なる組成を有
する歪超格子層や、不純物が添加された層等が検討され
ている(応用物理:61巻2号、pp126-133、 1992 )。
As a method of reducing the dislocation density near the surface of the GaAs layer, it has been attempted to insert a dislocation reduction layer for suppressing the propagation of dislocations in the GaAs layer. As the dislocation reducing layer, a strained superlattice layer having a composition different from that of the GaAs layer, a layer to which impurities are added, and the like have been studied (Applied Physics: Vol. 61, No. 2, pp126-133, 1992).

【0004】前記歪超格子層には、例えばInGaAs
層やGaAsP層等のようなGaAs層とは格子定数が
異なる化合物が用いられており、この歪み超格子層が挿
入されると、これから生じた歪で前記転位の伝播方向が
曲げられ、該転位の伝播が抑えられることにより、前記
GaAs層表面近傍における転位密度の低減が図られ
る。またGaAs層中に例えばZn、In、Si原子等
の不純物が添加されると、結晶が硬くなる効果と前記転
位がピンニングされる効果とにより、前記GaAs層表
面近傍への転位の伝播が抑制され、転位密度の低減が図
られる。
For the strained superlattice layer, for example, InGaAs is used.
A compound having a lattice constant different from that of a GaAs layer such as a GaAs layer or a GaAsP layer is used, and when this strained superlattice layer is inserted, the dislocation propagation direction is bent by the strain generated from this strained Is suppressed, the dislocation density near the surface of the GaAs layer can be reduced. When impurities such as Zn, In, and Si atoms are added to the GaAs layer, propagation of dislocations near the surface of the GaAs layer is suppressed by the effect of hardening the crystal and the effect of pinning the dislocations. The dislocation density can be reduced.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記した
歪超格子層が挿入された化合物半導体基板においては、
前記歪超格子層によりGaAs層のバンド構造が変化し
易く、このバンド構造の変化がGaAs層表面近傍の電
気的特性に悪影響を及ぼし易いという課題があった。
However, in the compound semiconductor substrate in which the above strained superlattice layer is inserted,
There is a problem that the strained superlattice layer easily changes the band structure of the GaAs layer, and the change of the band structure easily adversely affects the electrical characteristics near the surface of the GaAs layer.

【0006】また前記不純物が添加された化合物半導体
基板においては、前記不純物が前記転位低減層からGa
As層表面近傍に拡散してしまうと、Zn、Inまたは
Si原子等の不純物がドーパントとして作用し、GaA
s層表面近傍におけるキャリア濃度に変化が生じて電気
的特性に悪影響を及ぼし易いという課題があった。
Further, in the compound semiconductor substrate to which the impurities are added, the impurities from the dislocation reducing layer are Ga.
If diffused near the surface of the As layer, impurities such as Zn, In, or Si atoms act as a dopant, and GaA
There has been a problem that the carrier concentration in the vicinity of the surface of the s layer is likely to change and adversely affect the electrical characteristics.

【0007】本発明はこのような課題に鑑みなされたも
のであり、Si基板上に III−V族化合物半導体層がエ
ピタキシャル成長させられた化合物半導体基板表面近傍
における転位密度が少なく、バンド構造やキャリア濃度
の変化も少ない、電気的特性に優れた高品質の化合物半
導体基板及びその製造方法を提供することを目的として
いる。
The present invention has been made in view of the above problems, and has a low dislocation density near the surface of a compound semiconductor substrate in which a III-V group compound semiconductor layer is epitaxially grown on a Si substrate, and has a band structure and a carrier concentration. It is an object of the present invention to provide a high-quality compound semiconductor substrate excellent in electrical characteristics, which is less likely to change, and a manufacturing method thereof.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る化合物半導体基板は、シリコン基板上に
III−V族化合物半導体層がエピタキシャル成長させら
れた化合物半導体基板において、前記 III−V族化合物
半導体層と同一の構成元素から成り、 III族原子に比べ
てV族原子を0.2%以上1.5%以下の範囲で過剰に
含む III−V族化合物半導体層を少なくとも1層以上含
んでいることを特徴としている(1)。
To achieve the above object, a compound semiconductor substrate according to the present invention is formed on a silicon substrate.
In a compound semiconductor substrate in which a III-V group compound semiconductor layer is epitaxially grown, it is composed of the same constituent elements as the III-V group compound semiconductor layer, and contains 0.2% or more of V group atoms as compared with III group atoms. It is characterized by containing at least one III-V group compound semiconductor layer which is excessively contained within a range of 5% or less (1).

【0009】また本発明に係る化合物半導体基板の製造
方法は、シリコン基板上に III−V族化合物半導体層を
エピタキシャル成長させる化合物半導体基板の製造方法
において、 III族原子に比べてV族原子を0.2%以上
1.5%以下の範囲で過剰に取り込ませ、V族原子を過
剰に含む III−V族化合物半導体層を成長させる工程を
含むことを特徴としている(2)。
The method of manufacturing a compound semiconductor substrate according to the present invention is a method of manufacturing a compound semiconductor substrate in which a group III-V compound semiconductor layer is epitaxially grown on a silicon substrate. It is characterized in that it includes a step of growing a III-V group compound semiconductor layer containing a group V atom in excess by incorporating it excessively in a range of 2% or more and 1.5% or less (2).

【0010】また本発明に係る化合物半導体基板の製造
方法は、上記(2)記載の化合物半導体基板の製造方法
により、 III族原子に比べてV族原子を過剰に含む III
−V族化合物半導体層をエピタキシャル成長させた後、
その後に成長させる III−V族化合物半導体層の成長温
度よりも高い温度での熱処理工程を施すことを特徴とし
ている(3)。
A method for producing a compound semiconductor substrate according to the present invention is the method for producing a compound semiconductor substrate according to the above (2), in which a group V atom is contained excessively compared to a group III atom.
After epitaxially growing the group V compound semiconductor layer,
It is characterized by performing a heat treatment step at a temperature higher than the growth temperature of the III-V group compound semiconductor layer to be grown thereafter (3).

【0011】[0011]

【作用】例えばGaAs( III−V族化合物)層の場
合、分子線エピタキシ法を用いて比較的低温(200〜
300℃)の所定温度で成長させることにより、Ga
(V族原子)に比べて過剰な所定濃度のAs( III族原
子)を含むGaAs層をエピタキシャル成長させ得るこ
とが知られている(Thin Solid Films:231(1993)61-7
3)。この場合、主として成長温度を変えることにより、
前記GaAs層中におけるAsの過剰含有濃度を制御し
ている。
In the case of a GaAs (III-V group compound) layer, for example, a relatively low temperature (200-
Ga at a predetermined temperature of 300 ° C.
It is known that a GaAs layer containing a certain concentration of As (group III atom) in excess of that of group V atom can be epitaxially grown (Thin Solid Films: 231 (1993) 61-7).
3). In this case, mainly by changing the growth temperature,
The excessive As content concentration in the GaAs layer is controlled.

【0012】図6はSi基板上にGaAs層がエピタキ
シャル成長させられ、このGaAs層中にAsを過剰に
含むGaAs層を1層含んでいる化合物半導体基板にお
ける転位の伝播を説明するために示した模式的断面図で
あり、図中11はSi基板を示している。Si基板11
上にはエピタキシャル成長させられたGaAs層12が
形成され、GaAs層12上には過剰のAsを含有する
GaAs層13が形成されている。GaAs層13は上
記した分子線エピタキシ法を用いて比較的低温の所定温
度で成長させられており、成長の際、GaAs層13表
面からのAsの離脱が抑制されるため、GaAs層13
中には化学量論的に過剰のAsが取り込まれている。ま
たGaAs層13上にはGaAs層12と略同様にエピ
タキシャル成長させられたGaAs層14が形成されて
おり、GaAs層14のエピタキシャル成長工程中にお
いて、GaAs層13中に過剰に取り込まれたAsの一
部が凝集し、金属As13aとして析出することとな
る。
FIG. 6 is a schematic diagram for explaining dislocation propagation in a compound semiconductor substrate in which a GaAs layer is epitaxially grown on a Si substrate and the GaAs layer contains one GaAs layer containing excess As. 11 is a schematic cross-sectional view, in which 11 indicates a Si substrate. Si substrate 11
An epitaxially grown GaAs layer 12 is formed thereon, and a GaAs layer 13 containing excess As is formed on the GaAs layer 12. The GaAs layer 13 is grown at a relatively low temperature by using the above-mentioned molecular beam epitaxy method, and during the growth, As is released from the surface of the GaAs layer 13 is suppressed.
A stoichiometric excess of As is incorporated therein. Further, a GaAs layer 14 that has been epitaxially grown is formed on the GaAs layer 13 substantially in the same manner as the GaAs layer 12, and during the epitaxial growth process of the GaAs layer 14, a part of As that is excessively taken into the GaAs layer 13 is formed. Will be aggregated and deposited as metal As13a.

【0013】このように構成された化合物半導体基板で
は、Si基板11とGaAs層12との界面に発生した
転位15が金属As13aによりピンニングされること
となる。したがって一部の転位15aを除き、ほとんど
の転位15がGaAs層13によりブロックされてGa
As層14への伝播が阻止されることとなり、この結
果、GaAs層14表面近傍における転位15aの密度
が減少する。転位15aの密度を減少させるためのGa
As層13中における過剰なAsの含有量は0.2%以
上が必要となる一方、上限値は成長法により制約される
こととなり、分子線エピタキシャル成長法においては
1.5%が上限値となる。
In the compound semiconductor substrate thus configured, the dislocations 15 generated at the interface between the Si substrate 11 and the GaAs layer 12 are pinned by the metal As 13a. Therefore, except for some dislocations 15a, most of the dislocations 15 are blocked by the GaAs layer 13 and Ga
Propagation to the As layer 14 is blocked, and as a result, the density of dislocations 15a near the surface of the GaAs layer 14 decreases. Ga for reducing the density of dislocations 15a
The excess As content in the As layer 13 needs to be 0.2% or more, while the upper limit is restricted by the growth method, and the upper limit is 1.5% in the molecular beam epitaxial growth method. .

【0014】上記構成の化合物半導体基板(1)によれ
ば、前記 III族原子に比べて前記V族原子を0.2%以
上1.5%以下の範囲で過剰に含む III−V族化合物半
導体層中に前記V族原子の一部を凝集・析出させ得るこ
ととなり、該凝集・析出したV族原子粒子により、Si
基板と該Si基板上にエピタキシャル成長させられた前
記 III−V族化合物半導体層との界面に生じた転位をピ
ンニングさせ得ることとなる。このため、前記V族原子
を過剰に含む III−V族化合物半導体層により、前記 I
II−V族化合物半導体層表面への転位の伝播をブロック
し得ることとなり、この結果、前記 III−V族化合物半
導体層表面近傍における転位密度を低減し得ることとな
る。また前記V族原子を過剰に含む III−V族化合物半
導体層には化合物半導体層の構成元素以外の原子を含ん
でいないため、前記 III−V族化合物半導体層のバンド
構造に及ぼす影響を少なくし得ると共に、キャリア濃度
の変化も少なくし得ることとなり、したがって電気的特
性に優れた高品質の化合物半導体基板が得られることと
なる。
According to the compound semiconductor substrate (1) having the above structure, a group III-V compound semiconductor containing the group V atom in excess of 0.2% or more and 1.5% or less of the group III atom. A part of the group V atoms can be aggregated / precipitated in the layer, and the group V atom particles thus aggregated / precipitated cause Si
Dislocations generated at the interface between the substrate and the III-V group compound semiconductor layer epitaxially grown on the Si substrate can be pinned. Therefore, the group III-V compound semiconductor layer containing an excess of the group V atom causes
Propagation of dislocations to the surface of the II-V compound semiconductor layer can be blocked, and as a result, the dislocation density near the surface of the III-V compound semiconductor layer can be reduced. Further, since the III-V group compound semiconductor layer containing excess V group atoms does not contain atoms other than the constituent elements of the compound semiconductor layer, the influence on the band structure of the III-V group compound semiconductor layer is reduced. At the same time, the change in carrier concentration can be reduced, so that a high quality compound semiconductor substrate having excellent electrical characteristics can be obtained.

【0015】また上記構成の化合物半導体基板の製造方
法(2)におけるV族原子を過剰に取り込ませる工程
は、分子線エピタキシ法を採用することにより容易に実
施され、またV族原子の過剰量は成長温度の設定により
容易に制御され得る。上記構成の化合物半導体基板の製
造方法(2)を実施することにより上記化合物半導体基
板(1)が容易に製造されることとなる。
The step of excessively incorporating the group V atom in the method (2) for manufacturing the compound semiconductor substrate having the above-mentioned structure is easily carried out by employing the molecular beam epitaxy method, and the excess amount of the group V atom is reduced. It can be easily controlled by setting the growth temperature. By carrying out the method (2) for manufacturing a compound semiconductor substrate having the above structure, the compound semiconductor substrate (1) can be easily manufactured.

【0016】また上記した化合物半導体基板の製造方法
(3)により、前記V族原子を過剰に含む III−V族化
合物半導体層中に前記V族原子のより一層大きい析出物
を形成し得ることとなり、この結果、転位の伝播がより
一層防止され、前記 III−V族化合物半導体層表面近傍
における転位密度がより一層低減された化合物半導体基
板を製造し得ることとなる。
Further, by the above-mentioned method (3) for manufacturing a compound semiconductor substrate, it is possible to form a larger precipitate of the group V atom in the III-V group compound semiconductor layer containing the group V atom in excess. As a result, it is possible to manufacture a compound semiconductor substrate in which the dislocation propagation is further prevented and the dislocation density near the surface of the III-V compound semiconductor layer is further reduced.

【0017】[0017]

【実施例及び比較例】以下、本発明に係る化合物半導体
基板及びその製造方法の実施例を図面に基づいて説明す
る。図1は本発明に係る化合物半導体基板の実施例1を
模式的に示した断面図であり、図中11はSi基板を示
している。Si基板11上には厚さが約1μmのGaA
s層12が形成され、GaAs層12上にはAsを約
0.4%過剰に含む厚さが約0.2μmのGaAs層1
3が形成されている。GaAs層13上には厚さが約2
μmのGaAs層14が形成されており、これらSi基
板11、GaAs層12、14、Asを過剰に含むGa
As層13を含んで化合物半導体基板10が構成されて
いる。
EXAMPLES AND COMPARATIVE EXAMPLES Examples of a compound semiconductor substrate and a method for manufacturing the same according to the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view schematically showing Example 1 of the compound semiconductor substrate according to the present invention, in which 11 indicates a Si substrate. GaA having a thickness of about 1 μm is formed on the Si substrate 11.
An s layer 12 is formed, and a GaAs layer 1 having a thickness of about 0.2 μm and containing As in an excess of about 0.4% is formed on the GaAs layer 12.
3 is formed. The thickness is about 2 on the GaAs layer 13.
A GaAs layer 14 having a thickness of μm is formed, and the Si substrate 11, the GaAs layers 12, 14, and Ga containing excess As
The compound semiconductor substrate 10 is configured to include the As layer 13.

【0018】このような構成の化合物半導体基板10を
製造する場合、蒸着源として固体As及び固体Gaを用
い、分子線エピタキシ法により成長させる。まず、面方
位が(001)面で、[110]方向に2°傾いたSi
基板を約1%のフッ酸(HF)で洗浄した後、分子線エ
ピタキシチャンバーに挿入し、約900℃に加熱してS
i基板11表面上の酸化膜を蒸発クリーニングする。次
に二段階成長法により、まずAsのGaに対する分子線
強度比を約20、成長温度を約400℃、成長速度を約
0.3μm/hにそれぞれ設定し、Si基板11上に厚
さが約100nmのGaAs層(初期層)12aを成長
させる。次にAsのGaに対する分子線強度比を約2
0、成長温度を約600℃、成長速度を約1μm/hに
それぞれ設定し、厚さが約900nmのGaAs層12
bを成長させ、合計約1μmのGaAs層12を形成す
る。次にAsのGaに対する分子線強度比を約20、成
長温度を約200℃、成長速度を約1μm/hにそれぞ
れ設定し、GaAs層12上にAsを過剰に含む厚さが
約0.2μmのGaAs層13をエピタキシャル成長さ
せる。次にAsのGaに対する分子線強度比を約20、
成長温度を約600℃、成長速度を約1μm/hにそれ
ぞれ設定し、GaAs層13上に厚さが約2μmのGa
As層14をエピタキシャル成長させる。
When the compound semiconductor substrate 10 having such a structure is manufactured, solid As and solid Ga are used as vapor deposition sources and grown by the molecular beam epitaxy method. First, Si whose plane orientation is the (001) plane and is inclined by 2 ° in the [110] direction
After cleaning the substrate with about 1% hydrofluoric acid (HF), insert it into the molecular beam epitaxy chamber and heat it to about 900 ° C for S
The oxide film on the surface of the i substrate 11 is cleaned by evaporation. Next, the molecular beam intensity ratio of As to Ga is set to about 20, the growth temperature is set to about 400 ° C., and the growth rate is set to about 0.3 μm / h by the two-step growth method. A GaAs layer (initial layer) 12a of about 100 nm is grown. Next, the molecular beam intensity ratio of As to Ga is about 2
0, the growth temperature is about 600 ° C., the growth rate is about 1 μm / h, and the thickness is about 900 nm.
b is grown to form a GaAs layer 12 having a total thickness of about 1 μm. Next, the molecular beam intensity ratio of As to Ga is set to about 20, the growth temperature is set to about 200 ° C., the growth rate is set to about 1 μm / h, and the thickness of the GaAs layer 12 containing As in excess is about 0.2 μm. GaAs layer 13 is epitaxially grown. Next, the molecular beam intensity ratio of As to Ga is about 20,
The growth temperature is set to about 600 ° C., the growth rate is set to about 1 μm / h, and the Ga on the GaAs layer 13 is about 2 μm thick.
The As layer 14 is epitaxially grown.

【0019】上記の方法により製造された化合物半導体
基板10のGaAs層13中における過剰のAs量を測
定した結果、約0.4%であった。なおこの過剰のAs
量は、すでに求められている過剰なAs量と格子定数の
伸びとの関係(Thin Solid Films:231(1993)61-73 図
3)をもとに、X線回折により測定したGaAs層13
の格子定数から換算して求めた。
As a result of measuring the excess As amount in the GaAs layer 13 of the compound semiconductor substrate 10 manufactured by the above method, it was about 0.4%. This excess As
The amount of the GaAs layer 13 was measured by X-ray diffraction based on the relationship between the excess As amount and the elongation of the lattice constant (Thin Solid Films: 231 (1993) 61-73 Fig. 3) that had already been obtained.
It was calculated from the lattice constant of.

【0020】以下に、実施例1に係る化合物半導体基板
の転位密度及びキャリア濃度を測定した結果について説
明する。転位密度は約350℃に保った溶融水酸化カリ
ウム(KOH)に試料を約30秒間浸し、GaAs層1
4表面に現れた単位面積当たりのピット数から求めた。
またキャリア濃度は容量−電圧測定により求めた。なお
比較例1として、化合物半導体基板10におけるGaA
s層13が形成されていないものを用いた。また比較例
2として、化合物半導体基板10におけるGaAs層1
3の代わりに、厚さが約0.3μmの超格子層が挿入さ
れているものを用いた。この超格子層は、約20nmの
In0.1 Ga0.9 As層と約10nmのGaAs層とを
分子線エピタキシャル法により交互に成長させ、これを
10層ほど積層したものであり、In0.1 Ga0.9 As
層はAsのGaに対する分子線強度比を約18、成長温
度を約550℃、成長速度を約1.1μm/hに設定す
ることにより成長させた。また比較例3として、化合物
半導体基板10におけるGaAs層13の代わりに、厚
さが約0.2μmのSiドープ層が挿入されているもの
を用いた。このSiドープ層は分子線エピタキシャル法
により、GaAs層中に約3×1020個/cm3 のSi
を含んで成長させた。
The results of measuring the dislocation density and carrier concentration of the compound semiconductor substrate according to Example 1 will be described below. The sample was immersed in molten potassium hydroxide (KOH) whose dislocation density was kept at about 350 ° C for about 30 seconds, and the GaAs layer 1
4 It was calculated from the number of pits per unit area that appeared on the surface.
The carrier concentration was determined by measuring the capacity-voltage. As Comparative Example 1, GaA in the compound semiconductor substrate 10 was used.
The thing in which the s layer 13 was not formed was used. In addition, as Comparative Example 2, the GaAs layer 1 in the compound semiconductor substrate 10
Instead of 3, a superlattice layer having a thickness of about 0.3 μm was used. This superlattice layer is formed by alternately growing an In 0.1 Ga 0.9 As layer having a thickness of about 20 nm and a GaAs layer having a thickness of about 10 nm by a molecular beam epitaxial method, and stacking about 10 layers of In 0.1 Ga 0.9 As.
The layer was grown by setting the molecular beam intensity ratio of As to Ga to about 18, the growth temperature to about 550 ° C., and the growth rate to about 1.1 μm / h. Further, as Comparative Example 3, a compound semiconductor substrate 10 in which a Si-doped layer having a thickness of about 0.2 μm was inserted instead of the GaAs layer 13 was used. This Si-doped layer was formed by molecular beam epitaxy to obtain about 3 × 10 20 Si / cm 3 in the GaAs layer.
Was grown including.

【0021】図2は実施例1及び比較例1〜3に係る化
合物半導体基板のGaAs層表面における転位密度の測
定結果を示したグラフである。実施例1に係る化合物半
導体基板10の転位密度は約5×106 cm-2であり、
Asを過剰に含むGaAs層13が形成されていない比
較例1に係るものの場合(約3×107 cm-2)に比べ
て減少している。また実施例1に係る化合物半導体基板
10の転位密度は超格子層が挿入された比較例2に係る
ものの場合(約4×106 cm-2)と略同程度であり、
また比較例3に係るものの場合よりは幾分大きかった。
FIG. 2 is a graph showing the measurement results of dislocation density on the GaAs layer surface of the compound semiconductor substrates according to Example 1 and Comparative Examples 1 to 3. The dislocation density of the compound semiconductor substrate 10 according to Example 1 is about 5 × 10 6 cm −2 ,
This is smaller than that in the case of Comparative Example 1 in which the GaAs layer 13 containing excess As is not formed (about 3 × 10 7 cm −2 ). Further, the dislocation density of the compound semiconductor substrate 10 according to Example 1 is about the same as that of the compound semiconductor substrate 10 according to Comparative Example 2 in which the superlattice layer is inserted (about 4 × 10 6 cm −2 ),
Also, it was somewhat larger than that of Comparative Example 3.

【0022】また図3は電子濃度と化合物半導体基板表
面からの距離との関係を示した曲線図であり、(a)は
実施例1に係るものの場合、(b)は比較例3に係るも
のの場合を示している。図3から明らかなように、実施
例1に係るものの場合はn型を示し、Asを過剰に含む
GaAs層13の部分は1013cm-3以下の低い電子濃
度(高抵抗)になっており、したがってGaAs層14
に形成されたトランジスタ素子間の分離を容易に行え
る。一方比較例3に係るものの場合は前記Siドープ層
中のSiが表面層にまで拡散した結果n型を示し、素子
形成を行うGaAs層に悪影響を及ぼし易いことが分か
った。
FIG. 3 is a curve diagram showing the relationship between the electron concentration and the distance from the surface of the compound semiconductor substrate. FIG. 3 (a) relates to Example 1 and FIG. 3 (b) relates to Comparative Example 3. The case is shown. As is clear from FIG. 3, the case of Example 1 exhibits n-type, and the portion of the GaAs layer 13 containing excess As has a low electron concentration (high resistance) of 10 13 cm −3 or less. , Therefore the GaAs layer 14
It is possible to easily separate the transistor elements formed in the above. On the other hand, in the case of the comparative example 3, it was found that Si in the Si-doped layer diffused to the surface layer and showed an n-type, which was likely to adversely affect the GaAs layer for forming the device.

【0023】これらの結果から明らかなように、実施例
1に係る化合物半導体基板10では、As原子数を約
0.4%過剰に含むGaAs層13中にAs原子の一部
を凝集・析出させることができ、この凝集・析出したA
s粒子により、Si基板11とエピタキシャル成長させ
たGaAs層12との界面に生じた転位をピンニングさ
せることができる。このため、As原子を過剰に含むG
aAs層13により、GaAs層14表面への転位の伝
播をブロックすることができ、この結果、GaAs層1
4表面近傍における転位密度を低減することができる。
またAs原子を過剰に含むGaAs層13には構成元素
以外の原子を含んでいないため、GaAs層14のバン
ド構造に及ぼす影響も少なく、キャリア濃度の変化も少
ない、電気的特性に優れた高品質の化合物半導体基板を
得ることができる。
As is clear from these results, in the compound semiconductor substrate 10 according to Example 1, some of the As atoms are aggregated / precipitated in the GaAs layer 13 containing an excess of about 0.4% As atoms. It is possible that this aggregated / precipitated A
The s-grains can pin the dislocations generated at the interface between the Si substrate 11 and the epitaxially grown GaAs layer 12. Therefore, G containing excess As atoms
Propagation of dislocations to the surface of the GaAs layer 14 can be blocked by the aAs layer 13, and as a result, the GaAs layer 1
4 The dislocation density near the surface can be reduced.
Further, since the GaAs layer 13 containing excess As atoms does not contain atoms other than the constituent elements, it has a small effect on the band structure of the GaAs layer 14, a small change in carrier concentration, and high quality with excellent electrical characteristics. The compound semiconductor substrate can be obtained.

【0024】また実施例1に係る化合物半導体基板10
の製造方法では、As原子を過剰に取り込ませる工程は
分子線エピタキシ法を採用することにより容易に実施す
ることができ、またAs原子の過剰量は成長温度の設定
により容易に制御することができる。したがってこの製
造方法を実施することにより化合物半導体基板10を容
易に製造することができる。
Further, the compound semiconductor substrate 10 according to the first embodiment.
In the manufacturing method described above, the step of excessively incorporating As atoms can be easily performed by adopting the molecular beam epitaxy method, and the excess amount of As atoms can be easily controlled by setting the growth temperature. . Therefore, compound semiconductor substrate 10 can be easily manufactured by carrying out this manufacturing method.

【0025】次に実施例2〜7に係る化合物半導体基板
は、図1に示した実施例1に係る化合物半導体基板10
と略同様の構成を有している。しかし、Asを過剰に含
むGaAs層13をエピタキシャル成長させる際、成長
温度を略180℃から略250℃まで変化させることに
より、過剰のAs量が約0.2%から約1.5%の範囲
にわたっている点が実施例1に係るものと相違してい
る。以下に、実施例2〜7に係る化合物半導体基板にお
けるGaAs層14表面の転位密度を測定した結果につ
いて説明する。なお比較例として、As原子を約0.1
%過剰に含んだものを併せて製造した。
Next, the compound semiconductor substrates according to Examples 2 to 7 are the compound semiconductor substrate 10 according to Example 1 shown in FIG.
It has a configuration substantially similar to. However, when the GaAs layer 13 containing excess As is epitaxially grown, the growth temperature is changed from about 180 ° C. to about 250 ° C., so that the excess As amount ranges from about 0.2% to about 1.5%. The difference is that it is related to Example 1. The results of measuring the dislocation density on the surface of the GaAs layer 14 in the compound semiconductor substrates according to Examples 2 to 7 will be described below. As a comparative example, the As atom is about 0.1.
% Excess was also produced.

【0026】図4は転位密度と過剰のAs量との関係を
示した曲線図であり、この図から明らかなように、過剰
なAs量が0.1%の比較例の場合は転位密度が約2×
106 cm-2と高かったが、As原子を約0.2%から
約1.5%の範囲で過剰に含む実施例2〜7の場合は転
位密度が低かった。
FIG. 4 is a curve diagram showing the relationship between the dislocation density and the excess As amount. As is clear from this figure, the dislocation density is higher in the comparative example in which the excess As amount is 0.1%. About 2x
Although it was as high as 10 6 cm −2 , the dislocation density was low in Examples 2 to 7 containing an excessive amount of As atoms in the range of about 0.2% to about 1.5%.

【0027】次に実施例8に係る化合物半導体基板は、
図1に示した実施例1に係る化合物半導体基板10と略
同様の構成を有している。しかし、GaAs層13をエ
ピタキシャル成長させ、その後引き続きGaAs層14
を成長させる前に、GaAs層14の成長温度よりも高
い約700℃で約10分間(温度上昇及び下降時間は含
まず)の熱処理工程を施しておいた。図5は実施例8に
係る化合物半導体基板のヒートパターンを示した図であ
る。この熱処理の際、GaAs層13表面からAsが蒸
発するのを防ぐため、Asのフラックスを照射した。
Next, the compound semiconductor substrate according to Example 8 is
It has substantially the same configuration as the compound semiconductor substrate 10 according to the first embodiment shown in FIG. However, the GaAs layer 13 is epitaxially grown, and then the GaAs layer 14 is continuously grown.
Prior to the growth, a heat treatment step was performed at about 700 ° C., which is higher than the growth temperature of the GaAs layer 14, for about 10 minutes (excluding the temperature rise and fall times). FIG. 5 is a diagram showing a heat pattern of the compound semiconductor substrate according to Example 8. During this heat treatment, a flux of As was irradiated to prevent As from evaporating from the surface of the GaAs layer 13.

【0028】この熱処理を施した実施例8に係る化合物
半導体基板表面における転位密度を測定した結果、熱処
理を施さない実施例1のものの5×106 cm-2に比較
し、2×106 cm-2にまで減少した。
As a result of measuring the dislocation density on the surface of the compound semiconductor substrate according to Example 8 which has been subjected to this heat treatment, it is 2 × 10 6 cm as compared with 5 × 10 6 cm −2 of Example 1 which is not subjected to the heat treatment. Reduced to -2 .

【0029】上記結果から明らかなように、実施例8に
係る化合物半導体基板では、実施例1の場合と同様の効
果が得られると共に、As原子を過剰に含むGaAs層
13中にAs原子の一部をより一層凝集させ、大きい析
出物を析出させることができ、この結果、転位の伝播防
止効果を一層高めることができ、したがってGaAs層
14表面近傍における転位密度を一層低減することがで
きる。またこの熱処理温度は文献(応用物理61巻2
号、pp126-133, 1992 )に示されている温度よりも低く
設定することができ、成長時間の短縮や、ヒーターパワ
ーの節約を図ることができた。
As is clear from the above results, in the compound semiconductor substrate according to the eighth embodiment, the same effect as in the first embodiment can be obtained, and at the same time, the GaAs layer 13 containing an excessive amount of As atoms contains one As atom. It is possible to further agglomerate the parts and deposit a large precipitate, and as a result, it is possible to further enhance the dislocation propagation preventing effect, and thus it is possible to further reduce the dislocation density near the surface of the GaAs layer 14. In addition, this heat treatment temperature can
No., pp126-133, 1992), the temperature could be set lower, and the growth time could be shortened and the heater power could be saved.

【0030】なお上記した実施例では、いずれもGaA
s層12、14間にAsを過剰に含むGaAs層13が
エピタキシャル成長させられた場合について説明した
が、別の実施例ではGaAs層12、14の代わりにG
aP層やInGaAs層等の別の III−V族化合物半導
体層がエピタキシャル成長させられるとともに、Asを
過剰に含むGaAs層13の代わりにPやAs等のV族
原子を過剰に含むGaP層やInGaAs層等の別の I
II−V族化合物半導体層がエピタキシャル成長させられ
たものであってもよい。
In each of the above embodiments, GaA is used.
The case where the GaAs layer 13 containing excess As is epitaxially grown between the s layers 12 and 14 has been described, but in another embodiment, the G layer is replaced with G instead of the GaAs layers 12 and 14.
Another III-V group compound semiconductor layer such as an aP layer or an InGaAs layer is epitaxially grown, and a GaP layer or an InGaAs layer containing excess group V atoms such as P or As instead of the GaAs layer 13 containing excess As. Another i such as
The II-V group compound semiconductor layer may be epitaxially grown.

【0031】また上記した実施例のものでは、いずれも
1層のGaAs層13がエピタキシャル成長させられた
場合について説明したが、別の実施例ではこれが2層以
上であってもよい。
In each of the above-described embodiments, the case where one GaAs layer 13 is epitaxially grown has been described, but in another embodiment, this may be two or more layers.

【0032】[0032]

【発明の効果】以上詳述したように本発明に係る化合物
半導体基板(1)にあっては、 III−V族化合物半導体
層と同一の構成元素から成り、 III族原子に比べてV族
原子を0.2%以上1.5%以下の範囲で過剰に含む I
II−V族化合物半導体層を少なくとも1層以上含んでい
るので、前記 III族原子に比べて前記V族原子を0.2
%以上1.5%以下の範囲で過剰に含む III−V族化合
物半導体層中に前記V族原子の一部を凝集・析出させる
ことができ、該凝集・析出したV族原子粒子により、S
i基板と該Si基板上にエピタキシャル成長させた前記
III−V族化合物半導体層との界面に生じた転位をピン
ニングさせることができる。このため、前記V族原子を
過剰に含む III−V族化合物半導体層により、前記 III
−V族化合物半導体層表面への転位の伝播をブロックす
ることができ、この結果、前記 III−V族化合物半導体
層表面近傍における転位密度を低減することができる。
また前記V族原子を過剰に含む III−V族化合物半導体
層には構成元素以外の原子を含んでいないため、前記 I
II−V族化合物半導体層のバンド構造に及ぼす影響を少
なくすることができると共に、キャリア濃度の変化も少
なくすることができ、したがって電気的特性に優れた高
品質の化合物半導体基板を得ることができる。
As described in detail above, in the compound semiconductor substrate (1) according to the present invention, the compound semiconductor substrate is composed of the same constituent elements as the III-V group compound semiconductor layer, and the V-group atom is larger than the III-group atom. Is included in excess of 0.2% to 1.5% I
Since at least one II-V group compound semiconductor layer is included, the number of the group V atoms is 0.2, compared with the number of the group III atoms.
% -1.5% or less, a part of the group V atoms can be aggregated / precipitated in the III-V group compound semiconductor layer, and the group / group V atomic particles thus aggregated / precipitated cause S
The i substrate and the above-described epitaxially grown Si substrate
Dislocations generated at the interface with the III-V group compound semiconductor layer can be pinned. Therefore, the group III-V compound semiconductor layer containing the group V atoms in excess is used to form the group III-V compound semiconductor layer.
Propagation of dislocations to the surface of the -V compound semiconductor layer can be blocked, and as a result, the dislocation density near the surface of the III-V compound semiconductor layer can be reduced.
In addition, since the III-V group compound semiconductor layer containing an excessive amount of V group atoms does not contain atoms other than the constituent elements,
The influence on the band structure of the II-V group compound semiconductor layer can be reduced, and the change in carrier concentration can also be reduced, so that a high quality compound semiconductor substrate having excellent electrical characteristics can be obtained. .

【0033】また化合物半導体基板の製造方法(2)に
あっては、 III族原子に比べてV族原子を0.2%以上
1.5%以下の範囲で過剰に取り込ませ、V族原子を過
剰に含む III−V族化合物半導体層を少なくとも1層以
上成長させるので、前記V族原子を過剰に取り込ませる
工程は、分子エピタキシ法を採用することにより容易に
実施することができ、また前記V族原子の過剰量は成長
温度の設定により容易に制御することができる。したが
ってこの製造方法を実施することにより、上記化合物半
導体基板(1)を容易に製造することができる。
In the method (2) for producing a compound semiconductor substrate, the group V atom is excessively incorporated in the range of 0.2% or more and 1.5% or less as compared with the group III atom, and the group V atom is contained. Since at least one III-V group compound semiconductor layer containing excess V is grown, the step of incorporating V group atoms in excess can be easily performed by employing a molecular epitaxy method. The excess amount of group atoms can be easily controlled by setting the growth temperature. Therefore, by carrying out this manufacturing method, the compound semiconductor substrate (1) can be easily manufactured.

【0034】また化合物半導体基板の製造方法(3)に
あっては、 III族原子に比べてV族原子を過剰に含む I
II−V族化合物半導体層をエピタキシャル成長させた
後、その後に成長させる III−V族化合物半導体層の成
長温度よりも高い温度での熱処理工程を施しておくの
で、前記V族原子を過剰に含む III−V族化合物半導体
層中に前記V族原子のより一層大きい析出物を形成する
ことができ、この結果、転位の伝播をより一層防止する
ことができ、前記 III−V族化合物半導体層表面近傍に
おける転位密度がより一層低減された化合物半導体基板
を製造することができる。
In addition, in the method (3) for manufacturing a compound semiconductor substrate, the group I atom containing an excessive amount of group V atoms as compared with the group III atom is used.
After the II-V group compound semiconductor layer is epitaxially grown, a heat treatment step is performed at a temperature higher than the growth temperature of the III-V group compound semiconductor layer to be grown thereafter. A larger precipitate of the group V atom can be formed in the group-V compound semiconductor layer, and as a result, dislocation propagation can be further prevented, and the vicinity of the surface of the group-III-V compound semiconductor layer can be prevented. It is possible to manufacture a compound semiconductor substrate having a further reduced dislocation density.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る化合物半導体基板の実施例1を模
式的に示した断面図である。
FIG. 1 is a sectional view schematically showing Example 1 of a compound semiconductor substrate according to the present invention.

【図2】実施例1及び比較例1〜3に係る化合物半導体
基板のGaAs層表面における転位密度の測定結果を示
したグラフである。
FIG. 2 is a graph showing the measurement results of dislocation density on the GaAs layer surface of the compound semiconductor substrates according to Example 1 and Comparative Examples 1 to 3.

【図3】キャリア濃度と化合物半導体基板表面からの距
離との関係を示した曲線図であり、(a)は実施例1の
ものの場合、(b)は比較例3のものの場合を示してい
る。
FIG. 3 is a curve diagram showing the relationship between carrier concentration and the distance from the surface of the compound semiconductor substrate, where (a) shows the case of Example 1 and (b) shows the case of Comparative Example 3. .

【図4】転位密度と実施例2〜7及び比較例に係る化合
物半導体基板の含有する過剰のAs量との関係を示した
曲線図である。
FIG. 4 is a curve diagram showing the relationship between the dislocation density and the excess As amount contained in the compound semiconductor substrates of Examples 2 to 7 and Comparative Example.

【図5】実施例8に係る化合物半導体基板のヒートパタ
ーンを示した図である。
5 is a diagram showing a heat pattern of a compound semiconductor substrate according to Example 8. FIG.

【図6】Si基板上にGaAs層がエピタキシャル成長
させられ、このGaAs層中にAsを過剰に含むGaA
s層を1層含んでいる化合物半導体基板における転位の
伝播を説明するために示した模式的断面図である。
FIG. 6 is a GaAs layer epitaxially grown on a Si substrate, and GaA containing excess As in the GaAs layer.
FIG. 4 is a schematic cross-sectional view shown for explaining propagation of dislocations in a compound semiconductor substrate including one s layer.

【符号の説明】 10 化合物半導体基板 11 シリコン基板 12 GaAs層 13 Asを過剰に含むGaAs層 14 GaAs層[Explanation of Codes] 10 Compound semiconductor substrate 11 Silicon substrate 12 GaAs layer 13 GaAs layer containing excess As 14 GaAs layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 シリコン基板上に III−V族化合物半導
体層がエピタキシャル成長させられた化合物半導体基板
において、前記 III−V族化合物半導体層と同一の構成
元素から成り、 III族原子に比べてV族原子を0.2%
以上1.5%以下の範囲で過剰に含む III−V族化合物
半導体層を少なくとも1層以上含んでいることを特徴と
する化合物半導体基板。
1. A compound semiconductor substrate having a III-V group compound semiconductor layer epitaxially grown on a silicon substrate, comprising the same constituent element as the III-V group compound semiconductor layer, and having a V group group as compared with a III group atom. 0.2% of atoms
A compound semiconductor substrate comprising at least one III-V compound semiconductor layer which is excessively contained in the range of 1.5% or less.
【請求項2】 シリコン基板上に III−V族化合物半導
体層をエピタキシャル成長させる化合物半導体基板の製
造方法において、 III族原子に比べてV族原子を0.2
%以上1.5%以下の範囲で過剰に取り込ませ、V族原
子を過剰に含む III−V族化合物半導体層を成長させる
工程を含むことを特徴とする化合物半導体基板の製造方
法。
2. A method for manufacturing a compound semiconductor substrate in which a group III-V compound semiconductor layer is epitaxially grown on a silicon substrate, the group V atom being 0.2% compared to the group III atom.
% Or more and 1.5% or less, and a step of growing a III-V group compound semiconductor layer containing a group V atom in an excessive amount, and growing the compound semiconductor substrate.
【請求項3】 III族原子に比べてV族原子を過剰に含
む III−V族化合物半導体層をエピタキシャル成長させ
た後、その後に成長させる III−V族化合物半導体層の
成長温度よりも高い温度での熱処理工程を施すことを特
徴とする請求項2記載の化合物半導体基板の製造方法。
3. A group III-V compound semiconductor layer containing group V atoms in excess of group III atoms is epitaxially grown and then grown at a temperature higher than the growth temperature of the group III-V compound semiconductor layer grown thereafter. The method of manufacturing a compound semiconductor substrate according to claim 2, wherein the heat treatment step is performed.
JP22783694A 1994-09-22 1994-09-22 Compound semiconductor substrate and its manufacture Pending JPH0897140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22783694A JPH0897140A (en) 1994-09-22 1994-09-22 Compound semiconductor substrate and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22783694A JPH0897140A (en) 1994-09-22 1994-09-22 Compound semiconductor substrate and its manufacture

Publications (1)

Publication Number Publication Date
JPH0897140A true JPH0897140A (en) 1996-04-12

Family

ID=16867137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22783694A Pending JPH0897140A (en) 1994-09-22 1994-09-22 Compound semiconductor substrate and its manufacture

Country Status (1)

Country Link
JP (1) JPH0897140A (en)

Similar Documents

Publication Publication Date Title
JP3114809B2 (en) Semiconductor device
JP4708697B2 (en) Epitaxial silicon wafer
JP2004111848A (en) Sapphire substrate, epitaxial substrate using it, and its manufacturing method
JP2713310B2 (en) Method for manufacturing high-strength silicon wafer
US5169798A (en) Forming a semiconductor layer using molecular beam epitaxy
JP2576766B2 (en) Semiconductor substrate manufacturing method
JPH04198095A (en) Method for growing thin film of compound semiconductor
Yang et al. Role of As 4 in Ga diffusion on the GaAs (001)-(2× 4) surface: A molecular beam epitaxy-scanning tunneling microscopy study
JPH0897140A (en) Compound semiconductor substrate and its manufacture
JP2742856B2 (en) Semiconductor thin film manufacturing method
JPH0722312A (en) Method for manufacturing strain semiconductor film
JP2719868B2 (en) Semiconductor substrate and method of manufacturing the same
JP2001126985A (en) Compound semiconductor substrate
JPH05267175A (en) Compound semiconductor substrate
JP4216580B2 (en) ZnTe compound semiconductor surface treatment method and semiconductor device manufacturing method
JP4733729B2 (en) ZnTe compound semiconductor surface treatment method and semiconductor device manufacturing method
JPH0645249A (en) Growth method of gaas layer
JPH07115061A (en) Gaas substrate
JP2649928B2 (en) Method for manufacturing semiconductor wafer
JP2870061B2 (en) Super lattice structure element
JP3084989B2 (en) Compound semiconductor substrate and method of manufacturing the same
JPH09106949A (en) Compound semiconductor substrate and manufacture thereof
JPH047819A (en) Gaas thin film
JPH01272108A (en) Growth of compound semiconductor
JPH065510A (en) Semiconductor thin film and manufacture thereof