JPH0891952A - Ceramic member-metallic member conjugate - Google Patents

Ceramic member-metallic member conjugate

Info

Publication number
JPH0891952A
JPH0891952A JP23486394A JP23486394A JPH0891952A JP H0891952 A JPH0891952 A JP H0891952A JP 23486394 A JP23486394 A JP 23486394A JP 23486394 A JP23486394 A JP 23486394A JP H0891952 A JPH0891952 A JP H0891952A
Authority
JP
Japan
Prior art keywords
intermediate layer
ceramic
metal member
metal
ceramic member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23486394A
Other languages
Japanese (ja)
Inventor
Hiroshi Ejima
弘志 槐島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP23486394A priority Critical patent/JPH0891952A/en
Publication of JPH0891952A publication Critical patent/JPH0891952A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE: To obtain the subject highly durable conjugate usable continuously for a long time over a wide range of temperatures, retaining high joint strength from low to high temperatures, causing the ceramic member not to slip off owing to the deformation of the brazing metal layer even if subjected to external force in a high-temperature atmosphere. CONSTITUTION: This conjugate is obtained by jointing, through brazing, a ceramic member 2 to a metallic member 3 via an intermediate layer 4 with its thermal expansion coefficient greater than that of the metallic member 3 by >=4.0×10<-6> / deg.C. In this conjugate, the thickness 7 of the intermediate layer 4 stands at <=0.50 times that 8 of the metallic member, there is no brazing metal at the boundary 5 between the intermediate layer 4 and the metallic layer 2 and there is a brazing metal 6 between the intermediate layer 4 and the ceramic member 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガスタービンやターボ
チャージャーをはじめとする高温雰囲気下で使用される
各種回転体に好適なセラミック部材と金属部材の接合体
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a joined body of a ceramic member and a metal member suitable for various rotary bodies used in a high temperature atmosphere such as a gas turbine and a turbocharger.

【0002】[0002]

【従来の技術】近年、化学プラントや工作機械部品をは
じめとする各種産業機械装置や、ガスタービン、ターボ
チャージャー等の各種動力機関に使用される、高い負荷
が加わりかつ高温雰囲気に曝される機構部品として、耐
熱性、耐食性及び耐摩耗性に優れ、高強度で比重が小さ
い各種セラミックスが多用されるようになってきた。
2. Description of the Related Art In recent years, a mechanism used in various industrial machines and equipment such as chemical plants and machine tool parts, and various power engines such as gas turbines and turbochargers, which is exposed to a high load and high temperature atmosphere. As parts, various ceramics having excellent heat resistance, corrosion resistance and wear resistance, high strength and small specific gravity have been widely used.

【0003】そのような状況下で、前記セラミックスは
脆性材料であることから繰り返し曲げ応力が加わる部分
には適用が難しく、その上、加工性に乏しいことから、
高温に曝される部分のみセラミックスで構成し、高荷重
が作用する部分を高強度で加工性に優れた金属部材で構
成する等、セラミックスと金属とを組み合わせた複合構
造体とすることが注目されるようになり、種々の接合体
が提案されるようになってきた。
Under such circumstances, since the above-mentioned ceramics are brittle materials, it is difficult to apply them to a portion where bending stress is repeatedly applied, and moreover, they are poor in workability.
It has been noticed that the composite structure is a combination of ceramic and metal, such that only the part exposed to high temperature is made of ceramics, and the part on which high load acts is made of metal member with high strength and excellent workability. As a result, various bonded bodies have been proposed.

【0004】前記セラミックスと金属とを組み合わせた
複合構造体としては、活性金属を含有するロウ材を用い
て拡散接合したり、セラミックスの熱膨張率に近い低熱
膨張合金を用いて焼き嵌めたり、圧入したりしたものが
広く用いられていた。
The composite structure in which the ceramic and the metal are combined is diffusion-bonded by using a brazing material containing an active metal, shrink-fitted by using a low thermal expansion alloy having a thermal expansion coefficient close to that of ceramics, or press-fitted. What was done was widely used.

【0005】しかしながら、かかる接合体においては、
比較的使用温度が低い場合には、セラミックスと金属と
の熱膨張差に起因する歪みや、金属の収縮力によるセラ
ミックスあるいは金属自体に及ぼす影響は小さいもの
の、600℃以上の高温雰囲気下では高い応力が発生し
たり、接合力が低下したりして使用に耐えず、外力が加
わると接合界面から剥離したり、セラミックスあるいは
金属自体の破壊を招く恐れがあった。
However, in such a joined body,
When the operating temperature is relatively low, the strain caused by the difference in thermal expansion between the ceramics and the metal and the contraction force of the metal have a small effect on the ceramics or the metal itself, but the stress is high under a high temperature atmosphere of 600 ° C or higher. May occur, or the joining force may be reduced to withstand use, and if an external force is applied, there is a risk of peeling from the joining interface or destruction of the ceramics or the metal itself.

【0006】そこで、セラミックスと金属の熱膨張差を
解消し、高温まで高い接合強度を保持せんとして、セラ
ミックスと金属との間に、低熱膨張率もしくは低ヤング
率の金属から成る熱応力緩和体を中間層として介在させ
たり、セラミックスと金属との間で熱膨張率が連続的に
変化する熱応力緩和層である中間層を介して接合する
等、各種提案がなされている(特公平6−60065号
公報、実公平2−20189号公報参照)。
Therefore, in order to eliminate the difference in thermal expansion between the ceramics and the metal and maintain the high bonding strength up to a high temperature, a thermal stress relaxation body made of a metal having a low thermal expansion coefficient or a low Young's modulus is provided between the ceramics and the metal. Various proposals have been made such as intervening as an intermediate layer or joining via an intermediate layer which is a thermal stress relaxation layer in which the coefficient of thermal expansion continuously changes between ceramics and metal (Japanese Patent Publication No. 6-60065). (See Japanese Utility Model Publication No. 2-20189).

【0007】[0007]

【発明が解決しようとする課題】しかしながら、図3に
示すように前記低熱膨張率もしくは低ヤング率の金属か
ら成る熱応力緩和体を中間層9とし、該中間層9を介し
てセラミックス10と金属11を接合した場合には、該
中間層9の弾性変形や塑性変形により熱膨張で発生する
歪みを吸収せんとするものであるが、その接合にロウ材
を用いた場合、高温雰囲気下では該ロウ接層12に熱変
形等を生じ、そこへ過度の応力が加わると更に変形した
り、最悪の場合には接合界面が剥離したりする恐れがあ
り、ましてや、焼き嵌めて接合した場合には、高温雰囲
気下では接合部材間の接合力が低下し、その上、中間層
9自体の高温での強度が十分でないという課題もあっ
た。
However, as shown in FIG. 3, the thermal stress relaxation body made of the metal having the low thermal expansion coefficient or the low Young's modulus is used as the intermediate layer 9, and the ceramic 10 and the metal are interposed via the intermediate layer 9. When 11 is joined, the strain generated by thermal expansion due to elastic deformation or plastic deformation of the intermediate layer 9 is absorbed, but when a brazing material is used for joining, it is If the brazing layer 12 is thermally deformed and excessive stress is applied thereto, the brazing layer 12 may be further deformed, or in the worst case, the joint interface may be peeled off. However, there is a problem that the joining force between the joining members is reduced in a high temperature atmosphere, and the strength of the intermediate layer 9 itself at high temperatures is not sufficient.

【0008】また、熱膨張率が連続的に変化する熱応力
緩和層を中間層とするものでは、該中間層がプラズマ溶
射等により形成されるため、接合時に発生する残留応力
を緩和するに足る十分な厚さを形成することが困難であ
り、高温雰囲気下ではセラミックスと中間層との熱膨張
差による熱応力が大きくなり、セラミックスが破損する
という課題があった。
In the case where the thermal stress relaxation layer whose thermal expansion coefficient changes continuously is used as the intermediate layer, since the intermediate layer is formed by plasma spraying or the like, it is sufficient to relax the residual stress generated at the time of joining. There is a problem in that it is difficult to form a sufficient thickness, and in a high temperature atmosphere, thermal stress increases due to the difference in thermal expansion between the ceramic and the intermediate layer, and the ceramic is damaged.

【0009】[0009]

【発明の目的】本発明は、前記課題を解決せんとしてな
されたもので、低温から高温まで高い接合強度を保持
し、かつ高温雰囲気下で外力が作用してもロウ材層の変
形を生ぜず、広範囲の温度域で長時間の連続使用が可能
である優れた耐久性を有する、とりわけセラミック軸と
金属軸とを接合した回転体に好適なセラミック部材と金
属部材の接合体を得んとするものである。
SUMMARY OF THE INVENTION The present invention has been made as a solution to the above-mentioned problems, and it maintains high bonding strength from low temperature to high temperature and does not cause deformation of the brazing material layer even when external force acts in a high temperature atmosphere. To obtain a joined body of a ceramic member and a metal member, which has excellent durability capable of continuous use over a wide temperature range for a long time and is particularly suitable for a rotating body in which a ceramic shaft and a metal shaft are joined. It is a thing.

【0010】[0010]

【課題を解決するための手段】本発明のセラミック部材
と金属部材の接合体は、セラミック部材と金属部材の間
に、該金属部材より4.0×10-6/℃以上熱膨張率の
大きい中間層を設けてロウ接したもので、その中間層の
厚さは、該中間層を介してセラミック部材と反対側に当
接する金属部材の厚さの0.50以下であり、かつ中間
層と金属部材とは焼き嵌め接合されており、その当接面
にはロウ材が介在せず、一方、少なくとも中間層とセラ
ミック部材で形成される間隙にはロウ材が充填された状
態で結合したことを特徴とするものである。
In the joined body of the ceramic member and the metal member of the present invention, the coefficient of thermal expansion between the ceramic member and the metal member is greater than that of the metal member by 4.0 × 10 −6 / ° C. or more. An intermediate layer is provided and brazed, and the thickness of the intermediate layer is 0.50 or less of the thickness of the metal member that abuts on the opposite side of the ceramic member through the intermediate layer, and It is shrink-fitted and joined to the metal member, and there is no brazing material on its abutting surface, and at the same time, the brazing material is filled in at least the gap formed between the intermediate layer and the ceramic member. It is characterized by.

【0011】特に、セラミック部材と金属部材の間に介
装する中間層の厚さが、該中間層を介してセラミック部
材と反対側に当接する金属部材の厚さの0.13〜0.
33であることがより好ましいものである。
In particular, the thickness of the intermediate layer interposed between the ceramic member and the metal member is 0.13 to 0.about the thickness of the metal member abutting on the opposite side of the ceramic member through the intermediate layer.
33 is more preferable.

【0012】前記中間層の熱膨張率と金属部材のそれと
の差が、4.0×10-6/℃未満になると、中間層と金
属部材との間隙の管理幅が狭いものとなり、また、ロウ
接時に中間層と金属部材との熱膨張差が小さいことによ
る締まり嵌めの程度が弱く、その間にロウ材が侵入し易
く、例えば高温押し抜き強度等に代表される高温接合強
度が劣化することになる。
When the difference between the coefficient of thermal expansion of the intermediate layer and that of the metal member is less than 4.0 × 10 −6 / ° C., the control width of the gap between the intermediate layer and the metal member becomes narrow, and The degree of interference fit is weak due to the small difference in thermal expansion between the intermediate layer and the metal member during brazing, and the brazing material easily penetrates during that, and the high temperature bonding strength typified by high temperature punching strength, for example, deteriorates. become.

【0013】また、高温においてセラミック部材の金属
部材からの脱落、もしくは抜け出しは、特に700℃以
上になるとロウ材が軟化してロウ材の降伏が生じ、その
後、ロウ材と中間層との間でスベリが発生することから
起きるもので、可能な限りロウ材を薄く介在させること
が望ましい。
Further, at high temperature, the ceramic member may fall off or come out of the metal member, especially when the temperature rises to 700 ° C. or above, the brazing material softens and the brazing material yields, and thereafter, between the brazing material and the intermediate layer. It is caused by the occurrence of slip, and it is desirable to interpose the brazing material as thin as possible.

【0014】更に、前記ロウ材層は接合強度に及ぼす影
響が極めて大であることから、可能な限り複数層とせ
ず、熱膨張率差を逆に利用して中間層と金属部材を直接
結合することが肝要である。
Further, since the brazing material layer has an extremely large influence on the bonding strength, the brazing material layer is not formed into a plurality of layers as much as possible, and the difference in the coefficient of thermal expansion is used to the contrary to directly bond the intermediate layer and the metal member. It is essential.

【0015】一方、中間層とセラミック部材の間隙は、
ロウ接温度によって左右されるが、後述する高温ロウを
用いる場合には、片側で0.15μm 以下が望ましい。
On the other hand, the gap between the intermediate layer and the ceramic member is
Although it depends on the brazing temperature, when using a high-temperature brazing material which will be described later, 0.15 μm or less on one side is desirable.

【0016】次に、中間層の厚さと金属部材の厚さの関
係は、中間層の厚さが金属部材の厚さの0.50を超え
ると、中間層が接合部の強度に影響するような厚さとな
り、中間層自体は高温での強度劣化が大であることから
締結力が低下してしまうため好ましくない。
Next, regarding the relationship between the thickness of the intermediate layer and the thickness of the metal member, when the thickness of the intermediate layer exceeds 0.50 of the thickness of the metal member, the intermediate layer affects the strength of the joint. Since the intermediate layer itself has a large strength deterioration at a high temperature, the fastening force decreases, which is not preferable.

【0017】[0017]

【作用】本発明のセラミック部材と金属部材の接合体
は、セラミック部材と金属部材の間に、該金属部材より
4.0×10-6/℃以上熱膨張率の大きい中間層を設け
てロウ接し、中間層と金属部材との当接面にはロウ材が
介在せず、一方、少なくとも中間層とセラミック部材で
形成される間隙にはロウ材が充填されて介在した状態で
結合することから、高温雰囲気下では中間層が最も大き
い熱膨張率を有するロウ材を介してセラミック部材を締
め付けるとともに、熱膨張率が金属部材より大である中
間層が該金属部材を押し広げるように密着し、接合部の
面圧が増加して高い接合強度が保持されるとともに、間
隙に充填されたロウ材が緩衝効果を示して接合部始点で
の強度が劣化しないようになる。
In the joined body of the ceramic member and the metal member of the present invention, an intermediate layer having a coefficient of thermal expansion larger than that of the metal member by 4.0 × 10 −6 / ° C. or more is provided between the ceramic member and the metal member. Since the brazing material is not present in the contact surface between the intermediate layer and the metal member, the brazing material is filled and intervenes at least in the gap formed between the intermediate layer and the ceramic member. In a high-temperature atmosphere, the intermediate layer tightens the ceramic member through the brazing material having the largest coefficient of thermal expansion, and the intermediate layer having a coefficient of thermal expansion larger than that of the metal member adheres so as to spread the metal member, The surface pressure of the joint increases and high joint strength is maintained, and the brazing filler metal filled in the gap exhibits a cushioning effect so that the strength at the joint starting point does not deteriorate.

【0018】[0018]

【実施例】以下、本発明のセラミック部材と金属部材の
接合体の実施例を図面に基づき詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a joined body of a ceramic member and a metal member according to the present invention will be described below in detail with reference to the drawings.

【0019】図1は本発明に係るセラミック部材と金属
部材の接合体を示す一実施例の要部の一部破断図であ
り、図2は本発明に係るセラミック部材と金属部材の接
合体を、ガスタービンやターボチャージャー等に使用さ
れるセラミック製ローターと金属製回転軸の接合体に適
用した例を示す要部の一部破断図である。
FIG. 1 is a partially cutaway view of an essential part of an embodiment showing a joined body of a ceramic member and a metal member according to the present invention, and FIG. 2 shows a joined body of a ceramic member and a metal member according to the present invention. FIG. 4 is a partially cutaway view of a main part showing an example applied to a joined body of a ceramic rotor and a metal rotating shaft used in a gas turbine, a turbocharger, or the like.

【0020】図1及び図2において、1はセラミック部
材2と金属部材3との間に、熱膨張率が金属部材3の熱
膨張率より4.0×10-6/℃以上大である中間層4を
介してロウ接したセラミック部材と金属部材の接合体
で、中間層の厚さ7は金属部材の厚さ8の0.50以下
であり、かつ中間層4と金属部材2との当接面5にはロ
ウ材が介在せず、中間層4とセラミック部材2との間隙
にはロウ材6が充填されて介在するものである。
In FIGS. 1 and 2, 1 is an intermediate portion between the ceramic member 2 and the metal member 3 in which the coefficient of thermal expansion is greater than that of the metal member 3 by 4.0 × 10 −6 / ° C. or more. In a joined body of a ceramic member and a metal member brazed via the layer 4, the thickness 7 of the intermediate layer is 0.50 or less of the thickness 8 of the metal member, and the thickness of the intermediate layer 4 and the metal member 2 is equal to or less than 0.50. The brazing material is not interposed in the contact surface 5, but the brazing material 6 is filled and interposed in the gap between the intermediate layer 4 and the ceramic member 2.

【0021】とりわけ、中間層の厚さ7は、金属部材の
厚さ8の0.13〜0.33であることが好ましい。
Particularly, the thickness 7 of the intermediate layer is preferably 0.13 to 0.33 which is the thickness 8 of the metal member.

【0022】前記セラミック部材として、特にガスター
ビンやターボチャージャー等のセラミック製ローターに
代表される機構部品には、窒化珪素(Si3 4 )、サ
イアロン、炭化珪素(SiC)等の非酸化物系セラミッ
クスが好適であるが、室温から1000℃の温度領域に
おける熱膨張率が5.0×10-6/℃以下であれば、酸
化物系または非酸化物系セラミックスのいずれにも適用
可能である。
As the ceramic member, mechanical parts typified by a ceramic rotor such as a gas turbine and a turbocharger are non-oxide type materials such as silicon nitride (Si 3 N 4 ), sialon and silicon carbide (SiC). Ceramics are preferred, but if the coefficient of thermal expansion in the temperature range from room temperature to 1000 ° C. is 5.0 × 10 −6 / ° C. or less, it can be applied to either oxide-based or non-oxide-based ceramics. .

【0023】また、前記金属部材としては、室温から7
00℃の温度領域における熱膨張率が13.0×10-6
/℃以下である高温強度に優れた低熱膨張耐熱合金、例
えば、ニッケル基合金やコバルト基合金等をはじめとす
る各種鉄基合金の耐熱鋼が好適であり、具体的には、室
温から700℃の温度領域における熱膨張率が11.0
〜12.0×10-6/℃であるインコロイ909に代表
される析出強化型鉄基合金、更に前記熱膨張率を制御し
た繊維強化金属等も適用可能である。
Further, the metal member may be from room temperature to 7
The coefficient of thermal expansion in the temperature range of 00 ° C is 13.0 × 10 -6
A low thermal expansion heat-resistant alloy excellent in high-temperature strength of less than / ° C, for example, heat-resistant steel of various iron-based alloys such as nickel-based alloys and cobalt-based alloys is preferable, and specifically from room temperature to 700 ° C. Coefficient of thermal expansion in the temperature range of 11.0
A precipitation-strengthened iron-based alloy typified by Incoloy 909 having a temperature of ˜12.0 × 10 −6 / ° C., and a fiber-reinforced metal whose thermal expansion coefficient is controlled are also applicable.

【0024】一方、前記中間部材としては、室温から7
00℃の温度領域における熱膨張率が17.0×10-6
/℃以上であるステンレス鋼や、マトリックス強化型ニ
ッケル基合金、析出強化型ニッケル合金等が好適であ
り、具体的には室温から700℃の温度領域における熱
膨張率が18.7×10-6/℃以上であるSUS304
等が挙げられる。
On the other hand, as the intermediate member, from room temperature to 7
The coefficient of thermal expansion in the temperature range of 00 ° C is 17.0 × 10 -6
/ ° C. or more, stainless steel, matrix-strengthened nickel-base alloy, precipitation-strengthened nickel alloy, and the like are preferable, and specifically, the coefficient of thermal expansion in the temperature range from room temperature to 700 ° C. is 18.7 × 10 −6. / ℃ or above SUS304
Etc.

【0025】また、接合に用いるロウ材は、900℃以
下では軟化しない、例えば、BPd7のようなパラジウ
ムロウやBNi−2のようなニッケルロウ等の高温ロウ
が好適である。
The brazing material used for joining is preferably a high temperature brazing material such as palladium brazing material such as BPd7 or nickel brazing material such as BNi-2, which does not soften below 900 ° C.

【0026】尚、前記中間層とセラミック部材の間隙に
充填されて介在するロウ材は、セラミック部材とは直
接、必ずしも接着している必要はなく、接着せずに単に
締まり嵌めであっても何ら性能に影響するものではな
い。
The brazing material filled and interposed in the gap between the intermediate layer and the ceramic member does not necessarily have to be directly adhered to the ceramic member, and may be simply an interference fit without being adhered. It does not affect performance.

【0027】次に、本発明のセラミック部材と金属部材
の接合体を評価するにあたり、セラミック部材として
は、窒化珪素(Si3 4 )を主成分とし、焼結助剤と
してイットリア(Y2 3 )、アルミナ(Al2 3
及びタングステン(W)等を混合して成形した円柱状の
成形体を、窒素ガス雰囲気中で焼成して窒化珪素質焼結
体を得た。
Next, in evaluating the joined body of the ceramic member and the metal member of the present invention, the ceramic member contains silicon nitride (Si 3 N 4 ) as a main component and yttria (Y 2 O) as a sintering aid. 3 ), Alumina (Al 2 O 3 )
A columnar molded body formed by mixing and tungsten (W) and the like was fired in a nitrogen gas atmosphere to obtain a silicon nitride sintered body.

【0028】次いで、前記焼結体をダイヤモンド砥石で
接合部を直径16mmと20mm、長さ40mmの2種
類の円柱状に研磨加工するとともに、金属部材としては
析出強化型鉄基合金他、種々の熱膨張率を有する耐熱鋼
から成る外径22.9mmを基準とし、該金属部材の厚
さを表1に示すように種々設定するとともに、内径が中
間層の外径との差で5〜20μmに設定した高さ12m
mの円筒状に切削加工した。
Next, the above-mentioned sintered body is polished with a diamond grindstone into two types of cylindrical shape having a diameter of 16 mm and 20 mm and a length of 40 mm, and various metal members such as precipitation-strengthened iron-based alloys are also used. Based on an outer diameter of 22.9 mm made of heat-resistant steel having a coefficient of thermal expansion, the thickness of the metal member is variously set as shown in Table 1, and the inner diameter is 5 to 20 μm as a difference from the outer diameter of the intermediate layer. 12m height set to
It was cut into a cylindrical shape of m.

【0029】一方、中間層としては、外径は前記金属部
材の内径との差が5〜20μmで、内径はセラミック部
材外径との差が10〜20μmとなるように設定した高
さ8mmと13.7mmの円筒状のSUS304他、種
々の熱膨張率を有する各種合金を、それぞれ直径16m
mと20mmに研磨加工した前記セラミック部材用とし
て準備した。
On the other hand, as the intermediate layer, the outer diameter has a difference of 5 to 20 μm from the inner diameter of the metal member, and the inner diameter has a height of 8 mm set to have a difference from the outer diameter of the ceramic member of 10 to 20 μm. Cylindrical SUS304 of 13.7 mm and other alloys with various coefficients of thermal expansion are each 16 m in diameter.
m and 20 mm were prepared for the ceramic member.

【0030】尚、前記各熱膨張率は、RT−950℃の
値を採用した。
As the coefficient of thermal expansion, a value of RT-950 ° C. was adopted.

【0031】以上の各部材をそれぞれ洗浄、脱脂した
後、金属部材の内側に中間層を嵌挿した後、該中間層の
内径側面にニッケルメッキを施した。
After washing and degreasing each of the above members, an intermediate layer was fitted inside the metal member, and then the inner diameter side surface of the intermediate layer was plated with nickel.

【0032】次いで、ニッケルメッキを施した中間層の
内側に円柱状のセラミック部材を嵌め込み、金属部材上
部に突き出たセラミック部材にBPd7規格相当の高温
ロウを巻き付けた後、ロウ接した。
Next, a cylindrical ceramic member was fitted inside the nickel-plated intermediate layer, and a high-temperature solder corresponding to the BPd7 standard was wound around the ceramic member protruding above the metal member, followed by brazing.

【0033】前記ロウ接は、真空炉を使用してアルゴン
(Ar)ガス雰囲気中、1080℃の温度で20分間熱
処理して、前記高温ロウをセラミック部材と中間層の間
隙に溶融充填し、金属部材と中間層との当接面には前記
ロウ材を介在させずに熱膨張差を利用して焼き嵌め状態
で締結し、少なくとも中間層とセラミック部材との間隙
に前記ロウ材を充填させて評価用のセラミック部材と金
属部材の接合体を作製した。
The brazing is heat-treated for 20 minutes at a temperature of 1080 ° C. in an argon (Ar) gas atmosphere using a vacuum furnace to melt and fill the gap between the ceramic member and the intermediate layer with the high-temperature brazing metal, The contact surface between the member and the intermediate layer is fastened in a shrink-fitted state by utilizing the thermal expansion difference without interposing the brazing material, and at least the gap between the intermediate layer and the ceramic member is filled with the brazing material. A bonded body of a ceramic member and a metal member for evaluation was prepared.

【0034】かくして得られた評価用の接合体を用い
て、金属部材から突き出たセラミック部材を台盤に設け
た貫通孔に遊嵌し、該台盤で金属部材の円筒端面を支
え、700℃の測定温度下でセラミック部材を上部から
加圧して前記貫通孔に押し抜く押抜試験を行い、接合強
度を評価した。
Using the thus obtained joint body for evaluation, a ceramic member protruding from a metal member was loosely fitted in a through hole provided in the base, and the base end supported the cylindrical end surface of the metal member at 700 ° C. At the measurement temperature of, the ceramic member was pressed from above to be punched into the through hole, and a punching test was performed to evaluate the bonding strength.

【0035】[0035]

【表1】 [Table 1]

【0036】以上の結果より、中間層を設けずに直接セ
ラミック部材と金属部材をロウ材にて結合した試料番号
22及び23、中間層を設けても本願発明外の試料番号
1、10、13及び20は、いずれも押抜強度が1.9
5kg/mm2 以下であるのに対して、本願発明の接合
体はいずれも2.00kg/mm2 以上の押抜強度を示
すことが分かる。
From the above results, sample numbers 22 and 23 in which a ceramic member and a metal member are directly bonded with a brazing material without providing an intermediate layer, and even if an intermediate layer is provided, sample numbers 1, 10, and 13 outside the present invention are provided. Both Nos. 20 and 20 have a punching strength of 1.9.
Whereas it is 5 kg / mm 2 or less, it is seen that the punch strength conjugate Any 2.00 kg / mm 2 or more in the present invention.

【0037】尚、前記本願発明の接合体について、金属
部材を把持して該金属部材から突き出たセラミック部材
の先端を押し曲げる片持ち抗折試験を常温で実施したと
ころ、26.6〜50.7kg/mm2 の片持ち抗折強
度を有していることが、確認できた。
The bonded body of the present invention was subjected to a cantilever bending test in which the metal member was gripped and the tip of the ceramic member protruding from the metal member was pressed and bent at room temperature. It was confirmed that it has a cantilever bending strength of 7 kg / mm 2 .

【0038】また、前記評価用接合体と同様にして、最
大外径が163mmの窒化珪素質焼結体から成るラジア
ル型ローターの軸部を、SUS304の中間層を介して
析出強化型鉄基合金の耐熱鋼製回転軸に設け、前記厚さ
の比が0.17となるように穿設した凹部に、BPd7
規格相当の高温ロウで接合した図2に示すようなセラミ
ック製ローターとニッケル基合金から成る金属製回転軸
との接合体は、950℃の高温高速回転試験において、
毎分55000回転まで何ら異常なく作動することを確
認した。
Further, similarly to the above-mentioned joined body for evaluation, a shaft portion of a radial type rotor made of a silicon nitride sintered body having a maximum outer diameter of 163 mm is provided with a precipitation strengthening iron-based alloy through an intermediate layer of SUS304. Of the heat-resistant steel rotating shaft, and the BPd7 is formed in the recessed hole formed so that the thickness ratio is 0.17.
A joined body of a ceramic rotor and a metallic rotating shaft made of a nickel-based alloy as shown in FIG. 2 joined by a high-temperature braze equivalent to the standard was subjected to a high-temperature high-speed rotation test at 950 ° C.
It was confirmed that the motor worked up to 55,000 rpm without any abnormality.

【0039】[0039]

【発明の効果】叙上の如く、本発明のセラミック部材と
金属部材の接合体は、セラミック部材と金属部材の間
に、該金属部材より4.0×10-6/℃以上熱膨張率の
大きい中間層を設けてロウ接し、中間層と金属部材との
当接面にはロウ材が介在せず、一方、少なくとも中間層
とセラミック部材で形成される間隙にはロウ材が充填さ
れて介在して成ることから、低温から高温まで高い接合
強度を保持し、かつ高温雰囲気下で外力が作用してもロ
ウ材層の変形を生じてセラミック部材が脱落したりせ
ず、広範囲の温度域で長時間の連続使用が可能である優
れた耐久性を有し、化学プラントや工作機械部品をはじ
め、ガスタービン、ターボチャージャー、ジェットエン
ジン等の高温繰り返し荷重や衝撃荷重を受ける各種産業
機械装置や動力機関等に使用される機構部品として極め
て有用である。
As described above, the joined body of the ceramic member and the metal member of the present invention has a thermal expansion coefficient of 4.0 × 10 −6 / ° C. or more between the ceramic member and the metal member. A large intermediate layer is provided for brazing, and no brazing material is present on the contact surface between the intermediate layer and the metal member, while at least the gap formed between the intermediate layer and the ceramic member is filled with brazing material and intervenes. Therefore, high bonding strength is maintained from low temperature to high temperature, and even if external force acts in a high temperature atmosphere, the brazing material layer does not deform and the ceramic member does not fall off, and it can be used in a wide temperature range. It has excellent durability that allows it to be used continuously for a long time, and it is used in various industrial machinery and power such as chemical plants and machine tool parts, as well as gas turbines, turbochargers, jet engines, and other high-temperature cyclic loads and impact loads. Institutions It is extremely useful as a mechanical component used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るセラミック部材と金属部材の接合
体を示す一実施例の要部の一部破断図である。
FIG. 1 is a partial cutaway view of an essential part of an embodiment showing a joined body of a ceramic member and a metal member according to the present invention.

【図2】本発明に係るセラミック部材と金属部材の接合
体を、ガスタービンやターボチャージャー等に使用され
るセラミック製ローターと金属製回転軸の接合体に適用
した例を示す要部の一部破断図である。
FIG. 2 is a part of a main part showing an example in which the joined body of a ceramic member and a metal member according to the present invention is applied to a joined body of a ceramic rotor and a metal rotating shaft used in a gas turbine, a turbocharger or the like. FIG.

【図3】従来のセラミックスと金属との間に、低熱膨張
率もしくは低ヤング率の金属から成る熱応力緩和体を中
間層として介在させた接合体の要部断面図である。
FIG. 3 is a cross-sectional view of essential parts of a bonded body in which a thermal stress relaxation body made of a metal having a low thermal expansion coefficient or a low Young's modulus is interposed as an intermediate layer between a conventional ceramic and a metal.

【符号の説明】[Explanation of symbols]

1 セラミック部材と金属部材の接合体 2 セラミック部材 3 金属部材 4 中間層 5 当接面 6 ロウ材 7 中間層の厚さ 8 金属部材の厚さ DESCRIPTION OF REFERENCE NUMERALS 1 ceramic member-metal member joined body 2 ceramic member 3 metal member 4 intermediate layer 5 contact surface 6 brazing material 7 intermediate layer thickness 8 metal member thickness

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】セラミック部材と金属部材を中間層を介し
てロウ接した接合体において、接合部における前記中間
層の厚さが、該中間層に当接する金属部材の厚さの0.
50以下で、かつ中間層の熱膨張率が金属部材の熱膨張
率より4.0×10-6/℃以上大であり、中間層と金属
部材との当接面にはロウ材が介在せず、少なくとも中間
層とセラミック部材の間隙にはロウ材が介在することを
特徴とするセラミック部材と金属部材の接合体。
1. In a joined body in which a ceramic member and a metal member are brazed to each other through an intermediate layer, the thickness of the intermediate layer at the joined portion is less than the thickness of the metal member abutting on the intermediate layer.
50 or less, the coefficient of thermal expansion of the intermediate layer is 4.0 × 10 −6 / ° C. or more higher than the coefficient of thermal expansion of the metal member, and the brazing material is interposed on the contact surface between the intermediate layer and the metal member. A joined body of a ceramic member and a metal member, characterized in that a brazing material is present at least in the gap between the intermediate layer and the ceramic member.
【請求項2】接合部における前記中間層の厚さが、該中
間層に当接する金属部材の厚さの0.13〜0.33で
あることを特徴とする請求項1記載のセラミック部材と
金属部材の接合体。
2. The ceramic member according to claim 1, wherein the thickness of the intermediate layer at the joint is 0.13 to 0.33 of the thickness of the metal member abutting on the intermediate layer. A joined body of metal members.
JP23486394A 1994-09-29 1994-09-29 Ceramic member-metallic member conjugate Pending JPH0891952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23486394A JPH0891952A (en) 1994-09-29 1994-09-29 Ceramic member-metallic member conjugate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23486394A JPH0891952A (en) 1994-09-29 1994-09-29 Ceramic member-metallic member conjugate

Publications (1)

Publication Number Publication Date
JPH0891952A true JPH0891952A (en) 1996-04-09

Family

ID=16977530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23486394A Pending JPH0891952A (en) 1994-09-29 1994-09-29 Ceramic member-metallic member conjugate

Country Status (1)

Country Link
JP (1) JPH0891952A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005536434A (en) * 2002-08-28 2005-12-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Composite comprising ceramic layers and method for producing the composite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005536434A (en) * 2002-08-28 2005-12-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Composite comprising ceramic layers and method for producing the composite
JP4646202B2 (en) * 2002-08-28 2011-03-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Composite comprising ceramic layers and method for producing the composite

Similar Documents

Publication Publication Date Title
US4942999A (en) Metal-ceramic joined composite bodies and joining process therefor
JPH0438715B2 (en)
JPH0829990B2 (en) Bonded body of ceramics and metal
JPH05155668A (en) Combination of ceramic with metal
JP2752768B2 (en) Joint structure of turbine rotor
JPH043129Y2 (en)
US5073085A (en) Ceramic turbocharger rotor
JPH0891952A (en) Ceramic member-metallic member conjugate
JPH0426566A (en) Coupling member and coupling method
KR100246705B1 (en) Manufacturing method for sliding parts
JP2747865B2 (en) Joint structure between ceramics and metal
JP3206987B2 (en) Joint of ceramic and metal
JP2515927Y2 (en) Bonding structure of ceramic members and metal members
JPS6191073A (en) Structure for bonding ceramic axis and metal axis
JP2979529B2 (en) Joint of ceramic member and metal member
JP2822405B2 (en) Method of joining ceramic rotor and metal shaft
JPH0646001B2 (en) Ceramic rotor
JPH061672A (en) Joining structure for ceramic shaft and metallic shaft
JP2660538B2 (en) Joint structure of metal and ceramic bodies
JP3270893B2 (en) Combined structure of ceramic and metal
JPS63288976A (en) Joined body of sintered metal and ceramics
JP2538989B2 (en) Metal / ceramic joints
JP3119981B2 (en) Combined body of ceramic member and metal member and method of combining the same
JPH0829991B2 (en) Method for manufacturing ceramic / metal combination
JPS6267201A (en) Ceramic turbo rotor