JP2515927Y2 - Bonding structure of ceramic members and metal members - Google Patents

Bonding structure of ceramic members and metal members

Info

Publication number
JP2515927Y2
JP2515927Y2 JP1989076778U JP7677889U JP2515927Y2 JP 2515927 Y2 JP2515927 Y2 JP 2515927Y2 JP 1989076778 U JP1989076778 U JP 1989076778U JP 7677889 U JP7677889 U JP 7677889U JP 2515927 Y2 JP2515927 Y2 JP 2515927Y2
Authority
JP
Japan
Prior art keywords
metal
buffer layer
ceramic member
metal member
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1989076778U
Other languages
Japanese (ja)
Other versions
JPH0318141U (en
Inventor
進介 竹西
政人 中村
隆文 二木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP1989076778U priority Critical patent/JP2515927Y2/en
Publication of JPH0318141U publication Critical patent/JPH0318141U/ja
Application granted granted Critical
Publication of JP2515927Y2 publication Critical patent/JP2515927Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は高温度での耐久性が要求されるセラミックス
部材と金属部材との接合構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a joining structure between a ceramic member and a metal member, which are required to have high temperature durability.

[従来の技術] 近年、各種の産業機械装置における高荷重かつ高温雰
囲気下で使用される機構部品には、耐熱性、耐食性及び
耐摩耗性に優れ、高強度でかつ軽量なセラミックス部材
が多様されるようになってきた。
[Prior Art] In recent years, mechanical parts that are used under high load and high temperature atmosphere in various industrial machinery have various types of ceramic members that are excellent in heat resistance, corrosion resistance and wear resistance, and have high strength and light weight. It started to come.

しかし乍ら、前記セラミックス部材は加工性に難点が
あり、しかもセラミックスが靱性に乏しいことから高温
が作用する部分を耐熱性、耐食性、耐摩耗性に優れ比重
の小さいセラミックス部材で構成し、高荷重が作用する
部分を高強度で加工性に優れた金属部材で構成する等、
セラミックス部材と金属部材を組み合わせた複合構造体
が注目されており、種々のセラミックス部材と金属部材
の接合構造が研究され提案されてきた。
However, since the ceramic member has a difficulty in workability and the toughness of ceramics is poor, the part where high temperature acts is composed of a ceramic member having excellent heat resistance, corrosion resistance, and wear resistance and a small specific gravity, and a high load. The part that acts on is composed of a metal member with high strength and excellent workability, etc.
Attention has been paid to a composite structure in which a ceramic member and a metal member are combined, and various joining structures of the ceramic member and the metal member have been studied and proposed.

従来、セラミックス部材と金属部材の接合構造とし
て、第4図に示す様にセラミックス部材11の接合部を研
磨加工して平面もしくは凸部を形成し、金属部材14の一
端に構成された前記セラミックスと熱膨張率が近似した
鉄−ニッケル系合金や、低い熱膨張率を有するインコロ
イ等の耐熱合金等よりなる中間部材19の平面もしくは凹
部に前記セラミックス11を密着もしくは嵌押し、拡散接
合法またはろう接、焼嵌め等により接合した複合構造体
の接合構造が提案されていた(特開昭63−297279号公報
参照)。
Conventionally, as a joining structure of a ceramic member and a metal member, as shown in FIG. 4, the joining portion of the ceramic member 11 is polished to form a flat surface or a convex portion, and the ceramic member is formed at one end of the metal member 14. Iron-nickel alloy having a similar thermal expansion coefficient or the intermediate member 19 made of a heat-resistant alloy such as Incoloy having a low coefficient of thermal expansion, the ceramic member 11 is closely adhered or pressed into the flat surface or the concave portion, and diffusion bonding or brazing is performed. A joint structure of a composite structure joined by shrink fitting has been proposed (see JP-A-63-297279).

[考案が解決しようとする課題] しかし乍ら、近年の産業界においては高温度下で使用
可能でかつ耐久性に優れた接合部を有する複合構造体に
対する要求が年々高まり、従来の中間部材を介して拡散
接合法やろう接、焼嵌め等により接合した複合構造体に
あっては前記要求を満足することが困難であった。
[Problems to be solved by the invention] However, in recent years, the demand for a composite structure having a joint portion that can be used at high temperatures and has excellent durability has been increasing year by year, and conventional intermediate members have been It was difficult to satisfy the above requirements for a composite structure joined by diffusion bonding, brazing, shrink fitting, etc.

即ち、従来の中間部材を介して拡散接合法やろう材を
使用したろう接あるいは高温加熱による焼嵌め等により
接合した複合構造体では、接合後の金属部材が前記拡散
接合法やろう接あるいは焼嵌め時に高温度に加熱される
ことにより常温では焼鈍された状態となり、複合構造体
の金属部材として強度不足となる。そのため接合後に再
度該金属部材を熱処理して強度を回復させることが必要
となるが、該熱処理により発生する中間部材への熱歪に
よる内部応力や焼嵌め力の増加によりセラミックス部材
にクラックを生じたり、前記中間部材自体が破断した
り、接合部が破壊を生じるという課題があった。
That is, in a conventional composite structure in which a diffusion bonding method, a brazing using a brazing material, or a shrink fitting by heating at a high temperature is used to bond the metal member after the bonding, the diffusion bonding method, the brazing or the brazing method is used. By being heated to a high temperature at the time of fitting, it becomes an annealed state at room temperature, resulting in insufficient strength as a metal member of the composite structure. Therefore, it is necessary to heat-treat the metal member again after joining to recover the strength, but cracks may occur in the ceramic member due to increase in internal stress and shrinkage fitting force due to thermal strain on the intermediate member generated by the heat treatment. However, there is a problem that the intermediate member itself is broken or the joint is broken.

[課題を解決するための手段] 本考案のセラミックス部材と金属部材の接合構造は、
セラミックス部材端面にろう接した第1及び第2の緩衝
層をセラミックス部材端部から、第2の緩衝層の端面と
わずかな間隙を有するように配設した金属部材の端部ま
で覆うように嵌挿された金属製スリーブにより、第2の
緩衝層の端面とわずかな間隙を有するように配設した金
属部材とともに接合一体化したことを特徴とするもので
ある。
[Means for Solving the Problems] The joining structure of the ceramic member and the metal member of the present invention is
The first and second buffer layers brazed to the end surface of the ceramic member are fitted so as to cover from the end portion of the ceramic member to the end portion of the metal member arranged with a slight gap from the end surface of the second buffer layer. It is characterized in that the inserted metal sleeve is joined and integrated with a metal member arranged so as to have a slight gap with the end face of the second buffer layer.

第1の緩衝層としてはNi−Ti系合金、Cu等の低ヤング
率合金が望ましい。
As the first buffer layer, a Ni-Ti alloy or a low Young's modulus alloy such as Cu is desirable.

また、第2の緩衝層としては低熱膨張率のWC等、Wを
主成分とする金属が良好である。
Further, as the second buffer layer, a metal containing W as a main component such as WC having a low coefficient of thermal expansion is preferable.

更に、金属製スリーブとしては、セラミックスの熱膨
張率に近い耐熱合金が望ましく、とりわけその熱膨張率
が40℃〜1000℃において9×10-6/℃未満である耐熱合
金が良好である。
Further, as the metal sleeve, a heat-resistant alloy having a thermal expansion coefficient close to that of ceramics is desirable, and a heat-resistant alloy having a thermal expansion coefficient of less than 9 × 10 −6 / ° C. at 40 ° C. to 1000 ° C. is particularly preferable.

一方、金属製スリーブと金属部材の接合は、ろう接の
他に電子ビーム溶接やレーザー溶接等が好適に採用でき
る。
On the other hand, for the joining of the metal sleeve and the metal member, electron beam welding, laser welding, or the like can be suitably adopted in addition to brazing.

[作用] 上記の如きセラミックス部材と金属部材の接合構造で
は、セラミックス部材端面と第1の緩衝層がろう接さ
れ、該第1の緩衝層に第2の緩衝層が更にろう接され、
該第1及び第2の緩衝層と金属製スリーブが接合され、
該金属製スリーブと金属部材が接合されて複合構造体と
して一体化されているため、金属製スリーブはセラミッ
クス部材をろう材を介して把持しているだけとなり、該
金属製スリーブと第2の緩衝層との熱膨張率が近似して
いることから、金属部材の熱処理による金属製スリーブ
への熱歪を緩和し、更にセラミックス部材への金属製ス
リーブにかかる熱歪の影響を緩和するとともに、前記第
2の緩衝層と金属部材はわずかな間隙を有していること
からセラミックス部材から金属部材への熱伝導を低減す
る様に作用する。
[Operation] In the bonding structure of the ceramic member and the metal member as described above, the ceramic member end face and the first buffer layer are brazed, and the second buffer layer is further brazed to the first buffer layer,
The first and second buffer layers and the metal sleeve are joined,
Since the metal sleeve and the metal member are joined and integrated as a composite structure, the metal sleeve only holds the ceramic member via the brazing material, and the metal sleeve and the second buffer Since the coefficient of thermal expansion is similar to that of the layer, it alleviates thermal strain on the metal sleeve due to heat treatment of the metal member, and further alleviates the effect of thermal strain on the metal sleeve on the ceramic member, and Since the second buffer layer and the metal member have a slight gap, they act to reduce heat conduction from the ceramic member to the metal member.

[実施例] 以下、本考案を詳細に説明する。[Examples] Hereinafter, the present invention will be described in detail.

第1図は本考案に係るセラミックス部材と金属部材の
接合構造を示す一実施例の一部破断面図である。
FIG. 1 is a partial cross-sectional view of an embodiment showing a joining structure of a ceramic member and a metal member according to the present invention.

第1図において、1はセラミックス部材、2及び3は
夫々第1の緩衝層及び第2の緩衝層、4は金属部材、5
は金属製スリーブを示し、セラミックス部材1は6のろ
う材により第1の緩衝層2及び第2の緩衝層3とろう接
され、該第2の緩衝層3の端面がわずかな間隙Gを有す
るように配設した金属部材4は、第1の緩衝層2及び第
2の緩衝層3とともにそれらの外周に嵌挿された金属製
スリーブ5の内周面でろう材6によりろう接され一体化
されている。
In FIG. 1, 1 is a ceramic member, 2 and 3 are first buffer layer and second buffer layer, respectively, 4 is a metal member, 5
Indicates a metal sleeve, and the ceramic member 1 is brazed to the first buffer layer 2 and the second buffer layer 3 by the brazing material 6 and the end surface of the second buffer layer 3 has a slight gap G. The metal member 4 thus arranged is brazed and integrated with the first buffer layer 2 and the second buffer layer 3 by the brazing material 6 on the inner peripheral surface of the metal sleeve 5 fitted on the outer periphery thereof. Has been done.

次に本考案に係るセラミックス部材と金属部材の接合
構造を評価用セラミックス部材と金属部材の複合構造体
を例にとって具体的に詳述する。
Next, the joint structure of the ceramic member and the metal member according to the present invention will be specifically described in detail by taking a composite structure of the evaluation ceramic member and the metal member as an example.

窒化珪素(Si3N4)を主成分とし、焼結助剤としてイ
ットリア(Y2O3)、酸化タングステン(WO3)等から成
り、窒素雰囲気中で焼成された窒化珪素質焼結体を170
番規格相当のダイアモンド砥石を使用して万能研削盤に
より、端面を研削するとともに、直径11mm、長さ70mmの
円柱状のセラミックス部材1を得た。
A silicon nitride sintered body containing silicon nitride (Si 3 N 4 ) as a main component, yttria (Y 2 O 3 ) and tungsten oxide (WO 3 ) as a sintering aid, and sintered in a nitrogen atmosphere was used. 170
The end face was ground by a universal grinder using a diamond grindstone corresponding to the No. standard, and a cylindrical ceramic member 1 having a diameter of 11 mm and a length of 70 mm was obtained.

一方、金属材料としSUH600規格相当の耐熱鋼材を使用
し、直径11mm、長さ150mmの円柱体を切削加工して金属
部材4を、インコロイ909相当の38%Ni、15%Co、残部F
eから成るニッケル系合金材を使用し、外径16mm、長さ1
3mm、内径は金属部材4の外径とのクリアランスが10〜1
00μmとなる様に現物合わせしながら切削加工して金属
製スリーブ5を得た。
On the other hand, a heat-resistant steel material equivalent to the SUH600 standard is used as a metal material, and a cylindrical body having a diameter of 11 mm and a length of 150 mm is machined to form a metal member 4 with 38% Ni, 15% Co corresponding to Incoloy 909, and the balance
Using a nickel-based alloy material consisting of e, outer diameter 16 mm, length 1
3 mm, the inner diameter has a clearance of 10 to 1 from the outer diameter of the metal member 4.
A metal sleeve 5 was obtained by cutting while matching the actual product so as to have a diameter of 00 μm.

また、BAg−8規格の銀ろうから成る直径0.8mmの線材
を内径11mmの輪状に成形したもの、及び同様の銀ろうか
ら成る厚さ0.2mmの箔材を直径11mmに切抜き加工したも
の、及び第1の緩衝層及び第2の緩衝層として直径11mm
の第1表に示す各素材を準備しておく。
Also, a wire rod made of BAg-8 standard silver braze having a diameter of 0.8 mm is formed into a ring shape having an inner diameter of 11 mm, and a 0.2 mm thick foil member made of the same silver braze is cut out to have a diameter of 11 mm, and Diameter 11 mm as the first buffer layer and the second buffer layer
Prepare the materials shown in Table 1 of.

先づ、前記セラミックス部材1、第1及び第2の緩衝
層用素材2及び3、金属部材4、金属製スリーブ5及び
銀ろう材を脱脂剤等で洗浄する。
First, the ceramic member 1, the first and second buffer layer materials 2 and 3, the metal member 4, the metal sleeve 5, and the silver brazing material are washed with a degreasing agent or the like.

次いで、セラミックス部材1の端面に銀(Ag)を主成
分とするメタライズ金属層を被着形成した後、厚さ0.2m
mの銀ろう箔1枚、第1表に示す厚さの第1の緩衝層2
及び厚さ0.2mmの銀ろう箔4枚、次いで第1表に示す厚
さの第2の緩衝層3を順次積層し、金属製スリーブ5を
それらに嵌挿する。
Then, after depositing a metallized metal layer containing silver (Ag) as a main component on the end surface of the ceramic member 1, a thickness of 0.2 m
1 m silver brazing foil, first buffer layer 2 with the thickness shown in Table 1
Then, four silver brazing foils having a thickness of 0.2 mm and then the second buffer layer 3 having the thickness shown in Table 1 are sequentially laminated, and the metal sleeve 5 is fitted into them.

次に第2の緩衝層3もしくは金属部材4のいずれかの
端面に黒鉛粉末と有機溶媒との混合物を膜厚20〜100μ
m程度塗布した後、金属部材4を第2の緩衝層の端面に
接する迄、金属製スリーブ5に嵌挿し、金属部材4と金
属製スリーブ5の境界部近傍に銀ろうの輪を3個載置
し、これらを黒鉛治具で固定した後、真空炉にて850〜9
50℃の温度で加熱処理してろう接する。
Next, a mixture of graphite powder and an organic solvent is applied to the end face of either the second buffer layer 3 or the metal member 4 to a film thickness of 20 to 100 μm.
After applying about m, the metal member 4 is fitted into the metal sleeve 5 until it comes into contact with the end surface of the second buffer layer, and three silver brazing rings are placed near the boundary between the metal member 4 and the metal sleeve 5. Place them, fix them with a graphite jig, and then in a vacuum furnace 850-9
Heat treatment at a temperature of 50 ° C and braze.

尚、金属部材4を金属製スリーブ5に嵌挿する深さ
は、1〜12mmまで種々設定した予備試験の結果、最高の
抗折強度を示した6mmとした。
The depth at which the metal member 4 was fitted into the metal sleeve 5 was 6 mm, which showed the highest bending strength as a result of preliminary tests in which various settings were made from 1 to 12 mm.

かくして得られたのセラミックス部材と金属部材の複
合構造体について、550℃の高温雰囲気中で前記複合構
造体の金属部材4部を試験機のチャックに把持し、突出
せるセラミックス部材1の先端を上部より加圧し、破断
した時の荷重を測定し、高温片持抗折強度を求めて評価
した。
Regarding the composite structure of the ceramic member and the metal member thus obtained, 4 parts of the metal member of the composite structure is gripped by a chuck of a tester in a high temperature atmosphere of 550 ° C., and the tip of the ceramic member 1 is projected upward. The pressure was further increased, the load at break was measured, and the high temperature cantilever bending strength was determined and evaluated.

尚、第1の緩衝層のない複合構造体及び第1、第2の
いずれの緩衝層もない複合構造体を比較例とした。
A composite structure without the first buffer layer and a composite structure without the first and second buffer layers were used as comparative examples.

以上の結果を第1表に示す。 The above results are shown in Table 1.

第1表から明らかな様に、第2の緩衝層の厚さが1.0m
mの試料番号1、4、7では金属製スリーブから第2の
緩衝層が剥離した状態で破断し、高温片持抗折強度も16
kg/mm2と低く、比較例と大差ない。それに対して第2の
緩衝層の厚さが2.0mm以上の試料番号2、3、5、6、
8、9ではセラミックス部材と第1の緩衝層とのろう接
面で破断し、高温片持抗折強度も21kg/mm2以上と極めて
大であることから、第2の緩衝層の厚みは2.0mm以上が
望ましい。
As is clear from Table 1, the thickness of the second buffer layer is 1.0m.
In the sample Nos. 1, 4, and 7 of m, the second buffer layer peeled off from the metal sleeve and broke, and the high temperature cantilever bending strength was 16
It is as low as kg / mm 2, which is not much different from the comparative example. On the other hand, the sample numbers 2, 3, 5, 6 in which the thickness of the second buffer layer is 2.0 mm or more,
In Nos. 8 and 9, fracture occurred at the brazing surface between the ceramic member and the first buffer layer, and the high temperature cantilever bending strength was also extremely large at 21 kg / mm 2 or more, so the thickness of the second buffer layer was 2.0. mm or more is desirable.

また、第2図は本考案に係るセラミックス部材と金属
部材の接合構造をターボチャージャやガスタービン等の
ラジアル型ローターに適用した例で、窒化珪素質焼結体
より成るセラミックス部材1であるローターに第1の緩
衝層2と第2の緩衝層3及び金属製スリーブ5は夫々ろ
う接し、第2の緩衝層3の端面からわずかな間隙Gを有
するように配設した金属部材4である回転軸と金属製ス
リーブ5とは接合部Sで電子ビーム溶接したものであ
る。
FIG. 2 shows an example in which the joining structure of a ceramic member and a metal member according to the present invention is applied to a radial type rotor such as a turbocharger or a gas turbine. The rotor is a ceramic member 1 made of a silicon nitride sintered material. The first buffer layer 2, the second buffer layer 3, and the metal sleeve 5 are brazed to each other, and the rotary shaft is the metal member 4 arranged so as to have a slight gap G from the end surface of the second buffer layer 3. The metal sleeve 5 and the metal sleeve 5 are electron-beam welded at the joint S.

尚、電子ビーム溶接して金属製スリーブ5と金属部材
4を接合したものでは、事前に焼入れ硬化処理した金属
部材4である回転軸であっても何んらその硬度が劣化し
ない。
In the case where the metal sleeve 5 and the metal member 4 are joined by electron beam welding, the hardness of the rotating shaft, which is the metal member 4 that has been quench-hardened in advance, does not deteriorate.

また、第3図は本考案の接合構造を核融合炉内壁の黒
鉛製タイル固定具に適用した例であり、ホウ素(B)を
焼結助剤とした炭化珪素質焼結体より成るセラミックス
部材1であるピンに第1の緩衝層2と第2の緩衝層3を
ろう接しあらかじめ黒鉛製タイル7及び炭化珪素質焼結
体より成る保持具8を組み込んだ後、金属製スリーブ5
をろう接する。その後、第2の緩衝層3の端面からわず
かな間隙Gを有するように配設したネジ部を有する金属
部材4を接合部Sで金属製スリーブと電子ビーム溶接す
る。得られた黒鉛製タイル固定具は核融合炉内壁に設け
られたネジ部(不図示)に螺着して固定される。
FIG. 3 is an example in which the joining structure of the present invention is applied to a graphite tile fixture on the inner wall of a fusion reactor, and a ceramic member made of a silicon carbide sintered body using boron (B) as a sintering aid. The first buffer layer 2 and the second buffer layer 3 are brazed to the pin 1 and the graphite tile 7 and the holder 8 made of a silicon carbide sintered body are assembled in advance, and then the metal sleeve 5 is used.
Brazed. After that, the metal member 4 having the screw portion arranged so as to have a slight gap G from the end surface of the second buffer layer 3 is electron beam welded to the metal sleeve at the joint portion S. The obtained graphite tile fixture is screwed and fixed to a screw portion (not shown) provided on the inner wall of the fusion reactor.

[考案の効果] 本考案のセラミックス部材と金属部材の接合構造によ
れば、金属部材への熱処理等による金属製スリーブへの
熱歪が緩和され、更に金属製スリーブの熱歪がセラミッ
クス部材へほとんど影響しない他、高温雰囲気中におい
てもセラミックス部材や金属製スリーブに損傷を与えず
かつ金属部材自体も破断することなく断熱性に優れ、高
い接合強度を有し、かつ信頼性の高いセラミックス部材
と金属部材の複合構造体を得ることができる。
[Advantage of Invention] According to the joining structure of the ceramic member and the metal member of the present invention, the thermal strain to the metal sleeve due to the heat treatment of the metal member is mitigated, and the thermal strain of the metal sleeve is almost eliminated to the ceramic member. In addition to not affecting the ceramic member and the metal sleeve even in a high temperature atmosphere, the metal member itself does not break and has excellent heat insulating properties, high bonding strength, and a highly reliable ceramic member and metal. A composite structure of members can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案に係るセラミックス部材と金属部材の接
合構造を示す一部破断面図、第2図は本考案の接合構造
をラジアル型ローターに適用した実施例を示す一部破断
面図、第3図は本考案の接合構造を核融合炉内壁の黒鉛
製タイル固定具に適用した実施例を示す断面図、第4図
は従来のセラミックス部材と金属部材の接合構造を示す
一部破断面図である。 1…セラミックス部材 2…第1の緩衝層 3…第2の緩衝層 4…金属部材 5…金属製スリーブ G…間隙
FIG. 1 is a partially broken sectional view showing a joining structure of a ceramic member and a metal member according to the present invention, and FIG. 2 is a partially broken sectional view showing an embodiment in which the joining structure of the present invention is applied to a radial rotor, FIG. 3 is a sectional view showing an embodiment in which the joint structure of the present invention is applied to a graphite tile fixture on the inner wall of a fusion reactor, and FIG. 4 is a partially broken cross section showing the joint structure of a conventional ceramic member and a metal member. It is a figure. DESCRIPTION OF SYMBOLS 1 ... Ceramics member 2 ... 1st buffer layer 3 ... 2nd buffer layer 4 ... Metal member 5 ... Metal sleeve G ... Gap

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of utility model registration request] 【請求項1】セラミックス部材の端面に順次、第1の緩
衝層と第2の緩衝層とをろう接し、該第2の緩衝層の端
面とわずかな間隙を有するように金属部材を配設し、セ
ラミックス部材の端部と第1、第2の緩衝層及び前記金
属部材の端部とを覆うように金属製スリーブを嵌挿し、
前記第1、第2の緩衝層を介してセラミックス部材と金
属部材を接合一体化したことを特徴とするセラミックス
部材と金属部材の接合構造。
1. A first buffer layer and a second buffer layer are sequentially brazed to an end surface of a ceramic member, and a metal member is disposed so as to have a slight gap with the end surface of the second buffer layer. A metal sleeve is fitted so as to cover the end of the ceramic member, the first and second buffer layers, and the end of the metal member,
A joined structure of a ceramic member and a metal member, characterized in that the ceramic member and the metal member are joined and integrated via the first and second buffer layers.
JP1989076778U 1989-06-29 1989-06-29 Bonding structure of ceramic members and metal members Expired - Lifetime JP2515927Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1989076778U JP2515927Y2 (en) 1989-06-29 1989-06-29 Bonding structure of ceramic members and metal members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1989076778U JP2515927Y2 (en) 1989-06-29 1989-06-29 Bonding structure of ceramic members and metal members

Publications (2)

Publication Number Publication Date
JPH0318141U JPH0318141U (en) 1991-02-22
JP2515927Y2 true JP2515927Y2 (en) 1996-11-06

Family

ID=31618555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989076778U Expired - Lifetime JP2515927Y2 (en) 1989-06-29 1989-06-29 Bonding structure of ceramic members and metal members

Country Status (1)

Country Link
JP (1) JP2515927Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263771A (en) * 1988-12-16 1990-10-26 Ngk Spark Plug Co Ltd Turbine rotor made of ceramics

Also Published As

Publication number Publication date
JPH0318141U (en) 1991-02-22

Similar Documents

Publication Publication Date Title
JPS62104696A (en) Metallic ceramics junction body and metallic ceramics coupling body formed by using said body
US4703884A (en) Steel bonded dense silicon nitride compositions and method for their fabrication
EP0530854B1 (en) Metal-ceramic composite bodies
JPH0829990B2 (en) Bonded body of ceramics and metal
US5937708A (en) Ceramic-metal composite assembly
US5525432A (en) Internal soldering in metal/ceramic composites
JP2752768B2 (en) Joint structure of turbine rotor
JPH04228480A (en) Composite being stable at high temperature and preparation thereof
US4704338A (en) Steel bonded dense silicon nitride compositions and method for their fabrication
WO2000029352A2 (en) Method for joining ceramic to metal
JP2515927Y2 (en) Bonding structure of ceramic members and metal members
JP2747865B2 (en) Joint structure between ceramics and metal
JP3206987B2 (en) Joint of ceramic and metal
JP2769567B2 (en) Joint of ceramic and metal
JPH0329299Y2 (en)
JPH061672A (en) Joining structure for ceramic shaft and metallic shaft
JPH061670A (en) Joined body of ceramic member and metal member
JP3153872B2 (en) Metal-nitride ceramic bonding structure
JP2979529B2 (en) Joint of ceramic member and metal member
JPS63206365A (en) Joined body of ceramic and metal
JPH0891952A (en) Ceramic member-metallic member conjugate
JPS60251179A (en) Method of bonding ceramic member and metal member
JP2660538B2 (en) Joint structure of metal and ceramic bodies
JPS60246275A (en) Method of bonding ceramic member and metal member
JPH0580434B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term