JPH0886583A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH0886583A
JPH0886583A JP6248599A JP24859994A JPH0886583A JP H0886583 A JPH0886583 A JP H0886583A JP 6248599 A JP6248599 A JP 6248599A JP 24859994 A JP24859994 A JP 24859994A JP H0886583 A JPH0886583 A JP H0886583A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
pipes
sets
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6248599A
Other languages
Japanese (ja)
Inventor
Toshitake Nagai
俊剛 永井
Yonezo Ikumi
米造 井汲
Norio Sawada
範雄 沢田
Takahide Kakinuma
孝英 柿沼
Koji Sato
晃司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6248599A priority Critical patent/JPH0886583A/en
Priority to KR1019950010799A priority patent/KR100223086B1/en
Priority to TW084104413A priority patent/TW322527B/zh
Priority to CN95106057A priority patent/CN1132849A/en
Priority to US08/494,026 priority patent/US5699675A/en
Priority to CA002155228A priority patent/CA2155228C/en
Priority to EP95112401A priority patent/EP0702200A3/en
Priority to BR9504025A priority patent/BR9504025A/en
Priority to SG1995010365A priority patent/SG30440A1/en
Priority to SG9700275A priority patent/SG94694A1/en
Publication of JPH0886583A publication Critical patent/JPH0886583A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE: To improve the heat exchanging efficiency by reducing the uneven flow of refrigerant in a heat exchanger. CONSTITUTION: This heat exchanger 1 comprises a refrigerant tube 4 provided through a plurality of fins 3. The tube 4 is partitioned to a plurality of sets S1-S3 formed of a plurality of parallel tubes 6, 7. The tuber 6, 7 of the sets S1, S2 communicate with each other at the ends, and communicate with the ends of the tubes 6, 7 of the other sets S2, S3 at a single passage 2P.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複数枚のフィンを貫通
して設けられた冷媒配管を備えて成る冷凍・空調用の熱
交換器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger for refrigeration and air conditioning, which has a refrigerant pipe provided through a plurality of fins.

【0002】[0002]

【従来の技術】従来より冷凍・空調用の蒸発器或いは凝
縮器に用いられる熱交換器は、例えば実公昭60−26
301号公報(F28F1/32)や実公昭60−26
303号公報(F28F1/32)に示される如く、複
数枚のフィンを所定の間隔を存して配置すると共に、こ
のフィンを貫通して複数本の冷媒配管を設け、各冷媒配
管の端部を湾曲形状に屈曲された接続管(ベンドパイ
プ)にて連通することにより蛇行状の冷媒通路を構成し
た構造とされている。
2. Description of the Related Art Conventionally, heat exchangers used in evaporators or condensers for refrigeration and air conditioning are, for example, Japanese Utility Model Sho 60-26.
No. 301 publication (F28F1 / 32) and Jitsuko Sho 60-26
As disclosed in Japanese Patent Publication No. 303 (F28F1 / 32), a plurality of fins are arranged at a predetermined interval, a plurality of refrigerant pipes are provided through the fins, and end portions of the respective refrigerant pipes are arranged. A connecting pipe (bend pipe) bent into a curved shape is connected to form a meandering coolant passage.

【0003】また、冷媒配管を通過する冷媒の流路抵抗
を軽減し、或いは熱交換効率及びスペース効率の向上を
図る等の目的で、従来よりこの種熱交換器の冷媒配管は
入口にて複数の並列配管に分岐され、出口にて再び合流
する構造とされていた。
For the purpose of reducing the flow resistance of the refrigerant passing through the refrigerant pipe, improving heat exchange efficiency and space efficiency, and the like, conventionally, a plurality of refrigerant pipes of this type heat exchanger are provided at the inlet. It was divided into parallel pipes and re-joined at the outlet.

【0004】図4に係る従来の熱交換器100の配管構
成の一例を示す。尚、各図において、各冷媒配管101
及び102は実際には前述の如く複数の冷媒配管と接続
管により、蛇行状の冷媒通路を構成するよう配管接続さ
れて形成されるものであるが、ここでは説明のために長
い一本の直管にて示す。
An example of the piping configuration of the conventional heat exchanger 100 according to FIG. 4 is shown. In each drawing, each refrigerant pipe 101
Actually, as described above, 102 and 102 are formed by connecting a plurality of refrigerant pipes and connecting pipes so as to form a meandering refrigerant passage. Shown with a tube.

【0005】即ち、熱交換器100は所定の間隔を存し
て配置された複数枚のフィン103・・と、これらフィ
ン103を貫通して設けられた例えば2本の前記冷媒配
管101、102にて構成されており、熱交換器100
の入口側に位置する両冷媒配管101、102の端部に
は分流管104が接続されると共に、熱交換器100の
出口側に位置する両冷媒配管101、102の端部には
合流管106が接続されている。
That is, the heat exchanger 100 is provided with a plurality of fins 103, ... Arranged at a predetermined interval and, for example, two refrigerant pipes 101, 102 penetrating the fins 103. The heat exchanger 100
A distribution pipe 104 is connected to the ends of both the refrigerant pipes 101 and 102 located on the inlet side of the heat exchanger 100, and a merging pipe 106 is connected to the ends of the refrigerant pipes 101 and 102 located on the outlet side of the heat exchanger 100. Are connected.

【0006】そして、図中矢印の如く熱交換器100に
流入した冷媒は、分流管104にて二方に分流し、各冷
媒配管101、102内を通過して放熱(凝縮器として
用いられた場合)、或いは吸熱(蒸発器として用いられ
た場合)した後、合流管106にて合流して出て行く。
The refrigerant flowing into the heat exchanger 100 as shown by the arrow in the figure is divided into two parts by the distribution pipe 104, passes through the refrigerant pipes 101 and 102, and radiates heat (used as a condenser). In some cases), or after absorbing heat (when used as an evaporator), they merge at the merge pipe 106 and exit.

【0007】また、図5は従来の熱交換器100の配管
構成の他の例を示す。この場合、冷媒配管101、10
2は図4よりも少許短く構成され、合流管106から出
た後にもフィン103を備えた一本の冷媒配管107が
接続された構成とされている。
FIG. 5 shows another example of the piping structure of the conventional heat exchanger 100. In this case, the refrigerant pipes 101, 10
2 is configured to be slightly shorter than that in FIG. 4, and one refrigerant pipe 107 having the fins 103 is connected even after exiting the joining pipe 106.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記各
冷媒配管101、102に分流される冷媒の量や液・ガ
スの比率は、各冷媒配管101、102の流路抵抗の差
や、熱交換器100が晒される風の当たり具合の差等に
よって不均一(アンバランス)になり易い。この不均一
は特に圧力損失が高くなる蒸発器の場合に顕著となり、
また、非共沸混合冷媒を使用した場合にも発生し易くな
る。
However, the amount of the refrigerant and the liquid / gas ratio of the refrigerant divided into the refrigerant pipes 101 and 102 are determined by the difference in the channel resistance between the refrigerant pipes 101 and 102 and the heat exchanger. 100 is likely to be non-uniform (unbalanced) due to differences in the degree of contact with the wind. This non-uniformity is especially noticeable in the case of evaporators with high pressure loss,
Further, it is likely to occur even when a non-azeotropic mixed refrigerant is used.

【0009】このような冷媒流量等の不均一が発生し、
一方の冷媒配管101或いは102に殆ど冷媒が流れな
くなると、熱交換器100はその半分しか機能しなくな
る。即ち、熱交換器100全体を有効に利用することが
できなくなって、熱交換効率が低下してしまう。
Such non-uniformity of the flow rate of the refrigerant occurs,
When almost no refrigerant flows through one of the refrigerant pipes 101 or 102, the heat exchanger 100 functions only half of that. That is, the entire heat exchanger 100 cannot be effectively used, and the heat exchange efficiency is reduced.

【0010】これに対処するために、両冷媒配管10
1、102の中間部を均圧管にて連通させ、圧力バラン
スを採る方法も考えられるが、何れにしても均圧管を冷
媒は殆ど流れないため、冷媒流量等の不均一は有効に解
消されない問題があった。
In order to deal with this, both refrigerant pipes 10
A method of establishing a pressure balance by connecting the intermediate portions of Nos. 1 and 102 with a pressure equalizing pipe may be considered, but in any case, since the refrigerant hardly flows through the pressure equalizing pipe, non-uniformity of the refrigerant flow rate or the like cannot be effectively resolved. was there.

【0011】本発明は係る従来の技術的課題を解決する
ために成されたものであり、熱交換器における不均一な
冷媒の流れを低減することにより、熱交換効率を向上さ
せることを目的とする。
The present invention has been made to solve the above-mentioned conventional technical problems, and an object of the present invention is to improve the heat exchange efficiency by reducing the uneven flow of the refrigerant in the heat exchanger. To do.

【0012】[0012]

【課題を解決するための手段】請求項1の発明の熱交換
器は、複数枚のフィンを貫通して設けられた冷媒配管を
備えたものであって、前記冷媒配管を、それぞれ複数の
並列配管から構成された複数の集合に区分すると共に、
この集合の並列配管を端部にて相互に連通させ、単一の
通路にて他の集合の並列配管の端部に連通させたもので
ある。
A heat exchanger according to a first aspect of the present invention comprises a refrigerant pipe penetrating a plurality of fins, each of the refrigerant pipes being a plurality of parallel pipes. In addition to dividing into multiple sets composed of piping,
The parallel pipes of this set are connected to each other at their ends, and are connected to the ends of the parallel pipes of the other set through a single passage.

【0013】請求項2の発明の熱交換器は、複数枚のフ
ィンを貫通して設けられた冷媒配管を備えたものであっ
て、相互に並列に配置された複数の冷媒配管から成る複
数の集合と、これら集合間において両集合の各冷媒配管
の端部に接続された接続管とを備えており、この接続管
は両集合を連通する単一の通路を有しているものであ
る。
A heat exchanger according to a second aspect of the present invention is provided with a refrigerant pipe penetrating a plurality of fins, the plurality of refrigerant pipes being arranged in parallel with each other. It has a set and a connecting pipe connected to the end of each refrigerant pipe of both sets between these sets, and this connecting pipe has a single passage which connects both sets.

【0014】請求項3の発明の熱交換器は前記におい
て、集合を相互に連通する通路の径を絞ったものであ
る。
In the heat exchanger according to a third aspect of the present invention, in the above, the diameters of the passages communicating with each other are narrowed.

【0015】[0015]

【作用】請求項1の発明によれば、熱交換器を構成する
冷媒配管を、それぞれ複数の並列配管から構成された複
数の集合に区分し、この集合の並列配管を端部にて相互
に連通させ、単一の通路にて他の集合の並列配管の端部
に連通させたので、万一ある集合の並列配管において冷
媒流量等の不均一が発生しても、当該集合を出た後は一
旦合流されてから他の集合に流入するため、この時点で
冷媒流量の不均一は解消される。従って、熱交換器全体
において冷媒流量等の不均一が発生し難くなり、熱交換
器の性能を十分に発揮させて熱交換効率の向上を図るこ
とができるようになる。
According to the invention of claim 1, the refrigerant pipes constituting the heat exchanger are divided into a plurality of sets each composed of a plurality of parallel pipes, and the parallel pipes of this set are mutually connected at the ends. Since they are communicated and communicated with the ends of the parallel pipes of another set through a single passage, even if there is unevenness in the flow rate of the refrigerant in the parallel pipes of a certain set, after leaving the set. Since they are once merged and then flow into another set, the nonuniform refrigerant flow rate is resolved at this point. Therefore, nonuniformity of the flow rate of the refrigerant is less likely to occur in the entire heat exchanger, and the performance of the heat exchanger can be fully exerted to improve the heat exchange efficiency.

【0016】また、請求項2の発明によれば、相互に並
列に配置された複数の冷媒配管から成る複数の集合と、
これら集合間において両集合の各冷媒配管の端部に接続
された接続管とを備え、この接続管には両集合を連通す
る単一の通路を設けたので、万一ある集合の冷媒配管に
おいて冷媒流量等の不均一が発生しても、当該集合を出
た後は接続管にて一旦合流されてから他の集合に流入す
るため、この時点で冷媒流量等の不均一は解消される。
従って、熱交換器全体において冷媒流量等の不均一が発
生し難くなり、熱交換器の性能を十分に発揮させて熱交
換効率の向上を図ることができるようになる
According to the second aspect of the invention, a plurality of sets of a plurality of refrigerant pipes arranged in parallel with each other,
Between these sets, with a connecting pipe connected to the end of each refrigerant pipe of both sets, this connecting pipe was provided with a single passage that communicates both sets, so in the unlikely event of a refrigerant pipe of one set Even if the non-uniformity of the refrigerant flow rate or the like occurs, the non-uniformity of the refrigerant flow rate or the like is resolved at this point because the non-uniformity of the refrigerant flow rate is merged once by the connecting pipe and then flows into another set.
Therefore, nonuniformity of the flow rate of the refrigerant is less likely to occur in the entire heat exchanger, and the performance of the heat exchanger can be fully exhibited to improve the heat exchange efficiency.

【0017】更に、請求項3の発明によればこれらに加
えて、集合を相互に連通する通路の径を絞ったものであ
るから、熱交換器の入口と出口の温度差を縮小すること
ができるようになり、蒸発器として用いる場合には入口
における霜付きの発生を抑制若しくは解消することが可
能となる。
Further, according to the invention of claim 3, in addition to these, since the diameter of the passages for communicating the assembly is narrowed, the temperature difference between the inlet and the outlet of the heat exchanger can be reduced. When it is used as an evaporator, it is possible to suppress or eliminate the formation of frost at the inlet.

【0018】[0018]

【実施例】次に図面に基づき本発明の実施例を詳述す
る。図1は本発明の熱交換器1の配管構成図、図2は熱
交換器1の正面図、図3は接続管2の斜視図である。即
ち、熱交換器1は所定の間隔を存して配置された複数枚
のフィン3・・と、これらフィン3を貫通して設けられ
た冷媒配管4とから構成されており、更にこの冷媒配管
4は、それぞれ例えば二本の冷媒配管から成る並列配管
6、7にて構成された複数(実施例では三個)の集合S
1、S2、S3に区分されている。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a piping configuration diagram of a heat exchanger 1 of the present invention, FIG. 2 is a front view of the heat exchanger 1, and FIG. 3 is a perspective view of a connecting pipe 2. That is, the heat exchanger 1 is composed of a plurality of fins 3 arranged at a predetermined interval and a refrigerant pipe 4 penetrating the fins 3. Reference numeral 4 denotes a set S of a plurality (three in the embodiment) of parallel pipes 6 and 7 each composed of, for example, two refrigerant pipes.
It is divided into 1, S2, and S3.

【0019】そして、各集合S1、S2、S3の間には
接続管2がそれぞれ取り付けられ、相互に直列に接続さ
れている。この接続管2は図3に示す如く、例えば二個
の入口2I、2I及び二個の出口2E、2Eと、これら
入口2I、2Iと出口2E、2Eを連通する単一の通路
2Pを備えており、この通路2Pの径は他の配管の径よ
りも絞られている。
A connecting pipe 2 is attached between each set S1, S2, S3 and connected in series with each other. As shown in FIG. 3, this connecting pipe 2 is provided with, for example, two inlets 2I, 2I and two outlets 2E, 2E, and a single passage 2P connecting these inlets 2I, 2I and outlets 2E, 2E. The diameter of the passage 2P is narrower than the diameter of other pipes.

【0020】そして、前記集合S1を構成する並列配管
6、7の一端をこの接続管2の入口2I、2Iにそれぞ
れ連通接続し、出口2E、2Eを集合S2を構成する並
列配管6、7の他端にそれぞれ連通接続する。また、同
様に集合S2を構成する並列配管6、7の一端を接続管
2の入口2I、2Iにそれぞれ連通接続し、出口2E、
2Eを集合S3を構成する並列配管6、7の他端にそれ
ぞれ連通接続する。また、集合S1を構成する並列配管
6、7の他端には前述同様の分流管11を接続すると共
に、集合S3を構成する並列配管6、7の一端には合流
管12を接続する。
Then, one ends of the parallel pipes 6 and 7 forming the set S1 are connected to the inlets 2I and 2I of the connecting pipe 2 respectively, and the outlets 2E and 2E of the parallel pipes 6 and 7 forming the set S2 are connected. Connect to the other end. Similarly, one ends of the parallel pipes 6 and 7 forming the set S2 are connected to the inlets 2I and 2I of the connecting pipe 2 respectively, and the outlets 2E and
2E is connected to the other ends of the parallel pipes 6 and 7 forming the set S3, respectively. Further, the same branch pipe 11 as that described above is connected to the other ends of the parallel pipes 6 and 7 forming the set S1, and the merging pipe 12 is connected to one end of the parallel pipes 6 and 7 forming the set S3.

【0021】これによって、各集合S1〜S3の並列配
管6、7はそれぞれ相互に並列接続されると共に、各集
合S1とS2間、及びS2とS3間は接続間2の単一の
通路2Pにて相互に連通されることになる。
As a result, the parallel pipes 6 and 7 of each set S1 to S3 are connected in parallel to each other, and between each set S1 and S2, and between S2 and S3, a single passage 2P having a connection 2 is provided. Will be communicated with each other.

【0022】係る構成の熱交換器1を図示しない冷媒回
路の蒸発器として用い、冷媒回路中には例えばR−12
5(25wt%)、R−32(23wt%)及びR−1
34a(52wt%)から成る非共沸混合冷媒を充填す
る。図示しない圧縮機から吐出され、凝縮器にて凝縮さ
れた上記混合冷媒は減圧装置にて減圧された後、図中矢
印の如く二相流となって熱交換器1に流入する。熱交換
器1に流入した冷媒は分流管11にて二方に分流し、集
合S1の並列配管6、7に入って、先ずその内の沸点の
低いR−32及びR−125から蒸発して吸熱作用(冷
却作用)を発揮して行く。
The heat exchanger 1 having such a configuration is used as an evaporator of a refrigerant circuit (not shown), and for example, R-12 is provided in the refrigerant circuit.
5 (25 wt%), R-32 (23 wt%) and R-1
A non-azeotropic mixed refrigerant composed of 34a (52 wt%) is filled. The mixed refrigerant discharged from the compressor (not shown) and condensed in the condenser is decompressed by the decompression device, and then flows into the heat exchanger 1 as a two-phase flow as indicated by an arrow in the figure. The refrigerant that has flowed into the heat exchanger 1 is split into two in the diversion pipe 11, enters the parallel pipes 6 and 7 of the set S1, and is first evaporated from R-32 and R-125 having a low boiling point therein. It exerts an endothermic action (cooling action).

【0023】集合S1の並列配管6、7を経た冷媒は接
続管2にて一旦合流し、その後再び二方に分流して今度
は集合S2の並列配管6、7に入る。そして、この集合
S2の並列配管6、7を経た冷媒は接続管2にて再び合
流し、その後再度二方に分流して今度は集合S3の並列
配管6、7に入り、これら(この時点ではR−134a
が蒸発し始める)を経た後、合流管12にて合流して出
て行く。尚、熱交換器1を流れる冷媒の状態を説明する
と、その入口付近では前記沸点の低いR−32及びR−
125のガスの比率が大きく、出口付近ではR−134
aのガスの比率が大きくなる。また、熱交換器1を流れ
る冷媒は接続管2の通路2Pを通過する際に絞られる。
The refrigerants that have passed through the parallel pipes 6 and 7 of the set S1 once merge at the connection pipe 2, and then split into two again and then enter the parallel pipes 6 and 7 of the set S2. Then, the refrigerants that have passed through the parallel pipes 6 and 7 of the set S2 merge again in the connection pipe 2, and then split into two again, and then enter the parallel pipes 6 and 7 of the set S3. R-134a
(After starting to evaporate), they merge at the merging pipe 12 and exit. The state of the refrigerant flowing through the heat exchanger 1 will be described. R-32 and R- having a low boiling point are provided near the inlet of the refrigerant.
The gas ratio of 125 is large, and R-134 is near the outlet.
The ratio of the gas of a becomes large. Further, the refrigerant flowing through the heat exchanger 1 is throttled when passing through the passage 2P of the connecting pipe 2.

【0024】ここで、冷媒としては非共沸混合冷媒が用
いられており、熱交換器1の周囲を流れる風の偏り等に
より、各集合S1〜S3においては並列配管6、7に均
一に冷媒が分流しない、冷媒流量の不均一化や液・ガス
の比率の不均一化が発生し易い。しかしながら、本発明
では、例えば集合S1の並列配管6、7において冷媒流
量等の不均一が発生したとしても、当該集合S1を出た
冷媒は接続管2にて一旦合流され、次に集合S2に流入
することになる。従って、集合S1において発生した冷
媒流量や液・ガス比率の不均一は、接続管2の通路2P
に流入した時点で混ぜ合わされて解消されるので、熱交
換器1の全集合S1〜S3において冷媒流量等の不均一
が発生し難くなり、熱交換器1の性能が十分に発揮され
て熱交換効率が向上する。
Here, a non-azeotropic mixed refrigerant is used as the refrigerant, and due to the deviation of the wind flowing around the heat exchanger 1, etc., the refrigerant is evenly distributed in the parallel pipes 6 and 7 in each of the sets S1 to S3. Is not split, and the non-uniform refrigerant flow rate and non-uniform liquid / gas ratio are likely to occur. However, in the present invention, for example, even if non-uniformity of the refrigerant flow rate or the like occurs in the parallel pipes 6 and 7 of the set S1, the refrigerant exiting the set S1 is once merged in the connection pipe 2 and then to the set S2. It will flow in. Therefore, the non-uniformity of the refrigerant flow rate and the liquid / gas ratio generated in the set S1 is caused by the passage 2P of the connecting pipe 2.
Since it is mixed and eliminated at the time of flowing into the heat exchanger 1, non-uniformity of the refrigerant flow rate or the like hardly occurs in the whole set S1 to S3 of the heat exchanger 1, and the performance of the heat exchanger 1 is sufficiently exhibited to perform heat exchange. Efficiency is improved.

【0025】特に、冷媒は接続管2の通路2Pにて絞ら
れるので、熱交換器1の入口と出口の温度差を縮小する
ことができるようになり、入口における霜付きの発生を
抑制若しくは解消することが可能となる。
In particular, since the refrigerant is throttled in the passage 2P of the connecting pipe 2, the temperature difference between the inlet and the outlet of the heat exchanger 1 can be reduced, and the occurrence of frost at the inlet can be suppressed or eliminated. It becomes possible to do.

【0026】尚、実施例では各集合S1〜S3を二本の
並列配管6、7にて構成したが、更に多くの並列配管に
て構成しても良い。また、集合の数も三個に限らず、二
個或いは四個以上の多数の集合に熱交換器を区分しても
差し支えない。更に、実施例では冷媒回路の蒸発器に本
発明を適用したが、それに限らず、凝縮器にも本発明は
有効である。
Although each set S1 to S3 is composed of two parallel pipes 6 and 7 in the embodiment, it may be composed of more parallel pipes. Further, the number of sets is not limited to three, and the heat exchanger may be divided into a large number of sets of two or four or more. Furthermore, although the present invention is applied to the evaporator of the refrigerant circuit in the embodiment, the present invention is not limited to this, and the present invention is also effective to a condenser.

【0027】[0027]

【発明の効果】以上詳述した如く請求項1の発明によれ
ば、熱交換器を構成する冷媒配管を、それぞれ複数の並
列配管から構成された複数の集合に区分し、この集合の
並列配管を端部にて相互に連通させ、単一の通路にて他
の集合の並列配管の端部に連通させたので、万一ある集
合の並列配管において冷媒流量や液・ガス比率の不均一
が発生しても、当該集合を出た後は一旦合流されてから
他の集合に流入するため、この時点で冷媒流量等の不均
一は解消される。従って、熱交換器全体において冷媒流
量等の不均一が発生し難くなり、熱交換器の性能を十分
に発揮させて熱交換効率の向上を図ることができるよう
になる。
As described above in detail, according to the invention of claim 1, the refrigerant pipes constituting the heat exchanger are divided into a plurality of sets each composed of a plurality of parallel pipes, and the parallel pipes of this set are divided. Since they are communicated with each other at their ends and the ends of the parallel pipes of other sets are communicated with each other through a single passage, the flow rate of the refrigerant and the liquid / gas ratio may not be uniform in the parallel pipes of a certain set. Even if they occur, they are once merged after leaving the set and then flow into another set, so that the nonuniformity of the refrigerant flow rate and the like is resolved at this point. Therefore, nonuniformity of the flow rate of the refrigerant is less likely to occur in the entire heat exchanger, and the performance of the heat exchanger can be fully exerted to improve the heat exchange efficiency.

【0028】また、請求項2の発明によれば、相互に並
列に配置された複数の冷媒配管から成る複数の集合と、
これら集合間において両集合の各冷媒配管の端部に接続
された接続管とを備え、この接続管には両集合を連通す
る単一の通路を設けたので、万一ある集合の冷媒配管に
おいて冷媒流量等の不均一が発生しても、当該集合を出
た後は接続管にて一旦合流されてから他の集合に流入す
るため、この時点で冷媒流量等の不均一は解消される。
従って、熱交換器全体において冷媒流量等の不均一が発
生し難くなり、熱交換器の性能を十分に発揮させて熱交
換効率の向上を図ることができるようになる
According to the second aspect of the invention, a plurality of sets of a plurality of refrigerant pipes arranged in parallel with each other,
Between these sets, with a connecting pipe connected to the end of each refrigerant pipe of both sets, this connecting pipe was provided with a single passage that communicates both sets, so in the unlikely event of a refrigerant pipe of one set Even if the non-uniformity of the refrigerant flow rate or the like occurs, the non-uniformity of the refrigerant flow rate or the like is resolved at this point because the non-uniformity of the refrigerant flow rate is merged once by the connecting pipe and then flows into another set.
Therefore, nonuniformity of the flow rate of the refrigerant is less likely to occur in the entire heat exchanger, and the performance of the heat exchanger can be fully exhibited to improve the heat exchange efficiency.

【0029】更に、請求項3の発明によればこれらに加
えて、集合を相互に連通する通路の径を絞ったものであ
るから、熱交換器の入口と出口の温度差を縮小すること
ができるようになり、蒸発器として用いる場合には入口
における霜付きの発生を抑制若しくは解消することが可
能となるものである。
Further, according to the invention of claim 3, in addition to these, since the diameter of the passages for communicating the assembly is narrowed, it is possible to reduce the temperature difference between the inlet and the outlet of the heat exchanger. When it is used as an evaporator, it is possible to suppress or eliminate the formation of frost at the inlet.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の熱交換器の配管構成図である。FIG. 1 is a piping configuration diagram of a heat exchanger of the present invention.

【図2】本発明の熱交換器の正面図である。FIG. 2 is a front view of the heat exchanger of the present invention.

【図3】接続管の斜視図である。FIG. 3 is a perspective view of a connection pipe.

【図4】従来の熱交換器の配管構成図である。FIG. 4 is a piping configuration diagram of a conventional heat exchanger.

【図5】もう一つの従来の熱交換器の配管構成図であ
る。
FIG. 5 is a piping configuration diagram of another conventional heat exchanger.

【符号の説明】[Explanation of symbols]

1 熱交換器 2 接続管 2P 通路 3 フィン 4 冷媒配管 6、7 並列配管 S1〜S3 集合 1 Heat Exchanger 2 Connection Pipe 2P Passage 3 Fin 4 Refrigerant Pipe 6, 7 Parallel Pipe S1-S3 Assembly

フロントページの続き (72)発明者 柿沼 孝英 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 佐藤 晃司 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内Front Page Continuation (72) Inventor Takahide Kakinuma 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (72) Inventor Koji Sato 2-5-5 Keihan Hondori, Moriguchi City, Osaka Prefecture Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数枚のフィンを貫通して設けられた冷
媒配管を備えた熱交換器において、 前記冷媒配管を、それぞれ複数の並列配管から構成され
た複数の集合に区分すると共に、この集合の並列配管を
端部にて相互に連通させ、単一の通路にて他の集合の並
列配管の端部に連通させたことを特徴とする熱交換器。
1. A heat exchanger comprising a refrigerant pipe provided through a plurality of fins, wherein the refrigerant pipe is divided into a plurality of sets each composed of a plurality of parallel pipes, and 2. The heat exchanger characterized in that the parallel pipes of the above are communicated with each other at their ends, and are communicated with the ends of the parallel pipes of another set through a single passage.
【請求項2】 複数枚のフィンを貫通して設けられた冷
媒配管を備えた熱交換器において、 相互に並列に配置された複数の冷媒配管から成る複数の
集合と、これら集合間において両集合の各冷媒配管の端
部に接続された接続管とを備え、この接続管は前記両集
合を連通する単一の通路を有していることを特徴とする
熱交換器。
2. A heat exchanger provided with a refrigerant pipe penetrating a plurality of fins, comprising a plurality of sets of refrigerant pipes arranged in parallel with each other, and both sets between these sets. And a connection pipe connected to the end of each refrigerant pipe, the connection pipe having a single passage communicating the both sets.
【請求項3】 集合を相互に連通する通路の径を絞った
ことを特徴とする請求項1又は2の熱交換器。
3. The heat exchanger according to claim 1, wherein the diameter of the passages for communicating the assembly with each other is reduced.
JP6248599A 1994-09-16 1994-09-16 Heat exchanger Pending JPH0886583A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP6248599A JPH0886583A (en) 1994-09-16 1994-09-16 Heat exchanger
KR1019950010799A KR100223086B1 (en) 1994-09-16 1995-05-03 Cooling device mounted heat exchanger
TW084104413A TW322527B (en) 1994-09-16 1995-05-03
CN95106057A CN1132849A (en) 1994-09-16 1995-05-15 Heat exchanger and cooling device thereof
US08/494,026 US5699675A (en) 1994-09-16 1995-06-23 Heat exchanger and cooling apparatus mounted with the same
CA002155228A CA2155228C (en) 1994-09-16 1995-08-01 Heat exchanger and cooling apparatus mounted with the same
EP95112401A EP0702200A3 (en) 1994-09-16 1995-08-07 Heat exchanger and cooling apparatus mounted with the same
BR9504025A BR9504025A (en) 1994-09-16 1995-09-14 Heat exchanger and cooling device
SG1995010365A SG30440A1 (en) 1994-09-16 1995-09-15 Heat exchanger and cooling apparatus mounted with the same
SG9700275A SG94694A1 (en) 1994-09-16 1995-09-15 Heat exchanger and cooling apparatus mounted with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6248599A JPH0886583A (en) 1994-09-16 1994-09-16 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH0886583A true JPH0886583A (en) 1996-04-02

Family

ID=17180523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6248599A Pending JPH0886583A (en) 1994-09-16 1994-09-16 Heat exchanger

Country Status (2)

Country Link
JP (1) JPH0886583A (en)
SG (1) SG94694A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009154047A1 (en) * 2008-06-19 2009-12-23 三菱電機株式会社 Heat exchanger and air conditioner having the heat exchanger

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2102807A (en) * 1936-04-24 1937-12-21 George W Perks Game
US2626130A (en) * 1949-08-19 1953-01-20 Raskin Leon Heat exchanger device
JPS5356745A (en) * 1976-11-01 1978-05-23 Hitachi Ltd Evaporator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009154047A1 (en) * 2008-06-19 2009-12-23 三菱電機株式会社 Heat exchanger and air conditioner having the heat exchanger
JP2010002093A (en) * 2008-06-19 2010-01-07 Mitsubishi Electric Corp Heat exchanger and air conditioner equipped with the heat exchanger
US9322602B2 (en) 2008-06-19 2016-04-26 Mitsubishi Electric Corporation Heat exchanger having a plurality of plate-like fins and a plurality of flat-shaped heat transfer pipes orthogonal to the plate-like fins

Also Published As

Publication number Publication date
SG94694A1 (en) 2003-03-18

Similar Documents

Publication Publication Date Title
US7640970B2 (en) Evaporator using micro-channel tubes
US7527089B2 (en) Heat exchanger with multiple stage fluid expansion in header
EP2291600B1 (en) Refrigeration system comprising a microchannel heat exchanger including multiple fluid circuits
JP6109303B2 (en) Heat exchanger and refrigeration cycle apparatus
JP2006336936A (en) Refrigerant supplying method for finned tube type heat exchanger
TWI551837B (en) Air conditioner
JP2002139295A (en) Heat exchanger for air conditioning
JPH09145076A (en) Heat exchanger
JPH06300477A (en) Heat exchanger
JPH06194000A (en) Air conditioner
JPH0886583A (en) Heat exchanger
JPH06194003A (en) Air conditioner
JPH07208831A (en) Distributor for refrigerator
JP3083385B2 (en) Heat exchanger
JP2886544B2 (en) Indoor heat exchanger of air conditioner
JPH08145490A (en) Heat exchanger for heat pump air conditioner
KR100287621B1 (en) Multiflow type condenser for automobile air conditioner
CN217274956U (en) Evaporator and air conditioner with same
JPH08145593A (en) Heat exchanger
JPH06129732A (en) Refrigerant condenser
JPH02143094A (en) Heat exchanger equipped with heat transfer tube
JP3349265B2 (en) Heat exchanger
JPS6017646Y2 (en) Evaporator
JP2003294338A (en) Heat exchanger
JPS62147296A (en) Finned heat exchanger