JPH0883904A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JPH0883904A
JPH0883904A JP21965494A JP21965494A JPH0883904A JP H0883904 A JPH0883904 A JP H0883904A JP 21965494 A JP21965494 A JP 21965494A JP 21965494 A JP21965494 A JP 21965494A JP H0883904 A JPH0883904 A JP H0883904A
Authority
JP
Japan
Prior art keywords
substrate
buffer layer
layer
interface
inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21965494A
Other languages
Japanese (ja)
Inventor
Akira Wagai
晶 和賀井
Takao Noda
隆夫 野田
Yasuo Ashizawa
康夫 芦沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21965494A priority Critical patent/JPH0883904A/en
Publication of JPH0883904A publication Critical patent/JPH0883904A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE: To prevent a leakage current from flowing into a buffer layer by deciding In composition of the buffer layer to perform lattice matching with a substrate besides by making electronic affinity in the part coming in contact with the the substrate equal to that of the substrate and changing so as to gradually minimize an Al composition in the part coming in contact with a channel layer. CONSTITUTION: An InGaAlAs buffer layer 302, where a composition ratio of Ga and Al is gradually changed so that electronic affinity may be equal to InP in the interface with an InP substrate 301 and a band gap may be sufficiently wider than InGaAs in the interface with an InGaAs channel layer 303, is laminated on the InP substrate 301. Accordingly, the triangle well potential is not formed so that electrodes are hard to build up in the interface between the buffer layer 302 and the substrate 301. Thereby, a leakage current stops to flow to the interface between the buffer layer 302 and the substrate 301 so as to heighten an effect of carrier confinement.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電界効果トランジスタに
係り、特にInP/InGaAs/InAlAs系電界
効果トランジスタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field effect transistor, and more particularly to an InP / InGaAs / InAlAs system field effect transistor.

【0002】[0002]

【従来の技術】電界効果トランジスタ(FET)では、
半導体基板表面の欠陥などに起因するチャンネル層中の
電子の移動度の低下を防ぐため、基板とチャンネル層の
間にバッファ層を形成する。バッファ層には基板と同じ
組成の半導体を用いることが知られているが、基板の半
導体より電子親和力が小さい半導体をバッファ層に用い
た方がチャンネル層内部にキャリアを閉じ込める効果を
期待できる。
2. Description of the Related Art In a field effect transistor (FET),
A buffer layer is formed between the substrate and the channel layer in order to prevent a decrease in electron mobility in the channel layer due to defects on the surface of the semiconductor substrate. It is known to use a semiconductor having the same composition as that of the substrate for the buffer layer, but it is expected that a semiconductor having a smaller electron affinity than the semiconductor of the substrate is used for the buffer layer to confine carriers inside the channel layer.

【0003】電界効果トランジスタの電子の移動度は、
チャンネル層中の電子の移動度と基板側を流れる電子の
移動度により決定されるが、チャンネル層内部にキャリ
アを閉じ込める効果を大きくすると、オン状態で基板側
を流れる移動度の小さい電流成分を減少させることがで
きるので、素子全体の移動度を大きくすることができ
る。
The mobility of electrons in a field effect transistor is
It is determined by the mobility of electrons in the channel layer and the mobility of electrons flowing in the substrate side, but if the effect of confining carriers inside the channel layer is increased, the current component with low mobility flowing in the substrate side in the ON state is reduced. Therefore, the mobility of the entire device can be increased.

【0004】また、量産に適したMOCVD法によりバ
ッファ層を成長させた場合、残留キャリア濃度を十分に
抑えることが難しく、この部分にリーク電流が流れてし
まうという問題点がある。これを解決するには従来深い
アクセプタ準位を形成するFeをバッファ層中にドープ
することによって、残留キャリアをこの準位にトラップ
しバッファ層を高抵抗化することが知られている。
Further, when the buffer layer is grown by the MOCVD method suitable for mass production, it is difficult to sufficiently suppress the residual carrier concentration, and there is a problem that a leak current flows in this portion. In order to solve this, it is conventionally known that Fe that forms a deep acceptor level is doped into the buffer layer to trap residual carriers in this level and increase the resistance of the buffer layer.

【0005】[0005]

【発明が解決しようとする課題】本発明者らは、キャリ
アの閉じ込め効果を期待し、更にバッファ層中のリーク
電流のないFETを開発するために量産に適したMOC
VD法を用いて以下に示すFETを作成してみた。
The present inventors expect a carrier confinement effect and further develop a MOC suitable for mass production in order to develop an FET having no leak current in the buffer layer.
The FET shown below was made by using the VD method.

【0006】(1)キャリアの閉じ込め効果を期待し
て、InP基板上にInPよりも電子親和力が小さいI
nAlAsをバッファ層として用いた。 (2)バッファ層を高抵抗化するためにFeをドープし
た。
(1) I, which has a smaller electron affinity than InP on the InP substrate, expecting a carrier confinement effect.
nAlAs was used as a buffer layer. (2) Fe was doped to increase the resistance of the buffer layer.

【0007】この様にしてInP基板/FeドープIn
AlAsバッファ層/InGaAsチャンネル層構造の
FETを作成し、素子の移動度を計ってみた。しかしな
がらバッファ層中の残留キャリア濃度が抵抗率にして1
E6Ωcmになる程減少しているにも関わらず、バッフ
ァ層中にリーク電流が流れてしまうという問題点を今回
新たに見いだした。
In this way, InP substrate / Fe-doped In
An FET having an AlAs buffer layer / InGaAs channel layer structure was prepared and the mobility of the device was measured. However, the residual carrier concentration in the buffer layer has a resistivity of 1
This time, we newly found the problem that a leak current flows in the buffer layer despite the decrease to E6 Ωcm.

【0008】本発明は上記問題点に鑑みて成されたもの
で、上記したリーク電流を防ぎ、キャリア閉じ込め効果
が十分高く且つリーク電流のない新規なFETを提供す
ることを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a novel FET which prevents the above-mentioned leak current, has a sufficiently high carrier confinement effect, and has no leak current.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に本発明による電界効果トランジスタは、InPを主と
する半導体基板と、この半導体基板上に形成されたIn
x (Gay Al1-y1-x Asを主とするバッファ層
と、このバッファ層上に形成されたInGaAsを主と
するチャンネル層とを有する電界効果トランジスタであ
って、前記バッファ層は、前記基板と格子整合するよう
にIn組成xが決定され且つ前記基板と接する部分での
電子親和力が前記基板の電子親和力と等しく、前記チャ
ンネル層と接する部分では前記チャンネル層よりも十分
にバンドギャップが広くなるように、Al組成yを徐々
に小さくなるように変化させた層を含むことを特徴とす
る電界効果トランジスタ。
In order to achieve the above object, a field effect transistor according to the present invention is a semiconductor substrate mainly containing InP and In formed on the semiconductor substrate.
and x (Ga y Al 1-y ) buffer layer comprising mainly 1-x As, an InGaAs formed on the buffer layer a field effect transistor having a channel layer mainly, the buffer layer , The In composition x is determined so as to be lattice-matched with the substrate, the electron affinity at the portion in contact with the substrate is equal to the electron affinity at the substrate, and the band gap at the portion in contact with the channel layer is sufficiently larger than that at the channel layer. A field-effect transistor including a layer in which the Al composition y is changed so as to gradually become smaller.

【0010】[0010]

【作用】以下に、図を用いて本発明の作用を説明する。
図1は本発明者らが当初作成したInP基板104上
に、InPより電子親和力が小さいInAlAsバッフ
ァ層103を積層したFETのバンド図である。図中1
01はInAlAs電子供給層、102はInGaAs
チャンネル層である。
The operation of the present invention will be described below with reference to the drawings.
FIG. 1 is a band diagram of a FET in which an InAlAs buffer layer 103 having an electron affinity smaller than that of InP is laminated on an InP substrate 104 initially created by the present inventors. 1 in the figure
01 is an InAlAs electron supply layer, 102 is InGaAs
It is the channel layer.

【0011】この様な構造において、InAlAsバッ
ファ層103とInP基板104とは、電子親和力10
5、106が異なるため、両者の間に三角井戸型ポテン
シャル107が形成される。本発明者らの研究により、
InP/InAlAs系ではこの三角井戸型ポテンシャ
ル107に電子が溜まることによって、リーク電流が流
れていることが明らかになった。
In such a structure, the InAlAs buffer layer 103 and the InP substrate 104 have an electron affinity of 10
Since 5 and 106 are different, a triangular well potential 107 is formed between them. According to the research of the inventors,
In the InP / InAlAs system, it has been clarified that electrons are accumulated in the triangular well type potential 107 to cause a leak current.

【0012】そこで本発明はInAlAsバッファ層の
III 族組成をInP基板と接する部分での電子親和力が
InPの電子親和力と等しくするようにして、上記三角
井戸型ポテンシャル107をなくし、且つInGaAs
チャンネル層と接する部分ではInGaAsよりも十分
に広いバンドギャップとなるように、III 族組成として
Gaを混ぜGaのAlに対する組成比をチャンネル層に
向かって徐々に小さくなるように変化させてバッファ層
を形成した。
Therefore, the present invention is based on the InAlAs buffer layer.
By making the electron affinity of the group III composition in contact with the InP substrate equal to that of InP, the triangular well potential 107 is eliminated, and InGaAs
The buffer layer is formed by mixing Ga as a group III composition and changing the composition ratio of Ga to Al so as to become gradually smaller toward the channel layer so that a band gap that is sufficiently wider than that of InGaAs is formed in a portion in contact with the channel layer. Formed.

【0013】この様にGaとAlの組成比を変化させた
バッファ層を備えたFETのバンド図を図2に示す。I
nP基板204上に、InP基板204との界面では電
子親和力がInPと等しく、InGaAsチャンネル層
との界面ではバンドギャップがInGaAsよりも十分
広くなるように、GaとAl組成比を徐々に変化させた
InGaAlAsバッファ層203が積層されている。
図中201はInAlAs電子供給層、202はInG
aAsチャンネル層である。
FIG. 2 shows a band diagram of an FET provided with a buffer layer in which the composition ratio of Ga and Al is changed. I
On the nP substrate 204, the composition ratio of Ga and Al was gradually changed so that the electron affinity at the interface with the InP substrate 204 was equal to that of InP and the band gap at the interface with the InGaAs channel layer was sufficiently wider than that of InGaAs. The InGaAlAs buffer layer 203 is laminated.
In the figure, 201 is an InAlAs electron supply layer, and 202 is InG.
It is an aAs channel layer.

【0014】図のようにバッファ層203と基板204
界面での電子親和力が共に等しいため、三角井戸型ポテ
ンシャルは形成されない。従って、ポテンシャルの低い
部分は形成されないために、電子がバッファ層と基板と
の界面に溜まりにくい。以上のような作用により、バッ
ファ層と基板との界面にはリーク電流が流れなくなる。
As shown, the buffer layer 203 and the substrate 204
Since the electron affinities at the interfaces are the same, the triangular well type potential is not formed. Therefore, since a portion having a low potential is not formed, electrons are less likely to accumulate at the interface between the buffer layer and the substrate. Due to the above actions, the leak current does not flow at the interface between the buffer layer and the substrate.

【0015】[0015]

【実施例】以下に、本発明による電界効果トランジスタ
の一実施例として、バッファ層をInx (Gay Al
1-y1-x As層で形成したHEMTを例に示す。本実
施例は、本発明の理解を助けるために為されたものであ
り本発明を限定するものではない。
EXAMPLES As an example of the field effect transistor according to the present invention, the buffer layer is made of In x (Ga y Al).
HEMT formed of 1-y ) 1-x As layer is shown as an example. This example is provided to facilitate understanding of the present invention, and is not intended to limit the present invention.

【0016】図3は、本発明の一実施例に係るHEMT
の断面図である。MOCVD法によって、半絶縁性In
P基板301上に、バッファ層302としてFe濃度5
E16cm-3のFeドープIn0.5 (Gay Al1-y
0.5 As層をyの値を0.7から0まで徐々に変化させ
ながら300nm積層する。なおyの値は原料であるト
リメチルアルミニウム(TMA)およびトリメチルガリ
ウム(TMG)の供給を、マスフローコントローラーで
制御することで変化させることができる。
FIG. 3 shows a HEMT according to an embodiment of the present invention.
FIG. By the MOCVD method, semi-insulating In
Fe concentration of 5 as the buffer layer 302 on the P substrate 301
E 16 cm -3 Fe-doped In 0.5 (Ga y Al 1-y )
A 0.5 As layer is laminated in a thickness of 300 nm while gradually changing the value of y from 0.7 to 0. The value of y can be changed by controlling the supply of trimethylaluminum (TMA) and trimethylgallium (TMG), which are raw materials, with a mass flow controller.

【0017】Feの濃度はInGaAlAsの残留キャ
リア濃度(典型的には約1E15cm-3)以上で、Fe
の個溶限界濃度(約1E17cm-3)以下であることが
好ましい。
The Fe concentration is equal to or higher than the residual carrier concentration of InGaAlAs (typically about 1E15 cm -3 ).
It is preferable that the concentration is not more than the individual dissolution limit concentration (about 1E17 cm −3 ).

【0018】次に、バッファ層302上にノンドープI
nGaAsチャンネル層303を20nm、ノンドープ
InAlAsスペーサー層304を3nm、ドナー濃度
3E18cm-3 n型InAlAs電子供給層305を
20nm、ノンドープInAlAsショットキーコンタ
クト層306を20nm順次格子整合するように成長さ
せる。
Next, non-doped I is formed on the buffer layer 302.
An nGaAs channel layer 303 is grown to a thickness of 20 nm, a non-doped InAlAs spacer layer 304 is grown to a thickness of 3 nm, a donor concentration of 3E18 cm −3 n-type InAlAs electron supply layer 305 is grown to a thickness of 20 nm, and a non-doped InAlAs Schottky contact layer 306 is grown to a lattice match in order of 20 nm.

【0019】次に、ドナー濃度5E18cm-3のオーミ
ックコンタクト層となるn型InGaAs層を20nm
格子整合するように成長させた後、ゲート電極を形成す
る部分をエッチング除去してn型InGaAsオーミッ
クコンタクト層307を形成する。
Next, an n-type InGaAs layer serving as an ohmic contact layer having a donor concentration of 5E18 cm -3 is formed to a thickness of 20 nm.
After the growth is performed so as to be lattice-matched, the portion forming the gate electrode is removed by etching to form the n-type InGaAs ohmic contact layer 307.

【0020】次に、ショットキーコンタクト層306上
にゲート電極308をAuGe合金により蒸着形成し、
オーミックコンタクト層307上にソース電極309及
びドレイン電極310をPtにより蒸着形成する。
Next, a gate electrode 308 is formed by vapor deposition of AuGe alloy on the Schottky contact layer 306,
A source electrode 309 and a drain electrode 310 are formed by vapor deposition of Pt on the ohmic contact layer 307.

【0021】以上の成長は、基板温度650℃、反応管
圧力70torrで行った。原料としてIII 族原料にトリメ
チルインジウム、トリメチルアルミニウム(TMA)、
トリメチルゲルマニウム(TMG)を用い、V族原料に
フォスフィン、アルシンを用いた。またn型ドーパント
としてジシラン、Feドーパントとしてフェロセンを用
いた。
The above growth was performed at a substrate temperature of 650 ° C. and a reaction tube pressure of 70 torr. Group III raw materials such as trimethylindium, trimethylaluminum (TMA),
Trimethylgermanium (TMG) was used, and phosphine and arsine were used as group V raw materials. Further, disilane was used as the n-type dopant and ferrocene was used as the Fe dopant.

【0022】本実施例ではバッファ層にFeをドープし
たので、残留不純物としての電子はFeが形成する深い
アクセプター準位に捕獲されており、残留キャリア濃度
は非常に低いものであった。
In the present embodiment, since the buffer layer was doped with Fe, electrons as residual impurities were trapped in the deep acceptor level formed by Fe, and the residual carrier concentration was very low.

【0023】上記のように作成したHEMTの特性を調
べたところ、バッファ層中にリーク電流が流れおらず、
バッファ層の耐圧が5V以上あることが分かった。この
ことはバッファ層302が基板301界面で基板と電子
親和力が等しいため、両者の界面には三角井戸型ポテン
シャルがないためと推測される。
When the characteristics of the HEMT prepared as described above were examined, no leak current flowed in the buffer layer.
It was found that the breakdown voltage of the buffer layer was 5 V or more. It is speculated that this is because the buffer layer 302 has the same electron affinity as the substrate at the interface of the substrate 301, and thus there is no triangular well potential at the interface between the two.

【0024】比較例として、本実施例のバッファ層に替
えて、InAlAsバッファ層を備えたHEMTを作成
し、移動度の比較を行った。2元電子ガス濃度2.7E
12cm-2における室温の移動度が、比較例では7.5
E3cmv-1-1であるのに対して、本実施例によるH
EMTでは、1.0E4cmv-1-1と格段に向上して
いることが分かった。
As a comparative example, a HEMT having an InAlAs buffer layer in place of the buffer layer of this example was prepared and the mobilities were compared. Dual electron gas concentration 2.7E
The mobility at room temperature at 12 cm −2 is 7.5 in the comparative example.
E3 cmv −1 s −1 , whereas H according to the present embodiment
In EMT, it was found to be significantly improved to 1.0E4 cmv -1 s -1 .

【0025】[0025]

【発明の効果】本発明によれば、キャリアの閉じ込め効
果が高く、バッファ層中のリーク電流の無いFETを提
供することができる。
According to the present invention, an FET having a high carrier confinement effect and no leak current in the buffer layer can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】 InAlAsバッファ層を備えたHEMTの
バンド図
FIG. 1 is a band diagram of a HEMT with an InAlAs buffer layer.

【図2】 本発明によるバッファ層を備えたHEMTの
バンド図
FIG. 2 is a band diagram of a HEMT including a buffer layer according to the present invention.

【図3】 本発明の一実施例に関わるFETの断面図FIG. 3 is a sectional view of an FET according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

301 InP基板 302 バッファ層 303 チャンネル層 304 スペーサー層 305 電子供給層 306 ショットキーコンタクト層 307 オーミックコンタクト層 308 ゲート電極 309 ソース電極 310 ドレイン電極 301 InP substrate 302 Buffer layer 303 Channel layer 304 Spacer layer 305 Electron supply layer 306 Schottky contact layer 307 Ohmic contact layer 308 Gate electrode 309 Source electrode 310 Drain electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】InPを主とする半導体基板と、 この半導体基板上に形成されたInx (Gay Al
1-y1-x Asを主とするバッファ層と、 このバッファ層上に形成されたInGaAsを主とする
チャンネル層とを有する電界効果トランジスタであっ
て、 前記バッファ層は、前記基板と格子整合するようにIn
組成xが決定され且つ前記基板と接する部分での電子親
和力が前記基板の電子親和力と等しく、前記チャンネル
層と接する部分では前記チャンネル層よりも十分にバン
ドギャップが広くなるように、Al組成yを徐々に小さ
くなるように変化させた層を含むことを特徴とする電界
効果トランジスタ。
1. A semiconductor substrate mainly containing InP and In x (Ga y Al) formed on the semiconductor substrate.
1-y ) A field effect transistor having a buffer layer mainly composed of 1-x As and a channel layer mainly composed of InGaAs formed on the buffer layer, wherein the buffer layer is composed of the substrate and a lattice. In to match
Al composition y is determined so that the composition x is determined and the electron affinity at the portion in contact with the substrate is equal to the electron affinity at the substrate and the band gap is sufficiently wider at the portion in contact with the channel layer than the channel layer. A field effect transistor comprising a layer that is gradually reduced.
JP21965494A 1994-09-14 1994-09-14 Field effect transistor Pending JPH0883904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21965494A JPH0883904A (en) 1994-09-14 1994-09-14 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21965494A JPH0883904A (en) 1994-09-14 1994-09-14 Field effect transistor

Publications (1)

Publication Number Publication Date
JPH0883904A true JPH0883904A (en) 1996-03-26

Family

ID=16738896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21965494A Pending JPH0883904A (en) 1994-09-14 1994-09-14 Field effect transistor

Country Status (1)

Country Link
JP (1) JPH0883904A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006509369A (en) * 2002-12-05 2006-03-16 レイセオン・カンパニー Quaternary-ternary semiconductor devices
US10079324B2 (en) 2015-07-30 2018-09-18 Mitsubishi Electric Corporation Semiconductor light-receiving device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006509369A (en) * 2002-12-05 2006-03-16 レイセオン・カンパニー Quaternary-ternary semiconductor devices
US10079324B2 (en) 2015-07-30 2018-09-18 Mitsubishi Electric Corporation Semiconductor light-receiving device

Similar Documents

Publication Publication Date Title
US6534790B2 (en) Compound semiconductor field effect transistor
US7902571B2 (en) III-V group compound semiconductor device including a buffer layer having III-V group compound semiconductor crystal
WO2010116699A1 (en) Semiconductor substrate, method for manufacturing semiconductor substrate, method for evaluating semiconductor substrate, and electronic device
US6919589B2 (en) HEMT with a graded InGaAlP layer separating ohmic and Schottky contacts
JPH07263663A (en) Field effect type compound semiconductor device
JPH0883904A (en) Field effect transistor
JP3447438B2 (en) Field effect transistor
JP2000349278A (en) Iii-v compound semiconductor crystal
JPH10144611A (en) Method for growing iii-v compound semiconductor crystal
JP4984511B2 (en) III-V compound semiconductor device
JPH028450B2 (en)
JPWO2005031829A1 (en) Semiconductor device and semiconductor integrated device
JP3338911B2 (en) Semiconductor device and manufacturing method thereof
JPH0738091A (en) Semiconductor device
JP3963043B2 (en) Method of manufacturing epitaxial wafer for field effect transistor
JPH06252175A (en) Transistor having high electron mobility
JPH09260643A (en) High-electron mobility transistor
JPH07142511A (en) Hetero junction field-effect transistor
JP2001244455A (en) Iii-v group compound semiconductor wafer
JP2000260978A (en) Field-effect transistor and its manufacture
JP2003206199A (en) Compound semiconductor crystal
JP2008192830A (en) Third-fifth group compound semiconductor device and manufacturing method therefor
JPH10107257A (en) Field-effect transistor
JPH07193223A (en) Manufacture of hetero-junction fet
JP2003100777A (en) High electron mobility transistor and epitaxial growth compound semiconductor crystal