JP4984511B2 - III-V compound semiconductor device - Google Patents

III-V compound semiconductor device Download PDF

Info

Publication number
JP4984511B2
JP4984511B2 JP2005355550A JP2005355550A JP4984511B2 JP 4984511 B2 JP4984511 B2 JP 4984511B2 JP 2005355550 A JP2005355550 A JP 2005355550A JP 2005355550 A JP2005355550 A JP 2005355550A JP 4984511 B2 JP4984511 B2 JP 4984511B2
Authority
JP
Japan
Prior art keywords
layer
type
compound semiconductor
semiconductor device
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005355550A
Other languages
Japanese (ja)
Other versions
JP2007067359A (en
Inventor
僚多 磯野
隆 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2005355550A priority Critical patent/JP4984511B2/en
Publication of JP2007067359A publication Critical patent/JP2007067359A/en
Application granted granted Critical
Publication of JP4984511B2 publication Critical patent/JP4984511B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)

Description

本発明は、FET(Field Effect Transistor:電界効果トランジスタ)やHEMT(High Electron Mobility Transistor:高電子移動度トランジスタ)などのIII-V族化合物半導体装置、特にそのバッファ層の改良に関するものである。   The present invention relates to a group III-V compound semiconductor device such as a field effect transistor (FET) or a high electron mobility transistor (HEMT), and particularly to an improvement of a buffer layer thereof.

トランジスタの性能を向上させるためには、より多くの多数キャリアをより高速に伝達できる材質を用いることが重要である。GaAs(ガリウム砒素)やInGaAs(インジウムガリウム砒素)はSi(シリコン)に比べて、電子移動度が高いという特徴がある。この特徴を活かして、GaAsやInGaAsは高速デバイスに多く用いられている。代表例としてHEMT(High Electron Mobility Transistor)が挙げられる。   In order to improve the performance of the transistor, it is important to use a material that can transmit more majority carriers at a higher speed. GaAs (gallium arsenide) and InGaAs (indium gallium arsenide) are characterized by higher electron mobility than Si (silicon). Taking advantage of this feature, GaAs and InGaAs are often used in high-speed devices. A representative example is HEMT (High Electron Mobility Transistor).

FETやHEMTといった電界効果トランジスタは、現在、半絶縁性GaAs基板上にバッファ層、その上に活性層をエピタキシャル成長させたエピタキシャルウエハを用いるのが一般的である。   Field effect transistors such as FETs and HEMTs generally use an epitaxial wafer in which a buffer layer is epitaxially grown on a semi-insulating GaAs substrate and an active layer is epitaxially grown thereon.

HEMTのおおまかな構造を図8に示す。HEMTは、基板上に結晶成長されたバッファ層、チャネル層、スペーサ層、キャリア供給層、及びコンタクト層よりなる。コンタクト層は電極を形成するための層である。キャリア供給層は自由電子を発生しチャネル層へ供給するための層である。チャネル層は自由電子が流れる層であり、高純度である必要がある。   A rough structure of the HEMT is shown in FIG. The HEMT includes a buffer layer, a channel layer, a spacer layer, a carrier supply layer, and a contact layer that are crystal-grown on a substrate. The contact layer is a layer for forming an electrode. The carrier supply layer is a layer for generating free electrons and supplying them to the channel layer. The channel layer is a layer through which free electrons flow and needs to be highly pure.

バッファ層は基板とエピタキシャル結晶との界面に生じる欠陥層の活性層への影響を防ぐために設けられるが、このバッファ層が低抵抗であると、バッファ層に活性層から電流がリークしてしまう。よってバッファ層は高抵抗なエピタキシャル結晶であることが必要とされる。バッファ層を高抵抗化するためにはバッファ層の不純物濃度を低くする、もしくはヘテロ障壁を高くしなければならない。   The buffer layer is provided in order to prevent the defect layer generated at the interface between the substrate and the epitaxial crystal from affecting the active layer. If the buffer layer has a low resistance, current leaks from the active layer to the buffer layer. Therefore, the buffer layer is required to be a high resistance epitaxial crystal. In order to increase the resistance of the buffer layer, it is necessary to lower the impurity concentration of the buffer layer or increase the hetero barrier.

従来、バッファ層に電流が漏れると著しく素子特性が悪化するため、p型半導体基板上にp型バッファ層及びチャネル層をエピタキシャル成長して作製する電界効果型半導体装置において、リーク電流を抑制するように、p型バッファ層のアクセプタ濃度を5×1015/cm3から5×1016/cm3とすることが開示されている(例えば、特許文献1参照)。
特開平10-116837号公報(段落0019)
Conventionally, when the current leaks to the buffer layer, the device characteristics are remarkably deteriorated. Therefore, in the field effect semiconductor device manufactured by epitaxially growing the p-type buffer layer and the channel layer on the p-type semiconductor substrate, the leak current is suppressed. It is disclosed that the acceptor concentration of the p-type buffer layer is 5 × 10 15 / cm 3 to 5 × 10 16 / cm 3 (see, for example, Patent Document 1).
JP-A-10-116837 (paragraph 0019)

しかしながら、従来、バッファ層のAl混晶比や膜厚との関係においてp型濃度を論じたものはない。   However, no p-type concentration has been discussed in relation to the Al mixed crystal ratio and film thickness of the buffer layer.

本発明者等が鋭意研究努力した結果、次のことを見出した。すなわち、問題点は、上記で述べた結晶成長法で作製されたエピタキシャルウエハの半絶縁性基板とエピタキシャル層の界面に低抵抗の導電層が存在することである。このようなエピタキシャルウエハを用いてHEMT等の電界効果トランジスタを作製すると、エピタキシャル層と基板界面の導電層を通じて、ソース電極とドレイン電極の間にリーク電流が流れ、トランジスタの電気特性を悪化させる。低抵抗層が形成される原因は、大気中などいたるところに存在しているシリコンや成長炉内に残留してしまったドーパント原料が成長前基板の表面に付着し、成長後も存在してn型キャリアとなってしまうと考えられる。   As a result of diligent research efforts by the present inventors, the following has been found. That is, the problem is that a low resistance conductive layer exists at the interface between the semi-insulating substrate and the epitaxial layer of the epitaxial wafer manufactured by the crystal growth method described above. When a field effect transistor such as a HEMT is manufactured using such an epitaxial wafer, a leakage current flows between the source electrode and the drain electrode through the conductive layer at the interface between the epitaxial layer and the substrate, thereby deteriorating the electrical characteristics of the transistor. The reason why the low resistance layer is formed is that silicon existing everywhere in the atmosphere and dopant raw material remaining in the growth furnace adhere to the surface of the substrate before growth and exist after growth. It is thought to become a mold carrier.

そこで、本発明の目的は、上記課題を解決し、バッファ構造を適切にすることにより、電極間の更なるリーク電流の低減(1×10-9A以下)を図り、高耐圧化と高性能化を実現したIII-V族化合物半導体装置を提供することにある。 Accordingly, an object of the present invention is to solve the above-mentioned problems and to further reduce the leakage current (less than 1 × 10 −9 A) between the electrodes by making the buffer structure appropriate, thereby increasing the breakdown voltage and improving the performance. An object of the present invention is to provide a group III-V compound semiconductor device which realizes the fabrication.

バッファ層最下層のAlxGa1-xAs層のNd積の範囲を限定することにより、電極間のリーク電流を低減する。 By limiting the range of the Nd product of the Al x Ga 1-x As layer as the lowermost layer of the buffer layer, the leakage current between the electrodes is reduced.

上記目的を達成するため、本発明は、次のように構成したものである。   In order to achieve the above object, the present invention is configured as follows.

請求項の発明は、半絶縁性基板上に、下層から順にバッファ層、チャネル層、スペーサ層、キャリア供給層、ショットキー層、コンタクト層を有するIII-V族化合物半導体装置において、半絶縁性基板はGaAs基板であり、前記バッファ層が、無添加のGaAs層および無添加のAlxGa1-xAs層(0≦x≦1)を交互に積み重ねたGaAs/AlxGa1-xAsのヘテロ構造を2回以上成長した積層部分と、その積層部分の下に前記バッファ層の最下層として設けたAlxGa1-xAs(0.3≦x≦1)のp型バッファ層とから構成され、前記チャネル層は、厚さ20nm、キャリア濃度1×10 16 /cm 3 以下のi型In 0.20 Ga 0.80 As層であり、前記スペーサ層は、厚さ3nm、キャリア濃度1×10 16 /cm 3 以下のi型Al 0.25 Ga 0.75 As層であり、前記キャリア供給層は、厚さ250nm、キャリア濃度3×10 18 /cm 3 のn型Al 0.25 Ga 0.75 As層であり、前記ショットキー層は、厚さ50nm、キャリア濃度1×10 16 /cm 3 以下のi型Al 0.25 Ga 0.75 As層であり、前記コンタクト層は、厚さ100nm、キャリア濃度3×10 18 /cm 3 のn型GaAs層であり、前記チャネル層、前記スペーサ層、前記キャリア供給層、および前記ショットキー層がHEMT構造を有することを特徴とする。 The invention according to claim 1, on a semi-insulating substrate, Ba Ffa layer in order from the lower layer, the channel layer, a spacer layer, the carrier supply layer, Schottky layer, the group III-V compound semiconductor device having a contact layer, the semi the insulating substrate is a GaAs substrate, the buffer layer, a GaAs layer and without addition of additive-free Al x Ga 1-x As layer (0 ≦ x ≦ 1) GaAs / stacked alternately Al x Ga 1- a lamination portion heterostructures x as grown two or more times, p-type buffer Al x Ga 1-x as provided as the lowermost layer of the buffer layer beneath the stack portion (0.3 ≦ x ≦ 1) The channel layer is an i-type In 0.20 Ga 0.80 As layer having a thickness of 20 nm and a carrier concentration of 1 × 10 16 / cm 3 or less , and the spacer layer has a thickness of 3 nm and a carrier concentration of 1 × 10 16 / cm 3 or less of the i-type a A 0.25 Ga 0.75 As layer, the carrier supply layer has a thickness of 250 nm, n-type Al 0.25 Ga 0.75 As layer having a carrier concentration 3 × 10 18 / cm 3, the Schottky layer has a thickness of 50 nm, the carrier An i-type Al 0.25 Ga 0.75 As layer with a concentration of 1 × 10 16 / cm 3 or less , the contact layer is an n-type GaAs layer with a thickness of 100 nm and a carrier concentration of 3 × 10 18 / cm 3 , and the channel layer The spacer layer, the carrier supply layer, and the Schottky layer have a HEMT structure .

請求項の発明は、請求項1記載のIII-V族化合物半導体装置において、前記p型バッファ層の膜厚と酸素または遷移金属もしくはその両方のp型キャリア濃度との積(Nd積とする。)が、1×1010〜1×1012/cm2の範囲にあることを特徴とする。 The invention of claim 2 is the group III-V compound semiconductor device according to claim 1 Symbol placement, and product (Nd product of film thickness and the oxygen or a transition metal or p-type carrier concentration of both the p-type buffer layer Is in the range of 1 × 10 10 to 1 × 10 12 / cm 2 .

請求項の発明は、請求項記載のIII-V族化合物半導体装置において、前記p型キャリア濃度が、酸素または遷移金属もしくはその両方をドープしたことによるものであることを特徴とする。 A third aspect of the present invention, the group III-V compound semiconductor device according to claim 2, wherein the p-type carrier concentration, characterized in that oxygen or a transition metal, or both is by doped.

請求項の発明は、請求項1〜のいずれかに記載のIII-V族化合物半導体装置において、前記p型バッファ層として挿入するp型AlxGa1-xAs層の厚さが2〜50nmであることを特徴とする。 According to a fourth aspect of the present invention, in the III-V compound semiconductor device according to any one of the first to third aspects, the thickness of the p-type Al x Ga 1-x As layer inserted as the p-type buffer layer is 2 ˜50 nm.

<発明の要点>
本発明は、FETやHEMTなどのIII-V族化合物半導体装置において、バッファ層のうちの最下層としてp型のAlxGa1-xAs(0.3≦x≦1)の層部分を設けるものであり、p型でバンドを持ち上げるために、よりバッファ層側に流れる漏れ電流を抑止することが可能となる。すなわち、同じNd積であっても、p型のAlxGa1-xAs中の混晶比xを0.3以上に大きくすることにより、リーク電流を減少させることができる。図6には混晶比xをx=0.35、x=0.55、x=0.75と大きくするにつれ、リーク電流が減少する様子が示されている。
<Key points of the invention>
The present invention provides a p-type Al x Ga 1-x As (0.3 ≦ x ≦ 1) layer portion as the lowermost layer of a buffer layer in a III-V compound semiconductor device such as an FET or HEMT. In order to lift the band with the p-type, it is possible to suppress the leakage current flowing to the buffer layer side. That is, even with the same Nd product, the leakage current can be reduced by increasing the mixed crystal ratio x in p-type Al x Ga 1-x As to 0.3 or more. FIG. 6 shows how the leakage current decreases as the mixed crystal ratio x is increased to x = 0.35, x = 0.55, and x = 0.75.

また本発明は、このバッファ層の最下層であるp型バッファ層の膜厚とp型バッファ層のp型キャリア濃度との積(Nd積)が、1×1010〜1×1012/cm2の範囲にあるようにする。図7にこの最適範囲を示す。このようにバッファ層の膜厚および最下層のp型濃度を規定することにより、リーク電流の低減を図り、電界効果トランジスタの高耐圧化、高性能化を実現することができる。 In the present invention, the product (Nd product) of the thickness of the p-type buffer layer, which is the lowermost layer of the buffer layer, and the p-type carrier concentration of the p-type buffer layer is 1 × 10 10 to 1 × 10 12 / cm. Be in the range of 2 . FIG. 7 shows this optimum range. Thus, by defining the thickness of the buffer layer and the p-type concentration of the lowermost layer, it is possible to reduce the leakage current, and to realize a high breakdown voltage and high performance of the field effect transistor.

本発明によれば、低電圧印加時のリーク電流を低減することができる。すなわち、バッファ層におけるIII-V族化合物半導体結晶を高抵抗化して、FETやHEMTなどのIII-V族化合物半導体装置の高耐圧化、高性能化を実現することができる。   According to the present invention, leakage current when a low voltage is applied can be reduced. That is, by increasing the resistance of the III-V compound semiconductor crystal in the buffer layer, it is possible to realize a high breakdown voltage and high performance of a III-V compound semiconductor device such as an FET or HEMT.

以下、本発明を図示の実施の形態に基づいて説明する。   Hereinafter, the present invention will be described based on the illustrated embodiments.

本発明の実施形態として、HEMTエピタキシャルウエハの構造を図1に示した。III族有機金属原料ガスとV族原料ガスを、高純度水素キャリアガスとの混合ガスとして反応炉内に送り込み、反応炉内で加熱された基板付近で原料が熱分解され、基板上にエピタキシャル成長する有機金属気相成長法(Metal Organic Vapor Phase Epitaxy、以下MOVPE法)を用いて、バッファ層最下層に、ある範囲のNd積のp型AlxGa1-xAs層を挿入し、これにより高抵抗で高耐圧なIII-V族化合物半導体結晶を成長する。成長時の基板温度は650℃、成長炉内圧力は76Torr、希釈用ガスは水素である。基板にはGaAs基板を用いた。 As an embodiment of the present invention, the structure of a HEMT epitaxial wafer is shown in FIG. A group III organometallic source gas and a group V source gas are fed into the reactor as a mixed gas of high-purity hydrogen carrier gas, and the source material is thermally decomposed near the substrate heated in the reactor and is epitaxially grown on the substrate. Using a metal organic vapor phase epitaxy (hereinafter referred to as MOVPE method), a p-type Al x Ga 1-x As layer having a certain range of Nd product is inserted into the lowermost layer of the buffer layer, thereby increasing the height. A III-V compound semiconductor crystal having high resistance and high withstand voltage is grown. The substrate temperature during growth is 650 ° C., the growth furnace pressure is 76 Torr, and the dilution gas is hydrogen. A GaAs substrate was used as the substrate.

MOVPE法により、半絶縁性GaAs基板1上に、バッファ層2を設け、その上に、チャネル層3としてi型In0.20Ga0.80As(厚さ20nm、キャリア濃度1×1016/cm3以下)を設ける。その上に更に、スペーサ層4として、i型Al0.25Ga0.75As層(厚さ3nm、キャリア濃度1×1016/cm3以下)、キャリア供給層5としてn型Al0.25Ga0.75As(厚さ250nm、キャリア濃度3×1018/cm3)、その上にゲートコンタクト層(ショットキー層)6としてi型Al0.25Ga0.75As(厚さ50nm、キャリア濃度1×1016/cm3以下)を設け、その上にコンタクト層7としてn型GaAs(厚さ100nm、キャリア濃度3×1018/cm3)を設けた。 The buffer layer 2 is provided on the semi-insulating GaAs substrate 1 by the MOVPE method, and the i-type In 0.20 Ga 0.80 As (thickness 20 nm, carrier concentration 1 × 10 16 / cm 3 or less) is formed thereon as the channel layer 3. Is provided. Furthermore, an i-type Al 0.25 Ga 0.75 As layer (thickness 3 nm, carrier concentration 1 × 10 16 / cm 3 or less) is used as the spacer layer 4, and an n-type Al 0.25 Ga 0.75 As (thickness) is used as the carrier supply layer 5. 250 nm, carrier concentration 3 × 10 18 / cm 3 ), and an i-type Al 0.25 Ga 0.75 As (thickness 50 nm, carrier concentration 1 × 10 16 / cm 3 or less) as a gate contact layer (Schottky layer) 6 thereon An n-type GaAs (thickness: 100 nm, carrier concentration: 3 × 10 18 / cm 3 ) was provided as a contact layer 7 thereon.

上記バッファ層2は、GaAs層およびAlxGa1-xAs層(0≦x≦1)を交互に積み重ねたGaAs/AlxGa1-xAsのヘテロ構造を2回以上成長した積層部分2bと、その積層部分の下にバッファ層の最下層2aとして設けたp型のAlxGa1-xAs(0.3≦x≦1)からなる。ここでは、バッファ層2の最下層2aとして、p型Al0.50Ga0.50As(厚さ10nm、キャリア濃度2×1017/cm3)を設けた。そして、このバッファ層2における最下層2aの膜厚(10nm)と、酸素または遷移金属をドープしたことによるp型キャリア濃度との積を1×1010〜1×1013/cm2の範囲に納めた。遷移金属としては、Ti(チタン)、Cr(クロム)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Cu(銅)、Zn(亜鉛)のうちから任意のものを選択的に使用した。 The buffer layer 2 includes a laminated portion 2b in which a heterostructure of GaAs / Al x Ga 1-x As in which GaAs layers and Al x Ga 1-x As layers (0 ≦ x ≦ 1) are alternately stacked is grown twice or more. And p-type Al x Ga 1-x As (0.3 ≦ x ≦ 1) provided as the lowermost layer 2a of the buffer layer under the laminated portion. Here, p-type Al 0.50 Ga 0.50 As (thickness 10 nm, carrier concentration 2 × 10 17 / cm 3 ) was provided as the lowermost layer 2 a of the buffer layer 2. And the product of the film thickness (10 nm) of the lowermost layer 2a in this buffer layer 2 and the p-type carrier concentration by doping oxygen or transition metal is in the range of 1 × 10 10 to 1 × 10 13 / cm 2 . I paid. As the transition metal, any one of Ti (titanium), Cr (chromium), Fe (iron), Co (cobalt), Ni (nickel), Cu (copper), and Zn (zinc) is selectively used. did.

上記において、バッファ層2の最下層2aであるp型Al0.50Ga0.50As層の成長には、Ga(CH33(トリメチルガリウム)、Al(CH33(トリメチルアルミニウム)及びAsH3(アルシン)を用い、それらの流量はそれぞれ5.3cm3/分、2.20cm3/分及び250cm3/分とした。 In the above, for the growth of the p-type Al 0.50 Ga 0.50 As layer, which is the lowermost layer 2a of the buffer layer 2, Ga (CH 3 ) 3 (trimethylgallium), Al (CH 3 ) 3 (trimethylaluminum) and AsH 3 ( arsine), each of those flow rate 5.3 cm 3 / min, was 2.20cm 3 / min and 250 cm 3 / min.

バッファ層2のi型GaAs層の成長には、Ga(CH33とAsH3を用いた。Ga(CH33の流量は10.5cm3/分である。AsH3の流量は315cm3/分である。 Ga (CH 3 ) 3 and AsH 3 were used for growing the i-type GaAs layer of the buffer layer 2. The flow rate of Ga (CH 3 ) 3 is 10.5 cm 3 / min. The flow rate of AsH 3 is 315 cm 3 / min.

バッファ層2やスペーサ層4やゲートコンタクト層6のi型Al0.25Ga0.75As層の成長には、Ga(CH33、Al(CH33及びAsH3を用い、それらの流量はそれぞれ5.3cm3/分、1.43cm3/分及び630cm3/分である。 Ga (CH 3 ) 3 , Al (CH 3 ) 3, and AsH 3 are used for growing the i-type Al 0.25 Ga 0.75 As layer of the buffer layer 2, the spacer layer 4, and the gate contact layer 6. 5.3 cm 3 / min, 1.43 cm 3 / min and 630 cm 3 / min.

チャネル層3のi型In0.20Ga0.80As層の成長にはGa(CH33、In(CH33及びAsH3を用い、それらの流量はそれぞれ5.3cm3/分、2.09cm3/分及び500cm3/分である。 Ga (CH 3 ) 3 , In (CH 3 ) 3 and AsH 3 are used for growing the i-type In 0.20 Ga 0.80 As layer of the channel layer 3, and their flow rates are 5.3 cm 3 / min and 2.09 cm, respectively. 3 / min and 500 cm 3 / min.

キャリア供給層5のn型Al0.25Ga0.75As層の成長には、i型Al0.25Ga0.75Asの成長に使用したGa(CH33、Al(CH33、AsH3に加えて、Si26を使用した。Si26の流量は7.78×10-3cm3/分である。Si26以外の流量はi型Al0.25Ga0.75As層の場合と同じである。 For the growth of the n-type Al 0.25 Ga 0.75 As layer of the carrier supply layer 5, in addition to Ga (CH 3 ) 3 , Al (CH 3 ) 3 , AsH 3 used for the growth of i-type Al 0.25 Ga 0.75 As, Si 2 H 6 was used. The flow rate of Si 2 H 6 is 7.78 × 10 −3 cm 3 / min. The flow rate other than Si 2 H 6 is the same as that of the i-type Al 0.25 Ga 0.75 As layer.

コンタクト層7のn型GaAs層の成長には、i型GaAsの成長に使用したGa(CH33、AsH3に加えてSi26を用いた。Si26の流量は1.47×10-4cm3/分である。 For the growth of the n-type GaAs layer of the contact layer 7, Si 2 H 6 was used in addition to Ga (CH 3 ) 3 and AsH 3 used for the growth of i-type GaAs. The flow rate of Si 2 H 6 is 1.47 × 10 −4 cm 3 / min.

<最適条件についての根拠>
本発明の効果を確認する為に、Nd積で1×109〜2×1012/cm2の範囲で、酸素または遷移金属をドープしたエピタキシャルウエハのリーク電流を測定した。測定図を図2に、結果を図3〜図5に示す。
<Reason for optimum conditions>
In order to confirm the effect of the present invention, the leakage current of the epitaxial wafer doped with oxygen or transition metal was measured in the range of 1 × 10 9 to 2 × 10 12 / cm 2 in terms of Nd product. The measurement diagram is shown in FIG. 2, and the results are shown in FIGS.

測定の仕方は図2の通りで、測定を行う為にコンタクト層、キャリア供給層、スペーサ層、チャネル層の一部を除去し、コンタクト層表面に2箇所電極を付ける。その両端に電圧を印加したときに流れる電流値を測定する。   The method of measurement is as shown in FIG. 2. In order to perform the measurement, the contact layer, carrier supply layer, spacer layer, and channel layer are partially removed, and two electrodes are attached to the contact layer surface. The value of the current that flows when a voltage is applied across both ends is measured.

リーク電流の測定結果は図3〜図5に示す通りであり、バッファ層の最下層2aのNd積を1×109〜2×1012/cm2と増やして行くと、リーク電流は減少する。 The measurement results of the leakage current are as shown in FIGS. 3 to 5. As the Nd product of the lowermost layer 2a of the buffer layer is increased to 1 × 10 9 to 2 × 10 12 / cm 2 , the leakage current decreases. .

また図6はNd積と電圧印加時のリーク電流の関係(印加電圧:20V)を示したものであり、図6に示す通り、p型AlxGa1-xAs中の混晶比を大きくすることにより同じNd積であってもリーク電流量を減らすことができる。 FIG. 6 shows the relationship between the Nd product and the leakage current when a voltage is applied (applied voltage: 20 V). As shown in FIG. 6, the mixed crystal ratio in p-type Al x Ga 1-x As is increased. By doing so, the amount of leakage current can be reduced even with the same Nd product.

ここで、図6には、AlGaAsからなるp型バッファ層(最下層2a)のAl組成xがx=0.35、x=0.55、x=0.75の場合をパラメータとして、Nd積と電圧印加時のリーク電流の関係(印加電圧:20V)を示してある。これらの曲線の右側端に注目してみる。バッファ層のNd積がこれの右端より大きくなる領域では、つまり混晶比がx=0.35でNd積=2×1012/cm2、混晶比がx=0.55でNd積=1×1011/cm2、混晶比がx=0.75でNd積=8×1011/cm2より大きくなると、酸素または遷移金属が活性層に拡散してしまい、活性層、バッファ層近傍において走行電子が酸素または遷移金属によって不純物散乱されてしまう恐れがある。またp型バッファ層(最下層2a)は厚すぎると抵抗が下がってしまい、薄すぎると基板とエピタキシャル結晶との界面に生じる欠陥層の活性層への影響を防ぐという本来のバッファ層の機能を果たさなくなる。この各混晶比におけるバッファ層のNd積の最適な範囲を図7に示す。 Here, FIG. 6 shows the Nd product with the Al composition x of the p-type buffer layer (the lowermost layer 2a) made of AlGaAs being x = 0.35, x = 0.55, and x = 0.75 as parameters. And the relationship between the leakage current when a voltage is applied (applied voltage: 20 V). Notice the right edge of these curves. In a region where the Nd product of the buffer layer is larger than the right end of the buffer layer, that is, the mixed crystal ratio is x = 0.35, the Nd product = 2 × 10 12 / cm 2 , the mixed crystal ratio is x = 0.55, and the Nd product = When 1 × 10 11 / cm 2 , the mixed crystal ratio is greater than x = 0.75 and the Nd product = 8 × 10 11 / cm 2 , oxygen or transition metal diffuses into the active layer, and the active layer and buffer layer In the vicinity, traveling electrons may be scattered by impurities due to oxygen or transition metal. If the p-type buffer layer (lowermost layer 2a) is too thick, the resistance is lowered. If the p-type buffer layer is too thin, the original function of the buffer layer is to prevent the defect layer from affecting the active layer at the interface between the substrate and the epitaxial crystal. It will not run out. The optimum range of the Nd product of the buffer layer at each mixed crystal ratio is shown in FIG.

図7から分かるように、リーク電流の少ない最適範囲として、バッファ層最下層のAlxGa1-xAsは、混晶比xを0.3〜1.0の範囲で決めるのがよい。また、酸素または遷移金属が活性層に拡散することによる、活性層、バッファ層近傍において走行電子が酸素または遷移金属によって不純物散乱するのを避けるため、バッファ層を構成する最上層は何もドープしないアンドープのエピタキシャル結晶とするのが望ましい。 As can be seen from FIG. 7, as the optimum range with a small leakage current, Al x Ga 1-x As in the lowermost layer of the buffer layer should have a mixed crystal ratio x in the range of 0.3 to 1.0. Also, the uppermost layer constituting the buffer layer is not doped in order to avoid traveling electrons from being scattered by oxygen or transition metal in the vicinity of the active layer and buffer layer due to diffusion of oxygen or transition metal into the active layer. An undoped epitaxial crystal is desirable.

<他の実施例、変形例>
本発明の半導体装置を構成するIII-V族化合物半導体結晶において、III族元素としてはGa(ガリウム)、Al(アルミニウム)の他に、In(インジウム)があり、V族元素としてはAs(砒素)の他に、P(リン)がある。これらの組み合わせにより、III-V族化合物半導体結晶はGaAs、AlxGa1-xAsの他に、InGaAs、AlInAs、AlGaInAs、GaP、AlP、InP、AlGaP、GaInP、AlGaIn等の2元系結晶から4元系結晶に応用して利用できる。
<Other embodiments and modifications>
In the group III-V compound semiconductor crystal constituting the semiconductor device of the present invention, the group III element includes In (indium) in addition to Ga (gallium) and Al (aluminum), and the group V element includes As (arsenic). ) And P (phosphorus). With these combinations, III-V compound semiconductor crystals can be formed from binary crystals such as InGaAs, AlInAs, AlGaInAs, GaP, AlP, InP, AlGaP, GaInP, and AlGaIn in addition to GaAs and Al x Ga 1-x As. It can be applied to quaternary crystals.

なお、HBTのバッファ層成長時にも膜厚とキャリア濃度との積を規定することができる。   Note that the product of the film thickness and the carrier concentration can be defined even when the HBT buffer layer is grown.

本発明は、FETやHEMTなどの電子デバイスだけでなく、それらを中心とした半導体集積回路に応用でき、また光発光・受光素子、レーザーの埋め込みの抵抗層にも利用できる。   The present invention can be applied not only to electronic devices such as FETs and HEMTs, but also to semiconductor integrated circuits centering on them, and can also be used for light emitting / receiving elements and laser-embedded resistive layers.

本発明の一実施形態に係るHEMTの断面構造を示す図である。It is a figure which shows the cross-section of HEMT which concerns on one Embodiment of this invention. 電圧を印加してバッファ層のリーク電流を測定する方法を示す図である。It is a figure which shows the method of applying a voltage and measuring the leakage current of a buffer layer. 本発明の一実施形態に係る混晶比0.35のときのNd積とリーク電流の関係を示す図である。It is a figure which shows the relationship between Nd product and leakage current in case of the mixed crystal ratio 0.35 which concerns on one Embodiment of this invention. 本発明の一実施形態に係る混晶比0.55のときのNd積とリーク電流の関係を示す図である。It is a figure which shows the relationship between Nd product and leak current in the case of the mixed crystal ratio 0.55 which concerns on one Embodiment of this invention. 本発明の一実施形態に係る混晶比0.75のときのNd積とリーク電流の関係を示す図である。It is a figure which shows the relationship between Nd product and leak current in the case of the mixed-crystal ratio 0.75 which concerns on one Embodiment of this invention. 試作例に係るHEMTのバッファ層最下層のNd積とリーク電流の関係を示す図である。It is a figure which shows the relationship between Nd product of the buffer layer lowest layer of HEMT which concerns on a prototype, and leakage current. 本発明の混晶比を変化させたときのNd積の最適条件を示す図である。It is a figure which shows the optimal condition of Nd product when changing the mixed crystal ratio of this invention. 本発明を適用したHEMTの断面構造を示す図である。It is a figure which shows the cross-section of HEMT to which this invention is applied.

符号の説明Explanation of symbols

1 基板
2 バッファ層
2a 最下層
2b 積層部分
3 チャネル層
4 スペーサ層
5 キャリア供給層
6 ゲートコンタクト層
7 コンタクト層
9 電極
DESCRIPTION OF SYMBOLS 1 Substrate 2 Buffer layer 2a Bottom layer 2b Laminated part 3 Channel layer 4 Spacer layer 5 Carrier supply layer 6 Gate contact layer 7 Contact layer 9 Electrode

Claims (4)

半絶縁性基板上に、下層から順にバッファ層、チャネル層、スペーサ層、キャリア供給層、ショットキー層、コンタクト層を有するIII-V族化合物半導体装置において、
前記半絶縁性基板はGaAs基板であり、
前記バッファ層が、無添加のGaAs層および無添加のAlxGa1-xAs層(0≦x≦1)を交互に積み重ねたGaAs/AlxGa1-xAsのヘテロ構造を2回以上成長した積層部分と、その積層部分の下に前記バッファ層の最下層として設けたAlxGa1-xAs(0.3≦x≦1)のp型バッファ層とから構成され
前記チャネル層は、厚さ20nm、キャリア濃度1×10 16 /cm 3 以下のi型In 0.20 Ga 0.80 As層であり、
前記スペーサ層は、厚さ3nm、キャリア濃度1×10 16 /cm 3 以下のi型Al 0.25 Ga 0.75 As層であり、
前記キャリア供給層は、厚さ250nm、キャリア濃度3×10 18 /cm 3 のn型Al 0.25 Ga 0.75 As層であり、
前記ショットキー層は、厚さ50nm、キャリア濃度1×10 16 /cm 3 以下のi型Al 0.25 Ga 0.75 As層であり、
前記コンタクト層は、厚さ100nm、キャリア濃度3×10 18 /cm 3 のn型GaAs層であり、
前記チャネル層、前記スペーサ層、前記キャリア供給層、および前記ショットキー層がHEMT構造を有することを特徴とするIII-V族化合物半導体装置。
A semi-insulating substrate, Ba Ffa layer in order from the lower layer, the channel layer, a spacer layer, the carrier supply layer, Schottky layer, the group III-V compound semiconductor device having a contact layer,
The semi-insulating substrate is a GaAs substrate;
The buffer layer, GaAs layer and Al x Ga 1-x As layer of additive-free additive-free (0 ≦ x ≦ 1) alternately stacked GaAs / Al x Ga 1-x As heterostructure least twice the is composed of a grown laminated portion, and the p-type buffer layer of Al x Ga 1-x as provided as the lowermost layer of the buffer layer beneath the stacked portion (0.3 ≦ x ≦ 1),
The channel layer is an i-type In 0.20 Ga 0.80 As layer having a thickness of 20 nm and a carrier concentration of 1 × 10 16 / cm 3 or less ,
The spacer layer is an i-type Al 0.25 Ga 0.75 As layer having a thickness of 3 nm and a carrier concentration of 1 × 10 16 / cm 3 or less ,
The carrier supply layer is an n-type Al 0.25 Ga 0.75 As layer having a thickness of 250 nm and a carrier concentration of 3 × 10 18 / cm 3 .
The Schottky layer is an i-type Al 0.25 Ga 0.75 As layer having a thickness of 50 nm and a carrier concentration of 1 × 10 16 / cm 3 or less ,
The contact layer is an n-type GaAs layer having a thickness of 100 nm and a carrier concentration of 3 × 10 18 / cm 3 .
The III-V group compound semiconductor device , wherein the channel layer, the spacer layer, the carrier supply layer, and the Schottky layer have a HEMT structure .
請求項1記載のIII-V族化合物半導体装置において、
前記p型バッファ層の膜厚と前記p型バッファ層のp型キャリア濃度との積(Nd積とする。)が、1×1010〜1×1012/cm2の範囲にあることを特徴とするIII-V族化合物半導体装置。
In group III-V compound semiconductor device according to claim 1 Symbol placement,
The product of the thickness of the p-type buffer layer and the p-type carrier concentration of the p-type buffer layer (Nd product) is in the range of 1 × 10 10 to 1 × 10 12 / cm 2. III-V group compound semiconductor device.
請求項記載のIII-V族化合物半導体装置において、
前記p型キャリア濃度が酸素又は遷移金属もしくはその両方をドープしたことによるものであることを特徴とするIII-V族化合物半導体装置。
The group III-V compound semiconductor device according to claim 2 ,
The III-V group compound semiconductor device, wherein the p-type carrier concentration is obtained by doping oxygen, a transition metal, or both.
請求項1〜のいずれかに記載のIII-V族化合物半導体装置において、
前記p型バッファ層として挿入するp型AlxGa1-xAs層の厚さが2〜50nmであることを特徴とするIII-V族化合物半導体装置。
In the III-V compound semiconductor device according to any one of claims 1 to 3 ,
A III-V group compound semiconductor device, wherein the p-type Al x Ga 1-x As layer inserted as the p-type buffer layer has a thickness of 2 to 50 nm.
JP2005355550A 2005-08-04 2005-12-09 III-V compound semiconductor device Active JP4984511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005355550A JP4984511B2 (en) 2005-08-04 2005-12-09 III-V compound semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005227168 2005-08-04
JP2005227168 2005-08-04
JP2005355550A JP4984511B2 (en) 2005-08-04 2005-12-09 III-V compound semiconductor device

Publications (2)

Publication Number Publication Date
JP2007067359A JP2007067359A (en) 2007-03-15
JP4984511B2 true JP4984511B2 (en) 2012-07-25

Family

ID=37929161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005355550A Active JP4984511B2 (en) 2005-08-04 2005-12-09 III-V compound semiconductor device

Country Status (1)

Country Link
JP (1) JP4984511B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087151A1 (en) 2009-01-28 2010-08-05 住友化学株式会社 Method for manufacturing semiconductor substrate, and semiconductor substrate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0974106A (en) * 1995-09-07 1997-03-18 Sumitomo Chem Co Ltd Epitaxial substrate for field effect transistor
JP2002208600A (en) * 2001-01-10 2002-07-26 Fujitsu Quantum Devices Ltd Semiconductor device
JP2002217208A (en) * 2001-01-16 2002-08-02 Sony Corp Manufacturing method for semiconductor

Also Published As

Publication number Publication date
JP2007067359A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
US7902571B2 (en) III-V group compound semiconductor device including a buffer layer having III-V group compound semiconductor crystal
US10340375B2 (en) Epitaxial substrate for field effect transistor
US8653561B2 (en) III-nitride semiconductor electronic device, and method of fabricating III-nitride semiconductor electronic device
EP3311414B1 (en) Doped barrier layers in epitaxial group iii nitrides
US8860038B2 (en) Nitride semiconductor device and manufacturing method for the same
US9478632B2 (en) Method of manufacturing a semiconductor device
US8872231B2 (en) Semiconductor wafer, method of producing semiconductor wafer, and electronic device
KR101657327B1 (en) Semiconductor substrate, manufacturing method therefor, and electronic device
US9117892B2 (en) Semiconductor wafer with improved current-voltage linearity
CN104303268A (en) Epitaxial substrate, semiconductor device, and semiconductor device manufacturing method
US20040169194A1 (en) Semiconductor device
JP5746927B2 (en) Semiconductor substrate, semiconductor device, and method of manufacturing semiconductor substrate
JP4984511B2 (en) III-V compound semiconductor device
JP2013021024A (en) Transistor element
KR101083612B1 (en) Compound semiconductor epitaxial substrate and method for manufacturing same
JP5119644B2 (en) III-V compound semiconductor epitaxial wafer
US11973137B2 (en) Stacked buffer in transistors
KR100944883B1 (en) Thin film crystal wafer with PN-junction and its manufacturing process
JPWO2017221532A1 (en) Heterojunction field effect transistor and method of manufacturing the same
US20160211358A1 (en) Semiconductor device
US9627489B2 (en) Semiconductor device
US20120241759A1 (en) Nitride semiconductor device and electronic device
JP2006012915A (en) Group iii-v compound semiconductor device and its manufacturing method
JP2006245155A (en) Mosfet and epitaxial wafer therefor
JP2008192830A (en) Third-fifth group compound semiconductor device and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Ref document number: 4984511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350