JPH0883506A - Multilayer film reflector - Google Patents

Multilayer film reflector

Info

Publication number
JPH0883506A
JPH0883506A JP6218596A JP21859694A JPH0883506A JP H0883506 A JPH0883506 A JP H0883506A JP 6218596 A JP6218596 A JP 6218596A JP 21859694 A JP21859694 A JP 21859694A JP H0883506 A JPH0883506 A JP H0883506A
Authority
JP
Japan
Prior art keywords
multilayer film
tio
film
alternating layer
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6218596A
Other languages
Japanese (ja)
Other versions
JP3054663B2 (en
Inventor
Makoto Goto
誠 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Techno Glass Co Ltd
Original Assignee
Toshiba Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Glass Co Ltd filed Critical Toshiba Glass Co Ltd
Priority to JP6218596A priority Critical patent/JP3054663B2/en
Publication of JPH0883506A publication Critical patent/JPH0883506A/en
Application granted granted Critical
Publication of JP3054663B2 publication Critical patent/JP3054663B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide a multilayer film reflecting mirror excellent in moisture resistance and heat resistance, and suitable for any kind of application of a light source. CONSTITUTION: After laminating titanium oxide and strontium fluoride alternately on a reflecting base 1 having a concave 2, a multilayer film 4 is formed by firing treatment at 300 deg.C or higher. Thereby, the multilayer film 4 excellent in moisture resistance and heat resistance is formed so as to suit a light source having higher output and longer life sufficiently, and to be applicable to the reflecting mirror of all kinds of light sources regardless of the applications of the light sources.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、投光照明などに使用さ
れる多層膜反射鏡、特に、冷光鏡を基体とする多層膜反
射鏡の改善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a multi-layer film reflecting mirror used for floodlighting and the like, and more particularly to a multi-layer film reflecting mirror having a cold-light mirror as a base.

【0002】[0002]

【従来の技術】従来、硬質ガラスなどからなる凹面を有
する反射基板上に高屈折率材料の薄膜と低屈折率材料の
薄膜とを交互に積層した多層膜を備えた、いわゆる冷光
鏡を基体とする多層膜反射鏡は、投影器・店舗照明・医
療用照明などの光源として多く使用されている。この多
層膜反射鏡は、多層膜において、可視光を反射し、長波
長の赤外域の光線を透過させることにより、照明された
被照明物を熱線によって加熱することを少なくし、かつ
光源からの熱線が多層膜を通過する際には、吸収によっ
て基板が加熱されない特徴を有し、また、積層される材
料の屈折率の比が大きいほど高い反射率と広い反射域と
なるという特性を有している。
2. Description of the Related Art Conventionally, a so-called cold-light mirror is used as a substrate, which is provided with a multilayer film in which a thin film of a high refractive index material and a thin film of a low refractive index material are alternately laminated on a reflective substrate having a concave surface made of hard glass or the like. The multi-layered film reflecting mirror is often used as a light source for projectors, store lighting, medical lighting, and the like. This multilayer-film reflective mirror reflects visible light in a multilayer film and transmits long-wavelength infrared rays to reduce heating of illuminated objects by heat rays, and When heat rays pass through the multilayer film, the substrate is not heated due to absorption, and the larger the refractive index ratio of the laminated materials, the higher the reflectance and the wider the reflection area. ing.

【0003】ここで、一般的に多層膜に使用される物質
の組合わせと屈折率との関係を表1に示す。
Table 1 shows the relationship between the combination of substances generally used for a multilayer film and the refractive index.

【0004】[0004]

【表1】 表1に示すような多層膜は凹面を有する反射基板上に積
層して形成されるために、10-1Pa(パスカル)級の
圧力を有する気体雰囲気中で蒸着を行なう、いわゆるガ
ス散乱蒸着法により多層膜が反射基板上に均一に被着さ
れる。
[Table 1] Since the multilayer films as shown in Table 1 are formed by laminating on a reflective substrate having a concave surface, so-called gas scattering vapor deposition method in which vapor deposition is performed in a gas atmosphere having a pressure of 10 -1 Pa (Pascal) grade. Thereby, the multilayer film is uniformly deposited on the reflective substrate.

【0005】また、表1の多層膜は、硫化亜鉛(Zn
S)と弗化マグネシウム(MgF2 )との薄膜を交互に
積層させたZnS/MgF2 交互層、あるいは硫化亜鉛
と酸化珪素(SiO2 )との薄膜を交互に積層させたZ
nS/SiO2 交互層などの、いわゆるソフトコート膜
と、酸化チタン(TiO2 )と酸化珪素との薄膜を交互
に積層させたTiO2 /SiO2 交互層、あるいは酸化
チタンと弗化マグネシウムとの薄膜を交互に積層させた
TiO2 /MgF2 交互層などの、いわゆるハードコー
ト膜とに分類される。これらの多層膜は使用される用途
によりそれぞれ選択されている。
In addition, the multilayer film in Table 1 is formed of zinc sulfide (Zn
S) and magnesium fluoride (MgF 2 ) thin films alternately laminated ZnS / MgF 2 alternating layers or zinc sulfide and silicon oxide (SiO 2 ) thin films alternately laminated Z
A so-called soft coat film such as an nS / SiO 2 alternating layer, and a TiO 2 / SiO 2 alternating layer in which thin films of titanium oxide (TiO 2 ) and silicon oxide are alternately laminated, or of titanium oxide and magnesium fluoride. It is classified as a so-called hard coat film such as a TiO 2 / MgF 2 alternating layer in which thin films are alternately laminated. These multilayer films are selected depending on the intended use.

【0006】例えば、ソフトコート膜のうち、ZnS/
MgF2 交互層は耐湿性には優れているが、耐熱性に劣
るので、熱負荷が低く、長寿命である低出力・長寿命型
ハロゲンランプに適用され、また、ZnS/SiO2
互層は耐熱性には優れているが、耐湿性に劣るので、熱
負荷が高く、短寿命である高出力・短寿命型ハロゲンラ
ンプに適用されている。
For example, among soft coat films, ZnS /
The MgF 2 alternating layer is excellent in moisture resistance, but inferior in heat resistance, so it is applied to halogen lamps with low output and long life, which have a low heat load and a long life. Moreover, the ZnS / SiO 2 alternating layer is It is excellent in heat resistance but inferior in moisture resistance, so it is applied to halogen lamps with high output and short life, which have a high heat load and a short life.

【0007】一方、ハードコート膜のうち、TiO2
SiO2 交互層は耐湿性・耐熱性に優れており、熱負荷
が高く、長寿命である光源、例えば、メタルハライドラ
ンプや高出力・長寿命型ハロゲンランプに適用され、ま
た、TiO2 /MgF2 交互層はTiO2 /SiO2
互層に比べ、耐熱性においてやや劣るものの、ソフトコ
ート膜より耐湿性・耐熱性に優れており、熱負荷が高
く、長寿命である高出力・長寿命型ハロゲンランプに適
用されている。
On the other hand, of the hard coat film, TiO 2 /
The SiO 2 alternating layer has excellent moisture resistance and heat resistance, is applied to a light source with a high heat load and a long life, such as a metal halide lamp or a high output / long life halogen lamp, and is also used as TiO 2 / MgF 2 The alternating layer is slightly inferior in heat resistance to the TiO 2 / SiO 2 alternating layer, but is superior in moisture resistance and heat resistance to the soft coat film, has a high heat load, and has a long life, high output and long life type halogen. Applied to the lamp.

【0008】ここで、上記各多層膜の耐湿性・耐熱性に
ついての評価結果を表2に示す。表2の耐湿性は反射基
板に被膜された多層膜を温度50℃、湿度90%の雰囲
気中に放置した場合の多層膜の剥離発生時間を示し、ま
た、耐熱性は多層膜が多層膜反射鏡のランプ点灯による
熱負荷300℃および350℃における多層膜の剥離発
生時間を示している。
Table 2 shows the evaluation results of the moisture resistance and heat resistance of each of the above multilayer films. Moisture resistance in Table 2 shows the peeling occurrence time of the multilayer film when the multilayer film coated on the reflective substrate is left in an atmosphere of a temperature of 50 ° C. and a humidity of 90%. It shows the peeling occurrence time of the multilayer film at a heat load of 300 ° C. and 350 ° C. due to the lighting of the mirror lamp.

【0009】[0009]

【表2】 しかるに、近年、光源の高出力化・長寿命化に伴なっ
て、使用される用途を選択しないで、全ての光源の反射
鏡として、TiO2 /SiO2 交互層かTiO2/Mg
2 交互層のハードコート膜を使用するようになってき
ている。
[Table 2] However, in recent years, along with the increase in the output power and the long life of the light source, the TiO 2 / SiO 2 alternating layer or the TiO 2 / Mg alternating layer is used as a reflecting mirror for all light sources without selecting the application to be used.
Hard coat films of alternating layers of F 2 have come to be used.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、TiO
2 /SiO2 交互層は、表2に示すように、TiO2
MgF2 交互層に比べ、耐湿性において劣るという欠点
を有し、かつ、表1に示すように、屈折率の比が小さい
ので、TiO2 /MgF2 交互層と同程度の光学特性を
保持するためには、多層膜の積層数を50%多くする必
要があり、コストが高くなるという欠点を有している。
However, TiO 2
As shown in Table 2, the 2 / SiO 2 alternating layer is formed of TiO 2 /
As compared with the MgF 2 alternating layer, it has the drawback of being inferior in humidity resistance, and as shown in Table 1, since the ratio of the refractive indexes is small, it maintains the same optical characteristics as the TiO 2 / MgF 2 alternating layer. In order to do so, it is necessary to increase the number of laminated layers of the multilayer film by 50%, which has a drawback that the cost becomes high.

【0011】また、TiO2 /MgF2 交互層は耐湿性
に優れている反面、耐熱性においてTiO2 /SiO2
交互層に比べて劣るという欠点を有している。
Further, while the TiO 2 / MgF 2 alternating layer is excellent in moisture resistance, it is TiO 2 / SiO 2 in heat resistance.
It has the disadvantage of being inferior to the alternating layers.

【0012】このため、TiO2 /SiO2 交互層と同
程度の耐熱性を有するとともにTiO2 /MgF2 交互
層と同程度の耐湿性を有し、かつ多層膜の積層数がTi
2/MgF2 交互層と同程度であるハードコート膜が
要望されている。
[0012] Therefore, with having a TiO 2 / SiO 2 alternate layers about the same heat resistance has a TiO 2 / MgF 2 alternating layer about the same moisture resistance, and the number of laminated multi-layer film of Ti
O 2 / MgF 2 alternating layer and the hard coat film is comparable is desired.

【0013】本発明は、上記事情に鑑みてなされたもの
で、耐湿性と耐熱性に優れ、かつ、光源の用途を選ばな
い多層膜反射鏡を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a multilayer film reflecting mirror which is excellent in moisture resistance and heat resistance and which can be used in any light source.

【0014】[0014]

【課題を解決するための手段】本発明は、上記目的を達
成するために、凹面を有する反射基板上に酸化チタンと
弗化ストロンチウムを交互に積層させた後、300℃以
上の温度にて焼成処理して多層膜を形成したことを特徴
とする。
In order to achieve the above object, the present invention comprises alternately stacking titanium oxide and strontium fluoride on a reflective substrate having a concave surface, and then firing at a temperature of 300 ° C. or higher. It is characterized by being processed to form a multilayer film.

【0015】[0015]

【作用】本発明の多層膜反射鏡は上記のように構成した
ので、高出力化・長寿命化の光源に十分適合した優れた
耐湿性と耐熱性を有した多層膜が形成され、光源の用途
を選ばずに、全ての光源の反射鏡として使用可能であ
る。
Since the multi-layered film reflecting mirror of the present invention is constructed as described above, a multi-layered film having excellent moisture resistance and heat resistance, which is well suited for a light source with high output and long life, is formed. It can be used as a reflector for all light sources, regardless of the application.

【0016】[0016]

【実施例】以下、図面を参照して本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1は本発明の一実施例の多層膜反射鏡の
断面を示す図で、同図において、1は反射基板、例えば
ハロゲンランプ用反射鏡の硬質ガラスからなる反射基板
であり、その一面を拡開させた回転放物状の凹面2 で形
成されている。この凹面2 の中央には光源としてハロゲ
ンランプ3 が装着され、さらに、凹面2 の上面には多層
膜4 が、例えばガス散乱蒸着法により被着され多層膜反
射鏡5 が形成される。多層膜反射鏡5 に被着されている
多層膜4 により、ハロゲンランプ3 から出射される可視
光は反射されて被照明物に照射され、また、熱線は多層
膜反射鏡5 、つまり多層膜4 と反射基板1 を透過して反
射基板1 の後方に放射される。
FIG. 1 is a view showing a cross section of a multilayer film reflecting mirror according to an embodiment of the present invention. In FIG. 1, 1 is a reflecting substrate, for example, a reflecting substrate made of hard glass for a reflecting mirror for a halogen lamp. It is formed by a concave surface 2 of a paraboloid of revolution with one surface expanded. A halogen lamp 3 as a light source is mounted in the center of the concave surface 2, and a multilayer film 4 is deposited on the upper surface of the concave surface 2 by, for example, a gas scattering vapor deposition method to form a multilayer film reflecting mirror 5. The visible light emitted from the halogen lamp 3 is reflected by the multilayer film 4 attached to the multilayer film reflecting mirror 5 to illuminate the object to be illuminated, and the heat rays are reflected by the multilayer film reflecting mirror 5, that is, the multilayer film 4. And is transmitted to the rear of the reflective substrate 1 and radiated to the rear of the reflective substrate 1.

【0018】多層膜4 は高屈折率材料Hとして酸化チタ
ン(TiO2 :屈折率n=2.3)を採用し、低屈折率
材料Lとして弗化マグネシウム(MgF2 :n=1.3
8)の屈折率に近い種々の材料を抽出し、それらから弗
化ストロンチウム(SrF2:n=1.32)を選択し
て採用した。
The multilayer film 4 employs titanium oxide (TiO 2 : refractive index n = 2.3) as the high refractive index material H and magnesium fluoride (MgF 2 : n = 1.3) as the low refractive index material L.
Various materials having a refractive index close to that of 8) were extracted, and strontium fluoride (SrF 2 : n = 1.32) was selected and adopted from them.

【0019】すなわち、低屈折率材料Lの候補として、
弗化リチウム(LiF:n=1.36)、弗化バリウム
(BaF2 :n=1.32)、氷晶石(Na3 Al
6 :n=1.36)、SrF2 、弗化ナトリウム(N
aF:n=1.30)、および弗化カルシウム(CaF
2 :n=1.40)を抽出し、それぞれの材料とTiO
2との多層膜4 を反射基板1 上に以下の条件で被着し
た。
That is, as a candidate for the low refractive index material L,
Lithium fluoride (LiF: n = 1.36), barium fluoride (BaF 2: n = 1.32) , cryolite (Na 3 Al
F 6 : n = 1.36), SrF 2 , sodium fluoride (N
aF: n = 1.30), and calcium fluoride (CaF
2 : n = 1.40) and extract each material and TiO
A multilayer film 4 of 2 and 2 was deposited on the reflective substrate 1 under the following conditions.

【0020】多層膜4 の光学的膜厚は1/4λ設計と
し、膜構成は反射基板1 ・(HL)6Hλ1 ・(LH)4
λ2 ・空気の21層構成とした。ここで、λ1 とλ2
はそれぞれ設計波長で、λ1 =600nm、λ2 =45
0nmであり、設計波長λ1 で高屈折率材料Hと低屈折
率材料Lを交互に6回、さらに、高屈折率材料Hを1層
付加して13層とし、次に、設計波長λλ2 で低屈折率
材料Lと高屈折率材料Hを交互に4回、計8層積層し
て、合計21層構成とした。
The optical film thickness of the multilayer film 4 is designed to be 1 / 4λ, and the film structure is such that the reflective substrate 1 · (HL) 61 · (LH) 4
21 layers of λ 2 and air were used. Where λ 1 and λ 2
Are design wavelengths, λ 1 = 600 nm, λ 2 = 45
0 nm, and the high-refractive index material H and the low-refractive index material L are alternately alternated 6 times at the design wavelength λ 1 , and further one layer of the high-refractive index material H is added to form 13 layers, and then the design wavelength λ λ 2 Then, the low-refractive index material L and the high-refractive index material H were alternately laminated four times, for a total of eight layers to form a total of 21 layers.

【0021】これらの多層膜4 はガス散乱蒸着法によっ
て、 (1) 真空度 2.67×10-1〜1.07×10-3
a (2) 散乱ガス アルゴン(Ar) (3) 基板温度 250〜300℃ (4) 蒸発源 エレクトロンビーム(電子銃) の蒸着条件で成膜し、蒸着処理後に、電気炉中にて30
0℃以上、例えば400℃・1時間の熱処理を施した。
These multi-layered films 4 were formed by the gas-scattering vapor deposition method. (1) Vacuum degree 2.67 × 10 -1 to 1.07 × 10 -3 P
a (2) Scattering gas Argon (Ar) (3) Substrate temperature 250 to 300 ° C. (4) Evaporation source Film is formed under the electron beam (electron gun) vapor deposition conditions, and after the vapor deposition treatment, 30 in an electric furnace.
Heat treatment was performed at 0 ° C. or higher, for example, 400 ° C. for 1 hour.

【0022】このように成膜された各種多層膜4 につい
て、耐湿性試験、耐熱性試験、および光学特性の測定を
行ない、その結果を表3に示す。耐湿性試験は温度50
℃、湿度90%の雰囲気中に放置した場合の多層膜4 の
剥離発生時間、および耐熱性試験はハロゲンランプ3 点
灯による熱負荷300℃および350℃における多層膜
4 の剥離発生時間をそれぞれ示し、また、光学特性は反
射率90%以上の反射域の幅を示している。
Moisture resistance test, heat resistance test, and measurement of optical characteristics were carried out on the various multilayer films 4 thus formed, and the results are shown in Table 3. Humidity resistance test is temperature 50
The peeling time of the multilayer film 4 when left in an atmosphere of 90 ° C and a humidity of 90%, and the heat resistance test are the multilayer film at a heat load of 300 ° C and 350 ° C due to lighting of the halogen lamp 3.
4 shows the peeling occurrence time, and the optical characteristics show the width of the reflection region with a reflectance of 90% or more.

【0023】[0023]

【表3】 表3に示す試験・測定の結果、TiO2 /SrF2 交互
層を用いることにより、多層膜4 はTiO2 /SiO2
交互層と同程度の耐熱性とTiO2 /MgF2交互層と
同程度の耐湿性を有し、かつ、膜の積層数がTiO2
MgF2 交互層と同程度であるハードコート膜が成膜さ
れることが判明した。また、TiO2 /MgF2 交互層
の分光透過率特性を図2に示すが、図2に示すように、
反射率90%以上の反射域の幅はTiO2 /MgF2
互層と同程度であり、同様の光学特性を有していること
が判明した。
[Table 3] Results of tests and measurements shown in Table 3, by using the TiO 2 / SrF 2 alternating layer, the multilayer film 4 TiO 2 / SiO 2
It has the same degree of heat resistance as the alternating layers and the same degree of moisture resistance as the TiO 2 / MgF 2 alternating layers, and the number of laminated layers is TiO 2 /
It has been found that a hard coat film is formed that is comparable to the MgF 2 alternating layers. Further, the spectral transmittance characteristics of the TiO 2 / MgF 2 alternating layer are shown in FIG. 2, and as shown in FIG.
It was found that the width of the reflection region having a reflectance of 90% or more was about the same as that of the TiO 2 / MgF 2 alternating layer, and that it had the same optical characteristics.

【0024】上記した試験・測定の結果に基づいて、M
gF2 の屈折率に近い屈折率を有し、低屈折率材料Lと
して抽出された種々の材料からSrF2 を選択し、多層
膜4としてTiO2 /SrF2 交互層を採用した。
Based on the results of the above test and measurement, M
SrF 2 was selected from the various materials extracted as the low refractive index material L having a refractive index close to that of gF 2, and the TiO 2 / SrF 2 alternating layer was adopted as the multilayer film 4.

【0025】なお、蒸着処理後に、多層膜4 を電気炉中
にて300℃以上の温度にて熱処理を施し硬化するよう
にしたが、これは光源のハロゲンランプ3 の点灯の際の
熱負荷が300℃以上であり、300℃未満で硬化され
た多層膜4 はこの熱負荷に耐えることができないためで
ある。
After the vapor deposition process, the multilayer film 4 was heat-treated at a temperature of 300 ° C. or higher in an electric furnace to be hardened. This is because the heat load when the halogen lamp 3 of the light source is turned on. This is because the multilayer film 4 that has a temperature of 300 ° C. or higher and is hardened at a temperature lower than 300 ° C. cannot withstand this heat load.

【0026】上記実施例によれば、多層膜4 としてTi
2 /SrF2 交互層を採用することにより、耐湿性と
耐熱性に優れた多層膜反射鏡5 が得られ、高出力化・長
寿命化の光源に十分適合することができる。
According to the above-mentioned embodiment, Ti is used as the multilayer film 4.
By adopting the O 2 / SrF 2 alternating layer, the multilayer film reflecting mirror 5 having excellent moisture resistance and heat resistance can be obtained, and can be sufficiently adapted to a light source with high output and long life.

【0027】次に、TiO2 /SrF2 交互層を採用し
た多層膜4 をハロゲンランプ3 より熱負荷が高いメタル
ハライドランプに適用し、TiO2 /SiO2 交互層と
TiO2 /MgF2 交互層と比較した例を示す。
Next, the multilayer film 4 employing the TiO 2 / SrF 2 alternating layer was applied to a metal halide lamp having a higher heat load than the halogen lamp 3, and the TiO 2 / SiO 2 alternating layer and the TiO 2 / MgF 2 alternating layer were formed. An example of comparison is shown.

【0028】膜構成としては、 (1) TiO2 /SrF2 、TiO2 /SiO2 、TiO
2 /MgF2 (2) 反射基板1 ・(HL)6 Hλ1 ・(LH)4 λ2
空気の21層構成 λ1 =600nm、λ2 =450nm であり、また、蒸着条件としては、 (1) 真空度 2.67×10-1〜1.07×10-3
a (2) 散乱ガス アルゴン(Ar) (3) 基板温度 250〜300℃ (4) 蒸発源 エレクトロンビーム(電子銃) であり、蒸着処理後に、電気炉中にて400℃・1時間
の熱処理を施した。
The film structure is as follows: (1) TiO 2 / SrF 2 , TiO 2 / SiO 2 , TiO
2 / MgF 2 (2) Reflective substrate 1 ・ (HL) 61・ (LH) 4 λ 2
21-layered structure of air λ 1 = 600 nm, λ 2 = 450 nm, and vapor deposition conditions are as follows: (1) vacuum degree 2.67 × 10 −1 to 1.07 × 10 −3 P
a (2) Scattering gas Argon (Ar) (3) Substrate temperature 250-300 ° C (4) Evaporation source Electron beam (electron gun), after vapor deposition, heat treatment at 400 ° C for 1 hour in an electric furnace gave.

【0029】上記条件で成膜された3種類の多層膜4 に
ついて、耐湿性試験、耐熱性試験、および光学特性の測
定を行ない、その結果を表4に示す。耐湿性試験は温度
50℃、湿度90%の雰囲気中に放置した場合の多層膜
4 の剥離発生時間、および耐熱性試験はメタルハライド
ランプ点灯による熱負荷350℃および450℃におけ
る多層膜4 の剥離発生時間をそれぞれ示し、また、光学
特性は反射率90%以上の反射域の幅を示している。
A moisture resistance test, a heat resistance test, and measurement of optical characteristics were performed on the three types of multilayer films 4 formed under the above conditions, and the results are shown in Table 4. Moisture resistance test is a multilayer film when left in an atmosphere of temperature 50 ° C and humidity 90%
The peeling occurrence time of 4 and the heat resistance test show the peeling occurrence time of the multilayer film 4 at a heat load of 350 ° C. and 450 ° C. due to lighting of a metal halide lamp, respectively, and the optical characteristics show the width of the reflection region with a reflectance of 90% or more. Shows.

【0030】[0030]

【表4】 表4に示す試験・測定の結果、TiO2 /SrF2 交互
層を用いた多層膜4 はTiO2 /SiO2 交互層と同程
度の耐熱性とTiO2 /MgF2 交互層と同程度の耐湿
性を有するとともに、TiO2 /MgF2 交互層と同程
度の光学特性を有しており、ハロゲンランプ3 より熱負
荷が高いメタルハライドランプにも十分適用できること
が判明した。
[Table 4] Table 4 Results of tests and measurements shown in, the multilayer film 4 TiO 2 / SiO 2 alternate layers about the same heat resistance and TiO 2 / MgF 2 alternating layer about the same moisture with TiO 2 / SrF 2 alternating layer It has been found that the metal halide lamp has the same properties as the TiO 2 / MgF 2 alternating layer and has a high heat load compared with the halogen lamp 3 and has sufficient optical characteristics.

【0031】上記他の実施例によれば、多層膜4 として
TiO2 /SrF2 交互層を採用することにより、耐湿
性と耐熱性に優れ、かつ、光源の用途を選ばない多層膜
反射鏡5 を得ることができる。
According to the other embodiment described above, by adopting the TiO 2 / SrF 2 alternating layer as the multilayer film 4, the multilayer film reflecting mirror 5 is excellent in moisture resistance and heat resistance and can be used for any light source. Can be obtained.

【0032】なお、上記実施例では、多層膜4 の形成方
法をガス散乱蒸着法としたが、これに限らず、イオンプ
レーティング法、イオンアシスト法など他の形成方法で
あってもよい。
In the above embodiment, the method for forming the multilayer film 4 is the gas scattering vapor deposition method, but the method is not limited to this, and other forming methods such as an ion plating method and an ion assist method may be used.

【0033】また、本発明は上記実施例に限定されるこ
となく、本発明の要旨を逸脱しない範囲において、種々
変形可能なことは勿論である。
Further, the present invention is not limited to the above-mentioned embodiments, and it goes without saying that various modifications can be made without departing from the gist of the present invention.

【0034】[0034]

【発明の効果】以上詳述したように、本発明の多層膜反
射鏡によれば、凹面を有する反射基板上に酸化チタンと
弗化ストロンチウムを交互に積層させた後、300℃以
上の温度にて焼成処理して多層膜を形成したことによ
り、耐湿性と耐熱性に優れた多層膜が形成され、高出力
化・長寿命化の光源に十分適合することができるととも
に、光源の用途を選ばず、全ての光源の反射鏡として適
用することができる。
As described above in detail, according to the multilayer mirror of the present invention, titanium oxide and strontium fluoride are alternately laminated on a reflecting substrate having a concave surface, and then the temperature is raised to 300 ° C. or more. By baking it to form a multilayer film, a multilayer film with excellent moisture resistance and heat resistance can be formed, and it can be sufficiently adapted to a light source with high output and long life, and the application of the light source can be selected. Instead, it can be applied as a reflecting mirror for all light sources.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の多層膜反射鏡の断面を示す
図である。
FIG. 1 is a diagram showing a cross section of a multilayer-film reflective mirror according to an embodiment of the present invention.

【図2】TiO2 /SrF2 交互層の分光透過率特性を
示す曲線図である。
FIG. 2 is a curve diagram showing a spectral transmittance characteristic of a TiO 2 / SrF 2 alternating layer.

【符号の説明】[Explanation of symbols]

1 …反射基板 2 …凹面 4 …多層膜 5 …多層膜反射鏡 1 ... Reflecting substrate 2 ... Concave surface 4 ... Multilayer film 5 ... Multilayer film mirror

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 凹面を有する反射基板上に酸化チタンと
弗化ストロンチウムを交互に積層させた後、300℃以
上の温度にて焼成処理して多層膜を形成したことを特徴
とする多層膜反射鏡。
1. A multi-layered film reflective film, characterized in that titanium oxide and strontium fluoride are alternately laminated on a reflective substrate having a concave surface, and then a baking process is performed at a temperature of 300 ° C. or higher to form a multi-layered film. mirror.
JP6218596A 1994-09-13 1994-09-13 Multilayer reflector Expired - Fee Related JP3054663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6218596A JP3054663B2 (en) 1994-09-13 1994-09-13 Multilayer reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6218596A JP3054663B2 (en) 1994-09-13 1994-09-13 Multilayer reflector

Publications (2)

Publication Number Publication Date
JPH0883506A true JPH0883506A (en) 1996-03-26
JP3054663B2 JP3054663B2 (en) 2000-06-19

Family

ID=16722443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6218596A Expired - Fee Related JP3054663B2 (en) 1994-09-13 1994-09-13 Multilayer reflector

Country Status (1)

Country Link
JP (1) JP3054663B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI384660B (en) * 2009-01-23 2013-02-01 Everlight Electronics Co Ltd Light emitting diode package structure and method thereof

Also Published As

Publication number Publication date
JP3054663B2 (en) 2000-06-19

Similar Documents

Publication Publication Date Title
US4663557A (en) Optical coatings for high temperature applications
JP2003515196A (en) Thermal filter and method of manufacturing the filter
GB2103830A (en) Optical tantalum pentoxide coatings for high temperature applications
JPH05127004A (en) Reflecting mirror
JP3054663B2 (en) Multilayer reflector
US5142197A (en) Light interference film and lamp
JP4185195B2 (en) Optical article and light bulb with infrared reflective coating
JP3031625B2 (en) Heat ray absorbing reflector
EP1180639A2 (en) Increased life reflector lamps
JP2928784B2 (en) Multilayer reflector
JPH0629882B2 (en) Multilayer film mirror
JP2971773B2 (en) Multilayer film
JP2687243B2 (en) Multilayer optical interference film
JPH085833A (en) Optical interference body, tubular lamp, halogen lamp and illuminator
JP3102959B2 (en) High durability thin film
JP2696758B2 (en) Multilayer optical interference film
JP3110131B2 (en) High durability thin film
JP2993870B2 (en) Multilayer interference film
JP2005266211A (en) Multilayer film reflecting mirror
CN102187254A (en) High refractive index materials for energy efficient lamps
JPH0434501A (en) Multilayered optical interference film
JP3153050B2 (en) Incandescent light bulb
JP2778784B2 (en) Multilayer reflector for light source
JP2754516B2 (en) Silicon dioxide thin film
JP2000260397A (en) Incandescent lamp with infrared ray reflecting film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees