JPH0878015A - Nickel hydrogen battery and hydrogen storage alloy electrode - Google Patents

Nickel hydrogen battery and hydrogen storage alloy electrode

Info

Publication number
JPH0878015A
JPH0878015A JP6212272A JP21227294A JPH0878015A JP H0878015 A JPH0878015 A JP H0878015A JP 6212272 A JP6212272 A JP 6212272A JP 21227294 A JP21227294 A JP 21227294A JP H0878015 A JPH0878015 A JP H0878015A
Authority
JP
Japan
Prior art keywords
hydrogen
storage alloy
hydrogen storage
negative electrode
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6212272A
Other languages
Japanese (ja)
Inventor
Takayoshi Ono
高義 小野
Atsushi Furukawa
淳 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Furukawa Battery Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Furukawa Battery Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP6212272A priority Critical patent/JPH0878015A/en
Publication of JPH0878015A publication Critical patent/JPH0878015A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To provide a nickel hydrogen battery with high performance, capable of suppressing increase in internal pressure caused by hydrogen gas generation, decrease in capacity attendant on repeated charge/discharge cycles, self discharge, and keeping stable performance for a long time by containing an organic sulfur compound having a carbon-sulfur bond in at negative electrode made of a hydrogen storage alloy. CONSTITUTION: A nickel hydrogen battery comprises a positive electrode made mainly of nickel hydroxide, and a negative electrode made mainly of a hydrogen storage alloy capable of electrochemically absorbing/desorbing hydrogen, and contains an organic sulfur compound having a carbon-sulfur bond in the negative electrode. The content of the organic sulfur compound is preferably 0.005-1 pts.wt. based on the 100 pts.wt. of the hydrogen storage allay. As the organic sulfur compound, a material having at least one of single bond C-S, double bond C=S, and multiple bond of carbon and sulfur in part of the molecular structure (example: thiols and sulfides) is used. Preferably, water repellent property is given in at least part of the negative electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素ガスによる内圧上
昇、充放電の繰り返しにおける容量低下、充電後放置に
よる電圧低下を抑制した、水酸化ニッケルと水素吸蔵合
金を電極とするニッケル水素電池、及び前記水素吸蔵合
金電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel-hydrogen battery using nickel hydroxide and a hydrogen storage alloy as electrodes, which suppresses an increase in internal pressure due to hydrogen gas, a decrease in capacity during repeated charging and discharging, and a decrease in voltage due to being left after charging. And the hydrogen storage alloy electrode.

【0002】[0002]

【従来の技術】近年の電子技術の省電力化、実装技術の
進歩は目覚ましく、従来では予想だにできなかった電子
機器のコードレス化、ポータブル化を可能にしている。
前記電子機器の電源には密閉型ニッカド電池が用いられ
ていたが、前記ニッカド電池には、環境汚染とエネルギ
ー密度が低いという欠点があった。そこで、クリーンで
且つエネルギー密度が比較的高いニッケル水素電池の開
発が早急に進められてきた。
2. Description of the Related Art Recent power saving of electronic technology and progress of packaging technology have been remarkable, and have made it possible to make cordless and portable electronic equipment which could not be expected in the past.
Although a sealed nickel-cadmium battery has been used as a power source for the electronic device, the nickel-cadmium battery has drawbacks of environmental pollution and low energy density. Therefore, the development of a nickel-hydrogen battery that is clean and has a relatively high energy density has been urgently promoted.

【0003】このニッケル水素電池は、水酸化ニッケル
を主構成材料とする正極と、水素を電気化学的に吸蔵・
放出することが可能な水素吸蔵合金を主構成材料とする
負極から構成されたものである。この密閉型ニッケル水
素電池では過充電時に、下記に示す反応式により正極か
ら酸素ガスが発生して密閉型電池の内圧が上昇するとい
う問題があった。 正極:OH- → 1/4O2 + 1/2H2O + e - 。 負極:M + H2O + e - → M-H + OH - (式中、Mは水素
吸蔵合金)。 この酸素ガスによる内圧上昇問題は、ニッケルカドミ電
池でとられている正極規制法により解決されている。こ
の正極規制法とは、負極の理論容量を正極の理論容量よ
り大きくとり、発生する酸素ガスを余裕のある負極表面
で固−気反応により消費する方法である。つまり負極で
は下記反応が起きる。 負極:M-H + 1/4O2 → M + 1/2H2O 。
This nickel-hydrogen battery has a positive electrode containing nickel hydroxide as a main constituent material and hydrogen which is occluded electrochemically.
It is composed of a negative electrode whose main constituent material is a hydrogen storage alloy capable of being released. In this sealed nickel-metal hydride battery, there is a problem that during overcharging, oxygen gas is generated from the positive electrode by the reaction formula shown below, and the internal pressure of the sealed battery rises. The positive electrode: OH - → 1 / 4O 2 + 1 / 2H 2 O + e -. Negative: M + H 2 O + e - → MH + OH - ( where, M is a hydrogen absorbing alloy). This problem of internal pressure increase due to oxygen gas has been solved by the positive electrode regulation law adopted in nickel cadmium batteries. The positive electrode regulation method is a method in which the theoretical capacity of the negative electrode is made larger than the theoretical capacity of the positive electrode and the oxygen gas generated is consumed by the solid-gas reaction on the surface of the negative electrode with a margin. That is, the following reactions occur at the negative electrode. Negative electrode: MH + 1 / 4O 2 → M + 1 / 2H 2 O.

【0004】[0004]

【発明が解決しようとする課題】前述のようにして酸素
ガスによる内圧上昇問題は解決されたが、実際には過充
電時の負極には水素ガスも発生していて、この水素ガス
による内圧上昇問題が残されていた。改善策として、負
極の内部又は表面に撥水性を付与して、固−気−液3相
界面を十分に確保し、発生水素を負極の水素吸蔵合金に
吸収させる方法が提案されているが十分な解決に至って
いない。尚、負極では下記反応によって水素ガス発生が
起きていると考えられる。 負極:H2O + e - → 1/2H2 + OH -
Although the problem of the internal pressure increase due to oxygen gas was solved as described above, hydrogen gas was actually generated in the negative electrode during overcharge, and the internal pressure increase due to this hydrogen gas was solved. There was a problem left. As a remedy, a method has been proposed in which water repellency is imparted to the inside or the surface of the negative electrode to sufficiently secure a solid-gas-liquid three-phase interface and the generated hydrogen is absorbed by the hydrogen storage alloy of the negative electrode. It has not been resolved. It is considered that hydrogen gas is generated in the negative electrode due to the following reaction. Anode: H 2 O + e - → 1 / 2H 2 + OH -.

【0005】前記の水素ガスによる内圧上昇問題を第一
の問題とすると、第二に、充放電サイクルを繰り返すと
水素吸蔵合金が脱落し又は負極が劣化(腐食)して放電
容量が低下するという問題があった。これは、水素吸蔵
合金粉末等の負極構成材料の結着剤を選択することによ
り改善されているが、未だ十分とは言えない。
The first problem is the internal pressure increase problem caused by the hydrogen gas. Secondly, when the charge / discharge cycle is repeated, the hydrogen storage alloy is dropped or the negative electrode is deteriorated (corroded) to lower the discharge capacity. There was a problem. This has been improved by selecting a binder for the negative electrode constituent material such as hydrogen storage alloy powder, but it cannot be said to be sufficient yet.

【0006】そして、第三は、充電後、電池を放置する
と電圧が低下する問題である。これは自己放電が原因と
考えられ、セパレーターの検討等によりかなりの改善が
なされているが、更なる改善が望まれている。本発明
は、前記の水素ガス発生による内圧上昇、充放電の繰り
返しにおける容量低下、及び充電後放置の電圧低下(自
己放電)を抑制し、長期に渡って安定した特性が得られ
る高性能なニッケル水素電池、及び前記ニッケル水素電
池等用の水素吸蔵合金電極を提供することを目的とす
る。
The third problem is that the voltage drops if the battery is left unattended after charging. It is considered that this is due to self-discharge, and considerable improvement has been made by studying separators, etc., but further improvement is desired. The present invention is a high-performance nickel that suppresses an increase in internal pressure due to the generation of hydrogen gas, a decrease in capacity during repeated charging / discharging, and a decrease in voltage (self-discharge) after being left after charging, and that provides stable characteristics over a long period of time. It is an object of the present invention to provide a hydrogen storage alloy electrode for a hydrogen battery, the nickel hydrogen battery and the like.

【0007】[0007]

【課題を解決するための手段】請求項1の発明は、水酸
化ニッケルを主構成材料とする正極と、水素を電気化学
的に吸蔵・放出することが可能な水素吸蔵合金を主構成
材料とする負極とからなるニッケル水素電池において、
前記負極に炭素と硫黄の結合を有する有機硫黄化合物が
含有されていることを特徴とするニッケル水素電池であ
る。
According to a first aspect of the present invention, there is provided a positive electrode containing nickel hydroxide as a main constituent material, and a hydrogen storage alloy capable of electrochemically absorbing and desorbing hydrogen as a main constituent material. In a nickel-hydrogen battery consisting of a negative electrode that
The nickel-hydrogen battery is characterized in that the negative electrode contains an organic sulfur compound having a bond of carbon and sulfur.

【0008】又請求項3の発明は、水素を電気化学的に
吸蔵・放出することが可能な水素吸蔵合金を主構成材料
とした電極において、前記電極に炭素と硫黄の結合を有
する有機硫黄化合物が含有されていることを特徴とする
水素吸蔵合金電極である。
According to a third aspect of the present invention, in an electrode mainly composed of a hydrogen storage alloy capable of electrochemically storing and releasing hydrogen, the organic sulfur compound having a bond of carbon and sulfur in the electrode. The hydrogen storage alloy electrode is characterized by containing:

【0009】請求項1の発明は、ニッケル水素電池の、
水素吸蔵合金を主要構成材料とする負極に炭素と硫黄の
結合を有する有機硫黄化合物を含有させることにより、
水素ガス発生に起因する内圧上昇、充放電の繰り返しに
おける容量低下、及び充電後放置の電圧低下(自己放
電)を抑制したものである。又請求項3の発明は前記電
池等に用いられる水素吸蔵合金電極である。前記の、炭
素と硫黄の結合を有する有機硫黄化合物とは、分子構造
の一部に炭素と硫黄の単結合C−S、二重結合C=S、
又はそれより多重な結合のうち少なくとも1つを持った
有機硫黄化合物である。前記有機硫黄化合物の含有量
は、水素吸蔵合金 100重量部に対して 0.005〜1重量部
が適量である。0.005 重量部未満では、その効果が小さ
く、1重量部を超えると水素吸蔵合金の量が相対的に減
少し、負極と正極との容量比が小さくなって若干内圧が
上昇する。前記有機硫黄化合物を負極に含有させるに
は、有機硫黄化合物を水素吸蔵合金粉末と導電剤のNi
粉末の中に添加して混合し、これをペースト状物として
多孔板に塗布する方法が簡便である。しかし、他の方法
も任意に適用できる。
The invention of claim 1 is a nickel-hydrogen battery,
By containing an organic sulfur compound having a bond of carbon and sulfur in the negative electrode mainly composed of hydrogen storage alloy,
This suppresses an increase in internal pressure due to generation of hydrogen gas, a decrease in capacity during repeated charging / discharging, and a decrease in voltage (self-discharge) after leaving after charging. The invention of claim 3 is a hydrogen storage alloy electrode used in the battery or the like. The above-mentioned organic sulfur compound having a bond of carbon and sulfur is a single bond C—S of carbon and sulfur, a double bond C = S, in a part of the molecular structure.
Alternatively, it is an organic sulfur compound having at least one of multiple bonds. The content of the organic sulfur compound is 0.005 to 1 part by weight with respect to 100 parts by weight of the hydrogen storage alloy. If it is less than 0.005 part by weight, the effect is small, and if it exceeds 1 part by weight, the amount of the hydrogen storage alloy is relatively decreased, the capacity ratio between the negative electrode and the positive electrode is decreased, and the internal pressure is slightly increased. In order to contain the organic sulfur compound in the negative electrode, the organic sulfur compound is added to the hydrogen storage alloy powder and the conductive agent Ni.
A convenient method is to add it to the powder, mix it, and apply this to a porous plate as a paste. However, other methods can be applied arbitrarily.

【0010】有機硫黄化合物は、チオール類、スルフィ
ド類、ジスルフィド類、ポリスルフィド類、チオアルデ
ヒド類、チオケトン類、スルホニウム化合物、スルホキ
シド類、ジスルホキシド類、スルホン類、スルホン酸誘
導体、スルフィン酸類、スルフィン酸誘導体、スルフェ
ン酸類、スルフェン酸誘導体、チオ酸類、ジチオ酸類、
炭酸の硫黄誘導体、チオアミド類、硫化カルボニル類、
チオホスゲン類、カルバミン酸類、尿素の硫黄誘導体、
チイラン誘導体、スルフィルイミン類、スルホキシイミ
ン類、ハロゲン化スルホニル類、チオカルボニル化合
物、チオカルボン酸類、スルホニウム塩、オキソスルホ
ニウム塩などの群で示される有機硫黄化合物等の中から
選ばれる。具体的には、n-ブチルチオール、エチルチオ
エタン、フェニルジチオベンゼン、トリメチルスルホニ
ウム=ブロミド、チオベンゾフェノン、2,4-ジニトロベ
ンゼンスルフェニル=クロリド、エタンスルフィン酸、
エタンスルホン酸、メタンスルホニル=クロリド、メチ
ルスルフィニルエタン、フェニルスルホニルベンゼン等
である。これらの示性式又は構造式を化1に示す。
The organic sulfur compounds are thiols, sulfides, disulfides, polysulfides, thioaldehydes, thioketones, sulfonium compounds, sulfoxides, disulfoxides, sulfones, sulfonic acid derivatives, sulfinic acids, sulfinic acid derivatives. , Sulfenic acids, sulfenic acid derivatives, thio acids, dithio acids,
Sulfur derivatives of carbonic acid, thioamides, carbonyl sulfides,
Thiophosgenes, carbamic acids, sulfur derivatives of urea,
It is selected from the group consisting of thiirane derivatives, sulfilimines, sulfoximines, sulfonyl halides, thiocarbonyl compounds, thiocarboxylic acids, sulfonium salts, oxosulfonium salts, and other organic sulfur compounds. Specifically, n-butylthiol, ethylthioethane, phenyldithiobenzene, trimethylsulfonium = bromide, thiobenzophenone, 2,4-dinitrobenzenesulfenyl chloride, ethanesulfinic acid,
Examples include ethanesulfonic acid, methanesulfonyl chloride, methylsulfinylethane, phenylsulfonylbenzene and the like. These rational formulas or structural formulas are shown in Chemical formula 1.

【0011】[0011]

【化1】 Embedded image

【0012】本発明において、負極(水素吸蔵合金を主
構成材料とする電極)に撥水性を付与することにより、
固−気−液三相界面が十分に確保され、発生水素が水素
吸蔵合金に効率よく吸収されるようになって、内圧低下
が促進する。撥水性は、水素吸蔵合金粉末に撥水剤を添
加することにより容易に付与できる。撥水剤には、PTFE
ディスパージョン(ダイキン工業製、D-1 )やフッ素ゴ
ムラテックス(ダイキン工業製、GL-252)等の市販品が
適用できる。
In the present invention, by imparting water repellency to the negative electrode (the electrode whose main constituent is a hydrogen storage alloy),
The solid-gas-liquid three-phase interface is sufficiently secured, the generated hydrogen is efficiently absorbed by the hydrogen storage alloy, and the decrease of the internal pressure is promoted. Water repellency can be easily imparted by adding a water repellent agent to the hydrogen storage alloy powder. PTFE is used as the water repellent.
Commercially available products such as dispersion (D-1 manufactured by Daikin Industries) and fluororubber latex (GL-252 manufactured by Daikin Industries) can be applied.

【0013】[0013]

【作用】本発明のニッケル水素電池は、水素吸蔵合金を
主構成材料とする電極を負極に用い前記電極に、炭素と
硫黄の結合を有する有機硫黄化合物を含有させたので、
水素ガスによる内圧上昇、充放電の繰り返しにおける容
量低下、及び充電後放置の電圧低下が抑制される。又前
記有機硫黄化合物を含有する水素吸蔵合金電極は、電池
の負極に用いて同様の効果が得られる。前記水素吸蔵合
金を主構成材料とする電極に有機硫黄化合物を含有させ
ることにより、内圧上昇が抑制されるのは、有機硫黄化
合物が、過充電時に負極での水素ガス発生を抑えるか、
発生水素を素早く水素吸蔵合金中に吸収させる働きを持
つ為と考えられる。容量低下が改善されるのは、有機硫
黄化合物が、負極の水素吸蔵合金の酸化又は水酸化物生
成による劣化を抑制する為と考えられる。電圧低下の改
善は、有機硫黄化合物が、自己放電の原因となる負極の
水素吸蔵合金の酸化又は脱水素化を抑制する為と考えら
れる。水素吸蔵合金を主構成材料とする電極に撥水性を
付与することにより、固−気−液三相界面が十分に確保
され、発生水素が水素吸蔵合金に効率よく吸収され、内
圧が低下する。
In the nickel-hydrogen battery of the present invention, since the electrode having the hydrogen storage alloy as the main constituent material is used as the negative electrode and the electrode contains the organic sulfur compound having the bond of carbon and sulfur,
An increase in internal pressure due to hydrogen gas, a decrease in capacity during repeated charging / discharging, and a decrease in voltage after being left after charging are suppressed. Further, the hydrogen storage alloy electrode containing the organic sulfur compound can be used as a negative electrode of a battery to obtain the same effect. By containing an organic sulfur compound in the electrode having the hydrogen storage alloy as a main constituent material, an increase in internal pressure is suppressed because the organic sulfur compound suppresses hydrogen gas generation at the negative electrode during overcharge,
It is considered that this is because it has a function of quickly absorbing the generated hydrogen into the hydrogen storage alloy. It is considered that the reduction in capacity is improved because the organic sulfur compound suppresses deterioration of the hydrogen storage alloy of the negative electrode due to oxidation or hydroxide formation. It is considered that the reduction in voltage is because the organic sulfur compound suppresses oxidation or dehydrogenation of the hydrogen storage alloy of the negative electrode, which causes self-discharge. By imparting water repellency to the electrode containing a hydrogen storage alloy as a main constituent material, a solid-gas-liquid three-phase interface is sufficiently secured, the generated hydrogen is efficiently absorbed by the hydrogen storage alloy, and the internal pressure is reduced.

【0014】[0014]

【実施例】以下に、本発明を実施例により詳細に説明す
る。 (実施例1)水素吸蔵合金粉末 100重量部、有機硫黄化
合物(n-ブチルチオール等)を0.003 〜1.2 重量部、導
電剤として平均粒径約 0.3μmのNi粉10重量部を均一
に混合した後、1wt% CMC( カルボキシメチルセルロー
ス)水溶液24重量部を加えペースト状物とした。次に前
記ペースト状物を、両面に厚さ5μmのNiメッキがな
され全体の厚さが60μmのFe製多孔板(開孔率38%)
の両面に均一に塗布した。次にこれを80℃で乾燥させた
のち、ローラープレスをかけて厚さを約0.4mmに調整し
て水素吸蔵合金電極を製造した。前記水素吸蔵合金粉末
は次のようにして調製した。即ち、組成がMmNi3.23
Co0.98Mn0.29Al0.39の水素吸蔵合金を真空溶解炉
にてアルゴン雰囲気下減圧状態で溶解鋳造し、得られた
鋳塊をハンマーミル粉砕、クロスビーターミル粉砕を経
た後、20〜60μmの合金粉末を分級して用いた。尚、前
記MmはミッシュメタルでLa:26wt%、Ce:50wt
%、Nd:15wt%、Pr:9wt%からなる。有機硫黄化
合物には、n-ブチルチオール、エチルチオエタン、フェ
ニルジチオベンゼン、トリメチルスルホニウム=ブロミ
ド、チオベンゾフェノン、2,4-ジニトロベンゼンスルフ
ェニル=クロリド、エタンスルフィン酸、エタンスルホ
ン酸、メタンスルホニル=クロリド、メチルスルフィニ
ルエタン、フェニルスルホニルベンゼンのいずれかを用
いた。
EXAMPLES The present invention will be described in detail below with reference to examples. Example 1 100 parts by weight of hydrogen storage alloy powder, 0.003 to 1.2 parts by weight of an organic sulfur compound (n-butylthiol, etc.), and 10 parts by weight of Ni powder having an average particle size of about 0.3 μm as a conductive agent were uniformly mixed. Then, 24 parts by weight of a 1 wt% CMC (carboxymethyl cellulose) aqueous solution was added to form a paste. Next, the paste-like material was plated with Ni on both sides to a thickness of 5 μm and the overall thickness was 60 μm, and was made of Fe (aperture ratio 38%).
Was evenly applied to both surfaces of the. Next, this was dried at 80 ° C. and then a roller press was applied to adjust the thickness to about 0.4 mm to manufacture a hydrogen storage alloy electrode. The hydrogen storage alloy powder was prepared as follows. That is, the composition is MmNi 3.23
Co 0.98 Mn 0.29 Al 0.39 hydrogen storage alloy was melt-cast in a vacuum melting furnace under a reduced pressure in an argon atmosphere, and the obtained ingot was subjected to hammer mill crushing and cross beater mill crushing, then an alloy powder of 20 to 60 μm Was classified and used. The Mm is misch metal, La: 26 wt%, Ce: 50 wt
%, Nd: 15 wt%, Pr: 9 wt%. Organic sulfur compounds include n-butylthiol, ethylthioethane, phenyldithiobenzene, trimethylsulfonium bromide, thiobenzophenone, 2,4-dinitrobenzenesulfenyl chloride, ethanesulfinic acid, ethanesulfonic acid, methanesulfonyl chloride. , Methylsulfinylethane, or phenylsulfonylbenzene was used.

【0015】(実施例2)水素吸蔵合金 100重量部、n-
ブチルチオールを 0.1重量部、導電剤として平均粒径約
0.3μmのNi粉を10重量部、更に撥水性付与剤として
PTFEディスパージョン(ダイキン工業製、D-1)の固形分
又はフッ素ゴムラテックス(ダイキン工業製、GL-252)
の固形分のいずれかを1重量部加え、これらを均一に混
合した後、1wt% CMC水溶液24重量部を加えペースト状
物にした。前記ペースト状物を両面に厚さ5μmのNi
メッキがなされ全体の厚さが60μmのFe製多孔板(開
孔率38%)の両面に均一に塗布した。その後80℃に保持
して乾燥させ、ローラープレスにかけて厚さを約 0.4mm
に調整して水素吸蔵合金電極を製造した。
(Example 2) 100 parts by weight of hydrogen storage alloy, n-
0.1 parts by weight of butyl thiol, average particle size as conductive agent
10 parts by weight of 0.3 μm Ni powder, as a water repellent agent
Solid content of PTFE dispersion (D-1 from Daikin Industries, Ltd.) or fluororubber latex (GL-252 from Daikin Industries)
1 part by weight of any one of the solid contents was mixed and mixed uniformly, and then 24 parts by weight of a 1 wt% CMC aqueous solution was added to form a paste. The paste-like material was applied on both sides with a thickness of 5 μm of Ni.
It was evenly applied on both sides of a perforated plate made of Fe (pore ratio 38%) which was plated and had a total thickness of 60 μm. After that, keep it at 80 ℃ and dry it.
The hydrogen storage alloy electrode was manufactured by adjusting the above.

【0016】(比較例1)前記の水素吸蔵合金粉末 100
重量部と、導電剤として平均粒径約 0.3μmNi粉末10
重量部を混合し、この混合粉末に1wt% CMC水溶液24重
量部を加えペースト状物とした。前記ペースト状物を両
面に厚さ5μmのNiメッキがなされ全体の厚さが60μ
mのFe製多孔板(開孔率38%)の両面に均一に塗布し
た。その後80℃に保持して乾燥させ、ローラープレスに
かけて厚さを約 0.4mmに調整して水素吸蔵合金電極を製
造した。
(Comparative Example 1) The above hydrogen storage alloy powder 100
10 parts by weight of Ni powder having an average particle size of about 0.3 μm as a conductive agent
Part by weight was mixed, and 24 parts by weight of a 1 wt% CMC aqueous solution was added to this mixed powder to form a paste. The pasty material is plated on both sides with a thickness of 5 μm and the total thickness is 60 μm.
m Fe perforated plate (opening rate 38%) was evenly applied to both sides. Then, it was kept at 80 ° C. and dried, and was roller pressed to adjust the thickness to about 0.4 mm to manufacture a hydrogen storage alloy electrode.

【0017】(比較例2)比較例1において、混合粉末
に硫酸ジメチル(炭素と硫黄の結合を有さない有機硫黄
化合物)を 0.1重量部加えた他は、比較例1と同じ方法
により水素吸蔵合金電極を製造した。尚、前記実施例1
〜比較例2の電極はいずれも、気孔度が約20%、水素吸
蔵合金の充填密度が約4.6g/cm3であった。
Comparative Example 2 Hydrogen absorption was carried out by the same method as in Comparative Example 1 except that 0.1 part by weight of dimethyl sulfate (organic sulfur compound having no carbon-sulfur bond) was added to the mixed powder in Comparative Example 1. Alloy electrodes were manufactured. In addition, the first embodiment
All the electrodes of Comparative Example 2 had a porosity of about 20% and a hydrogen storage alloy packing density of about 4.6 g / cm 3 .

【0018】このようにして得られた各々の水素吸蔵合
金電極を用いて図1に示す構造の密閉型ニッケル水素電
池(1100mAhのAAサイズ)を次の手順で組立てた。各々の
水素吸蔵合金電極を所定の形状に切断した負極1と、水
酸化ニッケルを主構成材料としたペースト状物を市販の
発泡ニッケル基板に充填したニッケル正極2とをナイロ
ン製不織布セパレーター3を介して渦巻き状に巻回し、
これを負極端子を兼ねる電池ケース4に挿入した。その
後アルカリ電解液を必要量注入した。ここで負極の理論
容量は正極の約 1.6倍とした。正極キャップ5の内側に
形成した安全弁6は約 3.0MPa の圧力になると弁が作
動するように調節した。電池ケース4の底部に直径1mm
の穴をあけて内圧測定用の圧力センサーを取付けた。図
で7は封口板、8は絶縁ガスケットである。
A sealed nickel-hydrogen battery (AA size of 1100 mAh) having the structure shown in FIG. 1 was assembled using the thus obtained hydrogen storage alloy electrodes by the following procedure. A negative electrode 1 obtained by cutting each hydrogen storage alloy electrode into a predetermined shape, and a nickel positive electrode 2 obtained by filling a commercially available foamed nickel substrate with a paste-like material containing nickel hydroxide as a main constituent material via a nylon non-woven fabric separator 3. Spirally,
This was inserted into a battery case 4 which also serves as a negative electrode terminal. After that, the required amount of alkaline electrolyte was injected. Here, the theoretical capacity of the negative electrode was about 1.6 times that of the positive electrode. The safety valve 6 formed inside the positive electrode cap 5 was adjusted so that the valve was activated when the pressure reached about 3.0 MPa. 1mm diameter at the bottom of battery case 4
A hole was drilled to attach a pressure sensor for measuring internal pressure. In the figure, 7 is a sealing plate and 8 is an insulating gasket.

【0019】このようにして組立てた各々の電池につい
て、次の条件で電池試験を行った。 電池内圧試験:20℃の条件下で1CmAの充電電流で正極
容量の 450%までの充電を行い、その時点での電池内圧
を測定した。 充放電サイクル試験:20℃の条件下で1CmAの充電電
流で正極容量の 150%充電し、1CmAの放電電流で1V
まで連続放電を行い、そのサイクルを 500サイクル繰り
返したときの充放電サイクル試験の放電容量維持率の推
移をみた。 放電容量維持率は初期容量に対する各サイ
クルでの容量を百分率で表した。前記初期容量は全ての
電池において1170〜1200mAh の間にあった。 電圧低下試験:温度20℃、充電電流1CmAの条件で正
極容量の 150%を充電した後、80℃の温度に 100日間放
置して電池のOPEN電圧が1Vまで低下するのに要した時
間を測定した。 結果を表1及び図2に示す。図2は充放電サイクル試験
におけるサイクル数と容量維持率との関係図である。
A battery test was carried out on each of the batteries thus assembled under the following conditions. Battery internal pressure test: Charged up to 450% of the positive electrode capacity at a charging current of 1 CmA at 20 ° C, and measured the internal battery pressure at that time. Charge / discharge cycle test: 150% of the positive electrode capacity is charged at a charge current of 1 CmA at 20 ° C and 1 V at a discharge current of 1 CmA.
The discharge capacity retention rate of the charge / discharge cycle test was observed when the cycle was repeated 500 times and the cycle was repeated 500 times. The discharge capacity retention rate was expressed as a percentage of the capacity in each cycle with respect to the initial capacity. The initial capacity was between 1170 and 1200 mAh for all batteries. Voltage drop test: After charging 150% of the positive electrode capacity under the conditions of a temperature of 20 ° C and a charging current of 1 CmA, leave it at a temperature of 80 ° C for 100 days and measure the time required for the OPEN voltage of the battery to drop to 1V. did. The results are shown in Table 1 and FIG. FIG. 2 is a relationship diagram between the number of cycles and the capacity retention rate in the charge / discharge cycle test.

【0020】[0020]

【表1】 [Table 1]

【0021】表1及び図2より明らかなように、本発明
例品(No.1〜17) はいずれも、内圧が 0.1〜0.7 MPa
と低く、又 500サイクル後の充放電容量維持率が94.5%
以上と高く、又電圧低下所要時間が 210時間以上で自己
放電抑制効果が大きく、比較品のNo.19(従来品)と比べ
て優れた特性を示した。本発明の電池は 500サイクル後
の充放電維持率が従来品より8%以上、容量にして約10
0mAh以上も高いものであった。No.16,17は、撥水剤を付
与した為に固−気−液3相界面が十分に確保され、内圧
が著しく低下した。尚、No.4は有機硫黄化合物が少なか
った為いずれの特性も若干低下した。No.5は有機硫黄化
合物が多かった為内圧が幾分高くなった。他方、比較例
品のNo.18 は、炭素と硫黄の結合のない有機硫黄化合物
を含有させた為、特性の向上はあまり認められなかっ
た。
As is clear from Table 1 and FIG. 2, the products of the present invention (Nos. 1 to 17) all have an internal pressure of 0.1 to 0.7 MPa.
And the charge / discharge capacity retention rate after 500 cycles is 94.5%.
Above all, the voltage drop required time was 210 hours or more, and the self-discharge suppression effect was large, showing superior characteristics to the comparative product No. 19 (conventional product). The battery of the present invention has a charge / discharge retention rate after 500 cycles of 8% or more compared with the conventional product, and has a capacity of about 10%.
It was as high as 0 mAh or more. In Nos. 16 and 17, since the water repellent was added, the solid-gas-liquid three-phase interface was sufficiently secured, and the internal pressure was remarkably reduced. Incidentally, No. 4 had a small amount of organic sulfur compounds, and thus all properties were slightly deteriorated. No. 5 had a large internal pressure because it contained many organic sulfur compounds. On the other hand, Comparative Example No. 18 contained an organic sulfur compound having no bond between carbon and sulfur, and therefore the improvement in properties was not observed so much.

【0022】[0022]

【発明の効果】本発明のニッケル水素電池は、水素吸蔵
合金を主構成材料とする電極を負極に用い前記電極に、
炭素と硫黄の結合を有する有機硫黄化合物を含有させた
ので、水素ガスによる内圧上昇、充放電の繰り返しにお
ける容量低下、及び充電後放置の電圧低下(自己放電)
が抑制される。又前記有機硫黄化合物を含有する水素吸
蔵合金電極は、電池の負極に用いて同様の効果が得られ
る。
According to the nickel-hydrogen battery of the present invention, an electrode containing a hydrogen storage alloy as a main constituent material is used as a negative electrode,
Since it contains an organic sulfur compound that has a bond of carbon and sulfur, the internal pressure rises due to hydrogen gas, the capacity decreases during repeated charge and discharge, and the voltage decreases after charging (self-discharge).
Is suppressed. Further, the hydrogen storage alloy electrode containing the organic sulfur compound can be used as a negative electrode of a battery to obtain the same effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】ニッケル水素電池の組立て説明図である。FIG. 1 is an explanatory view of assembly of a nickel hydrogen battery.

【図2】充放電サイクル試験におけるサイクル数と容量
維持率との関係図である。
FIG. 2 is a relationship diagram between the number of cycles and a capacity retention rate in a charge / discharge cycle test.

【符号の説明】[Explanation of symbols]

1……負極 2……正極 3……セパレーター 4……電池ケース 5……正極キャップ 6……安全弁 7……封口板 8……絶縁ガスケット 1 ... Negative electrode 2 ... Positive electrode 3 ... Separator 4 ... Battery case 5 ... Positive electrode cap 6 ... Safety valve 7 ... Sealing plate 8 ... Insulation gasket

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水酸化ニッケルを主構成材料とする正極
と、水素を電気化学的に吸蔵・放出することが可能な水
素吸蔵合金を主構成材料とする負極とからなるニッケル
水素電池において、前記負極に炭素と硫黄の結合を有す
る有機硫黄化合物が含有されていることを特徴とするニ
ッケル水素電池。
1. A nickel-hydrogen battery comprising a positive electrode containing nickel hydroxide as a main constituent material, and a negative electrode containing a hydrogen storage alloy capable of electrochemically absorbing and desorbing hydrogen as a main constituent material. A nickel-hydrogen battery, wherein the negative electrode contains an organic sulfur compound having a bond of carbon and sulfur.
【請求項2】 負極の少なくとも一部に撥水性を付与し
たことを特徴とする請求項1記載のニッケル水素電池。
2. The nickel-hydrogen battery according to claim 1, wherein at least a part of the negative electrode is provided with water repellency.
【請求項3】 水素を電気化学的に吸蔵・放出すること
が可能な水素吸蔵合金を主構成材料とする電極におい
て、前記電極に炭素と硫黄の結合を有する有機硫黄化合
物が含有されていることを特徴とする水素吸蔵合金電
極。
3. An electrode mainly comprising a hydrogen storage alloy capable of electrochemically storing and releasing hydrogen, wherein the electrode contains an organic sulfur compound having a bond of carbon and sulfur. A hydrogen storage alloy electrode.
【請求項4】 電極の少なくとも一部に撥水性を付与し
たことを特徴とする請求項3記載の水素吸蔵合金電極。
4. The hydrogen storage alloy electrode according to claim 3, wherein water repellency is imparted to at least a part of the electrode.
JP6212272A 1994-09-06 1994-09-06 Nickel hydrogen battery and hydrogen storage alloy electrode Pending JPH0878015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6212272A JPH0878015A (en) 1994-09-06 1994-09-06 Nickel hydrogen battery and hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6212272A JPH0878015A (en) 1994-09-06 1994-09-06 Nickel hydrogen battery and hydrogen storage alloy electrode

Publications (1)

Publication Number Publication Date
JPH0878015A true JPH0878015A (en) 1996-03-22

Family

ID=16619853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6212272A Pending JPH0878015A (en) 1994-09-06 1994-09-06 Nickel hydrogen battery and hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JPH0878015A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1088355A1 (en) * 1999-04-14 2001-04-04 Ovonic Battery Company, Inc. Electrochemical cell having reduced cell pressure
JP2007273453A (en) * 2006-03-08 2007-10-18 Matsushita Electric Ind Co Ltd Negative electrode for nickel-hydrogen storage battery, and nickel-hydrogen storage battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1088355A1 (en) * 1999-04-14 2001-04-04 Ovonic Battery Company, Inc. Electrochemical cell having reduced cell pressure
EP1088355A4 (en) * 1999-04-14 2002-07-17 Ovonic Battery Co Electrochemical cell having reduced cell pressure
US6492057B1 (en) 1999-04-14 2002-12-10 Ovonic Battery Company, Inc. Electrochemical cell having reduced cell pressure
JP2007273453A (en) * 2006-03-08 2007-10-18 Matsushita Electric Ind Co Ltd Negative electrode for nickel-hydrogen storage battery, and nickel-hydrogen storage battery

Similar Documents

Publication Publication Date Title
JP3097347B2 (en) Nickel-metal hydride battery
CA1311519C (en) Secondary battery
US5077149A (en) Nickel/hydrogen storage battery and method of manufacturing the same
JPH1064537A (en) Nickel positive electrode for alkaline storage battery and nickel hydrogen storage battery using this electrode
JPH0528992A (en) Nickel positive pole for alkali storage battery and nickel-hydrogen storage battery using nickel positive pole
JPH0677451B2 (en) Manufacturing method of hydrogen storage electrode
JPH0878015A (en) Nickel hydrogen battery and hydrogen storage alloy electrode
JPH04212269A (en) Alkaline storage battery
JP2603188B2 (en) Hydrogen storage alloy electrode
JPH11297352A (en) Alkaline storage battery
JPH08138658A (en) Hydrogen storage alloy-based electrode
JPH09204930A (en) Nickel hydrogen storage battery
JP3012658B2 (en) Nickel hydride rechargeable battery
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JPH06150925A (en) Manufacture of nickel positive electrode for alkaline storage battery and alkaline storage battery equipped with electrode
JPH08287906A (en) Hydrogen storage alloy electrode
JP2000200612A (en) Rectangular alkaline secondary battery
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JP3362400B2 (en) Nickel-metal hydride storage battery
JPH0837022A (en) Alkaline storage battery
JPH03285270A (en) Alkaline storage battery
JPH11149920A (en) Nickel electrode for alkali secondary battery and alkali secondary battery
JPH09171837A (en) Nickel-hydrogen secondary battery
JP2525320B2 (en) Positive electrode for alkaline secondary battery
JPH0582127A (en) Enclosed type nickel-metal hydride storage battery