JPH087171B2 - Gas analyzer calibration method and gas concentration measuring device - Google Patents

Gas analyzer calibration method and gas concentration measuring device

Info

Publication number
JPH087171B2
JPH087171B2 JP1143099A JP14309989A JPH087171B2 JP H087171 B2 JPH087171 B2 JP H087171B2 JP 1143099 A JP1143099 A JP 1143099A JP 14309989 A JP14309989 A JP 14309989A JP H087171 B2 JPH087171 B2 JP H087171B2
Authority
JP
Japan
Prior art keywords
gas
calibration
concentration
detected
detection units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1143099A
Other languages
Japanese (ja)
Other versions
JPH039255A (en
Inventor
雄一 佐々木
元衛 太田
孝治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP1143099A priority Critical patent/JPH087171B2/en
Publication of JPH039255A publication Critical patent/JPH039255A/en
Publication of JPH087171B2 publication Critical patent/JPH087171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、発電用ボイラ等に用いられているガス分析
計の校正方法及びガス濃度分析装置に関するものであ
る。
Description: TECHNICAL FIELD The present invention relates to a calibration method and a gas concentration analyzer for a gas analyzer used in a power generation boiler or the like.

(従来の技術) 工業用ガスの酸素等の濃度を検出測定するセンサにお
いて、センサからの出力信号をデジタル信号に変換し、
記憶装置内の検量線により酸素等の濃度を測定し、表示
している。この際、定期的にいわゆるスパンガス、ゼロ
ガス等の校正ガスをセンサへと送り込み、センサからの
信号を真のガス濃度と比較して検量線を修正し、センサ
の経時的なドリフトを補正するために、ガス校正を行っ
ている。
(Prior Art) In a sensor for detecting and measuring the concentration of oxygen and the like in industrial gas, an output signal from the sensor is converted into a digital signal,
The concentration of oxygen and the like is measured and displayed by a calibration curve in the storage device. At this time, a calibration gas such as so-called span gas or zero gas is periodically sent to the sensor, and the calibration curve is corrected by comparing the signal from the sensor with the true gas concentration to correct the drift of the sensor over time. , Gas calibration is done.

このとき、例えば第10図に示すように、スパンガスボ
ンベからの供給路に電磁弁SVSを、ゼロガスボンベから
の供給路に電磁弁SVZを設け、またプローブ1,2,3への供
給路にそれぞれ電磁弁SVI,SVII,SVIIIを設ける。そし
て、動作タイミングとしては、第11図に示すように、各
電磁弁を(SVSとSVI,SVZとSVI,SVSとSVII,SVZとSVII,SV
SとSVIII,SVZとSVIII)の順で開き、各検出部1A,2A,3A
の順で、それぞれスパンガスとゼロガスとを供給して、
逐次校正を行っている。
At this time, for example, as shown in FIG. 10, a solenoid valve SVS is provided in the supply path from the span gas cylinder, a solenoid valve SVZ is provided in the supply path from the zero gas cylinder, and the supply paths to the probes 1, 2, and 3 are respectively provided. Provide solenoid valves SVI, SVII, SVIII. Then, as the operation timing, as shown in FIG. 11, each solenoid valve (SVS and SVI, SVZ and SVI, SVS and SVII, SVZ and SVII, SV
S and SVIII, SVZ and SVIII), and open each detector 1A, 2A, 3A
In that order, supply span gas and zero gas respectively,
Sequential calibration is performed.

また、発電用ボイラ等の大規模装置においては、煙道
の広範囲に亘って立体的に酸素濃度の監視を行うべく、
第12図に示すように各プローブ1,2,3にそれぞれ例えば
三個毎の検出部1-1,1-2,1-3,2-1,2-2,2-3,3-1,3-2,3-3
を設けたものがある。こうした酸素濃度測定装置では、
校正ガスを各検出部に供給するに際し、各検出部にそれ
ぞれ配管を施し、それぞれ対応して電磁弁SV1,SV2,SV3
を設けている。また、各プローブ1,2,3毎に、校正ガス
導入用の配管を設け、それぞれ電磁弁SVS,SVZを設けて
いる。
Also, in a large-scale device such as a boiler for power generation, in order to three-dimensionally monitor the oxygen concentration over a wide range of the flue,
As shown in FIG. 12, each of the probes 1, 2, and 3 has, for example, three detection units 1-1, 1-2, 1-3, 2-1, 2-2, 2-3, 3-1. , 3-2,3-3
There is one that has. In such an oxygen concentration measuring device,
When supplying the calibration gas to each detector, each detector is connected with a pipe and the solenoid valves SV1, SV2, SV3
Is provided. Further, a pipe for introducing a calibration gas is provided for each of the probes 1, 2, 3 and solenoid valves SVS, SVZ are provided respectively.

また、第13図に示すように、図示省略したスパンガス
ボンベ、ゼロガスボンベからの配管を、それぞれ一本毎
とすることもできる。
Further, as shown in FIG. 13, each of the span gas cylinders and the zero gas cylinders (not shown) may be provided individually.

こうした校正装置の動作タイミングとしては、第14図
に示すように、(SVSとSV1,SVZとSV1,SVSとSV2,SVZとSV
2,SVSとSV3,SVZとSV3……)の順で電磁弁を開放し、検
出部1-1,1-2,1-3,2-1,2-2,2-3,3-1,3-2,3-3の順で、そ
れぞれスパンガスとゼロガスとについて校正を行ってい
る。
As shown in Fig. 14, the operation timing of such a calibration device is (SVS and SV1, SVZ and SV1, SVS and SV2, SVZ and SVZ
2, SVS and SV3, SVZ and SV3 ……) open the solenoid valve in this order, and the detection part 1-1,1-2,1-3,2-1,2-2,2-3,3-1 , 3-2, 3-3 are calibrated for span gas and zero gas in this order.

(発明が解決しようとする課題) しかし、上記の方法では、配管と、電磁弁操作のため
の配線とが極めて多く、煩雑であり、コスト高となる。
また、各検出部、検出点ごとにガス校正を実施するた
め、校正開始から終了までに非常に長時間を要する。
(Problems to be Solved by the Invention) However, in the above method, the number of pipes and wirings for operating the solenoid valve is extremely large, which is complicated and costly.
Further, since gas detection is performed for each detection unit and each detection point, it takes a very long time from the start to the end of calibration.

本発明の課題は、配管、配線の簡素化、低コスト化が
可能であり、校正処理に要する時間を短縮できる、ガス
分析計の校正方法及びガス濃度分析装置に関するもので
ある。
An object of the present invention relates to a gas analyzer calibration method and a gas concentration analyzer that can simplify piping and wiring, reduce costs, and shorten the time required for calibration processing.

(課題を解決するための手段) 本発明は、検出部へと導入される燃焼排ガス中の被検
出ガスの濃度に応じて検出部から電気信号を発生させ、
この電気信号を演算処理して被検出ガスの濃度値として
出力するに際し、被検出ガスの濃度が既知である校正ガ
スを検出部へと供給して被検出ガスの濃度値の校正処理
を行うガス分析計の校正方法において、複数のプローブ
を被検出ガスに対してさらし、各プローブに検出部をそ
れぞれ複数設け、異なる各プローブに設けられている複
数の検出部に対して校正ガスを実質的に同時に供給し、
これら複数の検出部から発生した電気信号をそれぞれ校
正処理しながら、各プローブのうち校正ガスを供給して
いない検出部によって濃度を測定し続け、かつ校正ガス
としてスパンガスとゼロガスとを交互に供給することを
特徴とする、ガス分析計の校正方法に係るものである。
(Means for Solving the Problem) The present invention generates an electric signal from a detection unit according to the concentration of a gas to be detected in combustion exhaust gas introduced into the detection unit,
A gas that performs a calibration process of the concentration value of the gas to be detected by supplying a calibration gas whose concentration of the gas to be detected is known to the detection unit when calculating and outputting the electric signal as the concentration value of the gas to be detected. In the calibration method of an analyzer, a plurality of probes are exposed to a gas to be detected, each probe is provided with a plurality of detection parts, and the calibration gas is substantially applied to a plurality of detection parts provided in different probes. Supply at the same time,
While calibrating the electric signals generated from the plurality of detectors, the detectors of each probe that do not supply the calibration gas continue to measure the concentration, and the span gas and the zero gas are alternately supplied as the calibration gas. The present invention relates to a calibration method for a gas analyzer, which is characterized in that

また、本発明に係るガス濃度の測定装置は、被検出ガ
スの濃度に応じて電気信号を発生する検出部をそれぞれ
複数備えている複数のプローブと;電気信号を演算処理
して被検出ガスの濃度値として出力する信号変換部と;
校正ガスとしてのスパンガスまたはゼロガスを、異なる
各プローブに設けられている複数の検出部に対して供給
する校正ガス供給手段と;この校正ガス供給手段と複数
の検出部との間で校正ガスの供給と遮断とを選択的に行
う弁部材と;この弁部材を開放させることにより校正ガ
スを複数の検出部へと実質的に同時に供給するための弁
部材駆動手段と;複数の検出部からそれぞれ発生した電
気信号を基に被検出ガスの濃度値の校正処理を行う校正
処理手段とを有しており、スパンガスとゼロガスとを複
数の検出部に対して交互に供給し、複数の検出部から発
生した電気信号をそれぞれ校正処理しながら、各プロー
ブのうち校正ガスを供給していない検出部によって濃度
を測定し続けることを特徴とする。
Further, the gas concentration measuring apparatus according to the present invention includes a plurality of probes each having a plurality of detection units that generate an electric signal according to the concentration of the gas to be detected; A signal converter for outputting the density value;
Calibration gas supply means for supplying span gas or zero gas as a calibration gas to a plurality of detection parts provided on different probes; and supply of calibration gas between the calibration gas supply means and the plurality of detection parts. And a valve member for selectively shutting off the valve member; valve member driving means for supplying the calibration gas to the plurality of detection units substantially simultaneously by opening the valve member; generated from the plurality of detection units It has a calibration processing means for performing calibration processing of the concentration value of the gas to be detected based on the electric signal obtained, and the span gas and the zero gas are alternately supplied to the plurality of detection units, and the generation is performed from the plurality of detection units. It is characterized in that the concentration is continuously measured by the detection unit of each probe, which does not supply the calibration gas, while performing the calibration processing on each of the electric signals.

複数の検出部へと校正ガスを実質的に同時に供給する
とは、配管内の流通距離、圧力分布等による微小遅速な
どは問題としない意である。
Supplying the calibration gas to the plurality of detection units substantially at the same time does not mean that the flow rate in the pipe, minute delay due to pressure distribution, etc. do not matter.

(実施例) 第1図は本発明外の参考例に係る酸素分析計の校正ガ
ス配管を概略的に示す図、第2図は同じく電気信号の変
換部を示す概念図、第3図、第4図は校正処理手順を示
すフローチャート、第5図は校正ガス供給のための電磁
弁の動作タイミングを示す図である。
(Example) FIG. 1 is a diagram schematically showing a calibration gas pipe of an oxygen analyzer according to a reference example other than the present invention, and FIG. 2 is a conceptual diagram similarly showing an electric signal converter, FIG. 3, and FIG. FIG. 4 is a flowchart showing the procedure of the calibration process, and FIG. 5 is a diagram showing the operation timing of the solenoid valve for supplying the calibration gas.

本例の酸素分析計においては、スパンガス(分析計の
最大目盛値を校正するのに用いるガス)ボンベ10又はゼ
ロガス(分析計の最小目盛値を校正するのに用いるガ
ス)ボンベ20と、検出部1A,2A,3Aとの間に、電磁弁SVS,
SVZのみを設けた点が重要である。この動作手順を説明
する。
In the oxygen analyzer of this example, a span gas (gas used to calibrate the maximum scale value of the analyzer) cylinder 10 or a zero gas (gas used to calibrate the minimum scale value of the analyzer) cylinder 20 and a detection unit Solenoid valve SVS, 1A, 2A, 3A
It is important that only SVZ is provided. This operation procedure will be described.

動作全体の制御は、CPU,メモリによって行う。まず、
リレー回路を駆動して電磁弁SVSを開き、スパンガスボ
ンベ10から検出部1A,2A,3Aへと同時にスパンガスを供給
する。このとき、第3図に示すように、SVSオンとし、
タイマをカウントする。SVSオンを行うには、予め校正
周期を信号変換部内に設定しておく。そして、所定時間
経つと(Tset−T1=aとなると)、校正ガスの流通が定
常状態となるので、スパン校正処理を開始する。
The CPU and memory control the entire operation. First,
The relay circuit is driven to open the solenoid valve SVS, and the span gas is simultaneously supplied from the span gas cylinder 10 to the detection units 1A, 2A, 3A. At this time, as shown in FIG. 3, the SVS is turned on,
Count the timer. To turn on SVS, the calibration cycle is set in advance in the signal converter. Then, after a lapse of a predetermined time (when T set −T 1 = a), the flow of the calibration gas becomes a steady state, and the span calibration process is started.

スパン校正処理手順は、第4図に示すように、検出部
1A,2A,3Aのいずれにもスパン校正ガスを流しつつ、検出
部1A,2A,3Aの順で行う。具体的には、検出部1A,2A,3Aで
発生した電気信号を、マルチプレクサ、A/Dコンバータ
を通して入力ポートよりCPUへと入力し、これと検量線
データとにより酸素濃度を算出し、スパンガスの真の酸
素濃度と比較し、検量線を校正する。
As shown in FIG. 4, the span calibration procedure is performed by the detection unit.
Flow the span calibration gas to any of 1A, 2A, and 3A, and perform detection units 1A, 2A, and 3A in this order. Specifically, the electric signals generated by the detection units 1A, 2A, and 3A are input to the CPU from the input port through the multiplexer and the A / D converter, the oxygen concentration is calculated from this and the calibration curve data, and the span gas Calibrate the calibration curve by comparing with the true oxygen concentration.

スパン校正処理を終え、予め定められたスパンガス供
給時間が経つと(Tset−T1=0となると)、リレー回路
が駆動され、電磁弁SVSが閉じる(SVSオフ、タイマ1リ
セット)。
After the span calibration process is completed and a predetermined span gas supply time has passed (when Tset−T 1 = 0), the relay circuit is driven and the solenoid valve SVS is closed (SVS off, timer 1 reset).

次いで、予め設定した内部タイマの信号により、電磁
弁SVZが開かれ(SVZオン、タイマ2カウント開始)、こ
の後、上記のスパン校正処理と全く同じ手順で、検出部
1A,2A,3Aのゼロ校正を逐次行う。
Next, the solenoid valve SVZ is opened by the signal of the preset internal timer (SVZ is turned on, timer 2 count starts), and thereafter, the detection unit is operated by the same procedure as the span calibration processing described above.
Perform 1A, 2A, 3A zero calibration sequentially.

内部タイマによる校正処理開始時期の設定周期は、例
えば1週毎、一月毎など任意に定めうる。
The setting cycle of the calibration processing start time by the internal timer can be arbitrarily set, for example, every week or every month.

本例の酸素濃度分析計によれば、電磁弁SVS,SVZの開
閉によって校正ガスの供給、遮断を行っており、弁の開
放によって同時に3つの検出部へと校正ガスを送ってい
る。従って、電磁弁の数が少ないため、リレー回路から
の配線が少なく、簡素である。また、内部タイマの設定
周期に従って電磁弁SVS,SVZを開放し、ここから検出部1
A,2A,3Aへと校正ガスを送っているので、非常に簡単
に、校正処理全体の開始を実質的に同時とできる。
According to the oxygen concentration analyzer of this example, the calibration gas is supplied and shut off by opening and closing the solenoid valves SVS and SVZ, and the calibration gas is simultaneously sent to the three detectors by opening the valves. Therefore, since the number of solenoid valves is small, the wiring from the relay circuit is small and it is simple. Also, open the solenoid valves SVS, SVZ according to the set cycle of the internal timer,
Since the calibration gas is sent to A, 2A and 3A, it is very easy to start the entire calibration process substantially at the same time.

更に、校正ガスの供給開始→定常状態→校正ガスの供
給終了のサイクルを、スパンガス、ゼロガスの各々につ
いて一回毎しか行っていないので、極めて校正処理時間
が短かい。
Further, since the cycle of starting the supply of the calibration gas → the steady state → the end of the supply of the calibration gas is performed only once for each of the span gas and the zero gas, the calibration processing time is extremely short.

第6図は本発明の実施例による酸素濃度分析計の配管
状態を示す概略図、第7図は外部トリガと信号変換部と
の接続を概念的に示す図、第8図は校正動作の手順を示
すフローチャート、第9図は電磁弁の開放動作のタイミ
ングチャートである。
FIG. 6 is a schematic diagram showing a piping state of an oxygen concentration analyzer according to an embodiment of the present invention, FIG. 7 is a diagram conceptually showing a connection between an external trigger and a signal converter, and FIG. 8 is a procedure of a calibration operation. FIG. 9 is a timing chart of the opening operation of the solenoid valve.

本例では、各プローブ1,2,3に、点状の検出部1-1,1-
2,1-3,2-1,2-2,2-3,3-1,3-2,3-3を3個毎設けてある。
そして、電磁弁SV1の配管は検出部1-1,2-1,3-1へと通
じ、電磁弁SV2の配管は検出部1-2,2-2,3-2へと通じ、電
磁弁SV3の配管は検出部1-3,2-3,3-3へと通じている。
In this example, each probe 1, 2, 3 has a dot-shaped detector 1-1-1,1-
2,3,2-1,2-2,2-3,3-1,3-2,3-3 are provided every three.
Then, the piping of the solenoid valve SV1 leads to the detectors 1-1,2-1,3-1, and the piping of the solenoid valve SV2 leads to the detectors 1-2,2-2,3-2. The SV3 piping leads to the detectors 1-3, 2-3, 3-3.

また、第7図に示すように、各プローブ1,2,3毎に、
マルチプレクサ、A/Dコンバータを介して、所定の電気
信号変換部12へと接続している。この電気信号変換部12
は、第2図に示すものと同じであり、入力ポート、メモ
リ、CPU、タイマ、出力ポートを有しており、各検出部
からの電気信号を変換して酸素濃度値とし、また校正処
理を行うものである(第7図では詳細を図示省略してあ
る)。
Further, as shown in FIG. 7, for each probe 1, 2, and 3,
It is connected to a predetermined electric signal converter 12 via a multiplexer and an A / D converter. This electrical signal converter 12
Is the same as that shown in FIG. 2 and has an input port, a memory, a CPU, a timer, and an output port. It converts the electric signal from each detection unit into an oxygen concentration value, and performs calibration processing. This is done (details are omitted in FIG. 7).

次に、動作手順を説明する。 Next, the operation procedure will be described.

まず、外部トリガより校正処理開始信号を同時に各電
気回路部12へと送り(最初はn=1、第8図参照)、図
示省略したリレー回路を駆動して、SVS,SV1オン、タイ
マ1カウント開始とする。そして、第9図に示すよう
に、検出器1-1,2-1,3-1に同時にスパンガスを供給す
る。所定時間経過後(Tset−T1=a)、検出器1-1,2-1,
3-1のスパン校正ガスによる校正処理を行う。この校正
処理自体は、第1図〜第5図の例と同様に行う。
First, an external trigger sends a calibration process start signal to each electric circuit section 12 at the same time (initially n = 1, see FIG. 8) to drive a relay circuit (not shown) to turn on SVS, SV1 and count timer 1 Let's start. Then, as shown in FIG. 9, the span gas is simultaneously supplied to the detectors 1-1, 2-1 and 3-1. After a predetermined time (Tset-T 1 = a) , the detector 1-1 and 2-1,
Perform the calibration process using the span calibration gas of 3-1. The calibration process itself is performed in the same manner as in the example of FIGS.

次いで、電磁弁SVSをオフとし、電磁弁SVZを開き、検
出器1-1,2-1,3-1へとゼロガスを供給する。所定時間経
過後(Tset−T2=a)、検出器1-1,2-1,3-1のゼロガス
による校正処理を行う。そして、データ処理を終え、Ts
et−T2=0となると、電磁弁SVZ,SV1を共に閉鎖する。
これにより、検出器1-1,2-1,3-1の校正処理が終了す
る。
Next, the solenoid valve SVS is turned off, the solenoid valve SVZ is opened, and zero gas is supplied to the detectors 1-1, 2-1 and 3-1. After a predetermined time (Tset-T 2 = a) , performs the calibration processing by zero gas detector 1-1,2-1,3-1. Then, after processing the data, Ts
When et-T 2 = 0, both solenoid valves SVZ and SV1 are closed.
This completes the calibration processing of the detectors 1-1, 2-1, and 3-1.

次いで、n=2とし、電磁弁SVS,SV2を開き、上記と
同様に検出器1-2,2-2,3-2のスパンガスによる校正処理
を行う。同様の操作を繰り返し、順次、検出器1-2,2-2,
3-2のゼロガス校正処理、検出器1-3,2-3,3-3のスパンガ
ス校正処理、ゼロガス校正処理を行う。
Next, n = 2 is set, the solenoid valves SVS, SV2 are opened, and the calibration process using the span gas of the detectors 1-2, 2-2, 3-2 is performed in the same manner as above. Repeat the same operation, detector 1-2,2-2,
Perform zero gas calibration processing of 3-2, span gas calibration processing of detectors 1-3, 2-3, 3-3, and zero gas calibration processing.

本例によれば、電磁弁SV1,SV2,SV3のそれぞれを開放
することで、同時に3個毎の点状検出器へと校正ガスを
供給している。従って、電磁弁の数を減らし、リレー回
路からの配線を少なくでき、簡素にできる。かつ、校正
ガスの供給開始→定常状態→校正ガスの供給終了のサイ
クル数を従来の1/3にできるので、極めて校正処理時間
が短かい。
According to this example, by opening each of the solenoid valves SV1, SV2, SV3, the calibration gas is simultaneously supplied to every three point detectors. Therefore, the number of solenoid valves can be reduced, the wiring from the relay circuit can be reduced, and the structure can be simplified. Moreover, the number of cycles for starting the supply of the calibration gas → steady state → ending the supply of the calibration gas can be reduced to 1/3 of the conventional cycle, so the calibration processing time is extremely short.

更に、一個の外部トリガから各信号変換部へと校正開
始信号を送っているので、各信号変換部の内蔵タイマ及
びメモリに上記の校正スケジュールを予め記憶させてお
き、外部トリガからの信号により校正処理開始時刻を同
期させることができる。従って、検出器1-1,2-1,3-1系
列の校正処理と、1-2,2-2,3-2系列の校正処理と、1-3,2
-3,3-3系列の校正処理とを適切にスケジュール調整で
き、処理時間が前後したり、過大な空き時間が発生する
のを防止できる。
Further, since a calibration start signal is sent from one external trigger to each signal converter, the above-mentioned calibration schedule is stored in advance in the built-in timer and memory of each signal converter, and the calibration from the signal from the external trigger is performed. The processing start times can be synchronized. Therefore, the detector 1-1,2-1,3-1 series calibration process, 1-2,2-2,3-2 series calibration process, 1-3,2
-3, 3-3 series calibration process can be adjusted appropriately, and it is possible to prevent the processing time from being mixed up and the excessive free time from occurring.

上記の実施例は種々変更できる。 The above embodiment can be variously modified.

例えば、第6図における点状検出部の数、測定プロー
ブの数は種々変更できる。
For example, the number of point detectors and the number of measurement probes in FIG. 6 can be changed variously.

本発明は、SOx,NOx等の濃度分析にも適用できる。The present invention can also be applied to concentration analysis of SO x , NO x and the like.

(発明の効果) 本発明に係るガス分析計の校正方法によれば、複数の
検出部へと校正ガスを実質的に同時に供給し、これら複
数の検出部から発生した電気信号をそれぞれ校正処理し
ているので、校正ガスの供給開始、定常状態、校正ガス
の供給終了のサイクルを複数の検出部毎に行う必要はな
く、一括して行える。従って、校正処理サイクル数が極
めて少なく、所要時間を非常に短くできる。しかも、複
数のプローブを前記被検出ガスに対してさらして、異な
る位置における濃度を測定しており、各プローブに検出
部をそれぞれ複数設けており、相異なる各プローブに設
けられている複数の検出部に対して校正ガスを実質的に
同時に供給し、これら複数の検出部から発生した電気信
号をそれぞれ校正処理しながら、各プローブのうち校正
ガスを供給していない検出部によって濃度を測定し続け
ているので、前記した相異なる各位置における濃度を、
ゼロガスとスパンガスとによる校正処理を実施しながら
同時に、測定し続けることができる。
(Effects of the Invention) According to the gas analyzer calibration method of the present invention, the calibration gas is supplied to the plurality of detectors substantially at the same time, and the electrical signals generated from the plurality of detectors are calibrated. Therefore, it is not necessary to perform the cycle of starting the supply of the calibration gas, the steady state, and ending the supply of the calibration gas for each of the plurality of detection units, but it is possible to collectively perform them. Therefore, the number of calibration processing cycles is extremely small, and the required time can be very short. Moreover, a plurality of probes are exposed to the gas to be detected to measure the concentration at different positions, each probe is provided with a plurality of detection portions, and a plurality of detections provided for each different probe are performed. The calibration gas is supplied to the parts substantially at the same time, and the electrical signals generated from these multiple detection parts are calibrated respectively, while the concentration is continuously measured by the detection part of each probe that does not supply the calibration gas. Therefore, the concentration at each of the different positions mentioned above,
The measurement can be continued at the same time while performing the calibration process using the zero gas and the span gas.

本発明に係るガス濃度分析装置によれば、校正ガス供
給手段と複数の検出部との間で校正ガスの供給と遮断と
を選択的に行う弁部材を設け、この弁部材を開放させる
ことにより校正ガスを複数の検出部へと実質的に同時に
供給しているので、弁部材を設けるという簡略な構成で
本発明の方法を実現できると共に、複数の検出部のそれ
ぞれについて弁部材を設ける必要がないので、配管が簡
略であり、かつ弁部材と弁部材駆動手段との間の配線を
減らすことができる。従って、全体の構成を簡素にで
き、コストダウンも可能である。
According to the gas concentration analyzer of the present invention, a valve member for selectively supplying and shutting off the calibration gas is provided between the calibration gas supply means and the plurality of detection units, and the valve member is opened. Since the calibration gas is supplied to the plurality of detection portions substantially at the same time, the method of the present invention can be realized with a simple configuration of providing the valve member, and it is necessary to provide the valve member for each of the plurality of detection portions. Since it is not provided, the piping is simple and the wiring between the valve member and the valve member driving means can be reduced. Therefore, the entire structure can be simplified and the cost can be reduced.

【図面の簡単な説明】 第1図〜第5図は、本発明外の参考例を示すものであ
り、第1図は酸素濃度分析計の配管状態を示す概略図、 第2図は同じく信号変換部等を示す概念図、 第3図は校正処理手順を示すフローチャート、 第4図は検出器のスパン校正処理又はゼロ校正処理の順
番を示すフローチャート、 第5図は校正ガス供給動作のタイミングチャート、 第6図は本発明の実施例による、酸素濃度分析計を示す
概略図、 第7図は外部トリガと信号変換部との接続を概念図的に
示す図、 第8図は校正処理手順を示すフローチャート、 第9図は校正ガス供給動作のタイミングチャート、 第10図は従来の酸素濃度分析計の概略図、 第11図は第10図の分析計による校正ガス供給動作のタイ
ミングチャート、 第12図は従来の他の酸素濃度分析計の概略図、 第13図は従来の更に他の酸素濃度分析計の概略図、 第14図は校正ガス供給動作のタイミングチャートであ
る。 1,2,3…測定プローブ 1A,2A,3A…酸素ガス検出部 1-1,1-2,1-3,2-1,2-2,2-3,3-1,3-2,3-3…点状検出部 10…スパン校正ガスボンベ 12…信号変換部 20…ゼロ校正ガスボンベ SV1,SV2,SV3,SVI,SVII,SVIII…電磁弁 SVS…スパンガス供給用電磁弁 SVZ…ゼロガス供給用電磁弁
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 to FIG. 5 show a reference example other than the present invention, FIG. 1 is a schematic diagram showing a piping state of an oxygen concentration analyzer, and FIG. 3 is a conceptual diagram showing a conversion unit, etc., FIG. 3 is a flowchart showing a calibration processing procedure, FIG. 4 is a flowchart showing the order of span calibration processing or zero calibration processing of the detector, and FIG. 5 is a timing chart of calibration gas supply operation. FIG. 6 is a schematic diagram showing an oxygen concentration analyzer according to an embodiment of the present invention, FIG. 7 is a diagram conceptually showing the connection between an external trigger and a signal converter, and FIG. 8 is a calibration processing procedure. Flowchart shown, FIG. 9 is a timing chart of the calibration gas supply operation, FIG. 10 is a schematic diagram of a conventional oxygen concentration analyzer, FIG. 11 is a timing chart of the calibration gas supply operation by the analyzer of FIG. The figure shows another conventional oxygen concentration analyzer Schematic, FIG. 13 is a schematic diagram of a conventional still another oxygen concentration analyzer, FIG. 14 is a timing chart of the calibration gas supply operation. 1,2,3 ... Measurement probe 1A, 2A, 3A ... Oxygen gas detector 1-1,1-2,1-3,2-1,2-2,2-3,3-1,3-2, 3-3 ... Point detector 10 ... Span calibration gas cylinder 12 ... Signal converter 20 ... Zero calibration gas cylinder SV1, SV2, SV3, SVI, SVII, SVIII ... Solenoid valve SVS ... Span gas supply solenoid valve SVZ ... Zero gas supply solenoid valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】検出部へと導入される燃焼排ガス中の被検
出ガスの濃度に応じて前記検出部から電気信号を発生さ
せ、この電気信号を演算処理して前記被検出ガスの濃度
値として出力するに際し、前記被検出ガスの濃度が既知
である校正ガスを前記検出部へと供給して前記被検出ガ
スの濃度値の校正処理を行うガス分析計の校正方法にお
いて、複数のプローブを前記被検出ガスに対してさら
し、前記各プローブに前記検出部をそれぞれ複数設け、
異なる前記各プローブに設けられている複数の前記検出
部に対して前記校正ガスを実質的に同時に供給し、これ
ら複数の前記検出部から発生した電気信号をそれぞれ校
正処理しながら、前記各プローブのうち前記校正ガスを
供給していない前記検出部によって前記濃度を測定し続
け、かつ前記校正ガスとしてスパンガスとゼロガスとを
交互に供給することを特徴とする、ガス分析計の校正方
法。
1. An electric signal is generated from the detector according to the concentration of the gas to be detected in the combustion exhaust gas introduced into the detector, and the electric signal is arithmetically processed to obtain a concentration value of the gas to be detected. In outputting, in the calibration method of the gas analyzer for supplying the calibration gas in which the concentration of the detected gas is known to the detection unit to perform the calibration process of the concentration value of the detected gas, a plurality of probes are used. Exposing to the gas to be detected, the probe is provided with a plurality of detection units,
The calibration gas is supplied substantially simultaneously to the plurality of detection units provided in each of the different probes, and while each of the electrical signals generated from the plurality of detection units is subjected to calibration processing, A calibration method for a gas analyzer, characterized in that the concentration is continuously measured by the detection unit not supplying the calibration gas, and span gas and zero gas are alternately supplied as the calibration gas.
【請求項2】被検出ガスの濃度に応じて電気信号を発生
する検出部をそれぞれ複数備えている複数のプローブ
と;前記電気信号を演算処理して前記被検出ガスの濃度
値として出力する信号変換部と;校正ガスとしてのスパ
ンガスまたはゼロガスを、異なる前記各プローブに設け
られている複数の前記検出部に対して供給する校正ガス
供給手段と;この校正ガス供給手段と前記複数の検出部
との間で前記校正ガスの供給と遮断とを選択的に行う弁
部材と;この弁部材を開放させることにより前記校正ガ
スを前記複数の検出部へと実質的に同時に供給するため
の弁部材駆動手段と;前記複数の検出部からそれぞれ発
生した電気信号を基に前記被検出ガスの濃度値の校正処
理を行う校正処理手段とを有しており、校正を行う際に
は、前記スパンガスとゼロガスとを複数の前記検出部に
対して交互に供給し、複数の前記検出部から発生した電
気信号をそれぞれ校正処理しながら、前記各プローブの
うち前記校正ガスを供給していない前記検出部によって
前記濃度を測定し続けることを特徴とする、ガス濃度の
測定装置。
2. A plurality of probes each provided with a plurality of detection units each generating an electric signal according to the concentration of the gas to be detected; a signal for processing the electric signal and outputting it as a concentration value of the gas to be detected. A conversion unit; a calibration gas supply unit that supplies span gas or zero gas as a calibration gas to the plurality of detection units provided in the different probes; and the calibration gas supply unit and the plurality of detection units. A valve member for selectively supplying and shutting off the calibration gas between: a valve member drive for supplying the calibration gas to the plurality of detection units substantially simultaneously by opening the valve member. Means for calibrating the concentration value of the gas to be detected based on the electric signals respectively generated from the plurality of detectors, and when performing the calibration, the span gas is used. By supplying the zero gas and a plurality of alternately to the detection unit, while performing the calibration processing of the electrical signals generated from the plurality of detection units, by the detection unit of the probe that does not supply the calibration gas A gas concentration measuring device, characterized in that the concentration is continuously measured.
JP1143099A 1989-06-07 1989-06-07 Gas analyzer calibration method and gas concentration measuring device Expired - Fee Related JPH087171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1143099A JPH087171B2 (en) 1989-06-07 1989-06-07 Gas analyzer calibration method and gas concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1143099A JPH087171B2 (en) 1989-06-07 1989-06-07 Gas analyzer calibration method and gas concentration measuring device

Publications (2)

Publication Number Publication Date
JPH039255A JPH039255A (en) 1991-01-17
JPH087171B2 true JPH087171B2 (en) 1996-01-29

Family

ID=15330888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1143099A Expired - Fee Related JPH087171B2 (en) 1989-06-07 1989-06-07 Gas analyzer calibration method and gas concentration measuring device

Country Status (1)

Country Link
JP (1) JPH087171B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4091702B2 (en) 1998-12-24 2008-05-28 トヨタ自動車株式会社 Error absorbing connector
JP2007085869A (en) * 2005-09-21 2007-04-05 Energy Support Corp Calibration method of gas sensor and gas analyzer
JP5795285B2 (en) 2012-05-22 2015-10-14 株式会社堀場製作所 Analyzer calibration system and exhaust gas analysis system
CN110441474A (en) * 2019-07-15 2019-11-12 中国船舶重工集团公司第七一八研究所 A kind of Portable oxyhydrogen calibrating installation and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523491A (en) * 1975-06-27 1977-01-11 Nippon Steel Corp Confirmative method of gas detector

Also Published As

Publication number Publication date
JPH039255A (en) 1991-01-17

Similar Documents

Publication Publication Date Title
JP2001324552A (en) Power supply current measuring unit and semiconductor test system
JPH087171B2 (en) Gas analyzer calibration method and gas concentration measuring device
JP2005510265A (en) Ultrasonic imaging system power-on self test (POST) and extended self test (EST)
CN209624484U (en) Ultrasonic ozone concentration analyzer
JPH06281607A (en) Continuously analyzing device for gas concentration
JP3382727B2 (en) Leak test equipment
JPS6017727Y2 (en) Multi-point gas detection device
KR100811666B1 (en) Tester
JPH0341376A (en) Electron beam instrument
WO1999001871A1 (en) Memory characterisation means and method
JPH02115741A (en) Gas sensor device
JPS6353488B2 (en)
JPH02297637A (en) Control unit inspecting device
JP2543721Y2 (en) Waveform measuring device
JP2000046899A (en) Method and system for observing spectrum of power supply current
JPS6136260B2 (en)
JPS59180340A (en) Leak testing device
RU10459U1 (en) DEVICE FOR MONITORING PRODUCTS
JPH0116037Y2 (en)
JP2594579Y2 (en) Spectrophotometer
CN109738515A (en) Ultrasonic ozone concentration analyzer
SU1182446A1 (en) Apparatus for diagnosis of commutator electric machine
JPH0645643Y2 (en) Control unit inspection device
JPS6176963A (en) Voltage measuring device by electron beam
JPS6031273B2 (en) Gas monitor background value removal method and device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees