JPH0871579A - Wastewater treatment apparatus - Google Patents

Wastewater treatment apparatus

Info

Publication number
JPH0871579A
JPH0871579A JP21100594A JP21100594A JPH0871579A JP H0871579 A JPH0871579 A JP H0871579A JP 21100594 A JP21100594 A JP 21100594A JP 21100594 A JP21100594 A JP 21100594A JP H0871579 A JPH0871579 A JP H0871579A
Authority
JP
Japan
Prior art keywords
tank
sludge
carrier
porous carrier
aeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21100594A
Other languages
Japanese (ja)
Inventor
Masao Kondo
雅夫 近藤
Hironori Kadoyoshi
弘憲 角吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEST KOGYO KK
Original Assignee
BEST KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEST KOGYO KK filed Critical BEST KOGYO KK
Priority to JP21100594A priority Critical patent/JPH0871579A/en
Publication of JPH0871579A publication Critical patent/JPH0871579A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE: To obtain a high nitrogen removing rate by a method in which a support fluidized aeration tank is filled with synthetic resin porous supports with a cylindrical shape and a specified size in a specified packing ratio, the aeration drift velocity of the porous supports is reduced, and the anaerobic area in the porous support is increased. CONSTITUTION: In a wastewater treatment apparatus composed of an conditioning tank 1, a support fluidized aeration tank 2, a sedimentation tank 3, a disinfection tank 4, a sludge returning apparatus 5, a discharge tank 6, a sludge concentration storage tank 7, etc., an air diffusion pipe is installed in the bottom part of the tank 2, and wastewater and porous supports in the tank 2 are circulated by air ejected from a compressor. In this process, the air diffusion pipe is filled with the cylindrical porous supports 300-600mm in length, 30-50mm in diameter or diagonal length in the cross section in a packing rate of 20-40vol.%. Part of sludge separated in the sedimentation-separation tank 3 is returned to the aeration tank 2 and/or the conditioning tank 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は屎尿や家庭用雑排水の浄
化処理に使用されるものであり、担体流動曝気槽を主体
として汚水中のBODと窒素成分の同時除去を可能とし
た汚水処理装置の改良に関するものである。
BACKGROUND OF THE INVENTION The present invention is used for the purification of human waste and household wastewater, and is mainly a carrier aeration tank, and is capable of simultaneously removing BOD and nitrogen components in wastewater. It relates to an improvement of the device.

【0002】[0002]

【従来の技術】出願人は先に、一辺の長さが10〜15
mmの角柱状のポリウレタン製多孔質担体を20〜30
VOL%程度充填した曝気槽内で汚水を曝気処理するこ
とにより、汚水のBODと窒素成分の同時除去を可能と
した汚水処理方法を開発し、これを特開平4−6619
5号として公開している。即ち、前記汚水処理方法は図
6に示す如く、担体流動曝気槽C内へ流入した汚水W内
のアンモニヤ態窒素や有機態窒素を、好気性環境下にあ
る多孔質担体の外層部に於いて汚泥内の硝化菌と接触さ
せて硝酸態窒素や亜硝酸態窒素に変換すると共に、硝化
後の前記硝酸態窒素や亜硝酸態窒素を、引き続き嫌気性
環境下にある多孔性担体の内層部に於いて汚泥中の脱窒
素菌と接触させて窒素ガスに変換することにより、汚水
中の窒素を除去するものである。尚、図7に於いて、D
は沈澱槽、Eは汚泥返送路、Fは汚泥計量装置、Gは汚
泥濃縮貯留槽である。
2. Description of the Related Art The applicant first found that the length of one side is 10 to 15
mm prismatic polyurethane porous carrier 20 to 30 mm
We developed a wastewater treatment method that enables simultaneous removal of BOD and nitrogen components of the wastewater by aeration-treating the wastewater in an aeration tank filled with about VOL%.
It is open to the public as issue 5. That is, in the sewage treatment method, as shown in FIG. 6, the ammonia nitrogen and the organic nitrogen in the sewage W flowing into the carrier flow aeration tank C are added to the outer layer portion of the porous carrier under the aerobic environment. While contacting with nitrifying bacteria in sludge and converting it to nitrate nitrogen or nitrite nitrogen, the nitrate nitrogen or nitrite nitrogen after nitrification is continuously applied to the inner layer of the porous carrier under anaerobic environment. The nitrogen in the wastewater is removed by bringing it into contact with denitrifying bacteria in the sludge and converting it into nitrogen gas. Incidentally, in FIG. 7, D
Is a settling tank, E is a sludge return passage, F is a sludge measuring device, and G is a sludge concentration storage tank.

【0003】前記特開平4−66195号の汚水処理方
法は、担体流動曝気槽と沈澱槽とを組み合せた極く簡単
な処理システムにより、汚水内のBODと窒素成分を同
時に除去することができ、優れた実用的効用を奏するも
のとして広く実用に供されている。
The sewage treatment method disclosed in Japanese Patent Laid-Open No. 4-66195 is capable of simultaneously removing BOD and nitrogen components in sewage with a very simple treatment system that combines a carrier flow aeration tank and a precipitation tank. It has been widely put to practical use as it has excellent practical utility.

【0004】しかし、前記特開平4−66195号の汚
水処理方法にも、まだ解決すべき問題が多く残されてい
る。第1の問題は、脱窒素性能が運転時間の経過と共に
低下すると云う点である。例えば、12mm×12mm
×12mmのウレタン製多孔質担体を30VOL%の充
填率で充填した担体流動曝気槽(有効容量1m3 )を用
いて、BOD負荷が0.8〜3kgBOD/m3 ・日、
活性汚泥返送量5.0kg以上/m3 ・日、平均流入総
窒素0.04kg/kg(活性汚泥)及び0.2kg以
下/m3 (槽容積)、曝気強度9.0m3 /m3 ・Hr
の条件で汚水処理を行なった場合、汚水処理装置の運転
初期に於いて汚水内BODの除去率が約90%、総窒素
除去率が約70%以上であったものが、約6ケ月後には
総窒素除去率が約40%にまで低下する。ところで、前
記窒素除去率が低下する原因は、連続曝気処理を行なう
と、多孔質担体の嫌気性領域が順次減少して前記硝化機
能及び脱窒機能が低下するものと想定される。そのた
め、現実には連続曝気処理を間欠曝気にしたり、或いは
曝気量を適宣に調整することにより、前記窒素除去能力
の低下を防止するようにしているが、処理装置の運転管
理に手数が掛かり過ぎるうえ、窒素除去率を最高値(約
70%以上)に近い状態に保持することが著しく困難と
なる。
However, the sewage treatment method disclosed in JP-A-4-66195 still has many problems to be solved. The first problem is that the denitrification performance decreases with the lapse of operating time. For example, 12 mm x 12 mm
A BOD load of 0.8 to 3 kg BOD / m 3 · day, using a carrier flow aeration tank (effective volume 1 m 3 ) filled with a urethane porous carrier of × 12 mm at a filling rate of 30 VOL%,
Amount of activated sludge returned 5.0 kg / m 3 / day, average total inflowing nitrogen 0.04 kg / kg (activated sludge) and 0.2 kg or less / m 3 (tank volume), aeration strength 9.0 m 3 / m 3 Hr
When the sewage treatment was carried out under the conditions described above, the removal rate of BOD in the sewage was about 90% and the total nitrogen removal rate was about 70% or more in the initial operation of the sewage treatment apparatus. The total nitrogen removal rate drops to about 40%. By the way, it is assumed that the reason for the decrease in the nitrogen removal rate is that the continuous aeration treatment causes the anaerobic region of the porous carrier to be sequentially decreased and the nitrification function and denitrification function to be decreased. Therefore, in reality, the continuous aeration process is intermittently aerated, or the amount of aeration is appropriately adjusted to prevent the decrease in the nitrogen removal capability, but it is troublesome to manage the operation of the processing device. Moreover, it becomes extremely difficult to keep the nitrogen removal rate close to the maximum value (about 70% or more).

【0005】第2の問題は、槽内への多孔質担体の投入
に時間と手数がかかり過ぎると云う点である。ウレタン
製等の多孔質担体を担体流動曝気槽内へ投入した場合、
汚泥がこれに付着するにつれて、多孔質担体は汚水内へ
沈下して行く。そのため、一度に所定量(充填率約30
%)の多孔質担体を槽内へ投入することは不可能であ
り、通常は3回位いに分け、約30〜50日位いかかっ
て所定量の多孔質担体を槽内へ充填するようにしてお
り、多孔質担体の充填に多くの手数を必要とする。
The second problem is that it takes too much time and labor to put the porous carrier into the tank. When a porous carrier such as urethane is put into the carrier flow aeration tank,
As the sludge adheres to it, the porous carrier sinks into the wastewater. Therefore, a predetermined amount (filling rate of about 30
%) Of the porous carrier cannot be charged into the tank. Usually, it is divided into 3 times, and about 30 to 50 days are required to fill a predetermined amount of the porous carrier into the tank. Therefore, it takes a lot of trouble to fill the porous carrier.

【0006】第3の問題は、多孔質担体の汚泥保持能力
と摩擦による損耗の点である。約15mm×15mm×
15mm程度の多孔質担体は、充填率が20〜40VO
L%位いの際には、曝気流により60〜100cm/s
ec程度の比較的速い流速で槽内を循環流動する。その
ため、付着した汚泥が比較的容易に剥離脱落してしまう
だけでなく、多孔質担体同士の衝突により多孔質担体そ
のものが比較的早期に摩耗し、取り替を要する事態を招
来する。尚、汚泥の脱落や多孔質担体の摩耗を防止する
ため、前記曝気量を減らして担体の循環流動速度を低下
させると、逆に汚水内のBODの除去率が低下する等の
問題が起生することになる。
The third problem is the sludge holding ability of the porous carrier and the wear due to friction. About 15mm x 15mm x
A porous carrier having a size of about 15 mm has a filling rate of 20 to 40 VO.
When L% is around 60 to 100 cm / s due to airflow
It circulates in the tank at a relatively high flow rate of about ec. Therefore, not only the sludge that has adhered is separated and dropped off relatively easily, but also the porous carrier itself is worn out relatively early due to the collision of the porous carriers, which requires replacement. Incidentally, in order to prevent sludge from falling off and abrasion of the porous carrier, if the aeration amount is reduced and the circulation flow rate of the carrier is reduced, there arises a problem that the removal rate of BOD in the wastewater is reduced. Will be done.

【0007】[0007]

【発明が解決しようとする課題】本願発明は、従前の担
体流動曝気槽を主体とする汚水処理装置に於ける上述の
如き問題、即ち脱窒素性能が運転時間の経過と共に低
下すること、多孔質担体の槽内への投入に時間と手数
がかかること、多孔質担体に付着した汚泥の剥離脱落
や担体の摩耗が生じること等の問題を解決せんとするも
のであり、比較的高い脱窒素性能が安定して継続的に保
持できると共に、槽内への多孔質担体の充填が容易に行
なえ、しかも担体の汚泥保持能力の向上と摩耗の減少を
可能とした汚水処理装置を提供するものである。
DISCLOSURE OF INVENTION Problems to be Solved by the Invention The present invention has the above-mentioned problems in the conventional wastewater treatment apparatus mainly composed of a carrier flow aeration tank, that is, the denitrification performance decreases with the lapse of operating time, and It is intended to solve problems such as the time and effort required to load the carrier into the tank, the separation and removal of sludge adhering to the porous carrier, and the wear of the carrier, and the relatively high denitrification performance. The present invention provides a sewage treatment apparatus capable of stably and continuously holding the porous carrier, facilitating the filling of the porous carrier into the tank, and improving the sludge holding capability of the carrier and reducing wear. .

【0008】[0008]

【課題を解決するための手段】本発明は、散気管8を備
え且つ内部に長さが300〜600mm、断面の直径又
は対角線長さが30〜50mmの円柱状又は円筒状若し
くは角柱状の多孔質担体Bを充填率20〜40VOL%
で充填して成る担体流動曝気槽2と,前記担体流動曝気
槽2からの処理汚水を受け入れ、汚水内の汚泥を分離す
る沈澱分離槽3と,分離した汚泥の一部を前記担体流動
曝気槽2又は前記担体流動曝気槽2とその上流側に設け
た調整槽1の何れか一方又は両方へ返送する汚泥返送装
置5とを発明の基本構成とするものである。
According to the present invention, there is provided a diffuser tube 8 having a length of 300 to 600 mm and a diameter of a cross section or a diagonal length of 30 to 50 mm, which is cylindrical or cylindrical or prismatic. Filling ratio of quality carrier B is 20-40VOL%
The carrier flow aeration tank 2 filled with the above, the settling separation tank 3 that receives the treated wastewater from the carrier flow aeration tank 2 and separates the sludge in the wastewater, and a part of the separated sludge is the carrier flow aeration tank. 2 or the carrier flow aeration tank 2 and the sludge returning device 5 for returning to either one or both of the adjusting tank 1 provided on the upstream side of the carrier flowing aeration tank 2 is a basic configuration of the invention.

【0009】[0009]

【作用】担体流動曝気槽へ流入した汚水内のアンモニア
態窒素や有機態窒素は、好気性環境下にある多孔性担体
の外層部に於いて汚泥中の硝化菌と接触することによ
り、硝化作用を受けて硝酸態窒素や亜硝酸態窒素に変換
される。変換された硝酸態窒素等は、引き続き嫌気性環
境下にある多孔性担体の内層部に於いて汚泥中の脱窒素
菌と接触することにより、脱窒素作用を受けて窒素除去
が行なわれる。また、汚水内のBOD成分は所謂曝気処
理を受けることにより好気性菌によって分解除去され
る。
[Function] Ammonia nitrogen and organic nitrogen in the sewage flowing into the carrier flow aeration tank come into contact with the nitrifying bacteria in the sludge in the outer layer of the porous carrier under aerobic environment, resulting in nitrification. It is converted to nitrate nitrogen and nitrite nitrogen. The converted nitrate nitrogen or the like is subsequently contacted with the denitrifying bacteria in the sludge in the inner layer portion of the porous carrier under an anaerobic environment, so that the nitrogen is removed by the denitrifying action. Further, the BOD component in the sewage is decomposed and removed by aerobic bacteria by being subjected to so-called aeration treatment.

【0010】担体流動曝気槽で処理された汚水は沈澱槽
へ移流され、ここで汚泥が沈澱分離されたあと、消毒等
の処理を経て外部へ放流される。また、沈澱分離された
汚泥の一部は担体流動曝気槽内又は担体流動曝気槽とそ
の上流側に設けた調整槽の何れか一方又は両方へ返送さ
れ、流動中の多孔性担体に吸着される。これによって、
担体流動曝気槽内の汚泥量が常に所定値に保持される。
The sewage treated in the carrier flow aeration tank is transferred to a settling tank, where sludge is precipitated and separated, and then discharged to the outside through treatment such as disinfection. Further, a part of the sludge that has been separated by settling is returned to either or both of the carrier flow aeration tank or the carrier flow aeration tank and the adjustment tank provided upstream thereof, and is adsorbed by the flowing porous carrier. . by this,
The amount of sludge in the carrier aeration tank is always maintained at a predetermined value.

【0011】本発明では、流動する多孔質担体の外径寸
法が直径30〜50mmφ、長さ300〜700mmと
相当に大きいため、担体深部の嫌気性領域が拡大される
ことになり、その結果窒素除去作用が増大する。また、
多孔質担体の外径寸法が大きいため、その槽内に於ける
流動速度が比較的遅くなり、その結果、付着した汚泥の
脱落や担体そのものの摩耗が大幅に減少する。
In the present invention, since the outer diameter of the flowing porous carrier is considerably large with a diameter of 30 to 50 mmφ and a length of 300 to 700 mm, the anaerobic region in the deep part of the carrier is expanded, and as a result, nitrogen is increased. The removal action is increased. Also,
Since the outer diameter of the porous carrier is large, the flow rate in the tank becomes relatively slow, and as a result, the sludge that has adhered to the carrier and the wear of the carrier itself are significantly reduced.

【0012】[0012]

【実施例】以下、図面に基づいて本発明の実施例を説明
する。図1は本発明に係る汚水処理装置の基本構成を示
すものであり、調整槽1、担体流動曝気槽2、沈澱槽
3、消毒槽4、汚泥返送装置5、放流槽6、汚泥濃縮貯
留槽7等から処理装置が構成されている。尚、当該汚水
処理システムそのものは、前記特開平4−66195号
と同一である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a basic configuration of a sewage treatment apparatus according to the present invention, which includes an adjustment tank 1, a carrier flow aeration tank 2, a precipitation tank 3, a disinfection tank 4, a sludge returning device 5, a discharge tank 6, and a sludge concentration storage tank. The processing device is composed of 7 or the like. Incidentally, the sewage treatment system itself is the same as that of the above-mentioned JP-A-4-66195.

【0013】また、図2乃至図5は本発明の汚水処理装
置で使用する槽本体Aを示すものである。当該槽本体A
内には前記調整槽1、主処理槽2、消毒槽4、放流槽6
等が一体的に形成されており、沈澱槽3、汚泥濃縮貯留
槽7及び汚泥返送装置5は槽本体Aと別に設けられてい
る。尚、図2乃至図6に於いて、8は散気管、9は散気
管固定台、10は送気バルブ、11は移流管、12はエ
アー逃し管、13は移流管、14はスクリーン部、15
は放流ポンプ、16は消毒装置、17は仕切壁、18は
移流壁、19は薬剤筒、20は移流管である。又、本実
施例では沈殿槽3や汚泥濃縮貯留槽7を槽本体A等と別
体にしているが、沈殿槽3等を槽本体Aと一体的に形成
することも可能である。更に、本実施例では調整槽1を
設けているが、これを省略することも可能である。
2 to 5 show a tank body A used in the sewage treatment apparatus of the present invention. The tank body A
The adjusting tank 1, the main processing tank 2, the disinfecting tank 4, and the discharge tank 6 are provided inside.
Etc. are integrally formed, and the sedimentation tank 3, the sludge concentration storage tank 7, and the sludge returning device 5 are provided separately from the tank body A. 2 to 6, 8 is an air diffusing tube, 9 is an air diffusing tube fixing base, 10 is an air feeding valve, 11 is an advection tube, 12 is an air escape tube, 13 is an advancing tube, 14 is a screen portion, 15
Is a discharge pump, 16 is a disinfection device, 17 is a partition wall, 18 is an advection wall, 19 is a medicine cylinder, and 20 is an advection tube. Further, in the present embodiment, the settling tank 3 and the sludge concentration storage tank 7 are separate from the tank main body A and the like, but the settling tank 3 and the like can be formed integrally with the tank main body A. Further, although the adjusting tank 1 is provided in the present embodiment, it may be omitted.

【0014】図3及び図4を参照して、前記担体流動曝
気槽2内の底部には散気管8が設けられており、コンプ
レッサー(図示省略)から供給されたエアーが噴出され
ることにより、槽2内の汚水並びに多孔性担体Bが矢印
方向へ循環回流する。尚、槽2内には外形寸法が30m
m×30mm×300mmの直方体形状を有するポリウ
レタン製の多孔性担体Bが、容積占有率が約30%とな
る様に充填されている。
With reference to FIGS. 3 and 4, an air diffuser 8 is provided at the bottom of the carrier flow aeration tank 2, and air supplied from a compressor (not shown) is jetted out, Sewage in the tank 2 and the porous carrier B circulate and circulate in the direction of the arrow. The external dimensions of the tank 2 are 30m.
A polyurethane porous carrier B having a rectangular parallelepiped shape of m × 30 mm × 300 mm is filled so that the volume occupancy rate becomes about 30%.

【0015】前記多孔性担体Bは、比重がほぼ1で、且
つ直径又は対角線長さ寸法が30〜50mm、長さ寸法
が300〜600mm程度の円柱状又は円筒状若しくは
角柱状のものが望ましい。何故なら比重が1から大きく
離れたり、或いは直径又は対角線長さや長さ寸法が前記
各数値以上になると、エァーレーションによる流動性が
悪化し、また担体の外型寸法が前記各数値範囲より以下
になると、後述する多孔質担体Bの嫌気性領域が減少
し、脱窒素能力が低下することになる。尚、担体を円筒
状とする場合には、その内径は15〜25mm程度とす
るのが望ましい。また、多孔性担体Bは耐磨耗性を有す
る必要があり、ポリウレタン製の多孔質担体Bの場合に
はエーテル系の連泡性ポリウレタンが望ましい。
It is desirable that the porous carrier B has a specific gravity of about 1 and a cylindrical shape, a cylindrical shape or a prismatic shape having a diameter or diagonal length dimension of 30 to 50 mm and a length dimension of about 300 to 600 mm. This is because if the specific gravity deviates greatly from 1, or if the diameter or diagonal length or length dimension exceeds each of the above numerical values, the fluidity due to the aeration deteriorates, and the outer mold dimension of the carrier becomes less than each of the above numerical values. Then, the anaerobic region of the porous carrier B, which will be described later, is reduced, and the denitrification ability is reduced. When the carrier has a cylindrical shape, its inner diameter is preferably about 15 to 25 mm. Further, the porous carrier B needs to have abrasion resistance, and in the case of the polyurethane porous carrier B, ether-based open-cell polyurethane is preferable.

【0016】多孔質担体Bの充填率は20〜35%程度
が最適である。充填率が20%以下になると脱窒素効果
が急激に低下するからであり、また充填率が35%以上
になるとエァーレーションによる流動が困難になると共
に、流動性を高めるためにエァー量を増すと、脱窒素作
用が逆に相殺される結果となるからであり、これ等のこ
とは、何れも脱窒素試験により確認されている。
The optimum filling rate of the porous carrier B is about 20 to 35%. When the filling rate is 20% or less, the denitrification effect is sharply reduced, and when the filling rate is 35% or more, the flow due to the air becomes difficult, and when the amount of the air is increased to increase the fluidity. This is because the denitrification effect is offset on the contrary, and these are all confirmed by the denitrification test.

【0017】前記多孔質担体Bは前述の如く、外層部が
好気性領域として作用し且つ内層部が嫌気性領域として
作用することが必要であり、この点から単に連続発泡性
であったり、或いは気泡率が高いだけでは、BOD除去
は可能であっても優れた窒素除去作用を奏することは不
可能である。即ち、多孔質担体の気泡が大きく且つ気泡
の大部分が連泡の場合には、空気泡が容易に水と共に担
体内部を通過することになり、前記嫌気性領域がほぼ零
になって脱窒作用が得られなくる。また、これとは逆
に、空隙率が如何に大きくても連泡状の気泡でない場合
には、嫌気性領域は増加するものの通水性に劣ることと
なり、脱窒作用が得られない。従って、多孔質担体Bと
しては適当な気孔径で、しかも適当な連泡率(望ましく
は、外層領域の連泡率が比較的小さいもの)を有するこ
とが必須の要件となり、汚水処理実験の結果から、試料
厚さ30mm(板状)、風速2m/secの下に於ける
濾過抵抗が15〜45mmH2 O程度のポリエチレン又
はポリウレタン製板体から切り出した長さ300〜60
0mmの柱状担体が、高窒素除去率を保持するうえで最
適であることが判明した。
As described above, in the porous carrier B, it is necessary that the outer layer portion acts as an aerobic region and the inner layer portion acts as an anaerobic region. From this point, it is simply continuous foaming, or Even if the BOD can be removed only by having a high bubble ratio, it is impossible to exert an excellent nitrogen removing action. That is, when the air bubbles of the porous carrier are large and most of the air bubbles are continuous bubbles, the air bubbles easily pass through the inside of the carrier together with water, and the anaerobic region becomes almost zero and denitrification occurs. No effect is obtained. On the contrary, if the voids are not open cells, no matter how large the porosity is, the anaerobic region increases, but the water permeability becomes poor, and the denitrifying action cannot be obtained. Therefore, it is essential that the porous carrier B has an appropriate pore size and an appropriate open cell ratio (desirably, the open cell ratio in the outer layer region is relatively small). From a sample thickness of 30 mm (plate shape) and a filtration resistance of about 15 to 45 mm H 2 O at a wind velocity of 2 m / sec, a length of 300 to 60 cut from a polyethylene or polyurethane plate body.
A 0 mm columnar carrier was found to be optimal in maintaining high nitrogen removal rates.

【0018】前記汚泥返送装置5は汚泥の自動計量器と
汚泥返送ポンプ等から形成されており、沈殿槽3で分離
された汚泥は自動計量器で計算されたうえ、所定量の汚
泥が調整槽1又は調整槽1と担体流動槽2へ戻される。
The sludge returning device 5 is composed of an automatic sludge metering device, a sludge returning pump, etc. The sludge separated in the settling tank 3 is calculated by the automatic metering device, and a predetermined amount of sludge is adjusted. 1 or the adjusting tank 1 and the carrier flow tank 2.

【0019】次に、本発明による汚水の除去処理を説明
する。被処理水Wは先ず調整槽1から移流管13を通し
て担体流動曝気槽2内へ入り、活性汚泥を内部に保持し
た多孔質担体Bや浮遊活性汚泥と共に、散気管8から噴
出する空気流によって槽2内を循環回流する。槽2内を
循環する間に活性汚泥による生物学的処理により、汚水
内のBODの約90%が除去される。
Next, the wastewater removing process according to the present invention will be described. The water to be treated W first enters the carrier-flow aeration tank 2 from the adjusting tank 1 through the advection pipe 13, and together with the porous carrier B and floating activated sludge holding activated sludge therein, the tank is driven by the air flow ejected from the air diffusion pipe 8. Circulate in 2 About 90% of the BOD in the wastewater is removed by biological treatment with activated sludge while circulating in the tank 2.

【0020】また、汚水が多孔質担体Bの外層部の好気
性領域及び浮遊汚泥中の硝化菌に触れることにより、ア
ンモニヤ態窒素等の硝化処理が行われる。更に、多孔質
担体の内層部の嫌気性領域に於いて、前記硝化された硝
酸態窒素や亜硝酸態窒素が汚泥中の脱窒素細菌に触れる
ことにより、脱窒素処理が行われ、総窒素の約70%以
上が除去される。尚、本実施例に於いては、BOD負荷
が0.8〜3kgBOD/m3 ・日、活性汚泥量5.0
kg以上/m3 、日、平均流入総窒素0.04kg/k
g(活性汚泥)及び0.2kg以下/m3 (槽容積)、
曝気強度9.0m3 /m3 ・Hrに夫々設定されてい
る。また、多孔質担体Bには30mm×30mm×30
0mmの角柱状のウレタン製多孔体(空気濾過抵抗P=
18mmH20)が充填率30VOL%の割合で使用さ
れており、槽2の内周面近傍における流動速度は30〜
50cm/sec、槽2の中央部に於ける流動速度は2
〜6cm/sec程度である。
Further, the wastewater comes into contact with the aerobic region of the outer layer of the porous carrier B and the nitrifying bacteria in the floating sludge, whereby nitrification treatment of ammonia nitrogen and the like is performed. Further, in the anaerobic region of the inner layer of the porous carrier, the nitrified nitrate nitrogen or nitrite nitrogen is contacted with the denitrifying bacteria in the sludge to perform denitrification treatment, About 70% or more is removed. In this example, the BOD load was 0.8 to 3 kg BOD / m 3 · day, and the amount of activated sludge was 5.0.
More than kg / m 3 , daily, average inflow total nitrogen 0.04 kg / k
g (activated sludge) and 0.2 kg or less / m 3 (tank volume),
The aeration intensity is set to 9.0 m 3 / m 3 · Hr, respectively. Further, the porous carrier B has a size of 30 mm × 30 mm × 30
A 0 mm prismatic urethane porous body (air filtration resistance P =
18 mmH20) is used at a filling rate of 30 VOL%, and the flow velocity in the vicinity of the inner peripheral surface of the tank 2 is 30 to
50 cm / sec, the flow velocity in the center of tank 2 is 2
It is about 6 cm / sec.

【0021】担体流動槽2からの活性汚泥と処理汚水の
混合液は、スクリーン部14を通して取り出され、移流
管11を通して沈澱槽3へ送られて、ここで汚泥の沈澱
分離が行われる。汚泥が分離された処理水Wbは移流管
20を通して消毒槽4へ戻され、消毒された処理水Wb
は放流槽6を介して放流ポンプ15により槽外へ放流さ
れて行く。また、前記沈澱槽4に於いて分離された汚泥
は、汚泥返送装置5で自動計量されたうえ、必要量が汚
泥返送管を通して調整槽1か若しくは担体流動槽2内へ
戻され、担体流動槽2中の活性汚泥量が設定値になるよ
うに調整されている。
The mixed liquid of activated sludge and treated sewage from the carrier flow tank 2 is taken out through the screen portion 14 and sent to the settling tank 3 through the advection pipe 11, where the sludge is separated and settled. The treated water Wb from which the sludge has been separated is returned to the disinfection tank 4 through the advection pipe 20 and is disinfected.
Is discharged to the outside of the tank by the discharge pump 15 via the discharge tank 6. The sludge separated in the settling tank 4 is automatically weighed by the sludge returning device 5, and a necessary amount is returned to the adjusting tank 1 or the carrier flowing tank 2 through the sludge returning pipe. The amount of activated sludge in 2 is adjusted to the set value.

【0022】[0022]

【発明の効果】本発明では汚水処理装置の主要部をなす
担体流動曝気槽2を、長さが300〜600mm、断面
の直径又は対角線長さが30〜50mmの円柱状又は円
筒状若しくは角柱状の合成樹脂製多孔質担体を20〜4
0VOL%の割合で充填した構造の担体流動曝気槽と
し、多孔質担体の曝気流動速度を遅くすると共に多孔質
担体に於ける嫌気性の領域を増大させるようにしてい
る。その結果、従前のこの種担体流動曝気槽を利用した
汚水処理装置のように、運転時間の経過と共に窒素除去
率が低下すると云う事象が起生せず、所定量の連続曝気
運転下に於いても、常にほぼ70%以上の全窒素除去率
を保持することが可能となり、手数をかけることなく高
い窒素除去率が安定して得られる。
According to the present invention, the carrier flow aeration tank 2 which is the main part of the sewage treatment apparatus has a columnar shape, a cylindrical shape or a prismatic shape having a length of 300 to 600 mm and a cross sectional diameter or a diagonal length of 30 to 50 mm. 20 to 4 of synthetic resin porous carrier
A carrier flow aeration tank having a structure filled with 0 VOL% is used to slow the aeration flow rate of the porous carrier and increase the anaerobic region of the porous carrier. As a result, unlike the conventional sewage treatment apparatus using this type of carrier flow aeration tank, the phenomenon that the nitrogen removal rate decreases with the passage of operating time does not occur, and under a predetermined amount of continuous aeration operation. However, the total nitrogen removal rate of almost 70% or more can be always maintained, and a high nitrogen removal rate can be stably obtained without trouble.

【0023】また、本願発明では、合成樹脂多孔質担体
の外形寸法を従前の多孔質担体の場合よりも相当に大き
くしているため、槽内に於ける担体流動速度が大幅に低
下する。その結果、付着した汚泥の剥離脱落や担体その
ものの磨耗が減少し、汚水の浄化処理が安定して行なえ
ると共に、担体寿命の延伸が可能となる。
Further, in the present invention, since the outer dimensions of the synthetic resin porous carrier are made considerably larger than those of the conventional porous carrier, the carrier flow rate in the tank is greatly reduced. As a result, the sludge that adheres and falls off and the wear of the carrier itself is reduced, and the purification process of the sewage can be performed stably, and the life of the carrier can be extended.

【0024】更に、多孔質担体の充填に際しても、担体
そのものの充填個数が少なくてよいうえ、担体の大型化
によって汚水内への投入が容易となり、担体充填に要す
る手数を大幅に減少させることができる。本発明は上述
の通り、優れた実用的効用を奏するものである。
Further, even when the porous carrier is filled, the number of the filled carrier itself may be small, and the large size of the carrier makes it easier to put it in the wastewater, and the time required for filling the carrier can be greatly reduced. it can. As described above, the present invention has excellent practical utility.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による汚水の処理系統図である。FIG. 1 is a schematic diagram of a wastewater treatment system according to the present invention.

【図2】本発明に係る汚水処理装置の一部を省略した横
断面図である。
FIG. 2 is a cross-sectional view with a part of the wastewater treatment device according to the present invention omitted.

【図3】図2のI−I視断面図である。FIG. 3 is a sectional view taken along line I-I of FIG.

【図4】図2のII−II視断面図である。FIG. 4 is a sectional view taken along line II-II of FIG.

【図5】図2のIII−III視断面図である。5 is a sectional view taken along line III-III in FIG.

【図6】担体流動曝気槽を用いた窒素除去方法の処理系
統図。
FIG. 6 is a processing system diagram of a nitrogen removal method using a carrier flow aeration tank.

【符号の説明】[Explanation of symbols]

Aは槽本体、Bは多孔質担体、1は調整槽、2は担体流
動曝気槽、3は沈澱槽、4は消毒槽、5は汚泥返送装
置、6は放流槽、7は汚泥濃縮貯留槽、8は散気管、9
は散気管固定台、10は送気バルブ、11は移流管、1
2はエアー逃し管、13は移流管、14はスクリーン
部、15は放流ポンプ、16は消毒装置、17は仕切
壁、18は移流壁、19は薬剤筒、20は移流管。
A is a tank body, B is a porous carrier, 1 is an adjustment tank, 2 is a carrier flow aeration tank, 3 is a precipitation tank, 4 is a disinfection tank, 5 is a sludge returning device, 6 is a discharge tank, and 7 is a sludge concentration storage tank. , 8 is an air diffuser, 9
Is an air diffuser fixing base, 10 is an air feeding valve, 11 is an advection pipe, 1
2 is an air escape pipe, 13 is an advection pipe, 14 is a screen part, 15 is a discharge pump, 16 is a disinfection device, 17 is a partition wall, 18 is an advection wall, 19 is a medicine cylinder, and 20 is an advection pipe.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 散気管(8)を備え且つ内部に長さが3
00〜600mm、断面の直径又は対角線長さが30〜
50mmの円柱状若しくは角柱状の多孔質担体(B)を
充填率20〜40(VOL%)で充填して成る担体流動
曝気槽(2)と,前記担体流動曝気槽(2)からの処理
汚水を受け入れ、汚水内の汚泥を分離する沈澱槽(3)
と,分離した汚泥の一部を前記担体流動曝気槽(2)又
は前記担体流動曝気槽(2)とその上流側に設けた調整
槽(1)の何れか一方又は両方へ返送する汚泥返送装置
(5)とから構成した汚水処理装置。
1. An air diffuser (8) is provided and has a length of 3 inside.
00-600 mm, cross-section diameter or diagonal length 30-
Carrier flow aeration tank (2) formed by filling 50 mm cylindrical or prismatic porous carrier (B) at a filling rate of 20 to 40 (VOL%), and treated wastewater from the carrier flow aeration tank (2) Settling tank (3) for receiving sludge and separating sludge in sewage
And a sludge returning device for returning a part of the separated sludge to either or both of the carrier flow aeration tank (2) or the carrier flow aeration tank (2) and the adjusting tank (1) provided upstream thereof. A sewage treatment apparatus composed of (5).
【請求項2】 多孔質担体(B)を連続気泡性のウレタ
ン樹脂又はポリエチレン樹脂製の多孔質担体(B)とし
た請求項1に記載の汚水処理装置。
2. The sewage treatment apparatus according to claim 1, wherein the porous carrier (B) is an open-cell urethane resin or polyethylene resin porous carrier (B).
【請求項3】 調整槽(1)と担体流動曝気槽(2)と
沈澱槽(3)とを一基の槽本体A内に一体的に形成する
ようにした請求項1に記載の汚水処理装置。
3. The sewage treatment according to claim 1, wherein the adjusting tank (1), the carrier flow aeration tank (2) and the precipitation tank (3) are integrally formed in one tank body A. apparatus.
【請求項4】 円筒状の多孔質担体(B)の外径を30
〜50mm、内径を15〜25mmとした請求項1に記
載の汚水処理装置。
4. The outer diameter of the cylindrical porous carrier (B) is 30.
The sewage treatment apparatus according to claim 1, wherein the sewage treatment apparatus has a diameter of -50 mm and an inner diameter of 15-25 mm.
JP21100594A 1994-09-05 1994-09-05 Wastewater treatment apparatus Pending JPH0871579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21100594A JPH0871579A (en) 1994-09-05 1994-09-05 Wastewater treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21100594A JPH0871579A (en) 1994-09-05 1994-09-05 Wastewater treatment apparatus

Publications (1)

Publication Number Publication Date
JPH0871579A true JPH0871579A (en) 1996-03-19

Family

ID=16598756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21100594A Pending JPH0871579A (en) 1994-09-05 1994-09-05 Wastewater treatment apparatus

Country Status (1)

Country Link
JP (1) JPH0871579A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100288980B1 (en) * 1999-02-03 2001-04-16 최원석 Method for Biological Filter Beds for Sewage and Wastewater Treatment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100288980B1 (en) * 1999-02-03 2001-04-16 최원석 Method for Biological Filter Beds for Sewage and Wastewater Treatment

Similar Documents

Publication Publication Date Title
JPH02214597A (en) Device for nitrifying sewage
US3956129A (en) Waste treatment apparatus
JP2007237158A (en) Process for biological purification of waste water with simultaneous decomposition of organic and nitrogen-containing compounds
JP3391057B2 (en) Biological nitrogen removal equipment
JP2002307088A (en) Wastewater treatment apparatus
JP3136900B2 (en) Wastewater treatment method
JPH10296283A (en) Carrier separating method for biological reaction tank using carrier combinedly
JPH07313992A (en) Treatment of sewage
JPH0871579A (en) Wastewater treatment apparatus
JP3677783B2 (en) Nitrification method
JP2000246272A (en) Method for removing nitrogen of sewage
JP2953835B2 (en) Biological nitrification and denitrification equipment
JPH1110193A (en) Method and apparatus for shared carrier nitrification denitrification reaction
JP2579122B2 (en) Wastewater treatment equipment
JP3331887B2 (en) Carrier expansion phase wastewater treatment equipment
JP3136901B2 (en) Wastewater treatment method
JP2001314883A (en) Biological treatment apparatus
JP2003033787A (en) Method for nitrifying drainage
JP3407342B2 (en) Biological denitrification / phosphorus removal equipment
KR200171727Y1 (en) Processing system for excretions of animals
TWI838480B (en) Aeration tank, sewage treatment device and sewage treatment method
JPH0623065A (en) Biological treatment method and apparatus for organic sewage
JP2601391B2 (en) Biological nitrification denitrification equipment
JP2525711B2 (en) Advanced purification equipment for organic wastewater
JPH0741260B2 (en) How to remove nitrogen from sewage