JPH0741260B2 - How to remove nitrogen from sewage - Google Patents

How to remove nitrogen from sewage

Info

Publication number
JPH0741260B2
JPH0741260B2 JP17984090A JP17984090A JPH0741260B2 JP H0741260 B2 JPH0741260 B2 JP H0741260B2 JP 17984090 A JP17984090 A JP 17984090A JP 17984090 A JP17984090 A JP 17984090A JP H0741260 B2 JPH0741260 B2 JP H0741260B2
Authority
JP
Japan
Prior art keywords
tank
sludge
porous carrier
nitrogen
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17984090A
Other languages
Japanese (ja)
Other versions
JPH0466195A (en
Inventor
銑一 宝蔵
Original Assignee
ベスト工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ベスト工業株式会社 filed Critical ベスト工業株式会社
Priority to JP17984090A priority Critical patent/JPH0741260B2/en
Publication of JPH0466195A publication Critical patent/JPH0466195A/en
Publication of JPH0741260B2 publication Critical patent/JPH0741260B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は汚水の窒素除去方法の改良に係り、担体流動型
曝気槽と沈殿槽との組合せにより、BOD除去と脱窒素を
効率的に行なえるようにした汚水の窒素除去方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to an improvement of a method for removing nitrogen from wastewater, which can efficiently perform BOD removal and denitrification by combining a carrier flow type aeration tank and a precipitation tank. The present invention relates to a method for removing nitrogen from wastewater.

(従来の技術) 汚水中に存在する窒素成分は、主に蛋白質が分解して生
成する有機態窒素(アミン類等)やこれが更に分解した
アンモニア態の窒素として存在する。
(Prior Art) Nitrogen components existing in wastewater mainly exist as organic nitrogen (amines and the like) produced by decomposition of proteins and ammonia nitrogen further decomposed.

従って、従来一般に行なわれている生物学的な脱窒素方
法は、何れも(イ)硝化菌の作用により、有機態窒素又
はアンモニア態窒素を好気性環境下で硝酸態窒素又は亜
硝酸態窒素に変換する硝化工程と、(ロ)脱窒細菌の作
用により、硝化された窒素(NO2−N,NO3−N)を嫌気性
環境下で炭素源(有機物)の存在下に窒素ガスに変換す
る脱窒工程との組合せが基本となっており、三段活性汚
泥法(メタノール添加法)、硝化液循環法、嫌気・好気
循環法等と呼ばれる各種の脱窒素方法が開発されてい
る。
Therefore, in all of the conventional biological denitrification methods, (a) the action of nitrifying bacteria converts organic nitrogen or ammonia nitrogen into nitrate nitrogen or nitrite nitrogen in an aerobic environment. converting the nitrification step of converting, by the action of denitrifying bacteria (b) nitrifying nitrogen (NO 2 -N, NO 3 -N ) to a nitrogen gas in the presence of a carbon source under anaerobic environment (organic matter) Basically, it is combined with the denitrification process, and various denitrification methods called three-stage activated sludge method (methanol addition method), nitrification solution circulation method, anaerobic / aerobic circulation method, etc. have been developed.

しかし、前記従前の脱窒素方法は、好気性環境下に於け
る硝化工程と嫌気性環境下に於ける脱窒工程を個別に行
なうものであるため、処理設備が大形化すると共に脱窒
処理槽への汚泥の返送や脱窒処理槽内の汚泥濃度の管理
に手数がかかり、安定した汚水処理を行ない難いと云う
欠点が内存する。
However, in the conventional denitrification method, the nitrification step in an aerobic environment and the denitrification step in an anaerobic environment are separately performed, so that the treatment equipment becomes large and the denitrification treatment is performed. There is an inherent drawback that it takes time to return sludge to the tank and control the sludge concentration in the denitrification tank, making it difficult to perform stable wastewater treatment.

一方、これ等の問題を解決するため、脱窒菌を主体とす
る微生物を培養・付着せしめた多孔質充填物(スポンジ
の小片)を脱窒処理槽内へ充填し、酸素を含まないガス
流によって充填物と硝化処理後の汚水や添加したメタノ
ール等を強制撹拌することにより、汚泥の回収並びに補
給を不要とするようにした技術が開発されている(特開
昭51−150870号等)。
On the other hand, in order to solve these problems, a porous packing (small pieces of sponge), in which microorganisms mainly composed of denitrifying bacteria are cultured and adhered, is filled in the denitrification treatment tank, and a gas flow containing no oxygen is used. A technique has been developed in which the packing and the nitrification-treated sewage, added methanol, and the like are forcibly agitated to eliminate the need for sludge recovery and supplementation (JP-A-51-150870).

しかし、これ等の多孔質充填物(スポンジ小片)を使用
する処理技術に於いても脱窒槽工程の他に硝化工程を別
に必要とするため、処理設備の大幅な小形化がはかれな
いと云う問題が残されている。
However, even in the processing technology using such porous packing (small pieces of sponge), a nitrification step is additionally required in addition to the denitrification tank step, so it can be said that the size of the processing equipment cannot be significantly reduced. The problem remains.

また、多孔性坦体を使用する坦体流動型曝気処理槽には
各種のものが開発されているが、これ等は何れもBOD除
去を目的とするものであり、窒素除去には適用不可能な
ものである(特開昭49−39949号,特公昭55−51639号
等)。
In addition, various types of carrier fluidization type aeration treatment tanks using porous carriers have been developed, but these are all intended for BOD removal and are not applicable to nitrogen removal. (Japanese Patent Application Laid-Open No. 49-39949, Japanese Patent Publication No. 55-51639, etc.).

(発明が解決しようとする課題) 本発明は従前の汚水の窒素除去方法に於ける上述の如き
問題、即ち(イ)硝化工程と脱窒工程とを別個に必要と
するため、処理設備の小形化や処理操作の簡素化が計れ
ないと云う問題を解決せんとするものであり、特定の物
理的性質を有する多孔質充填物を使用することにより、
一基の主処理槽内で硝化工程と脱窒工程の両方を並列的
に行なわせ、これによって処理設備の大幅な小形化と処
理コストの削減を可能とした汚水の窒素除去方法を提供
するものである。
(Problems to be Solved by the Invention) The present invention has the above-mentioned problems in the conventional nitrogen removal method for wastewater, that is, (a) the nitrification step and the denitrification step are separately required, and therefore the size of the treatment facility is small. It is intended to solve the problem that simplification and simplification of treatment operation cannot be achieved, and by using a porous packing having specific physical properties,
A method for removing nitrogen from sewage that allows the nitrification process and the denitrification process to be performed in parallel in a single main processing tank, thereby significantly reducing the size of the processing equipment and reducing the processing cost. Is.

(課題を解決するための手段) ところで、本件発明者は、活性汚泥を付着せしめた多孔
性坦体を用いた流動型曝気処理装置の性能試験の過程に
於いて、ある種の多孔性坦体を使用した場合にはBODの
みならず汚水中の総窒素の方も大幅に減少することを見
出した。
(Means for Solving the Problem) By the way, in the process of performance test of a fluidized aeration treatment apparatus using a porous carrier to which activated sludge is adhered, the present inventor It was found that not only BOD but also total nitrogen in the sewage was significantly reduced when using.

第1表は前記試験の結果を示すものであり、試験2(試
料D)及び試験4(試料C)に於いては、坦体を不織布
小片NO2(15mm×15mm×10mm)及びポリウレタン小片NO1
(12mm×12mm×12mm)とすることにより、総窒素T−N
が120分間の曝気処理によって約40%位い除去されるこ
とが示されている。
Table 1 shows the results of the above test. In Test 2 (Sample D) and Test 4 (Sample C), the carrier was a nonwoven fabric piece NO2 (15 mm × 15 mm × 10 mm) and a polyurethane piece NO1.
(12mm × 12mm × 12mm) makes the total nitrogen T-N
Has been shown to be removed by about 40% by aeration treatment for 120 minutes.

尚、第1表の結果は多孔性坦体の充填率を30%(曝気槽
内容積に対して30VOL%の坦体を充填)とし、且つ曝気
強度を5.5Nm3/m3・Hrとした場合の値である。
The results in Table 1 show that the filling rate of the porous carrier was 30% (30 VOL% of the carrier was filled in the aeration tank volume) and the aeration strength was 5.5 Nm 3 / m 3 · Hr. This is the case value.

前記第1表の結果からも明らかな様に、ある種 の多孔性坦体を用いた場合には、好気性環境下にある曝
気処理槽に於いても窒素除去が行なわれるのであるか
ら、当該曝気処理槽では好気性環境下に於けるBOD除去
や硝化作用の他に、嫌気性環境下に於ける脱窒作用が併
せて同時に進行していることになる。
As is clear from the results in Table 1 above, certain types When the porous carrier is used, nitrogen is removed even in the aeration treatment tank under aerobic environment. Therefore, in the aeration treatment tank, BOD removal and nitrification under aerobic environment are performed. In addition to the action, the denitrification action under the anaerobic environment is also proceeding at the same time.

尚、上述の如き硝化作用と脱窒作用が同時に進行すると
云う処理のメカニズムは未だ充分に解析されていない
が、好気性環境下に於けるBOD除去作用や硝酸態窒素等
の硝化作用は主として多孔性坦体の外層領域(即ち好気
性領域)に於いて行なわれ、且つ嫌気性環境下に於ける
脱窒作用は、主として多孔性坦体の内層領域(即ち嫌気
性領域)で行なわれているものと想定される。
Although the mechanism of the treatment that the nitrification action and the denitrification action simultaneously proceed as described above has not been sufficiently analyzed, the BOD removal action in an aerobic environment and the nitrification action such as nitrate nitrogen are mainly porous. The denitrification action is performed in the outer layer region (ie, aerobic region) of the porous carrier and in the anaerobic environment, is mainly performed in the inner layer region (ie, anaerobic region) of the porous carrier. Assumed to be.

本件発明は上述の様な知見に基づいて開発をされたもの
であり、使用する多孔性坦体の物理的性質や寸法、充填
率等を特定することにより、一基の坦体流動型曝気処理
槽と沈殿槽(若しくは一基の沈殿部付坦体流動型曝気処
理槽)により、BOD除去と窒素除去の両方を同時に可能
とするものである。
The present invention has been developed based on the above-mentioned knowledge, and by specifying the physical properties, dimensions, filling rate, etc. of the porous carrier to be used, a single carrier fluidized aeration process can be performed. Both the BOD removal and nitrogen removal are possible at the same time by the tank and the settling tank (or a single carrier fluidized aeration processing tank with a settling section).

本願発明は、散気装置を備えた主処理槽内へ、厚さ10mm
及び風速2m/secの条件下に於ける気体濾過抵抗が5〜12
mmH2Oのポリウレタン製又はポリエチレン製シートを切
断して形成した比重がほぼ1であって、一辺の長さが10
mm〜15mmの角柱状を呈し、且つ汚水中に於いて外層部が
好気性領域となると共に内層部が嫌気性領域となる多孔
性坦体を充填率20〜35%の割合で充填し、前記散気装置
からの噴出空気により汚水及び多孔性坦体を循環流動さ
せると共に、前記主処理槽からスクリーンを介して処理
汚水のみを沈殿槽へ移流せしめて汚泥の沈殿分離を行な
い、分離した汚泥の一部を計量装置により計量制御しつ
つ前記主処理槽内へ返送することを発明の基本構成とす
るものである。
The present invention has a thickness of 10 mm in the main processing tank equipped with an air diffuser.
And the gas filtration resistance is 5-12 under the condition of wind speed 2m / sec.
The specific gravity formed by cutting a polyurethane or polyethylene sheet of mmH 2 O is almost 1, and the length of one side is 10
mm ~ 15 mm prismatic, and in the wastewater is filled with a porous carrier in which the outer layer part becomes an aerobic region and the inner layer part becomes an anaerobic region at a filling rate of 20 to 35%, While circulating and circulating sewage and porous carrier by the air blown from the air diffuser, only the treated sewage is admitted to the settling tank through the screen from the main treatment tank to perform sludge sedimentation separation, and the separated sludge The basic constitution of the present invention is to return a part of it to the main processing tank while controlling the measurement by a measuring device.

(作用) 汚水内のアンモニア態窒素や有機態窒素は、好気性環境
下にある多孔性坦体の外層部に於いて、これに付着する
汚泥中の硝化菌と接触することにより硝化作用を受け、
硝酸態窒素等に変換される。
(Function) Ammonia nitrogen and organic nitrogen in sewage undergo nitrification by contacting nitrifying bacteria in sludge attached to the outer layer of the porous carrier under aerobic environment. ,
Converted to nitrate nitrogen, etc.

変換された硝酸態窒素等は、引き続き嫌気性環境下にあ
る多孔性坦体の内層部に於いて、これに付着する汚泥中
の脱窒素菌と接触することにより脱窒作用を受け、窒素
除去が行なわれる。
The converted nitrate nitrogen, etc. continues to undergo denitrification by contacting the denitrifying bacteria in the sludge adhering to it in the inner layer of the porous carrier under anaerobic environment to remove nitrogen. Is performed.

処理された汚水はスクリーンを通して沈殿槽へ移流さ
れ、ここで汚泥が沈殿分離されたあと、消毒等の処理を
経て外部へ放流される。
The treated sewage is transferred to a settling tank through a screen, where sludge is separated and settled and then discharged to the outside through treatment such as disinfection.

沈殿分離された汚泥の一部は主処理槽内へ返送され、流
動中の多孔性坦体に吸着される。これによって、主処理
槽内の汚泥量は常に所定値に保持される。
Part of the sludge that has been separated by settling is returned to the main treatment tank and adsorbed on the flowing porous carrier. As a result, the amount of sludge in the main treatment tank is always maintained at a predetermined value.

(実施例) 以下、図面に基づいて本発明の実施例を説明する。(Example) Hereinafter, the Example of this invention is described based on drawing.

第1図は本発明の処理工程を示すものであり、図に於い
て1aは流水汚水、1bは放流水、2は坦体流動型の主処理
槽、3は沈殿槽、4は消毒槽、5は放流ポンプ槽、6aは
計量装置、6は汚泥返送路、7は汚泥濃縮貯留槽であ
る。
FIG. 1 shows the treatment process of the present invention. In the figure, 1a is running water sewage, 1b is discharged water, 2 is a carrier-fluid-type main treatment tank, 3 is a sedimentation tank, 4 is a disinfection tank, 5 is a discharge pump tank, 6a is a metering device, 6 is a sludge return passage, and 7 is a sludge concentration storage tank.

また、第2図乃至第5図は本発明の実施に使用する処理
装置の要部を示すものである。前記主処理槽2、消毒槽
4、放流ポンプ槽5等は槽本体A内に一体的に形成され
ており、沈殿槽3(図示省略)は別体として設けられて
いる。
Further, FIGS. 2 to 5 show the essential parts of a processing apparatus used for carrying out the present invention. The main treatment tank 2, the disinfection tank 4, the discharge pump tank 5 and the like are integrally formed in the tank body A, and the precipitation tank 3 (not shown) is provided as a separate body.

尚、第2図乃至第5図に於いて、8は散気管、9は散気
管固定台、10は着脱ユニオン、11は送気バルブ、12は配
管支持板、13はエアー逃し管、15は移流管、16はスクリ
ーン部、17は放流ポンプ架台、18は放流ポンプ、19は消
毒装置、20は仕切壁、21は移流壁、22は薬剤筒、23,24
は移流管、25は仕切壁である。
In FIGS. 2 to 5, 8 is an air diffuser, 9 is an air diffuser fixing base, 10 is a detachable union, 11 is an air supply valve, 12 is a pipe support plate, 13 is an air escape pipe, and 15 is Advection pipe, 16 screen part, 17 discharge pump mount, 18 discharge pump, 19 disinfection device, 20 partition wall, 21 advection wall, 22 chemical tube, 23, 24
Is an advection pipe and 25 is a partition wall.

又、本実施例では沈殿槽3を主処理槽2と別体にしてい
るが、これを一体的に形成することも可能である。
Further, although the settling tank 3 is separate from the main processing tank 2 in this embodiment, it is also possible to integrally form this.

前記主処理槽2内の底部には散気管8が設けられてお
り、コンプレッサー(図示省略)から供給されたエアー
が噴出されることにより、槽内の汚水並びに多孔性坦体
Bが矢印方向へ循環回流する。
An air diffuser 8 is provided at the bottom of the main treatment tank 2 so that the air supplied from a compressor (not shown) is jetted out so that the sewage in the tank and the porous carrier B move in the arrow direction. Circulate.

また、主処理槽2内には外形寸法が12mm×12mm×12mmの
立方体形状を有するポリウレタン製の多孔性坦体Bが、
容積占有率が約30%となる様に充填されている。
Further, in the main treatment tank 2, a porous carrier B made of polyurethane having a cubic shape with external dimensions of 12 mm × 12 mm × 12 mm,
It is filled so that the volume occupancy rate is about 30%.

前記多孔性坦体Bは、比重が略1で、且つ一辺の長さ寸
法が10〜15mm程度の角柱体が望ましい。何故なら比重が
1から大きく離れたり、或いは一辺の寸法が15mm以上に
なるとエアーレーションによる流動性が悪化し、また一
辺の寸法が10mm以下になると、後述する多孔性坦体Bの
嫌気性領域が減少し、脱窒能力が低下することになる。
The porous carrier B is preferably a prism having a specific gravity of about 1 and a length of one side of about 10 to 15 mm. The reason is that if the specific gravity deviates greatly from 1, or the dimension of one side becomes 15 mm or more, the fluidity due to aeration deteriorates, and if the dimension of one side becomes 10 mm or less, the anaerobic region of the porous carrier B described later And the denitrification capacity will decrease.

また、多孔性坦体Bは耐摩耗性を有する必要があり、ポ
リウレタン製の多孔性坦体Bの場合にはエーテル系の連
泡性ポリウレタンが望ましい。
Further, the porous carrier B needs to have abrasion resistance, and in the case of the polyurethane porous carrier B, an ether-based open-cell polyurethane is desirable.

更に、多孔性坦体Bの充填率は20〜35%程度が最適であ
る。充填率が20%以下になると脱窒素効果が急激に低下
するからであり、また充填率が35%以上になるとエァー
レーションによる流動が困難になると共に、流動性を高
めるためにエァー量を増すと、脱窒作用が逆に相殺され
る結果となるからであり、これ等のことは何れも脱窒素
試験により確認されている。
Further, the filling rate of the porous carrier B is optimally about 20 to 35%. When the filling rate is 20% or less, the denitrification effect drops sharply, and when the filling rate is 35% or more, it becomes difficult to flow due to erration, and if the amount of air is increased to increase the fluidity. This is because the denitrification effect is offset on the contrary, and all of these have been confirmed by the denitrification test.

前記多孔性坦体Bは前述の如く、外層部が好気性領域と
して作用し且つ内層部が嫌気性領域として作用すること
が必要であり、この点から単に連続発泡性であったり、
或いは気泡率が高いだけでは、BOD除去は可能であって
も優れた窒素除去作用を奏することが不可能である。
As described above, in the porous carrier B, it is necessary that the outer layer portion acts as an aerobic region and the inner layer portion acts as an anaerobic region. From this point, it is simply continuous foaming,
Or, even if the BOD can be removed only by having a high bubble ratio, it is impossible to exert an excellent nitrogen removing action.

即ち、多孔性坦体の気泡が大きく且つ気泡の大部分が連
泡の場合には、空気泡が容易に水と共に坦体内部を通過
することになり、前記嫌気性領域がほぼ零になって脱窒
作用が得られなくなる。また、これとは逆に、空隙率が
如何に大きくても連泡状の気泡でない場合には、嫌気性
領域は増加するものの通水性に劣ることとなり、脱窒作
用が得られない。
That is, when the bubbles of the porous carrier are large and most of the bubbles are continuous bubbles, the air bubbles easily pass through the inside of the carrier together with water, and the anaerobic region becomes almost zero. The denitrifying effect cannot be obtained. On the contrary, if the voids are not open cells, no matter how large the porosity is, the anaerobic region increases, but the water permeability becomes poor, and the denitrifying action cannot be obtained.

従って、多孔性坦体Bとしては適当な気孔径で、しかも
適当な連泡率(望ましくは、外層領域の連泡率が比較的
大きく且つ内層領域の連泡率が比較的小さいもの)を有
することが必須の要件となり、この種の発泡体の特性を
示すものとして通常利用されるP.P.I値(1″幅当りの
気泡数)や気泡率(気泡容積/全容積)、連泡率(連泡
状の気泡数/全気泡数)等だけでは、本件発明の様な一
基の坦体流動型曝気槽により窒素除去を行なう際に最適
な多孔性坦体の物性を表現することは不可能である。
Therefore, the porous carrier B has an appropriate pore diameter and an appropriate open cell ratio (desirably, the open cell region has a relatively high open cell ratio and the inner layer region has a relatively low open cell ratio). Is an essential requirement, and the PPI value (the number of cells per 1 ″ width), the cell rate (cell volume / total volume), and the open cell rate (open cell) that are normally used to show the characteristics of this type of foam. It is not possible to express the optimum physical properties of the porous carrier when removing nitrogen with a single carrier fluidized aeration tank as in the present invention only by the number of bubbles in the shape / total number of bubbles). is there.

そこで、本件発明に於いては、多孔性坦体の濾過性能に
着目し、プラスチック通気体の基本特性である濾過性能
の評価試験方法として信頼性の高い、日本空気清浄協会
(JACA NO10)の第1性能試験方法を用いて、多孔性坦
体用の板材Cの濾過抵抗を測定した。
Therefore, in the present invention, attention is paid to the filtration performance of the porous carrier, and it is highly reliable as an evaluation test method of the filtration performance which is a basic characteristic of the plastic aeration body. The filtration resistance of the plate material C for porous carriers was measured using 1 performance test method.

即ち、先ず角柱状の多孔性坦体Bの一辺の長さ(10mm)
に相当する厚さL=10mmの多孔性板材Cを第6図の如く
に配設し、風速2m/sec下に於ける濾過抵抗Pを測定し
た。
That is, first, the length of one side of the prismatic porous carrier B (10 mm)
A porous plate material C having a thickness L = 10 mm corresponding to the above was arranged as shown in FIG. 6, and the filtration resistance P at a wind velocity of 2 m / sec was measured.

尚、第6図は前記第1性能試験方法に於いて使用した垂
直形性能試験装置であり、図に於いてCは試験体、Dは
マノメータ、Eは整流格子、Fは風量調整板、Gはファ
ン、Hはのぞき窓、Iは試験器本体、Jはオリフィスで
あり、風速計は省略されている。
Incidentally, FIG. 6 shows a vertical type performance tester used in the first performance test method. In the figure, C is a test body, D is a manometer, E is a rectifying grid, F is an air flow adjusting plate, and G is Is a fan, H is a sight glass, I is a tester body, J is an orifice, and the anemometer is omitted.

次に、前記風速2m/sec下に於ける濾過抵抗P(mmH2O)
の測定を終えた多孔性板材Cを所定寸法の立方体状に切
断して多孔性坦体Bを形成し、これを曝気処理槽へ夫々
30%の充填率で充填して一定時間脱窒素処理を行ない、
そのトータル窒素T−Nの除去率Qを実測した。尚、脱
窒素試験に供した被処理水の種類や量、処理時間、曝気
量等の試験条件が各多孔性坦体B毎に同一に設定されて
いることは勿論である。
Next, filtration resistance P (mmH 2 O) at the wind speed of 2 m / sec
The porous plate material C, which has been subjected to the above measurement, is cut into a cube having a predetermined size to form a porous carrier B, which is then transferred to an aeration treatment tank, respectively.
Filling with a filling rate of 30% and denitrifying for a certain time,
The removal rate Q of the total nitrogen TN was measured. Needless to say, the test conditions such as the type and amount of water to be treated, the treatment time, and the amount of aeration used for the denitrification test are set to be the same for each porous carrier B.

その後、前記濾過抵抗Pと総窒素除去率Qとの対比を行
ない、この対比から高い窒素除去率Qを達成し得る濾過
抵抗Pの範囲を定めた。
Then, the filtration resistance P and the total nitrogen removal rate Q were compared, and the range of the filtration resistance P capable of achieving a high nitrogen removal rate Q was determined from this comparison.

第2表は、前記第6図の試験により測定した濾過抵抗P
の一例を示すものであり、ここで、濾過抵抗Pは風速2m
/sec下に濾過抵抗mmH2Oで表わされている。
Table 2 shows the filtration resistance P measured by the test of FIG.
An example is shown here, where the filtration resistance P is a wind speed of 2 m.
It is expressed in filtration resistance mmH 2 O under / sec.

また、第7図は前記第2表の濾過抵抗Pと試料の目の粗
さの関係を半対数グラフに表わしたものであり、ウレタ
ン試料の場合には、1″当りの気孔(セル)数で表わし
た目の粗さと濾過抵抗Pとが対数直線の関係になってい
る。
FIG. 7 is a semilogarithmic graph showing the relationship between the filtration resistance P and the roughness of the sample in Table 2 above. In the case of the urethane sample, the number of pores (cells) per 1 ″ is shown. There is a logarithmic straight line relationship between the coarseness of the mesh and the filtration resistance P.

前記第1表と第2表の結果を対比すると、試料記号Cの
多孔性坦体が約40%の窒素除去率を達成できることが判
る。この様にして、多数の多孔性坦体についての窒素除
去率Qと空気濾過抵抗Pの測定を行ない、両者の対比か
ら、多孔性板材の厚さLが10〜15mmの範囲内に於いて、
試料厚さ10mm、風速2m/secに於ける濾過抵抗が5/12mmH2
Oのものを、一辺の長さが10〜15mmの四角柱状に形成し
た多孔性坦体が、本件発明に於ける最適の多孔性坦体で
あることが判明した。
By comparing the results of Tables 1 and 2 above, it can be seen that the porous carrier of Sample Code C can achieve a nitrogen removal rate of about 40%. In this way, the nitrogen removal rate Q and the air filtration resistance P of a large number of porous carriers were measured, and from the comparison between the two, the thickness L of the porous plate material was within the range of 10 to 15 mm.
Sample thickness 10 mm, filtration resistance at wind speed 2 m / sec is 5/12 mmH 2
It was found that the O-shaped porous carrier formed in the shape of a quadrangular prism having a side length of 10 to 15 mm is the most suitable porous carrier in the present invention.

次に、本発明による汚水の窒素除去処理方法を説明す
る。
Next, the nitrogen removal treatment method of sewage according to the present invention will be described.

第1図乃至第5図を参照して、被処理水は先ず移流管15
から主処理槽2内へ入り、活性汚泥を内部に保持した多
孔性坦体Bや浮遊活性汚泥と共に、散気管8から噴出す
る空気流によって槽2内を循環回流する。
Referring to FIGS. 1 to 5, the water to be treated is first advection pipe 15
To the main treatment tank 2 and is circulated and circulated in the tank 2 by the air flow ejected from the air diffusing pipe 8 together with the porous carrier B and the floating activated sludge in which the activated sludge is held.

槽2内を循環する間に活性汚泥による生物学的処理によ
り、汚水内のBODの約90%が除去される。
About 90% of BOD in the wastewater is removed by biological treatment with activated sludge while circulating in the tank 2.

また、汚水が多孔性坦体の外層部の好気性領域及び浮遊
汚泥中の硝化菌に触れることにより、アンモニヤ態窒素
等の硝化処理が行なわれる。更に、多孔性坦体の内層部
の嫌気性領域に於いて、硝化された硝酸態窒素が汚泥中
の脱窒細菌に触れることにより、脱窒処理が行なわれ、
総窒素の約70%以上が除去される。
Further, the wastewater comes into contact with the aerobic region of the outer layer of the porous carrier and the nitrifying bacteria in the suspended sludge, whereby nitrification treatment of ammonia nitrogen and the like is performed. Furthermore, in the anaerobic region of the inner layer portion of the porous carrier, nitrified nitrate nitrogen comes into contact with the denitrifying bacteria in the sludge, thereby performing denitrification treatment,
About 70% or more of total nitrogen is removed.

尚、本実施例に於いては、BOD負荷が0.8〜3kgBOD/m3
日、活性汚泥量5.0kg以上/m3、日、平均流入総窒素0.0
4kg/kg(活性汚泥)及び0.2kg以下/m3(槽容積)、曝
気強度9.0m3/m3・Hrに夫々設定されている。
In this example, the BOD load was 0.8 to 3 kg BOD / m 3
Daily, activated sludge volume 5.0 kg / m 3 / day, average total nitrogen inflow 0.0
It is set to 4 kg / kg (activated sludge), 0.2 kg or less / m 3 (tank volume), and aeration strength 9.0 m 3 / m 3 · Hr, respectively.

また、多孔性坦体Bには12mm×12mm×12mmのウレタン製
多孔体(空気濾過抵抗P=5.7)が約17,200個/m3(充
填率30%)の割合で使用されており、槽2内周面近傍に
於ける流動速度は60〜100cm/sec、槽2中央部に於ける
流動速度は5〜10cm/sec程度である。
Further, the porous carrier B is made of 12 mm × 12 mm × 12 mm urethane porous body (air filtration resistance P = 5.7) at a rate of about 17,200 pieces / m 3 (filling rate 30%). The flow velocity in the vicinity of the inner peripheral surface is 60 to 100 cm / sec, and the flow velocity in the center of the tank 2 is about 5 to 10 cm / sec.

主処理槽2からの活性汚泥と坦体の混合液は、スクリー
ン部16によって多孔性坦体Bの流出が防止され、活性汚
泥混合液のみが移流管23を通して沈殿槽3へ送られ、こ
こで汚泥の沈殿分離が行なわれる。
In the mixed solution of activated sludge and carrier from the main treatment tank 2, the screen portion 16 prevents the outflow of the porous carrier B, and only the activated sludge mixed solution is sent to the settling tank 3 through the advection pipe 23. Sludge sedimentation is performed.

汚泥が分離された処理水は移流管24を通して消毒槽4へ
戻され、消毒された処理水は放流ポンプ槽5を介して放
流ポンプ18により槽外へ放流されて行く。
The treated water from which the sludge has been separated is returned to the disinfection tank 4 through the advection pipe 24, and the disinfected treated water is discharged outside the tank by the discharge pump 18 via the discharge pump tank 5.

また、前記沈殿槽4に於いて分離された汚泥は、計量装
置6aで自動計量されたうえ、必要量が汚泥返送管6を通
して主処理槽2内へ戻され、主処理槽中の活性汚泥量が
設定値になるように調整されている。
The sludge separated in the settling tank 4 is automatically weighed by the weighing device 6a, and the necessary amount is returned to the main treatment tank 2 through the sludge return pipe 6 to determine the amount of activated sludge in the main treatment tank. Is adjusted to the set value.

(発明の効果) 本発明に於いては、多孔性坦体Bの外層部に形成される
好気性領域とその内層部に形成される嫌気性領域とを機
能的に活用し、一基の坦体流動型曝気処理層によって窒
素除去とBOD除去を行なう構成としているため、従前の
硝化工程と脱窒工程とを分離する形式の処理方法に比較
して、大幅な処理装置の小形化と処理操作の簡素化を計
ることが出来る。
(Effects of the Invention) In the present invention, the aerobic region formed in the outer layer portion of the porous carrier B and the anaerobic region formed in the inner layer portion thereof are functionally utilized, and a single carrier is used. Since it is configured to remove nitrogen and BOD with a body fluidized aeration treatment layer, compared to the conventional treatment method of separating the nitrification process and the denitrification process, it is possible to significantly reduce the size of the treatment equipment and the treatment operation. Can be simplified.

また、本発明では使用する多孔性坦体Bの外形寸法やそ
の空気濾過抵抗P、坦体Bの充填率を最適値に選定して
いるため、好気性領域に於ける硝化作用と嫌気性領域に
於ける脱窒作用とがバランス良く果され、従前の単なる
発泡ウレタン等の多孔性坦体Bを充填した装置に比較し
て優れた脱窒素効果を発揮することが出来る。
Further, in the present invention, since the outer dimensions of the porous carrier B to be used, its air filtration resistance P, and the filling rate of the carrier B are selected as optimum values, nitrification action and anaerobic region in the aerobic region are selected. The denitrification effect in the above is well balanced, and an excellent denitrification effect can be exhibited as compared with the conventional device filled with the porous carrier B such as urethane foam.

更に、本発明では沈殿槽で分離した活性汚泥の一部を主
処理槽内へ戻し、流動中の多孔性坦体内へ吸着せしめる
ことによって主処理槽内の活性汚泥量を所定値に保持す
るようにしているため、長期に亘って良好な処理作用が
発揮されることになる。
Further, in the present invention, a part of the activated sludge separated in the settling tank is returned to the main treatment tank and is adsorbed into the flowing porous carrier so that the amount of activated sludge in the main treatment tank is maintained at a predetermined value. As a result, good processing action can be exerted over a long period of time.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本件発明による汚水の処理工程図である。 第2図は、本件発明の実施に使用する処理装置の要部を
示す平面図、第3図は、第2図のA−A視断面図、第4
図は第2図のB−B視断面図、第5図は第2図のB′−
B′視断面図である。 第6図は、多孔性坦体の空気濾過抵抗Pの測定方法の説
明図であり、第7図は空気濾過抵抗Pと試料の目の粗さ
との関係を示すものである。 A……主処理槽本体、B……多孔性坦体 2……主処理槽、3……沈殿槽 4……消毒槽、6……汚泥辺送路 6a……自動計量装置、8……散気管 16……スクリーン部 P……多孔性坦体の空気濾過抵抗
FIG. 1 is a process drawing of wastewater according to the present invention. FIG. 2 is a plan view showing a main part of a processing apparatus used for carrying out the present invention, FIG. 3 is a sectional view taken along line AA of FIG. 2, and FIG.
FIG. 5 is a sectional view taken along the line BB of FIG. 2, and FIG. 5 is a sectional view taken along the line B'- of FIG.
It is a B'view sectional drawing. FIG. 6 is an explanatory diagram of a method for measuring the air filtration resistance P of the porous carrier, and FIG. 7 shows the relationship between the air filtration resistance P and the coarseness of the sample. A: Main treatment tank body, B: Porous carrier 2 ... Main treatment tank, 3 ... Settling tank, 4 ... Disinfection tank, 6 ... Sludge side passage 6a ... Automatic weighing device, 8 ... Air diffuser 16 …… Screen part P …… Air filtration resistance of porous carrier

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】散気装置を備えた主処理槽内へ、厚さ10mm
及び風速2m/secの条件下に於ける気体濾過抵抗が5〜12
mmH2Oのポリウレタン製又はポリエチレン製シートを切
断して形成した比重がほぼ1であって、一辺の長さが10
mm〜15mmの角柱状を呈し、且つ汚水中に於いて外層部が
好気性領域となると共に内層部が嫌気性領域となる多孔
性担体を充填率20〜35%の割合で充填し、前記散気装置
からの噴出空気により汚水及び多孔性担体を循環流動さ
せると共に、前記主処理槽からスクリーンを介して処理
汚水のみを沈澱槽へ移流せしめて汚泥の沈澱分離を行な
い、分離した汚泥の一部を計量装置により計量制御しつ
つ前記主処理槽内へ返送することを特徴とする汚水の窒
素除去方法。
1. A main processing tank equipped with an air diffuser, having a thickness of 10 mm
And the gas filtration resistance is 5-12 under the condition of wind speed 2m / sec.
The specific gravity formed by cutting a polyurethane or polyethylene sheet of mmH 2 O is almost 1, and the length of one side is 10
mm ~ 15 mm prismatic, and in the wastewater, the outer layer part becomes an aerobic region and the inner layer part becomes an anaerobic region at a filling rate of 20 to 35%, and the dispersion is performed. The sewage and the porous carrier are circulated and flowed by the air blown from the air device, and only the treated sewage is admitted to the settling tank from the main treatment tank through the screen to separate the sludge from the sludge, and a part of the separated sludge is separated. A method for removing nitrogen from wastewater, which comprises returning the wastewater to the main treatment tank while controlling the quantity by a metering device.
JP17984090A 1990-07-06 1990-07-06 How to remove nitrogen from sewage Expired - Lifetime JPH0741260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17984090A JPH0741260B2 (en) 1990-07-06 1990-07-06 How to remove nitrogen from sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17984090A JPH0741260B2 (en) 1990-07-06 1990-07-06 How to remove nitrogen from sewage

Publications (2)

Publication Number Publication Date
JPH0466195A JPH0466195A (en) 1992-03-02
JPH0741260B2 true JPH0741260B2 (en) 1995-05-10

Family

ID=16072820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17984090A Expired - Lifetime JPH0741260B2 (en) 1990-07-06 1990-07-06 How to remove nitrogen from sewage

Country Status (1)

Country Link
JP (1) JPH0741260B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8894856B2 (en) * 2008-03-28 2014-11-25 Evoqua Water Technologies Llc Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods
AU2014262972B2 (en) 2013-05-06 2017-09-28 Evoqua Water Technologies Llc Wastewater biosorption with dissolved air flotation
CN107698025B (en) * 2017-11-08 2023-06-02 中机国际工程设计研究院有限责任公司 Integrated sewage denitrification and dephosphorization device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424455A (en) * 1977-07-27 1979-02-23 Doriko Kk Method of treating biological waste water by fluidized contact process

Also Published As

Publication number Publication date
JPH0466195A (en) 1992-03-02

Similar Documents

Publication Publication Date Title
JP4603395B2 (en) Filtration membrane cleaning method
US3956129A (en) Waste treatment apparatus
Ngo et al. Simple approaches towards the design of an attached-growth sponge bioreactor (AGSB) for wastewater treatment and reuse
JPH0741260B2 (en) How to remove nitrogen from sewage
RU65043U1 (en) INSTALLATION OF BIOLOGICAL SEWAGE TREATMENT
KR100325316B1 (en) The method of purification of sewage using urethan foamed screen
JP2002273467A (en) Air diffuser and biological treatment tank using the same
JP4143748B2 (en) Integrated biological nitrification / denitrification system
Lee et al. Carbon-slurry activated sludge for nitrification-denitrification
JPH0583320B2 (en)
JP2000246272A (en) Method for removing nitrogen of sewage
JPH0623390A (en) Biological dephosphorizing and denitrifying treatment of organic sewage
KR980009141A (en) Aerobic treatment method of organic sewage and its apparatus
JP2001314883A (en) Biological treatment apparatus
JP2003033787A (en) Method for nitrifying drainage
JPH0871579A (en) Wastewater treatment apparatus
JPH11244877A (en) Sewage septic tank with built-in membrane separation vessel
CN220132004U (en) High ammonia nitrogen mud membrane double-effect fast-growing method processing apparatus
JP2565429B2 (en) Method and apparatus for biological nitrification denitrification of organic wastewater
KR200171727Y1 (en) Processing system for excretions of animals
JP2022044423A (en) Biological nitrification apparatus
JP2525711B2 (en) Advanced purification equipment for organic wastewater
JPH0531493A (en) Treatment of sewage and equipnent
JP2565453B2 (en) Upflow biological nitrification denitrification method and apparatus
JPH0880496A (en) Method for nitrating and denitrifying sewage and device therefor