JPH0466195A - Nitrogen removal method of sewage - Google Patents
Nitrogen removal method of sewageInfo
- Publication number
- JPH0466195A JPH0466195A JP2179840A JP17984090A JPH0466195A JP H0466195 A JPH0466195 A JP H0466195A JP 2179840 A JP2179840 A JP 2179840A JP 17984090 A JP17984090 A JP 17984090A JP H0466195 A JPH0466195 A JP H0466195A
- Authority
- JP
- Japan
- Prior art keywords
- porous carrier
- sludge
- tank
- treatment tank
- sewage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 title claims abstract description 62
- 229910052757 nitrogen Inorganic materials 0.000 title claims abstract description 31
- 239000010865 sewage Substances 0.000 title claims abstract description 17
- 238000000034 method Methods 0.000 title claims description 35
- 238000011282 treatment Methods 0.000 claims abstract description 56
- 239000010802 sludge Substances 0.000 claims abstract description 40
- 238000005273 aeration Methods 0.000 claims abstract description 23
- 239000007789 gas Substances 0.000 claims abstract description 4
- 238000001914 filtration Methods 0.000 claims description 20
- 239000002351 wastewater Substances 0.000 claims description 12
- 238000004062 sedimentation Methods 0.000 claims description 8
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 4
- 238000000926 separation method Methods 0.000 claims description 3
- 239000004745 nonwoven fabric Substances 0.000 claims description 2
- 239000004698 Polyethylene Substances 0.000 claims 1
- -1 polyethylene Polymers 0.000 claims 1
- 229920000573 polyethylene Polymers 0.000 claims 1
- 241000894006 Bacteria Species 0.000 abstract description 8
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 abstract description 5
- 230000000704 physical effect Effects 0.000 abstract description 4
- 238000007667 floating Methods 0.000 abstract description 2
- 238000007664 blowing Methods 0.000 abstract 2
- VGPSUIRIPDYGFV-UHFFFAOYSA-N [N].O[N+]([O-])=O Chemical compound [N].O[N+]([O-])=O VGPSUIRIPDYGFV-UHFFFAOYSA-N 0.000 abstract 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 abstract 1
- 230000008569 process Effects 0.000 description 16
- 230000000694 effects Effects 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 239000000969 carrier Substances 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000004659 sterilization and disinfection Methods 0.000 description 6
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 5
- 229920002635 polyurethane Polymers 0.000 description 4
- 239000004814 polyurethane Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000001546 nitrifying effect Effects 0.000 description 3
- 125000001477 organic nitrogen group Chemical group 0.000 description 3
- 238000011056 performance test Methods 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- JVMRPSJZNHXORP-UHFFFAOYSA-N ON=O.ON=O.ON=O.N Chemical compound ON=O.ON=O.ON=O.N JVMRPSJZNHXORP-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は汚水の窒素除去方法の改良に係り、坦体流動型
曝気槽と沈殿槽との組合せにより、BOD除去と脱窒素
を効率的に行なえるようにした汚水の窒素除去方法に関
するものである。Detailed Description of the Invention (Industrial Application Field) The present invention relates to improving a method for removing nitrogen from wastewater, and enables efficient BOD removal and denitrification by combining a carrier flow type aeration tank and a settling tank. This invention relates to a method for removing nitrogen from wastewater.
(従来の技術)
汚水中に存在する窒素成分は、主に蛋白質が分解して生
成する有機態窒素(アミン類等)やこれが更に分解した
アンモニア態の窒素として存在する。(Prior Art) Nitrogen components present in sewage mainly exist as organic nitrogen (amines, etc.) produced by decomposition of proteins and ammonia nitrogen produced by further decomposition.
従って、従来一般に行なわれている生物学的な脱窒製方
法は、何れも(イ)硝化菌の作用により、有機態窒素又
はアンモニア態窒素を好気性環境下で硝酸態窒素又は亜
硝酸態窒素に変換する硝化工程と、(ロ)脱窒細菌の作
用により、硝化された窒素(No、−N、No、−N)
を嫌気性環境下で炭素源(有機物)の存在下に窒素ガス
に変換する脱窒工程との組合せが基本となっており、三
段活性汚泥法(メタノール添加法)、硝化液循環法、嫌
気・好気循環法等と呼ばれる各種の脱窒製方法が開発さ
れている。Therefore, conventional biological denitrification methods generally involve (a) converting organic nitrogen or ammonia nitrogen into nitrate nitrogen or nitrite nitrogen in an aerobic environment through the action of nitrifying bacteria; nitrified nitrogen (No, -N, No, -N) through the nitrification process and (b) the action of denitrifying bacteria.
The basic method is a combination with a denitrification process in which nitrogen gas is converted into nitrogen gas in the presence of a carbon source (organic matter) in an anaerobic environment. - Various denitrification methods called aerobic circulation methods have been developed.
しかし、前記従前の脱窒製方法は、好気性環境下に於け
る硝化工程と嫌気性環境下に於ける脱窒工程を個別に行
なうものであるため、処理設備が大形化すると共に脱窒
処理槽への汚泥の返送や脱窒処理槽内の汚泥濃度の管理
に手数がかかり、安定した汚水処理を行ない難いと云う
欠点が内存する。However, in the conventional denitrification method, the nitrification process in an aerobic environment and the denitrification process in an anaerobic environment are performed separately, so the processing equipment becomes large and the denitrification process There are disadvantages in that returning the sludge to the treatment tank and managing the sludge concentration in the denitrification treatment tank is time-consuming, making it difficult to perform stable sewage treatment.
一方、これ等の問題を解決するため、脱窒菌を主体とす
る微生物を培養・付着せしめた多孔質充填物(スポンジ
の小片)を脱窒処理槽内へ充填し、酸素を含まないガス
流によって充填物と硝化処理後の汚水や添加したメタノ
ール等を強制撹拌することにより、汚泥の回収並びに補
給を不要とするようにした技術が開発されている(特開
昭51−150870号等)。On the other hand, in order to solve these problems, the denitrification treatment tank is filled with a porous filling (small pieces of sponge) on which microorganisms, mainly denitrifying bacteria, are cultured and attached, and a gas flow containing no oxygen is used to A technique has been developed that eliminates the need for sludge recovery and replenishment by forcibly stirring the filler, sewage after nitrification treatment, added methanol, etc. (Japanese Patent Laid-Open Publication No. 150870/1987, etc.).
しかし、これ等の多孔質充填物(スポンジ小片)を使用
する処理技術に於いても脱窒槽工程の他に硝化工程を別
に必要とするため、処理設備の大幅な小形化がはかれな
いと云う問題が残されている。However, even with these treatment technologies that use porous fillers (sponge pieces), a nitrification process is required in addition to the denitrification tank process, so it is said that it is not possible to significantly downsize the treatment equipment. Problems remain.
また、多孔性坦体を使用する坦体流動型曝気処理槽には
各種のものが開発されているが、これ等は何れもBOD
除去を目的とするものであり、窒素除去には適用不可能
なものである(特開昭49−39949号、特公昭55
−51639号等)。In addition, various types of carrier fluidized aeration treatment tanks that use porous carriers have been developed, but all of these have BOD
It is intended for nitrogen removal and cannot be applied to nitrogen removal (Japanese Patent Application Laid-open No. 49-39949, Japanese Patent Publication No. 55
-51639 etc.).
(発明が解決しようとする課題)
本発明は従前の汚水の窒素除去方法に於ける上述の如き
問題、即ち(イ)硝化工程と脱窒工程とを別個に必要と
するため、処理設備の小形化や処理操作の簡素化が計れ
ないと云う問題を解決せんとするものであり、特定の物
理的性質を有する多孔質充填物を使用することにより、
−基の主処理槽内で硝化工程と脱窒工程の両方を並列的
に行なわせ、これによって処理設備の大幅な小形化と処
理コストの削減を可能とした汚水の窒素除去方法を提供
するものである。(Problems to be Solved by the Invention) The present invention solves the above-mentioned problems in conventional wastewater nitrogen removal methods, namely (a) the nitrification process and denitrification process are required separately, so the treatment equipment is small. The aim is to solve the problem of not being able to simplify the processing and processing operations, and by using porous fillers with specific physical properties,
- Provides a method for removing nitrogen from wastewater that allows both the nitrification process and the denitrification process to be performed in parallel in the main treatment tank, thereby making it possible to significantly downsize treatment equipment and reduce treatment costs. It is.
(課題を解決するための手段)
ところで、本件発明者は、活性汚泥を付着せしめた多孔
性坦体を用いた流動型曝気処理装置の性能試験の過程に
於いて、ある種の多孔性坦体を使用した場合にはBOD
のみならず汚水中の総窒素の方も大幅に減少することを
見比した。(Means for Solving the Problem) By the way, the present inventor discovered that in the process of performance testing of a fluidized aeration treatment equipment using a porous carrier to which activated sludge was attached, If you use BOD
Not only that, but the total nitrogen in the wastewater was also significantly reduced.
第1表は前記試験の結果を示すものであり、試験2(試
料D)及び試験4(試料C)に於いては、坦体を不織布
小片NO2(15WX 15WX IQ am)及びポ
リウレタン小片NOI (12+mX 12WX 12
−)とすることにより、総窒素TNが120分間の曝気
処理によって約40%位い除去されることが示されてい
る。Table 1 shows the results of the above tests, and in Test 2 (Sample D) and Test 4 (Sample C), the carrier was a small piece of nonwoven fabric NO2 (15WX 15WX IQ am) and a small piece of polyurethane NOI (12+mX 12WX 12
-), it has been shown that approximately 40% of the total nitrogen TN is removed by aeration treatment for 120 minutes.
尚、第1表の結果は多孔性坦体の充填率を30%(曝気
槽内容積に対して30VOL%の坦体を充填)とし、且
つ曝気強度を5.5Nm”/m・Hrとした場合の値で
ある。In addition, the results in Table 1 were obtained when the filling rate of the porous carrier was 30% (30 VOL% of the carrier was filled with respect to the internal volume of the aeration tank) and the aeration intensity was 5.5 Nm"/m・Hr. This is the value of the case.
前記第1表の結果からも明らかな様に、ある種の多孔性
坦体を用いた場合には、好気性環境下にある曝気処理槽
に於いても窒素除去が行なわれるのであるから、当該曝
気処理槽では好気性環境下に於けるBOD除去や硝化作
用の他に、嫌気性環境下に於ける脱窒作用が併せて同時
に進行していることになる。As is clear from the results in Table 1 above, when certain porous carriers are used, nitrogen is removed even in the aeration tank under an aerobic environment. In the aeration treatment tank, in addition to BOD removal and nitrification under an aerobic environment, denitrification under an anaerobic environment is simultaneously proceeding.
尚、上述の如き硝化作用と脱窒作用が同時に進行すると
云う処理のメカニズムは未だ充分に解析されていないが
、好気性環境下に於けるBOD除去作用や硝酸態窒素等
の硝化作用は主として多孔性坦体の外層領域(即ち好気
性領域)に於いて行なわれ、且つ嫌気性環境下に於ける
脱窒作用は、主として多孔性坦体の内肩領域(即ち嫌気
性領域)で行なわれているものと想定される。Although the processing mechanism in which nitrification and denitrification proceed simultaneously as described above has not yet been fully analyzed, BOD removal and nitrification of nitrate nitrogen in an aerobic environment are mainly caused by denitrification is carried out in the outer layer region (i.e. aerobic region) of the porous carrier, and denitrification in an anaerobic environment is mainly carried out in the inner shoulder region (i.e. anaerobic region) of the porous carrier. It is assumed that there are.
本件発明は上述の様な知見に基づいて開発をされたもの
であり、使用する多孔性坦体の物上り的性質や寸法、充
填率等を特定することにより、−基の坦体流動型曝気処
理槽と沈殿槽(若しくは一基の沈殿部付坦体流動型曝気
処理槽)により、BOD除去と窒素除去の両方を同時に
可能とするものである。The present invention was developed based on the above-mentioned knowledge, and by specifying the physical properties, dimensions, filling rate, etc. of the porous carrier used, it is possible to realize -based carrier fluidized aeration. Both BOD removal and nitrogen removal can be performed simultaneously using a treatment tank and a sedimentation tank (or one carrier flow type aeration treatment tank with a sedimentation unit).
即ち1本件発明は散気装置を備えた主処理槽内へ、汚水
中に於いて外層部が好気性領域となると共に外層部が嫌
気性領域となり且つ一辺の長さが10〜15■の角柱状
の多孔性坦体を充填率10〜35%の割合で充填し、前
記散気装置からの噴出空気により汚水及び多孔性坦体を
循環流動させると共に、前記主処理槽から処理汚水を沈
殿槽へ移流せしめて汚泥の沈殿分離を行ない、分離した
汚泥の一部を前記主処理槽内へ返送することを発明の基
本構成とするものである。That is, 1. The present invention provides a main treatment tank equipped with an air diffuser, in which the outer layer becomes an aerobic region, the outer layer becomes an anaerobic region, and the length of one side is 10 to 15 square meters. The columnar porous carriers are filled at a filling rate of 10 to 35%, and the sewage and porous carriers are circulated and flowed by the air ejected from the aeration device, and the treated sewage is transferred from the main treatment tank to the settling tank. The basic structure of the invention is to perform sedimentation separation of the sludge by advection to the main treatment tank, and to return a part of the separated sludge to the main treatment tank.
(作用)
汚水内のアンモニア態窒素や有機態窒素は、好気性環境
下にある多孔性坦体の外層部に於いて、これに付着する
汚泥中の硝化菌と接触することにより硝化作用を受け、
硝酸態窒素等に変換される。(Function) Ammonia nitrogen and organic nitrogen in sewage undergo nitrification by coming into contact with nitrifying bacteria in the sludge that adheres to the outer layer of the porous carrier in an aerobic environment. ,
Converted to nitrate nitrogen, etc.
変換された硝酸態窒素等は、引き続き嫌気性環境下にあ
る多孔性坦体の内層部に於いて、これに付着する汚泥中
の脱窒製画と接触することにより脱窒作用を受け、窒素
除去が行なわれる。The converted nitrate nitrogen, etc., continues to undergo denitrification in the inner layer of the porous carrier under an anaerobic environment by coming into contact with the denitrifying particles in the sludge adhering to it, and is converted into nitrogen. Removal takes place.
処理された汚水はスクリーンを通して沈殿槽へ移流され
、ここで汚泥が沈殿分離されたあと、消毒等の処理を経
て外部へ放流される。The treated sewage is advected to a settling tank through a screen, where the sludge is separated by sedimentation, and then subjected to disinfection and other treatments before being discharged to the outside.
沈殿分離された汚泥の一部は主処理槽内へ返送され、流
動中の多孔性坦体に吸着される。これによって、主処理
槽内の汚泥量は常に所定値に保持される。A portion of the sludge that has been precipitated and separated is returned to the main treatment tank and adsorbed onto the flowing porous carrier. As a result, the amount of sludge in the main treatment tank is always maintained at a predetermined value.
(実施例) 以下1図面に基づいて本発明の詳細な説明する。(Example) The present invention will be described in detail below based on one drawing.
第1図は本発明の処理工程を示すものであり、図に於い
て1aは流水汚水、1bは放流水、2は坦体流動型の主
処理槽、3は沈殿槽、4は消毒槽。FIG. 1 shows the treatment process of the present invention. In the figure, 1a is running wastewater, 1b is discharged water, 2 is a carrier flow type main treatment tank, 3 is a settling tank, and 4 is a disinfection tank.
5は放流ポンプ槽、6aは計量装置、6は汚泥返送路、
7は汚泥濃縮貯留槽である。5 is a discharge pump tank, 6a is a metering device, 6 is a sludge return path,
7 is a sludge thickening storage tank.
また、第2図乃至第5図は本発明の実施に使用する処理
装置の要部を示すものである。前記主処理槽2、消毒槽
4、放流ポンプ槽5等は槽本体A内に一体的に形成され
ており、沈殿槽3(図示省略)は別体として設けられて
いる。Further, FIGS. 2 to 5 show the main parts of the processing apparatus used to implement the present invention. The main treatment tank 2, disinfection tank 4, discharge pump tank 5, etc. are integrally formed within the tank body A, and the sedimentation tank 3 (not shown) is provided separately.
尚、第2図乃至第5図に於いて、8は散気管、9は散気
管固定台、10は着脱ユニオン、11は送気バルブ、1
2は配管支持板、13はエアー逃し管、15は移流管、
16はスクリーン部、17は放流ポンプ架台、18は放
流ポンプ、19は消毒装置、20は仕切壁、21は移流
壁、22は薬剤筒、23.24は移流管、25は仕切壁
である。In addition, in FIGS. 2 to 5, 8 is a diffuser pipe, 9 is a diffuser pipe fixing base, 10 is a detachable union, 11 is an air supply valve, 1
2 is a piping support plate, 13 is an air relief pipe, 15 is an advection pipe,
16 is a screen part, 17 is a discharge pump stand, 18 is a discharge pump, 19 is a disinfection device, 20 is a partition wall, 21 is an advection wall, 22 is a drug barrel, 23, 24 is an advection pipe, and 25 is a partition wall.
又、本実施例では沈殿槽3を主処理槽2と別体にしてい
るが、これを一体的に形成することも可能である。Further, in this embodiment, the settling tank 3 is separate from the main processing tank 2, but it is also possible to form them integrally.
前記主処理槽2内の底部には散気管8が設けられており
、コンプレッサー(図示省略)から供給されたエアーが
噴出されることにより、槽内の汚水並びに多孔性坦体B
が矢印方向へ循環回流する。An aeration pipe 8 is provided at the bottom of the main treatment tank 2, and air supplied from a compressor (not shown) is blown out, thereby discharging the sewage in the tank as well as the porous carrier B.
circulates in the direction of the arrow.
また、主処理槽2内には外形寸法が12mX12rm
X l 2mの立方体形状を有するポリウレタン製の多
孔性坦体Bが、容積占有率が約30%となる様に充填さ
れている。In addition, the main treatment tank 2 has external dimensions of 12m x 12rm.
A polyurethane porous carrier B having a cubic shape of X l 2 m is filled so that the volume occupancy is about 30%.
前記多孔性坦体Bは、比重が略1で、且つ一辺の長さ寸
法が10〜15−程度の角柱体が望ましい、何故なら比
重が1から大きく離れたり、或いは一辺の寸法が15■
以上になるとエアーレーションによる流動性が悪化し、
また−辺の寸法が10−以下になると、後述する多孔性
坦体Bの嫌気性領域が減少し、脱窒能力が低下すること
になる。The porous carrier B is preferably a prismatic body with a specific gravity of approximately 1 and a side length of about 10 to 15 mm, because the specific gravity is far away from 1, or the length of a side is 15 mm.
If it becomes more than that, the fluidity due to aeration will deteriorate,
Moreover, when the dimension of the - side becomes 10 - or less, the anaerobic region of the porous carrier B described later decreases, and the denitrification ability decreases.
また、多孔性坦体Bは耐摩耗性を有する必要があり、ポ
リウレタン製の多孔性坦体Bの場合にはエーテル系の連
泡性ポリウレタンが望ましい。Further, the porous carrier B must have wear resistance, and in the case of the porous carrier B made of polyurethane, ether-based open-cell polyurethane is preferable.
更に、多孔性坦体Bの充填率は20〜35%程度が最適
である。充填率が20%以下になると脱窒製効果が急激
に低下するからであり、また充填率が35%以上になる
とエアーレーションによる流動が困難になると共に、流
動性を高めるためにエアー量を増すと、脱窒作用が逆に
相殺される結果となるからであり、二九等のことは何れ
も脱窒製試験により確認されている。Further, the optimum filling rate of the porous carrier B is about 20 to 35%. This is because when the filling rate is less than 20%, the denitrification effect decreases rapidly, and when the filling rate is more than 35%, it becomes difficult to flow by aeration, and the amount of air is increased to improve fluidity. This is because the denitrification effect is counterbalanced, and both of the above have been confirmed by denitrification tests.
前記多孔性坦体Bは前述の如く、外層部が好気性領域と
して作用し且つ内層部が嫌気性領域として作用すること
が必要であり、この点から単に連続発泡性であったり、
或いは気泡率が高いだけでは、BOD除去は可能であっ
ても優れた窒素除去作用を奏することが不可能である。As mentioned above, the porous carrier B needs to have an outer layer that acts as an aerobic region and an inner layer that acts as an anaerobic region.
Alternatively, if the bubble rate is only high, even if BOD removal is possible, it is impossible to exhibit an excellent nitrogen removal effect.
即ち、多孔性坦体の気泡が大きく且つ気泡の大部分が連
泡の場合には、空気泡が容易に水と共に坦体内部を通過
することになり、前記嫌気性領域がほぼ零になって脱窒
作用が得られなくなる。また、これとは逆に、空隙率が
如何に大きくても連泡状の気泡でない場合には、嫌気性
領域は増加するものの通水性に劣ることとなり、脱窒作
用が得られない。That is, if the air bubbles in the porous carrier are large and most of the bubbles are open cells, the air bubbles will easily pass through the carrier together with water, and the anaerobic region will become almost zero. Denitrification effect cannot be obtained. Conversely, no matter how large the porosity is, if the cells are not open-celled, the anaerobic region will increase but the water permeability will be poor and no denitrification effect will be obtained.
従って、多孔性坦体Bとしては適当な気孔径で、しかも
適当な連泡率(望ましくは、外層領域の連泡率が比較的
大きく且つ内層領域の連泡率が比較的小さいもの)を有
することが必須の要件となり、この種の発泡体の特性を
示すものとして通常利用されるP、P、I値(11幅当
りの気泡数)や気泡率(気泡容積/全容積)、連泡率(
連泡状の気泡数/全気泡数)等だけでは、本件発明の様
な一基の坦体流動型曝気槽により窒素除去を行なう際に
最適な多孔性坦体の物性を表現することは不可能である
。Therefore, the porous carrier B has an appropriate pore size and an appropriate open cell ratio (preferably a relatively large open cell ratio in the outer layer region and a relatively small open cell ratio in the inner layer region). This is an essential requirement, and the P, P, I values (number of cells per 11 width), cell ratio (cell volume/total volume), and open cell ratio are commonly used to indicate the characteristics of this type of foam. (
It is not possible to express the physical properties of the porous carrier that are optimal when nitrogen removal is performed using a single carrier flow type aeration tank as in the present invention, using only the number of open cells/total number of bubbles. It is possible.
そこで1本件発明に於いては、多孔性坦体の濾過性能に
着目し、プラスチック通気体の基本特性である濾過性能
の評価試験方法として信頼性の高い、日本空気清浄協会
(JACANOIO)の第1性能試験方法を用いて、多
孔性坦体用の板材Cの濾過抵抗を測定した。Therefore, in the present invention, we focused on the filtration performance of porous carriers, and developed the Japan Air Cleaning Association's (JACANOIO) 1, which is a highly reliable evaluation test method for filtration performance, which is the basic characteristic of plastic ventilators. The filtration resistance of plate material C for porous carrier was measured using a performance test method.
即ち、先ず角柱状の多孔性坦体Bの一辺の長さ(iol
wm)に相当する厚さL;10■の多孔性板材Cを第6
図の如くに配設し、風速2m756c下に於ける濾過抵
抗Pを測定した。That is, first, the length of one side of the prismatic porous carrier B (iol
A porous plate C having a thickness L of 10 cm corresponding to
The filter was installed as shown in the figure, and the filtration resistance P was measured under a wind speed of 2m756c.
尚、第6図は前記第1性能試験方法に於いて使用した垂
直形性能試験装置であり、図に於いてCは試験体、Dは
マノメータ、Eは整流格子、Fは風量調整板、Gはファ
ン、Hはのぞき窓、工は試験器本体、Jはオリフィスで
あり、風速計は省略されている。FIG. 6 shows the vertical performance test device used in the first performance test method, in which C is the test object, D is the manometer, E is the rectifying grid, F is the air volume adjustment plate, and G is the test piece. is a fan, H is a peephole, G is the main body of the tester, J is an orifice, and the anemometer is omitted.
次に、前記風速2mZsec下に於ける濾過抵抗P (
ma+H20)の測定を終えた多孔性板材Cを所定寸法
の立方体状に切断して多孔性坦体Bを形成し、これを曝
気処理槽へ夫々30%の充填率で充填して一定時間脱窒
素処理を行ない、そのトータル窒素T−Nの除去率Qを
実測した。尚、脱窒製試験に供した被処理水の種類や量
、処理時間、曝気量等の試験条件が各多孔性坦体B毎に
同一に設定されていることは勿論である。Next, the filtration resistance P (
After measuring ma+H20), the porous plate material C is cut into cubes of predetermined dimensions to form porous carriers B, which are filled into aeration treatment tanks at a filling rate of 30% and denitrified for a certain period of time. The treatment was carried out, and the total nitrogen TN removal rate Q was actually measured. It goes without saying that test conditions such as the type and amount of water to be treated, treatment time, and amount of aeration used in the denitrification test are set to be the same for each porous carrier B.
その後、前記濾過抵抗Pと総窒素除去率Qとの対比を行
ない、この対比から高い窒素除去率Qを達成し得る濾過
抵抗Pの範囲を定めた。Thereafter, the filtration resistance P and the total nitrogen removal rate Q were compared, and from this comparison, the range of the filtration resistance P that could achieve a high nitrogen removal rate Q was determined.
第 2 表
第2表は、前記第6図の試験により測定した濾過抵抗P
の一例を示すものであり、ここで、濾過抵抗Pは風速2
m/see下に濾過抵抗■H20で表わされている。Table 2 Table 2 shows the filtration resistance P measured by the test shown in Figure 6 above.
This shows an example, where the filtration resistance P is the wind speed 2
The filtration resistance (■H20) is expressed under m/see.
また、第7図は前記第2表の濾過抵抗Pと試料の目の粗
さの関係を半対数グラフに表わしたものであり、ウレタ
ン試料の場合には、1′当りの気孔(セル)数で表わし
た目の粗さと濾過抵抗Pとが対数直線の関係になってい
る。Furthermore, Fig. 7 is a semi-logarithmic graph showing the relationship between the filtration resistance P in Table 2 and the roughness of the sample, and in the case of a urethane sample, the number of pores (cells) per 1' There is a logarithmic linear relationship between the coarseness of the mesh and the filtration resistance P expressed by .
前記第1表と第2表の結果を対比すると、試料記号Cの
多孔性坦体が約40%の窒素除去率を達成できることが
判る。この様にして、多数の多孔性坦体についての窒素
除去率Qと空気濾過抵抗Pの測定を行ない、両者の対比
から、多孔性板材の厚さLが10〜15mの範囲内に於
いて、試料厚さ10Wm、風速2 m / secに於
ける濾過抵抗が5〜121111H20のものを、−辺
の長さが10〜15閣の四角柱状に形成した多孔性坦体
が、本件発明に於ける最適の多孔性坦体であることが判
明した。Comparing the results in Tables 1 and 2 above, it can be seen that the porous carrier of sample code C can achieve a nitrogen removal rate of about 40%. In this way, the nitrogen removal rate Q and air filtration resistance P were measured for a large number of porous carriers, and from the comparison of the two, it was found that when the thickness L of the porous plate material is within the range of 10 to 15 m, In the present invention, a porous carrier having a sample thickness of 10 Wm and a filtration resistance of 5 to 121111H20 at a wind speed of 2 m/sec is formed into a rectangular prism shape with a side length of 10 to 15 mm. It turned out to be the most suitable porous carrier.
次に、本発明による汚水の窒素除去処理方法を説明する
。Next, a method for removing nitrogen from wastewater according to the present invention will be explained.
第1図乃至第5図を参照して、被処理水は先ず移流管1
5から主処理槽2内へ入り、活性汚泥を内部に保持した
多孔性坦体Bや浮遊活性汚泥と共に、散気管8から噴呂
する空気流によって槽2内を循環回流する。Referring to FIGS. 1 to 5, the water to be treated is first transferred to the advection pipe 1.
5 into the main treatment tank 2, and the activated sludge is circulated in the tank 2 together with the porous carrier B holding the activated sludge therein and the floating activated sludge by the air flow from the aeration pipe 8.
槽2内を循環する間に活性汚泥による生物学的処理によ
り、汚水内のBODの約90%が除去される。Approximately 90% of the BOD in the wastewater is removed by biological treatment using activated sludge while circulating in the tank 2.
また、汚水が多孔性坦体の外層部の好気性領域及び浮遊
汚泥中の硝化菌に触れることにより、アンモニヤ態窒素
等の硝化処理が行なわれる。更に、多孔性坦体の内層部
の嫌気性領域に於いて、硝化された硝酸態窒素が汚泥中
の脱窒細菌に触れることにより、脱窒処理が行なわれ、
総窒素の約70%以上が除去される。Furthermore, when the wastewater comes into contact with the aerobic region of the outer layer of the porous carrier and the nitrifying bacteria in the suspended sludge, ammonia nitrogen and the like are nitrified. Furthermore, in the anaerobic region of the inner layer of the porous carrier, nitrified nitrate nitrogen comes into contact with denitrifying bacteria in the sludge, thereby denitrifying the sludge.
About 70% or more of the total nitrogen is removed.
尚、本実施例に於いては、BOD負荷が0.8〜3kg
BoD/m′・日、活性汚泥量5.0眩以上/m、El
、平均流入総窒素0.04kg/kg (活性汚泥)及
び0.2kg以下/rn’(槽容積)、曝気強度9、O
rr[’/m・Hrに夫々設定されている。In addition, in this example, the BOD load is 0.8 to 3 kg.
BoD/m'・day, activated sludge amount 5.0 dazzle/m or more, El
, average inflow total nitrogen 0.04 kg/kg (activated sludge) and 0.2 kg or less/rn' (tank volume), aeration intensity 9, O
rr['/m·Hr, respectively.
また、多孔性坦体Bには12■X12■X12■のウレ
タン製多孔体(空気濾過抵抗P=5.7)が約17,2
00個/rn”(充填率30%)の割合で使用されてお
り、槽2内周面近傍に於ける流動速度は60−100
am7sec、槽2中央部に於ける流動速度は5〜10
ex / see程度である。In addition, the porous carrier B has a 12×12×12× urethane porous body (air filtration resistance P=5.7) of about 17.2
00 pieces/rn" (filling rate 30%), and the flow rate near the inner peripheral surface of tank 2 is 60-100
am7sec, flow velocity in the center of tank 2 is 5-10
It is about ex/see.
主処理槽2からの活性汚泥と坦体の混合液は、スクリー
ン部16によって多孔性坦体Bの流出が防止され、活性
汚泥混合液のみが移流管23を通して沈殿槽3へ送られ
、ここで汚泥の沈殿分離が行なわれる。The mixed liquid of activated sludge and carrier from the main treatment tank 2 is prevented from flowing out of the porous carrier B by the screen part 16, and only the mixed liquid of activated sludge is sent to the settling tank 3 through the advection pipe 23, where it is sent to the settling tank 3. Sedimentation and separation of sludge is carried out.
汚泥が分離された処理水は移流管24を通して消毒槽4
へ戻され、消毒された処理水は放流ポンプ槽5を介して
放流ポンプ18により槽外へ放流されて行く。The treated water from which the sludge has been separated passes through the advection pipe 24 to the disinfection tank 4.
The disinfected treated water is discharged to the outside of the tank via the discharge pump tank 5 by the discharge pump 18.
また、前記沈殿槽4に於いて分離された汚泥は、計量装
置6aで自動計量されたうえ、必要量が汚泥返送管6を
通して主処理槽2内へ戻され、主処理槽中の活性汚泥量
が設定値になるように調整されている。The sludge separated in the settling tank 4 is automatically measured by a measuring device 6a, and the required amount is returned to the main treatment tank 2 through the sludge return pipe 6, and the amount of activated sludge in the main treatment tank is is adjusted to the set value.
(発明の効果)
本発明に於いては、多孔性坦体Bの外層部に形成される
好気性領域とその内層部に形成される嫌気性領域とを機
能的に活用し、−基の坦体流動型曝気処理槽によって窒
素除去とBOD除去を行なう構成としているため、従前
の硝化工程と脱窒工程とを分離する形式の処理方法に比
較して、大幅な処理装置の小形化と処理操作の簡素化を
計ることが出来る。(Effects of the Invention) In the present invention, the aerobic region formed in the outer layer part of the porous carrier B and the anaerobic region formed in the inner layer part are functionally utilized, and - group carrier Since nitrogen and BOD are removed using a fluid flow type aeration treatment tank, compared to the previous treatment method in which the nitrification process and denitrification process are separated, the size of the treatment equipment and treatment operations can be significantly reduced. It is possible to measure the simplification of
また1本発明では使用する多孔性坦体Bの外形寸法やそ
の空気濾過Ex EP、坦体Bの充填率を最適値に選定
しているため、好気性領域に於ける硝化作用と嫌気性領
域に於ける脱窒作用とがバランス良く果され、従前の単
なる発泡ウレタン等の多孔性坦体Bを充填した装置に比
較して優れた脱窒製効果を発揮することが出来る。In addition, in the present invention, the external dimensions of the porous carrier B used, its air filtration Ex EP, and the filling rate of the carrier B are selected to optimal values, so that the nitrification effect in the aerobic region and the anaerobic region The denitrification effect is achieved in a well-balanced manner, and an excellent denitrification effect can be exhibited compared to the conventional device filled with a porous carrier B such as simply foamed urethane.
更に、本発明では沈殿槽で分離した活性汚泥の一部を主
処理槽内へ戻し、流動中の多孔性坦体内へ吸着せしめる
ことによって主処理槽内の活性汚泥量を所定値に保持す
るようにしているため、長期に亘って良好な処理作用が
発揮されることになる。Furthermore, in the present invention, a part of the activated sludge separated in the settling tank is returned to the main treatment tank and adsorbed into the flowing porous carrier, thereby maintaining the amount of activated sludge in the main treatment tank at a predetermined value. As a result, a good treatment effect can be achieved over a long period of time.
第1図は、本件発明による汚水の処理工程図である。
第2図は、本件発明の実施に使用する処理装置の要部を
示す平面図、第3図は、第2図のA−A挽断面図、第4
図は第2図のB−B挽断面図、第5図は第2図のB’−
B’視断面図である。
第6図は、多孔性坦体の空気濾過抵抗Pの測定方法の説
明図であり、第7図は空気濾過抵抗Pと試料の目の粗さ
との関係を示すものである。
A 主処理槽本体 B 多孔性坦体2 主処
理槽 3 沈殿槽4 消毒槽
6 汚泥連送路6a 自動計量装置 8 散気
管16 スクリーン部
P 多孔性坦体の空気濾過抵抗
第5図
第7図
手
事件の表示
発明の名称
補正をする者
事件との関係
住所
氏名
続
補 正
書 (自発)
平成2年8月7日
特願平2−179840号
汚水の窒素除去方法FIG. 1 is a diagram of a wastewater treatment process according to the present invention. FIG. 2 is a plan view showing the main parts of the processing apparatus used for carrying out the present invention, FIG. 3 is a cross-sectional view taken along line AA in FIG.
The figure is a sectional view taken along line B-B in figure 2, and figure 5 is a cross-sectional view taken along line B-B in figure 2.
It is a B' sectional view. FIG. 6 is an explanatory diagram of a method for measuring the air filtration resistance P of a porous carrier, and FIG. 7 shows the relationship between the air filtration resistance P and the roughness of the sample. A Main treatment tank body B Porous carrier 2 Main treatment tank 3 Sedimentation tank 4 Disinfection tank
6 Sludge conveyance path 6a Automatic metering device 8 Diffusion tube 16 Screen part P Air filtration resistance of porous carrier Figure 5 Figure 7 Person who amends the name of the invention indicated in the case Relationship with the case Address Name Continuation Amendment (Spontaneous) August 7, 1990 Patent Application No. 179840/1990 Method for removing nitrogen from sewage
Claims (3)
外層部が好気性領域となると共に外層部が嫌気性領域と
なり且つ一辺の長さが10〜15mmの角柱状の多孔性
坦体を充填率20〜35%の割合で充填し、前記散気装
置からの噴出空気により汚水及び多孔性坦体を循環流動
させると共に、前記主処理槽から処理汚水を沈殿槽へ移
流せしめて汚泥の沈殿分離を行ない、分離した汚泥の一
部を前記主処理槽内へ返送することを特徴とする汚水の
窒素除去方法。(1) Inside the main treatment tank equipped with an aeration device, the outer layer becomes an aerobic region and the outer layer becomes an anaerobic region in the wastewater, and a prismatic porous hole with a side length of 10 to 15 mm is formed. The porous carrier is filled with a porous carrier at a filling rate of 20 to 35%, and the sewage and porous carrier are circulated and flowed by the air ejected from the aeration device, and the treated sewage is advected from the main treatment tank to the settling tank. 1. A method for removing nitrogen from sewage, which comprises performing sedimentation separation of sludge and returning a portion of the separated sludge to the main treatment tank.
過抵抗が5〜12mmH_2O(風速2m/sec)と
なるウレタン製又はポリエチレン製若しくは不織布製の
多孔体とした請求項1に記載の汚水の窒素の除去方法。(2) The porous carrier is a porous body made of urethane, polyethylene, or nonwoven fabric having a gas filtration resistance of 5 to 12 mm H_2O (wind speed 2 m/sec) in the direction of its longest side. How to remove nitrogen from wastewater.
沈殿槽へ移流せしめると共に、沈殿槽にて分離した汚泥
を計量装置により計量制御しつつ主処理槽内へ返送する
ようにした請求項1に記載の汚水の窒素除去方法。(3) Claim 1 in which only the treated sewage is advected from the main treatment tank through the screen to the settling tank, and the sludge separated in the settling tank is returned to the main treatment tank while being controlled by a metering device. Method for removing nitrogen from wastewater as described in .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17984090A JPH0741260B2 (en) | 1990-07-06 | 1990-07-06 | How to remove nitrogen from sewage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17984090A JPH0741260B2 (en) | 1990-07-06 | 1990-07-06 | How to remove nitrogen from sewage |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0466195A true JPH0466195A (en) | 1992-03-02 |
JPH0741260B2 JPH0741260B2 (en) | 1995-05-10 |
Family
ID=16072820
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17984090A Expired - Lifetime JPH0741260B2 (en) | 1990-07-06 | 1990-07-06 | How to remove nitrogen from sewage |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0741260B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140027374A1 (en) * | 2010-02-25 | 2014-01-30 | Siemens Water Technologies Llc | Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods |
CN107698025A (en) * | 2017-11-08 | 2018-02-16 | 中机国际工程设计研究院有限责任公司 | Integrated sewage water denitrification dephosphorization apparatus |
US10131550B2 (en) | 2013-05-06 | 2018-11-20 | Evoqua Water Technologies Llc | Enhanced biosorption of wastewater organics using dissolved air flotation with solids recycle |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5424455A (en) * | 1977-07-27 | 1979-02-23 | Doriko Kk | Method of treating biological waste water by fluidized contact process |
-
1990
- 1990-07-06 JP JP17984090A patent/JPH0741260B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5424455A (en) * | 1977-07-27 | 1979-02-23 | Doriko Kk | Method of treating biological waste water by fluidized contact process |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140027374A1 (en) * | 2010-02-25 | 2014-01-30 | Siemens Water Technologies Llc | Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods |
US8801931B2 (en) * | 2010-02-25 | 2014-08-12 | Evoqua Water Technologies Llc | Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods |
US10131550B2 (en) | 2013-05-06 | 2018-11-20 | Evoqua Water Technologies Llc | Enhanced biosorption of wastewater organics using dissolved air flotation with solids recycle |
CN107698025A (en) * | 2017-11-08 | 2018-02-16 | 中机国际工程设计研究院有限责任公司 | Integrated sewage water denitrification dephosphorization apparatus |
CN107698025B (en) * | 2017-11-08 | 2023-06-02 | 中机国际工程设计研究院有限责任公司 | Integrated sewage denitrification and dephosphorization device |
Also Published As
Publication number | Publication date |
---|---|
JPH0741260B2 (en) | 1995-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101397495B1 (en) | Apparatus for treating ammonia-containing solution | |
JP4603395B2 (en) | Filtration membrane cleaning method | |
JPH0466195A (en) | Nitrogen removal method of sewage | |
CN106495410A (en) | A kind of intensive rural domestic sewage treatment system | |
JP4268768B2 (en) | Air diffuser and biological treatment tank using the same | |
CN208087424U (en) | A kind of integrated sewage treatment device | |
CN207468291U (en) | The waste water treatment system of non-aeration deflector type synchronous nitration and denitrification | |
JP4143748B2 (en) | Integrated biological nitrification / denitrification system | |
KR100325316B1 (en) | The method of purification of sewage using urethan foamed screen | |
JPH11197685A (en) | Method for treating membrane-separated activated sludge | |
JPH0583320B2 (en) | ||
CN108328734A (en) | A kind of sewerage integrated processing method | |
JP3478241B2 (en) | Biological treatment equipment | |
JP2022191066A (en) | Water treatment method and water treatment apparatus | |
JP2000246272A (en) | Method for removing nitrogen of sewage | |
JP7564739B2 (en) | Wastewater treatment device and oxygen permeable membrane unit | |
JPH11244877A (en) | Sewage septic tank with built-in membrane separation vessel | |
JPH0871579A (en) | Wastewater treatment apparatus | |
JP2565453B2 (en) | Upflow biological nitrification denitrification method and apparatus | |
JP2525711B2 (en) | Advanced purification equipment for organic wastewater | |
JPH10118679A (en) | Filling filtration material and contaminated water cleaning method using the same | |
JP2609195B2 (en) | Organic wastewater purification method and apparatus | |
JP2565429B2 (en) | Method and apparatus for biological nitrification denitrification of organic wastewater | |
KR200171727Y1 (en) | Processing system for excretions of animals | |
JPH0671291A (en) | Sewage treatment equipment using packed layer |