JPH0869850A - Manufacture of thermocompression bonding connecting member - Google Patents

Manufacture of thermocompression bonding connecting member

Info

Publication number
JPH0869850A
JPH0869850A JP20525094A JP20525094A JPH0869850A JP H0869850 A JPH0869850 A JP H0869850A JP 20525094 A JP20525094 A JP 20525094A JP 20525094 A JP20525094 A JP 20525094A JP H0869850 A JPH0869850 A JP H0869850A
Authority
JP
Japan
Prior art keywords
insulating
fine particles
conductive paste
conductive
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20525094A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Yoshida
一義 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP20525094A priority Critical patent/JPH0869850A/en
Publication of JPH0869850A publication Critical patent/JPH0869850A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)

Abstract

PURPOSE: To improve adhesion between insulating particulates and conductive paste, and keep excellent electric connection by mixing the insulating particulates in the conductive paste after an electric conductivity imparting agent is stuck to surfaces of the insulating particulates, and forming a desired pattern on a surface of a connectable flexible base material. CONSTITUTION: A thermocompression bonding connecting member is composed of an insulating flexible base material 1, insulating particulates 2, an electric conductivity applying agent 2b, conductive paste 3 and an insulating adhesive layer 4. The manufacturing method is characterized in that after the electric conductivity applying agent 2b to be used in the conductive paste 3 is stuck to surfaces of the insulating particulates 2, the particulates 2 are dispersed and mixed in the paste 3, and a desired pattern is formed on a single surface or both surfaces of the base material 1, and the insulating adhesive layer 4 is arranged at least in a connecting terminal part. Resin powder by plating Ag, Cu, Au, Ni, Pd and the alloy having an outside diameter of 0.1 to 10μm, carbon black or the like can be used as the electric conductivity imparting agent 2b. The electric conductivity imparting agent 2b is dispersed and blended at a rate of 10 to 90wt.%, in an organic binder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液晶ディスプレイ(LC
D)、エレクトロルミネッセンス(EL)、発光ダイオ
ード(LED)、エレクトロクロミックディスプレイ
(ECD)、プラズマディスプレイ等の表示体の接続端
子とその駆動部分を搭載した回路基板あるいは各種電気
回路の基板間を接続するために使用される熱圧着性接続
部材に関する。
The present invention relates to a liquid crystal display (LC
D), electroluminescence (EL), light-emitting diode (LED), electrochromic display (ECD), plasma display, etc. The connection terminals of the display body and the circuit board on which the drive part is mounted or the boards of various electric circuits are connected. The present invention relates to a thermocompression-bondable connecting member.

【0002】[0002]

【従来の技術】従来より熱圧着性接続部材は、LCD、
EL、LED、ECD、プラズマディスプレイ等の表示
器とPCB(硬質プリント配線板)、FPC(フレキシ
ブルプリント基板)との接続あるいはPCB、FPC間
での接続等に用いられている。熱圧着性接続部材の構成
は、図2に示すように、絶縁性可撓性基材a上に所望の
パターンbを導電性ペーストにより形成し、その上に導
電性微粒子cを絶縁性接着剤dに分散してなる異方導電
性接着材層を設けたものが公知となっている(特公昭55
-38073号、特公昭58-56996号各公報等)。ところが、近
年の電気、電子機器の小型化、精密化に伴い、熱圧着性
接続部材に要求される接続端子のピッチも0.3mm 台、0.
2mm 台と微細化してきた。このような場合、上記導電性
微粒子cを絶縁性接着剤d中に分散したタイプでは、パ
ターンb間が導電性微粒子cにより短絡しやすいため、
絶縁性可撓性基材上に所望のパターンを導電性微粒子を
分散配合した導電性ペーストにより形成し、その上から
絶縁性接着剤を設けたものなどが提案されている(特表
昭62−500828号、特開昭62−154746号各公報等)。上記
従来の構成では、いずれも図3に示すような、絶縁性可
撓性基材aに設けられた導電ペーストからなるパターン
bとITOなどの接続端子とを電気的に接続するための
導電性ペースト内の導電性付与剤とは別個の導電性微粒
子cの存在が不可欠であった。なお、図中dは絶縁性接
着剤層である。導電性微粒子としてはAu 、Ag 、Pt
等の貴金属微粒子やNi 、Al 、Fe等の金属微粒子、
またそれらを核としてその表面に貴金属メッキを施した
ものやカーボンブラック、黒鉛粉末、カーボンファイバ
ー等の高硬度を有するものが用いられている。
2. Description of the Related Art Conventionally, thermocompression bonding members are LCDs,
It is used for connecting display devices such as EL, LED, ECD, and plasma displays to PCBs (hard printed wiring boards) and FPCs (flexible printed circuit boards), or between PCBs and FPCs. As shown in FIG. 2, the thermocompression-bonding connection member is formed by forming a desired pattern b on an insulating flexible base material a with a conductive paste, and forming conductive fine particles c on the insulating paste with an insulating adhesive. It is known that an anisotropic conductive adhesive layer formed by dispersing d is provided (Japanese Examined Patent Publication No. 55).
-38073, Japanese Patent Publication No. 58-56996, etc.) However, with the recent miniaturization and refinement of electrical and electronic equipment, the pitch of connection terminals required for thermocompression bonding members is in the 0.3 mm range.
It has been miniaturized to 2 mm level. In such a case, in the type in which the conductive fine particles c are dispersed in the insulating adhesive d, a short circuit easily occurs between the patterns b due to the conductive fine particles c.
It has been proposed that a desired pattern is formed on an insulating flexible base material with a conductive paste in which conductive fine particles are dispersed and mixed, and an insulating adhesive is provided on the conductive paste (Japanese Patent Publication No. 62-62- No. 500828, JP-A-62-154746, etc.). In each of the above-described conventional configurations, as shown in FIG. 3, the conductivity for electrically connecting the pattern b made of the conductive paste provided on the insulating flexible base material a and the connection terminal such as ITO. The presence of the conductive fine particles c separate from the conductivity imparting agent in the paste was essential. In the figure, d is an insulating adhesive layer. Conductive particles include Au, Ag, Pt
Noble metal fine particles such as Ni, Al, Fe and other fine metal particles,
Further, those having a core thereof and plated with a noble metal on the surface thereof, and those having high hardness such as carbon black, graphite powder, and carbon fiber are used.

【0003】しかしながら、かかる導電性微粒子は熱圧
着時の加熱、加圧による絶縁性可撓性基材、導電性ペー
ストおよび絶縁性接着剤層の変形、流動の変移量に容易
に追従できず、接続後におかれる種々の環境下で、絶縁
性可撓性基材、導電性ペーストおよび絶縁性接着剤層の
残存応力を受けて導電性微粒子は微視的に動き、部分的
の導通不良、高抵抗値化などを生じ、電気的導通の信頼
性に重大な悪影響を及ぼす危険があった。また、上記の
ような危険を回避するために、低硬度の絶縁性プラスチ
ック弾性体を核とし、その表面に貴金属メッキを施した
導電性微粒子も提案されているが、熱圧着時の加熱、加
圧の際に貴金属と絶縁性プラスチック弾性体との硬度差
でその表面に微小クラックを生じ、メッキの際に電解質
やイオンが付着した絶縁性プラスチックの弾性表面が露
出し、その電解質やイオンが原因となって電触が発生す
る恐れもあった。さらに貴金属を使用するため製造コス
トがかさみ、量産実施に問題があった。
However, such conductive fine particles cannot easily follow the deformation and flow variation of the insulating flexible base material, the conductive paste and the insulating adhesive layer due to heating and pressure during thermocompression bonding. Under various environments after connection, the conductive fine particles move microscopically under the residual stress of the insulating flexible base material, the conductive paste, and the insulating adhesive layer, causing partial conduction failure and high conductivity. There is a risk that resistance may be changed and seriously adversely affect the reliability of electrical continuity. Further, in order to avoid the above danger, conductive fine particles having a core of a low hardness insulating plastic elastic body and plated with a precious metal on the surface thereof have been proposed. Due to the hardness difference between the noble metal and the insulating plastic elastic body when pressure is applied, minute cracks are generated on the surface, and the elastic surface of the insulating plastic to which electrolytes and ions are attached is exposed during plating. There was also a risk of electric contact. Further, since the precious metal is used, the manufacturing cost is high and there is a problem in mass production.

【0004】[0004]

【発明が解決しようとする課題】そこで本発明者は上記
したような従来の問題を解決するために、今日まで必要
不可欠とされていた接続端子とパターン間の電気的接続
を担う導電性微粒子を別個に用いることなく、導電性ペ
ーストに絶縁性微粒子を混在させて、この絶縁性微粒子
を被覆する導電性ペーストの被膜を突出させ、接続端子
同士を直接接触させて接続する熱圧着性接続部材を先に
提案した。この発明は、前記した従来の問題をすべて解
決するものであった。すなわち、導電性微粒子を使用し
ないために、パターン間が短絡することはないし電食を
発生することもない。貴金属を使用しないため安価に製
造でき、パターンが直接端子を接続させるので信頼性に
優れるといったものである。ところが、この発明によれ
ば、絶縁性微粒子としてガラス、タルク、シリカ、セラ
ミック等の無機物質、ポリメチルメタクリレート、ポリ
アミド、ポリスチレン、ベンゾグアナミン、フェノー
ル、エポシキ、アラミド、アクリロニトリル−ブタジエ
ンゴム(NBR)、クロロプレンゴム(CR)シリコ−
ンゴム(SR)等の有機物質を使用しているが、このも
ののなかにはこれらが混合される導電性ペーストの有機
バインダーもしくは導電性付与剤との密着性が悪く、絶
縁性微粒子表面が導電性ペーストによって被覆されない
ものもあり、導電性ペーストとの相性を判断して材料選
択するのが困難であり、また選択された材料の弾性特性
が所望するものと異なることもあり、したがって導電性
ペーストの種類ごとに限定された絶縁性微粒子を用いざ
るを得ず、さらに、このように厳選した材料においても
熱圧着した際に導電性ペーストと絶縁性微粒子との密着
性の悪さ、弾性特性の違いから絶縁性微粒子が導電性ペ
ーストの皮膜を突破したり絶縁性微粒子が脱落したりし
て良好な電気的接続が得られない等の不具合を発生して
いた。本発明の目的は、絶縁性微粒子と導電性ペースト
の密着性を向上し、いかなる材料をも絶縁性微粒子とし
て使用可能とし、弾性特性を任意に選択し、熱圧着の際
に絶縁性微粒子が導電性ペーストの皮膜を突破したり絶
縁性微粒子が脱落したりすることがなく、それによって
良好な電気的接続を保つことができる熱圧着性接続部材
を製造する方法を提供するものである。
Therefore, in order to solve the above-mentioned conventional problems, the present inventor has developed conductive fine particles for performing the electrical connection between the connection terminal and the pattern, which has been indispensable until now. A thermocompression-bonding connecting member for connecting insulating particles by mixing insulating particles in the conductive paste, projecting a film of the conductive paste coating the insulating particles, and directly connecting the connection terminals to each other without using them separately. I proposed earlier. The present invention has solved all the above-mentioned conventional problems. That is, since the conductive fine particles are not used, no short circuit occurs between the patterns and no electrolytic corrosion occurs. Since no precious metal is used, it can be manufactured at low cost, and since the pattern directly connects the terminals, it has excellent reliability. However, according to the present invention, as the insulating fine particles, inorganic materials such as glass, talc, silica, ceramics, polymethylmethacrylate, polyamide, polystyrene, benzoguanamine, phenol, epoxy, aramid, acrylonitrile-butadiene rubber (NBR), chloroprene rubber are used. (CR) Silicon
Organic substances such as rubber (SR) are used. Among these, the adhesiveness of the conductive paste mixed with these to the organic binder or conductivity-imparting agent is poor, and the surface of the insulating fine particles is Some are not covered, it is difficult to select the material by judging compatibility with the conductive paste, and the elastic properties of the selected material may be different from the desired one. Inevitably, it is necessary to use insulating fine particles that are limited to the above.In addition, even in such carefully selected materials, due to the poor adhesion between the conductive paste and the insulating fine particles and the difference in elastic properties, the insulating properties The fine particles broke through the film of the conductive paste and the insulating fine particles fell off, resulting in problems such as not being able to obtain good electrical connection. The object of the present invention is to improve the adhesion between the insulating fine particles and the conductive paste, to enable the use of any material as the insulating fine particles, to arbitrarily select the elastic characteristics, and to make the insulating fine particles conductive when thermocompression bonding is performed. Provided is a method for producing a thermocompression-bonding connecting member capable of maintaining good electrical connection without breaking through a film of a conductive paste or dropping insulating fine particles.

【0005】[0005]

【課題を解決するための手段】本発明者は前記課題を解
決するため鋭意研究した結果、絶縁性微粒子表面に導電
性ペーストに含まれる導電性付与剤を予め付着させて混
合すれば、絶縁性微粒子と導電性ペーストとの密着性が
向上し、絶縁性微粒子材料の選択性をなくし、弾性特性
の選択幅を広げて良好な電気的接続の安定性が得られる
ことを見出し、本発明に達成した。すなわち、本発明に
よる熱圧着性接続部材の製造方法は、導電性ペーストに
使用される導電性付与剤を絶縁性微粒子の表面に付着さ
せた後、この絶縁性微粒子を導電性ペーストに分散・混
合して、絶縁性可撓性基材の片面または両面に所望のパ
ターンを形成し、その少なくとも接続端子部分に絶縁性
接着剤を設けることを特徴とするものである。なお、本
発明において絶縁性とは体積抵抗率が106 Ω・cmを超え
る場合をいい、導電性とは106 Ω・cm以下であることを
示す。また、図1は本発明の製造方法によって得られた
熱圧着接続部材の一例を縦断面図で示すもので、図中、
1は絶縁性可撓性基材、2a は絶縁性微粒子、2b は導
電性付与剤、3は導電性ペースト、4は絶縁性接着剤層
である。
Means for Solving the Problems As a result of intensive studies for solving the above-mentioned problems, the present inventor has found that if a conductivity-imparting agent contained in a conductive paste is attached to the surface of insulating fine particles in advance and mixed, It was found that the adhesion between the fine particles and the conductive paste was improved, the selectivity of the insulating fine particle material was lost, the selection range of the elastic characteristics was widened, and good electrical connection stability was obtained, and the present invention was achieved. did. That is, in the method for producing a thermocompression-bonding connecting member according to the present invention, after the conductivity-imparting agent used in the conductive paste is attached to the surface of the insulating fine particles, the insulating fine particles are dispersed and mixed in the conductive paste. Then, a desired pattern is formed on one surface or both surfaces of the insulating flexible base material, and the insulating adhesive is provided on at least the connection terminal portion thereof. In the present invention, “insulating” means that the volume resistivity exceeds 10 6 Ω · cm, and “conductive” means that it is 10 6 Ω · cm or less. FIG. 1 is a longitudinal sectional view showing an example of a thermocompression bonding member obtained by the manufacturing method of the present invention.
Reference numeral 1 is an insulating flexible base material, 2a is insulating fine particles, 2b is a conductivity imparting agent, 3 is a conductive paste, and 4 is an insulating adhesive layer.

【0006】この導電性ペーストに使用される導電性付
与剤としては、外径0.1 〜10μmの球状、粒状、鱗片
状、板状、樹枝状、サイコロ状、海綿状等の、Ag 、A
g メッキCu 、Cu 、Au 、Ni 、Pd 、さらにはこれ
らの合金類、これら1種または2種以上をメッキした樹
脂粉、ファーネスブラック、チャンネルブラック等のカ
ーボンブラックやグラファイト粉末の1種または2種以
上を適宜選択したものが挙げられ、後述する有機性バイ
ンダーに対し10〜90重量%の割合で分散配合されてい
る。導電性付与剤が分散される絶縁性の有機性バインダ
ーには、熱可撓性および熱硬化性樹脂等の樹脂組成物が
用いられるが、耐熱性、特には接続時の加熱、加圧に耐
えうるものとするために熱硬化性樹脂を用いることが好
ましい。また、これには必要に応じて、硬化促進剤、レ
ベリング剤、分散安定剤、消泡剤、揺変剤等を適宜添加
してもよい。
The conductivity-imparting agents used in this conductive paste include Ag, A, such as spherical, granular, scale-like, plate-like, dendritic, dice-like, sponge-like particles having an outer diameter of 0.1 to 10 μm.
g Plating Cu, Cu, Au, Ni, Pd, and alloys thereof, resin powder plated with one or more of these, carbon black such as furnace black and channel black, and one or two of graphite powder The above may be selected appropriately, and they are dispersed and blended at a ratio of 10 to 90% by weight with respect to the organic binder described later. For the insulating organic binder in which the conductivity-imparting agent is dispersed, a resin composition such as a thermoflexible and thermosetting resin is used, but it has heat resistance, and particularly, it can withstand heating and pressure during connection. It is preferable to use a thermosetting resin in order to obtain the resin. Further, if necessary, a curing accelerator, a leveling agent, a dispersion stabilizer, an antifoaming agent, a thixotropic agent, etc. may be added thereto.

【0007】前記導電性付与剤を付着した後、導電性ペ
ーストに混合される絶縁性微粒子の形状としては、球
状、粒状、鱗片状、板状、樹枝状、サイコロ状、海綿状
等のものから適宜選択されるが、押圧された状態でより
安定した電気的接続を得るためには、導電パターンがこ
れに対抗する接続端子に多点で接触するような形状、例
えば、海綿状、樹枝状等であることがより好ましい。ま
た、この絶縁性微粒子は、導電ペースト中の有機溶剤に
容易に溶解するものでは使用は不可能であり、また、こ
の有機溶剤を容易に吸収して膨張を起こすものも好まし
くない。さらに、この絶縁性微粒子は80〜200 ℃での熱
圧着時に容易に溶融しない耐熱性をもつことが望まし
く、これを樹脂とした場合には、溶融点が80℃以上のも
の、好ましくは120 ℃以上のものがよい。従って、絶縁
性微粒子としては、例えば、ポリスチレン系、ポリイミ
ド系、ポリアクリル系、ポリエステル系、ポリウレタン
系、ポリアミド系、フェノール系、エポキシ系、ポリオ
レフィン系、ポリビニル系等の樹脂、これらの共重合体
およびこれらのエラストマー樹脂や、イソプレン系、ブ
タジエン系等の合成ゴム等が挙げられ、また無機物質と
して、ガラス、タルク、シリカ、セラミック等が挙げら
れる。
The shape of the insulating fine particles to be mixed with the conductive paste after the conductivity-imparting agent is adhered may be spherical, granular, scale-like, plate-like, dendritic, dice-like, sponge-like or the like. It is selected appropriately, but in order to obtain a more stable electrical connection in the pressed state, a shape in which the conductive pattern is in contact with the connecting terminal opposite thereto at multiple points, for example, a sponge shape, a dendritic shape, etc. Is more preferable. Further, the insulating fine particles cannot be used if they are easily dissolved in the organic solvent in the conductive paste, and those that easily absorb the organic solvent and cause expansion are also not preferable. Furthermore, it is desirable that the insulating fine particles have heat resistance that does not easily melt when thermocompression-bonded at 80 to 200 ° C. When this is used as a resin, the melting point is 80 ° C or higher, preferably 120 ° C. The above is better. Therefore, the insulating fine particles include, for example, polystyrene-based, polyimide-based, polyacrylic-based, polyester-based, polyurethane-based, polyamide-based, phenol-based, epoxy-based, polyolefin-based, polyvinyl-based resins, copolymers thereof, and the like. These elastomer resins, synthetic rubbers such as isoprene-based and butadiene-based rubbers, and the like, and the inorganic substances include glass, talc, silica, ceramics, and the like.

【0008】これら絶縁性微粒子表面に前記導電性付与
剤を付着させる方法としては、圧力、衝撃力等の物理的
手段を用いるもの、有機バインダー等の化学的手段を用
いるもの等が挙げられる。物理的手段としては、例えば
公知のミキサーやミル等の撹拌機を用いたり、粒子表面
改質装置(特開昭62-83029号公報等参照)を用いたり、
絶縁性微粒子と導電性付与剤の混合物を硬質板の間で圧
力とシェアをかけて固着させたりすることができる。化
学的手段としては樹脂等の有機高分子化合物を溶解もし
くは溶融して絶縁性微粒子表面にコートし、これをバイ
ンダーとして導電性付与剤を付着させ、後に有機高分子
化合物を架橋、硬化させる等の方法を用いることができ
る。ミキサーやミルを用いる場合には、例えばボールミ
ルなどの容器中に前記した絶縁性微粒子と導電性付与剤
を投入して数〜数十時間撹拌し、撹拌によって生じる静
電気現象やメカノケミカル現象によって絶縁性微粒子表
面に導電性付与剤を付着させる。この方法は若干、付着
力が弱い点もあるが、簡便な方法として使用できる。粒
子表面改質装置は近年になって開発されてきたもので、
装置はやや複雑になるが、付着力が強く短時間で付着処
理が行える利点がある。
Examples of the method of attaching the conductivity-imparting agent to the surface of the insulating fine particles include a method using physical means such as pressure and impact force, a method using chemical means such as an organic binder, and the like. As the physical means, for example, a known stirrer such as a mixer or a mill is used, or a particle surface modification device (see JP-A-62-83029, etc.) is used,
It is possible to fix the mixture of the insulating fine particles and the conductivity-imparting agent by applying pressure and shear between the hard plates. As a chemical means, for example, an organic polymer compound such as a resin is dissolved or melted to coat the surface of the insulating fine particles, a conductivity-imparting agent is attached using this as a binder, and then the organic polymer compound is crosslinked and cured. Any method can be used. When using a mixer or a mill, for example, the insulating fine particles and the conductivity-imparting agent are put into a container such as a ball mill, and the mixture is stirred for several to several tens of hours. A conductivity-imparting agent is attached to the surface of the fine particles. Although this method has some weak adhesion, it can be used as a simple method. The particle surface modification device has been developed in recent years.
Although the device becomes a little complicated, it has an advantage that it has a strong adhesive force and can perform the adhesion treatment in a short time.

【0009】樹脂等の有機高分子物質をバインダーとし
て絶縁性微粒子表面に導電性付与剤を付着させる場合に
は、後に導電性ペースト中にこれを混合した際に導電性
ペースト中の溶剤でバインダー成分が溶解しないため
に、化学的に硬化、架橋反応が可能なものを使用するこ
とがよく、例えば、ウレタン、エポキシ、ポリエステ
ル、ポリエチレン、アミノ、ビニル、アクリル等の樹
脂、天然ゴム、クロロプレン、シリコーン等の合成ゴム
が使用でき、これらを絶縁性微粒子表面にコートした
後、導電性付与剤を付着させても良いし、あるいはこれ
らと導電性付与剤とを予め混合したものの中に絶縁性微
粒子を投入して付着させても良い。こうしてできた絶縁
性微粒子を導電性ペースト中に分散配合して導電パター
ンを形成する場合に、この絶縁性微粒子が埋没されるだ
けの厚みを1回の印刷で得るためには、スクリーン印刷
を用いることが最適であり、これによって形成される導
電パターンに埋没、固定された絶縁性微粒子は安定した
接続状態を得るために、導電パターンの接続端子部分の
面積1mm2 当たり、粒子数を20個以上好ましくは50個以
上となるようにすればよい。粒子数が20個未満では、こ
れを熱圧着した際に粒子が少ししか存在しなかったり、
あるいは熱圧着部に粒子が存在しないことが起こり、特
に低ピッチの場合、安定した接続状態を得ることができ
なくなる。また粒子数が極端に多くなり過ぎると、これ
をスクリーン印刷によって設ける際に、粒子によって版
詰まりを起こしたり、導電性ペーストの体積抵抗率が減
少して、安定な抵抗値が得られなかったりする。したが
って、導電性ペーストに分散配合する絶縁性微粒子の配
合部数は5〜90容量部とすることが望ましい。
When an electrically conductive agent is adhered to the surface of the insulating fine particles by using an organic polymer substance such as resin as a binder, the binder component is mixed with the solvent in the electrically conductive paste when it is mixed with the electrically conductive paste later. Since it does not dissolve, it is preferable to use one that can be chemically hardened and cross-linked. For example, resins such as urethane, epoxy, polyester, polyethylene, amino, vinyl, acrylic, natural rubber, chloroprene, silicone, etc. Synthetic rubber can be used and the surface of the insulating fine particles may be coated with a conductivity-imparting agent, or the insulating particles may be added to a mixture of these and the conductivity-imparting agent in advance. You may make it adhere. When the insulating fine particles thus formed are dispersed and mixed in a conductive paste to form a conductive pattern, screen printing is used to obtain a thickness enough to bury the insulating fine particles in one printing. Optimum is that the insulating fine particles buried and fixed in the conductive pattern formed by this method have 20 or more particles per 1 mm 2 of the connection terminal portion of the conductive pattern in order to obtain a stable connection state. It is preferable that the number is 50 or more. If the number of particles is less than 20, there are few particles when this is thermocompression bonded,
Alternatively, particles may not be present in the thermocompression bonded portion, and in the case of a low pitch, a stable connected state cannot be obtained. Also, if the number of particles is excessively large, when this is provided by screen printing, particles may cause plate clogging, or the volume resistivity of the conductive paste may decrease, and a stable resistance value may not be obtained. . Therefore, it is desirable that the number of parts of the insulating fine particles dispersed and mixed in the conductive paste is 5 to 90 parts by volume.

【0010】前記スクリーン印刷に用いられるスクリー
ン材は、線径10〜40μmのステンレス等の鉄合金を平
織、綾織したもの、ニッケルメッキなどにより格子状に
形成した電鋳版を剛性のフレームに張ったものが一般に
使われ、綿密なパターンを形成するにはアクリル系等の
マスク材の開口部、すなわち所望のパターンの形状にほ
ぼ等しい開口部を、線材や線材の交点が塞がらないよう
に線材を細くすることが必要になり、紗厚(Ts )は必
然的に薄くなるが、導電性ペーストの通過性の点からT
s に対する開口率(φ)の比は望ましくは0.8 以上、さ
らに望ましくは1.5 以上がよく、そのためには紗、板の
強力を落とさずに線材の強度を上昇させ、線径を細くす
ることが必要で、φは35%以上好ましく60%以上である
ことが望ましい。また、他のスクリーン材として、ステ
ンレス等の金属メッシュに薄いニッケル箔等を電解ラミ
ネートし、エッチングによりパターンを形成したメタル
マスクと呼ばれるスクリーンも用いられることがある
が、低ピッチの印刷を行う際には寸法安定性の点からそ
の強度が印刷時のスキージングによって容易に変形しな
いものを用いる必要があり、印刷には十分な注意を必要
とする。
The screen material used for the screen printing is a plain weave or twill weave of an iron alloy such as stainless steel having a wire diameter of 10 to 40 μm, and an electroforming plate formed in a grid pattern by nickel plating or the like is stretched on a rigid frame. Generally used to form a fine pattern, the opening of the mask material such as acrylic, that is, the opening approximately equal to the shape of the desired pattern is made thin so that the wire or the intersection of the wire is not blocked. However, the thickness (Ts) is inevitably thin, but the thickness of the conductive paste is T.
The ratio of the aperture ratio (φ) to s is preferably 0.8 or more, more preferably 1.5 or more. For that purpose, it is necessary to increase the strength of the wire rod and reduce the wire diameter without reducing the strength of the gauze or plate. Therefore, φ is preferably 35% or more, and more preferably 60% or more. As another screen material, a screen called a metal mask in which a thin nickel foil or the like is electrolytically laminated on a metal mesh such as stainless steel and a pattern is formed by etching may be used, but when performing low-pitch printing. In terms of dimensional stability, it is necessary to use a material whose strength is not easily deformed by squeegeeing during printing, and printing requires great care.

【0011】スクリーン印刷される導電性ペーストに分
散配合される絶縁性微粒子の粒径(r)は、パターンの
線幅Tc および厚み(t)、印刷版の格子状の開口部の
1辺の長さ(l)、との関係により決定される。すなわ
ち、rがtに対して小さすぎると突出部の形成が困難と
なり、接続の安定性が悪くなるので、r≧(1/3)
t、好ましくはr≧tとし、また、rがTc およびlに
対して大きいと、物理的にパターンの形成が困難とな
り、印刷時に版づまりを生じたりするので、r<Tc 、
r<l、好ましくはr<(1/2)Tc とするのがよ
い。すなわち、(1/3)t≦r≦lであることが必要
となる。通常、導電パターンの厚み(t)は5〜30μm
程度であり、印刷版の格子状の開口部の1辺の長さ
(l)はスクリーンメッシュにより異なり、0.4mm ピッ
チ以下の精細な導電パターンを形成する際には250 メッ
シュ以上、500 メッシュ程度までの版を用いることが多
く、このときのlは、25μm〜70μm程度であるため、
絶縁性微粒子の粒径(r)は5〜70μm、好ましくは20
〜50μmの範囲から適宜選択することが最適である。さ
らに、連続印刷した際のスクリーン印刷性と安定した接
続状態を得るために、絶縁性微粒子の粒度分布の変動係
数は80%以下である必要がある。変動係数が80%を超え
ると、スクリーン印刷時に版の上にメッシュを通過しな
い大きさの粒子が残り、版詰まりを起こして電気的に接
続した導電パターンが得られなかったり、熱圧着性接続
部材とした際に熱圧着した後の導電パターンの突出部の
高さが異なり、接続状態がまばらになって安定した接続
が得られなくなることもある。
The particle size (r) of the insulating fine particles dispersed and blended in the conductive paste to be screen-printed is the line width Tc and thickness (t) of the pattern, and the length of one side of the grid-like openings of the printing plate. S (l), and That is, if r is too small with respect to t, it becomes difficult to form the protrusion and the stability of the connection deteriorates. Therefore, r ≧ (1/3)
t, preferably r ≧ t, and when r is larger than Tc and l, it becomes physically difficult to form a pattern, and a plate jam occurs during printing. Therefore, r <Tc,
It is preferable that r <l, preferably r <(1/2) Tc. That is, it is necessary that (1/3) t ≦ r ≦ l. Generally, the thickness (t) of the conductive pattern is 5 to 30 μm
The length (1) of one side of the grid-like openings of the printing plate varies depending on the screen mesh. When forming a fine conductive pattern of 0.4 mm pitch or less, 250 mesh or more up to about 500 mesh. Is often used, and l at this time is about 25 μm to 70 μm,
The particle size (r) of the insulating fine particles is 5 to 70 μm, preferably 20
It is optimal to select appropriately from the range of up to 50 μm. Furthermore, the coefficient of variation of the particle size distribution of the insulating fine particles must be 80% or less in order to obtain a screen printability and a stable connection state during continuous printing. If the coefficient of variation exceeds 80%, particles with a size that does not pass through the mesh will remain on the plate during screen printing, causing plate clogging and the formation of an electrically connected conductive pattern, or thermocompression bonding connection members. In such a case, the height of the protruding portion of the conductive pattern after thermocompression bonding may be different, and the connection state may be sparse, so that stable connection may not be obtained.

【0012】これらの導電性ペースト、絶縁性微粒子を
用いて絶縁可撓性基材上に形成した所望のパターンを対
抗する接続端子に強固に固定するために、絶縁性接着層
を設ける必要がある。この絶縁性接着剤層としては加熱
によって接着性を示すものであれば熱可撓性、熱硬化性
のいずれであってもよいが、熱可撓性のものは比較的低
温、短時間の加熱で接着し、ポットライフも長く、熱硬
化性のものは接着強度が大きく、耐熱性もすぐれている
ので、これらはその使用目的の応じて適宜選択すればよ
い。この絶縁性接着剤を構成する主剤は、エチレン−酢
酸ビニル共重合体、カルボキシル変性エチレン−酢酸ビ
ニル共重合体、エチレン−アクリレート共重合体、エチ
レン−エチルアクリレート共重合体、エチレン−イソブ
チルアクリレート共重合体、ポリアミド、ポリエステ
ル、ポリメチルメタクリレート、ポリビニルエーテル、
ポリビニルブチラール、ポリウレタン、スチレン−ブチ
レン−スチレン(SBS)共重合体、カルボキシル変性
SBS共重合体、スチレン−イソプレン−スチレン(S
IS)共重合体、スチレン−エチレン−ブチレン−スチ
レン(SEBS)共重合体、マレイン酸変性SEBS共
重合体、ポリブタジエンゴム、クロロプレンゴム(C
R)、カルボキシル変性CR、スチレン−ブタジエンゴ
ム、イソプチレン−イソプレン共重合体、アクリロニト
リル−ブタジエンゴム(NBR)、カルボキシル変性N
BR、エポキシ樹脂、シリコーンゴム(SR)等から選
ばれる1種または2種以上の組合わせにより得られる。
It is necessary to provide an insulating adhesive layer in order to firmly fix a desired pattern formed on an insulating flexible base material using these conductive paste and insulating fine particles to the opposing connecting terminal. . The insulating adhesive layer may be either thermoflexible or thermosetting as long as it exhibits adhesiveness by heating, but thermoflexible ones are heated at a relatively low temperature for a short time. Since they adhere to each other and have a long pot life, and thermosetting ones have high adhesive strength and excellent heat resistance, these may be appropriately selected according to the purpose of use. The main component of this insulating adhesive is ethylene-vinyl acetate copolymer, carboxyl-modified ethylene-vinyl acetate copolymer, ethylene-acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-isobutyl acrylate copolymer. Coalesced, polyamide, polyester, polymethylmethacrylate, polyvinylether,
Polyvinyl butyral, polyurethane, styrene-butylene-styrene (SBS) copolymer, carboxyl-modified SBS copolymer, styrene-isoprene-styrene (S
IS) copolymer, styrene-ethylene-butylene-styrene (SEBS) copolymer, maleic acid-modified SEBS copolymer, polybutadiene rubber, chloroprene rubber (C
R), carboxyl-modified CR, styrene-butadiene rubber, isoptylene-isoprene copolymer, acrylonitrile-butadiene rubber (NBR), carboxyl-modified N
It is obtained by one kind or a combination of two or more kinds selected from BR, epoxy resin, silicone rubber (SR) and the like.

【0013】上記主剤には粘着付与剤として、ロジン、
ロジン誘導体、テルペン樹脂、テルペン−フェノール共
重合体、石油樹脂、クマロン−インデン樹脂、スチレン
系樹脂、イソプレン系樹脂、アルキルフェノール樹脂、
フェノール樹脂等の1種または2種以上が適宜添加され
る。また、反応性助剤、架橋剤としてのフェノール樹
脂、ポリオール類、イソシアネート類、メラミン樹脂、
尿素樹脂、ウロトロピン類、アミン類、酸無水物、過酸
化物、金属酸化物、トリフルオロ酢酸クロム塩等の有機
酸金属塩、チタン、ジルコニア、アルミニウム等のアル
コキシド、ジブチル錫オキサイド等の有機金属化合物、
2.2 −ジエトキシアセトフェノン、ベンジン等の光開始
剤、アミン類、リン化合物、塩素化合物等の増感剤等も
必要に応じて適宜選択使用される。さらにこれらには硬
化剤、加硫剤、制御剤、劣化防止剤、耐熱添加物、熱伝
導向上剤、軟化剤、着色剤、各種カップリング剤、金属
不活性剤等が適宜添加されてもよい。
As the tackifier, rosin,
Rosin derivative, terpene resin, terpene-phenol copolymer, petroleum resin, coumarone-indene resin, styrene resin, isoprene resin, alkylphenol resin,
One kind or two or more kinds such as a phenol resin is appropriately added. Further, a reactive auxiliary agent, a phenol resin as a crosslinking agent, polyols, isocyanates, melamine resin,
Urea resin, urotropins, amines, acid anhydrides, peroxides, metal oxides, organic acid metal salts such as chromium trifluoroacetate, alkoxides of titanium, zirconia, aluminum, etc., organometallic compounds such as dibutyltin oxide, etc. ,
Photoinitiators such as 2.2-diethoxyacetophenone and benzine, sensitizers such as amines, phosphorus compounds and chlorine compounds, etc. may be appropriately selected and used as necessary. Further, a curing agent, a vulcanizing agent, a control agent, a deterioration preventing agent, a heat resistance additive, a thermal conductivity improver, a softening agent, a colorant, various coupling agents, a metal deactivator, etc. may be appropriately added to these. .

【0014】また、これらを溶解する溶剤としては、エ
ステル系、ケトン系、エーテルエステル系、塩素系、エ
ーテル系、アルコール系、炭化水素系等の、例えば酢酸
メチル、酢酸エチル、酢酸イソプロピル、酢酸イソブチ
ル、酢酸ブチル、酢酸アミル、メチルエチルケトン、メ
チルイソブチルケトン、メチルイソアミルケトン、メチ
ルアミルケトン、エチルアミルケトン、イソブチルケト
ン、メトキシメチルペンタノン、シクロヘキサノン、ジ
アセトンアルコ−ル、酢酸メチルセロソルブ、酢酸エチ
ルセロソルブ、酢酸ブチルセロソルブ、酢酸メトキシブ
チル、酢酸メチルカルビトール、酢酸エチルカルビトー
ル、酢酸ジブチルカルビトール、トリクロロエタン、ト
リクロロエチレン、n−ブチルエーテル、ジイソアミル
エーテル、n−ブチルフェニルエーテル、プロピレンオ
キサイド、フルフラール、イソプロピルアルコール、イ
ソブチルアルコ−ル、アミルアルコール、シクロヘキサ
ノール、ベンゼン、トルエン、キシレン、イソプロピル
ベンゼン、石油スピリット、石油ナフサ等が挙げられる
が、エステル系、ケトン系、エーテルエステル系が多用
される。
As a solvent for dissolving these, ester-based, ketone-based, ether ester-based, chlorine-based, ether-based, alcohol-based, hydrocarbon-based solvents such as methyl acetate, ethyl acetate, isopropyl acetate, isobutyl acetate are used. , Butyl acetate, amyl acetate, methyl ethyl ketone, methyl isobutyl ketone, methyl isoamyl ketone, methyl amyl ketone, ethyl amyl ketone, isobutyl ketone, methoxymethylpentanone, cyclohexanone, diacetone alcohol, methyl cellosolve acetate, ethyl cellosolve acetate, acetic acid Butyl cellosolve, methoxybutyl acetate, methyl carbitol acetate, ethyl carbitol acetate, dibutyl carbitol acetate, trichloroethane, trichloroethylene, n-butyl ether, diisoamyl ether, n-bu Ruphenyl ether, propylene oxide, furfural, isopropyl alcohol, isobutyl alcohol, amyl alcohol, cyclohexanol, benzene, toluene, xylene, isopropylbenzene, petroleum spirit, petroleum naphtha, etc., but ester-based, ketone-based, ether Ester type is often used.

【0015】本発明が適用される熱圧着接続部材の絶縁
性可撓性基材としては、例えばポリイミド、ポリエチレ
ンテレフタレート、ポリエチレンナフタレート、ポリブ
チレンテレフタレート、ポリカーボネート、ポリフェニ
レンサルファイド、ポリ−1、4−シクロヘキサンジメ
チレンテレフタレート、ポリアリレート、液晶ポリマー
等から選ばれる厚さ10〜50μmの耐熱性を有する高分子
フィルムを用い、その上に前記予め導電性付与剤を付着
した絶縁性微粒子を分散配合してなる導電ペーストを、
スクリーン印刷により所望のパターンに形成した後、そ
の少なくとも接続端子部分に前記絶縁性接着剤を従来公
知の方法、すなわち、ロールコーティング、バーコーテ
ィング、ナイフコーティング、スプレーコーティング、
スクリーン印刷、グラビア印刷等の方法を用いて設け
る。
Examples of the insulating flexible base material of the thermocompression bonding member to which the present invention is applied include polyimide, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polycarbonate, polyphenylene sulfide, poly-1,4-cyclohexane. A polymer film having a heat resistance of 10 to 50 μm selected from dimethylene terephthalate, polyarylate, liquid crystal polymer and the like is used, and insulating fine particles to which the conductivity-imparting agent is previously attached are dispersed and blended thereon. Conductive paste,
After forming a desired pattern by screen printing, the insulating adhesive is applied to at least the connecting terminal portion by a conventionally known method, that is, roll coating, bar coating, knife coating, spray coating,
It is provided using a method such as screen printing or gravure printing.

【0016】[0016]

【作用】本発明の熱圧着性接続部材の製造方法によれ
ば、絶縁性微粒子表面に導電性ペーストに含まれる導電
性付与剤を付着させて、これを導電性ペースト中に混合
するために、導電性ペースト中への分散性がよく、いか
なる粒子を用いても導電性ペーストの皮膜を突破するよ
うなことはなく、密着性に優れ、熱圧着時の導電パター
ン皮膜の突破、絶縁性微粒子の脱落等を起こすことのな
い熱圧着性接続部材が得られる。これにより絶縁性微粒
子の材料選択の幅が広がり、電気的接続の信頼性に、よ
り優れた材料を選択したり、より安価な材料を選択した
りすることができるようになる。
According to the method for producing a thermocompression-bonding connecting member of the present invention, in order to attach the conductivity-imparting agent contained in the conductive paste to the surface of the insulating fine particles and mix it with the conductive paste, It has good dispersibility in the conductive paste, does not break through the film of the conductive paste by using any particles, has excellent adhesion, breaks through the conductive pattern film during thermocompression bonding, insulating fine particles A thermocompression-bondable connecting member that does not fall off can be obtained. As a result, the material selection range for the insulating fine particles is widened, and it is possible to select a material having higher reliability of electrical connection or a cheaper material.

【0017】[0017]

【実施例】次に本発明の具体的態様を実施例により説明
する。 (1)各種絶縁性微粒子への導電性付与剤の付着 絶縁性微粒子として以下の3種を用い、ケッチェンブラ
ックEC(ライオンアグゾー社製、商品名)を導電性付与
剤として、表面改質装置:ハイプリダイゼーションシス
テムNHS-0(奈良機械製作所製、商品名)にて混合し、
絶縁性微粒子表面に導電性付与剤を付着した。 平均粒径40μm、粒度分布変動係数7%、海綿状のナ
イロン樹脂微粒子。 平均粒径40μm、粒度分布変動係数7%、球状のSB
R微粒子。 平均粒径40μm、粒度分布変動係数7%、球状のアク
リル樹脂微粒子。 (2)各種導電性ペーストの作製 有機性バインダーとして、分子量20,000〜25,000、水酸
基価6.0KOHmg/g、酸価0.1KOHmg/g、溶解度パラメーター
9.2の飽和共重合ポリエステル樹脂とヘキサメチレンジ
イソシアネートのビウレット3量体とを、メチルエチル
ケトオキシムでブロックしたブロックイソシアネートの
混合物を用い、ケッチェンブラックEC、グラファイトを
導電性付与剤とし、レベリング剤、分散安定剤、消泡
剤、揺変剤を各々1重量部加えて、酢酸エチルカルビト
ールに溶解した後、前記(1)で作成した絶縁性微粒子
を各々45容量部加えて3種の導電性ペーストを作製し
た。
EXAMPLES Specific embodiments of the present invention will now be described with reference to examples. (1) Adhesion of Conductivity-Giving Agent to Various Insulating Fine Particles The following three types of insulating fine particles were used, and Ketjen Black EC (Lion Agzo Co., trade name) was used as a conductivity-imparting agent for surface modification. Equipment: Mixing with a high-prediction system NHS-0 (trade name, manufactured by Nara Machinery Co., Ltd.),
A conductivity-imparting agent was attached to the surface of the insulating fine particles. Sponge-like nylon resin fine particles with an average particle size of 40 μm, particle size distribution variation coefficient of 7%. Average particle size 40μm, particle size distribution variation coefficient 7%, spherical SB
R fine particles. Spherical acrylic resin fine particles with an average particle size of 40 μm, particle size distribution variation coefficient of 7%. (2) Preparation of various conductive pastes As an organic binder, molecular weight 20,000 to 25,000, hydroxyl value 6.0KOHmg / g, acid value 0.1KOHmg / g, solubility parameter
Using a mixture of blocked isocyanates obtained by blocking the saturated copolymerized polyester resin of 9.2 and the biuret trimer of hexamethylene diisocyanate with methyl ethyl ketoxime, Ketjen Black EC, graphite as a conductivity-imparting agent, a leveling agent and a dispersion stabilizer. After adding 1 part by weight each of a defoaming agent and a thixotropic agent and dissolving them in ethyl carbitol acetate, 45 parts by volume of each of the insulating fine particles prepared in (1) above was added to prepare 3 kinds of conductive pastes. did.

【0018】(3)絶縁性接着剤溶液の作製 カルボキシル変性NBR 100重量部に対して、アルキル
フェノール系粘着付与剤40重量部、劣化防止剤、耐熱添
加物、アミン系シランカップリング剤を各々1重量部づ
つ加え、石油ナフタ:ブチルカルビトール=1:1の混
合溶媒に溶解し、35重量%の絶縁性接着剤溶液を作製し
た。 (4)熱圧着性接続部材の製造 次に、厚さ25μmのPETフィルムよりなる絶縁性可撓
性基材の上に上記(2)で作製した各種導電性ペースト
を、スクリーン線径30μm、紗厚60μm、開口部1辺の
長さ(1)71μm、開口率50%のステンレススクリーン
版を用いて、0.6mm ピッチのパターンを形成した。次い
でその全面に上記(3)で作成した絶縁性接着剤を、溶
媒を除去した後の厚みが15μmとなるように、バーコー
ターにて塗布して乾燥し、絶縁性接着剤層を形成し、所
望の寸法に裁断し熱圧着性接続部材を得た。こうして得
た熱圧着性接続部材を、面積抵抗率30Ωの透明導電酸化
膜基板(ITO )の接続端子に、130 ℃、20kg/cm2 、9
秒の条件で熱圧着し、熱衝撃試験(85℃、30分と−30
℃、30分とを交互にくり返す)を行った後の放置時間と
両接続端子間の抵抗値の変化(単位:Ω)との関係を測
定し、結果を表1に示した。
(3) Preparation of Insulating Adhesive Solution For each 100 parts by weight of carboxyl-modified NBR, 40 parts by weight of an alkylphenol tackifier, 1 part by weight of a deterioration inhibitor, a heat-resistant additive, and 1 part by weight of an amine silane coupling agent. Each part was added and dissolved in a mixed solvent of petroleum naphtha: butyl carbitol = 1: 1 to prepare a 35 wt% insulating adhesive solution. (4) Manufacture of thermocompression-bondable connecting member Next, various conductive pastes prepared in (2) above were coated on an insulating flexible substrate made of a PET film having a thickness of 25 μm with a screen wire diameter of 30 μm and a gauze. A 0.6 mm pitch pattern was formed using a stainless screen plate having a thickness of 60 μm, the length of one side of the opening (1) 71 μm, and an aperture ratio of 50%. Next, the insulating adhesive prepared in (3) above is applied to the entire surface by a bar coater so that the thickness after removing the solvent is 15 μm, and dried to form an insulating adhesive layer, A thermocompression-bonding connecting member was obtained by cutting into a desired size. The thermocompression-bonding connecting member thus obtained was connected to a transparent conductive oxide film substrate (ITO) connecting terminal having an area resistivity of 30Ω at 130 ° C., 20 kg / cm 2 , 9
Thermal compression test under the condition of second, thermal shock test (85 ℃, 30 minutes and −30
The relationship between the standing time after the test piece was repeatedly performed at 30 ° C. for 30 minutes and the change in the resistance value between both connection terminals (unit: Ω) was measured, and the results are shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】本発明の熱圧着性接続部材の製造方法に
よれば、さまざまな絶縁性微粒子を用いても導電性ペー
ストの皮膜を突破しないため、絶縁性微粒子の選択の自
由度が増え、より安価で、電気的接続信頼性の高いもの
を自由に選択でき、熱圧着時の絶縁性微粒子の脱離もな
く、導電性ペーストの突出した部分が確実に対向する接
続端子に接続でき、夏期屋外、車内、水中等の過酷な条
件下においても電気的導通の信頼性の向上が図れる。
According to the method for manufacturing a thermocompression-bonding connecting member of the present invention, even if various insulating fine particles are used, the conductive paste film is not breached, so that the degree of freedom in selecting insulating fine particles is increased. It is cheaper and you can freely select one with high electrical connection reliability, there is no detachment of insulating fine particles during thermocompression bonding, and the protruding parts of the conductive paste can be securely connected to the opposing connection terminals The reliability of electrical continuity can be improved even under severe conditions such as outdoors, in a car, and underwater.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法により得られる熱圧着性接続
部材の一例を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing an example of a thermocompression bonding connecting member obtained by a manufacturing method of the present invention.

【図2】従来の方法によって得られた熱圧着性接続部材
の一例を示す縦断面図である。
FIG. 2 is a vertical cross-sectional view showing an example of a thermocompression bonding connection member obtained by a conventional method.

【図3】従来の方法によって得られた熱圧着性接続部材
の別の例を示す縦断面図である。
FIG. 3 is a vertical cross-sectional view showing another example of the thermocompression-bonding connection member obtained by a conventional method.

【符号の説明】[Explanation of symbols]

a、1…絶縁性可撓性基材、 c、2a …
絶縁性微粒子、2b …導電性付与剤、
3…導電性ペースト、d、4…絶縁性接着剤
層、 b…パターン。
a, 1 ... Insulating flexible base material, c, 2a ...
Insulating fine particles, 2b ... Conductivity imparting agent,
3 ... Conductive paste, d, 4 ... Insulating adhesive layer, b ... Pattern.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】導電性ペーストに使用される導電性付与剤
を絶縁性微粒子の表面に付着させた後、この絶縁性微粒
子を導電性ペーストに混合して絶縁性可撓性基材の片面
または両面に所望のパターンを形成し、その少なくとも
接続端子部分に絶縁性接着剤を設けることを特徴とする
熱圧着性接続部材の製造方法。
1. A conductive agent used in a conductive paste is adhered to the surface of insulating fine particles, and the insulating fine particles are mixed with the conductive paste to form one side of an insulating flexible substrate. A method for producing a thermocompression-bonding connecting member, which comprises forming a desired pattern on both surfaces and providing an insulating adhesive on at least the connecting terminal portion thereof.
JP20525094A 1994-08-30 1994-08-30 Manufacture of thermocompression bonding connecting member Pending JPH0869850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20525094A JPH0869850A (en) 1994-08-30 1994-08-30 Manufacture of thermocompression bonding connecting member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20525094A JPH0869850A (en) 1994-08-30 1994-08-30 Manufacture of thermocompression bonding connecting member

Publications (1)

Publication Number Publication Date
JPH0869850A true JPH0869850A (en) 1996-03-12

Family

ID=16503882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20525094A Pending JPH0869850A (en) 1994-08-30 1994-08-30 Manufacture of thermocompression bonding connecting member

Country Status (1)

Country Link
JP (1) JPH0869850A (en)

Similar Documents

Publication Publication Date Title
US5371327A (en) Heat-sealable connector sheet
JP3741841B2 (en) Anisotropic conductive adhesive
JP3420809B2 (en) Conductive particles and anisotropic conductive adhesive using the same
JPH11209714A (en) Anisotropically electroconductive adhesive
JP4107769B2 (en) Conductivity imparting particles for anisotropic conductive adhesive and anisotropic conductive adhesive using the same
JPH0869850A (en) Manufacture of thermocompression bonding connecting member
JPH0757805A (en) Thermal pressure connection type connection member
JP2823799B2 (en) Anisotropic conductive adhesive
JPH0651337A (en) Connecting structure for electric circuit
JP2502900B2 (en) Heat seal connector and method for manufacturing the same
JP2883511B2 (en) Thermocompression connection member
JPH06318478A (en) Heat seal connector
JPH0676877A (en) Thermal pressure connecting member and manufacture thereof
JP2599009Y2 (en) Thermo-compression fine circuit connection member
JPH08148251A (en) Manufacture of thermally pressure connected connection member
JP3914206B2 (en) Conductive fine particles and anisotropic conductive materials
JP3100329B2 (en) Heat seal connector
JP3192549B2 (en) Heat seal connector
JP3169506B2 (en) Insulating adhesive composition for heat seal connector and method for producing the same
JP2502881B2 (en) Heat seal connector
JPH06181076A (en) Heat seal connector
JPH0645026A (en) Heat seal connector and manufacture thereof
JPH06181074A (en) Thermally adhesive flexible connecting member
JP2001185263A (en) Heat seal connector and connecting structure of electrical circuit
JP3007145U (en) Flexible connector