JPH0864800A - Silicon carbide semiconductor device - Google Patents

Silicon carbide semiconductor device

Info

Publication number
JPH0864800A
JPH0864800A JP20043494A JP20043494A JPH0864800A JP H0864800 A JPH0864800 A JP H0864800A JP 20043494 A JP20043494 A JP 20043494A JP 20043494 A JP20043494 A JP 20043494A JP H0864800 A JPH0864800 A JP H0864800A
Authority
JP
Japan
Prior art keywords
metal
silicon carbide
silicon
layer
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20043494A
Other languages
Japanese (ja)
Inventor
Daisuke Kawase
大助 川瀬
Toshiyuki Ono
俊之 大野
Yuzo Kozono
裕三 小園
Tsutomu Yao
勉 八尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20043494A priority Critical patent/JPH0864800A/en
Publication of JPH0864800A publication Critical patent/JPH0864800A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/0485Ohmic electrodes

Abstract

PURPOSE: To realize an ohmic electrode which has a low contact resistance and high reliability so as to obtain a silicon carbide semiconductor device which has a high operating voltage, large operating current, and is excellent in reliability by a method wherein a composite compound composed of low-resistance metal silicide, metal carbide, metal, silicon, and carbon is formed on a silicon carbide single crystal. CONSTITUTION: A mixed-phase layer 12 of titanium silicide and titanium carbide is formed on a silicon carbide single crystal 11, and furthermore a titanium layer 13 is laminated thereon to serve as an ohmic electrode. By this setup, an ohmic electrode of low contact resistance and high reliability can be obtained. Furthermore, as silicon carbide and the electrode have small thermal expansion coefficient, a silicon carbide semiconductor device which has a high operating voltage, large operating current, excellent in reliability at a high temperature, and equipped with an ohmic electrode of low contact resistance and high reliability can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炭化珪素半導体素子に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon carbide semiconductor device.

【0002】[0002]

【従来の技術】従来の炭化珪素(SiC)半導体に形成す
るオーム性電極は、n型SiCではニッケル(Ni),
p型半導体ではアルミニウム(Al)とシリコン(S
i)の共晶からなる各材料を真空蒸着した後に熱処理を
行いオーム性接合を得ていた(J.Electrochem.Soc.,vo
l.135,p.359.)。SiCには多くの結晶系が存在し、
結晶構造により2.2乃至3.3エレクトロンボルトの禁
制帯幅を有する。また、SiCは、熱的,化学的及び機
械的に極めて安定でワイドギャップ半導体としてはめず
らしくp型及びn型共に安定に存在する材料である。従
って、SiC単結晶に外部回路と電気的接続するための
電極を形成した素子は大電力用素子,高温動作素子,耐
放射線素子,光電変換素子その他種々の電子技術分野へ
の応用が期待される。
2. Description of the Related Art An ohmic electrode formed on a conventional silicon carbide (SiC) semiconductor is nickel (Ni) for n-type SiC,
Aluminum (Al) and silicon (S
After the vapor deposition of each material consisting of eutectic of i), heat treatment was performed to obtain ohmic bonding (J. Electrochem. Soc., vo
l. 135, p.359.). There are many crystal systems in SiC,
It has a band gap of 2.2 to 3.3 electron volts due to its crystal structure. Further, SiC is a material that is extremely stable thermally, chemically and mechanically, is rare as a wide-gap semiconductor, and stably exists in both p-type and n-type. Therefore, an element in which an electrode for electrically connecting to an external circuit is formed on a SiC single crystal is expected to be applied to a large power element, a high temperature operation element, a radiation resistant element, a photoelectric conversion element and various other electronic technical fields. .

【0003】[0003]

【発明が解決しようとする課題】SiC半導体に上述の
ように電極を形成する場合、n型SiCに対してはNi
が用いられる。真空蒸着後の熱処理によりSiとNiと
の化合物を生成することによりオーム性接合が形成でき
るが、CはNiに対して固溶量が少なく、またCとNi
は化合物を形成しない。このため、半導体/電極界面に
Cが混入することによりコンタクト抵抗が高く半導体素
子として使用することは困難である。また、Ni中はC
の拡散係数が小さく半導体/電極界面からCを排出する
ために1100℃前後の高温が必要である。一方、p型Si
Cに対してはオーム性電極としてAlおよびAl合金が
用いられる。AlおよびAl合金は熱処理の際の耐熱性
に問題がある。また、熱処理中にNi,AlとSiCと
の膨張率の違いから電極の剥離が起こる。本発明は低コ
ンタクト抵抗の信頼性の高いオーミック電極を実現し高
電圧,大電流および高温において信頼性の高い炭化珪素
半導体素子を提供することを目的とする。
When forming electrodes on a SiC semiconductor as described above, Ni is not used for n-type SiC.
Is used. An ohmic bond can be formed by forming a compound of Si and Ni by heat treatment after vacuum deposition, but C has a small solid solution amount with respect to Ni, and C and Ni
Does not form a compound. Therefore, since C is mixed in the semiconductor / electrode interface, the contact resistance is high and it is difficult to use it as a semiconductor element. Also, C in Ni
Has a low diffusion coefficient and requires a high temperature of about 1100 ° C. to discharge C from the semiconductor / electrode interface. On the other hand, p-type Si
For C, Al and Al alloys are used as ohmic electrodes. Al and Al alloys have a problem in heat resistance during heat treatment. Further, during heat treatment, peeling of the electrode occurs due to the difference in expansion coefficient between Ni, Al and SiC. An object of the present invention is to provide a highly reliable ohmic electrode having a low contact resistance and to provide a highly reliable silicon carbide semiconductor element at high voltage, large current and high temperature.

【0004】[0004]

【課題を解決するための手段】本発明は、SiC単結晶
上に低コンタクト抵抗かつ信頼性の高いオーム性電極を
形成するために炭化珪素単結晶表面に金属珪化物,金属
炭化物及び金属,珪素,炭素からなる複合化合物の複数
種類を含む層を積層または、炭化珪素単結晶表面に金属
珪化物,金属炭化物及び金属,珪素,炭素からなる複合
化合物の複数種類を含む層と任意の金属層を積層してオ
ーム性電極としたものである。特に、高不純物濃度の炭
化珪素単結晶上に金属珪化物,金属炭化物及び金属,珪
素,炭素からなる複合化合物の複数種類を含む層を積層
してオーム性電極とすることによりコンタクト抵抗は低
くなる。また、高不純物濃度の炭化珪素単結晶表面に金
属珪化物,金属炭化物及び金属,珪素,炭素からなる複
合化合物の複数種類を含む層と任意の金属層を積層しオ
ーム性接合を得ても同様にコンタクト抵抗は低くなる。
ここで用いる金属には、Ti,V,Cr,Zr,Nb,
Mo,Hf,Ta,Wの中から少なくとも一種類の金属
を含む合金を選択することが適当である。Ti,V,C
r,Zr,Nb,Mo,Hf,Ta,Wの中からの一種
類の金属の合金、または一種類の金属の積層膜を炭化珪
素単結晶上に積層した後に熱処理することにより合金/
半導体界面に金属珪化物,金属炭化物及び金属,珪素,
炭素からなる複合化合物の複数種類を含む層を形成する
ことも可能である。また、熱処理の際の酸化防止のため
に前記金属の中から少なくとも一種類の金属からなる合
金層上に酸化しにくいAu,Pt,Pd,Ni,Cuな
どの金属、またはTi−Al,Ni−Al系合金などを
少なくとも一層積層後熱処理を行うことも有効である。
また、外部回路との接続のためにオーム性電極上にA
l,Au,Cu,Niなどの低抵抗金属を積層すること
もある。また、炭化珪素単結晶表面にTi,V,Cr,
Zr,Nb,Mo,Hf,Ta,Wの中からの一種類の
金属をイオン注入した後に熱処理を行い金属珪化物,金
属炭化物及び金属,珪素,炭素からなる複合化合物の複
数種類を含む層を形成しオーミック電極を得ることも可
能である。また、上記の低コンタクト抵抗を持つ電極構
造を用いた炭化珪素半導体素子,半導体回路は高電圧,
大電流および高温の使用において高信頼性を有する。
In order to form an ohmic electrode having low contact resistance and high reliability on a SiC single crystal, the present invention provides a metal silicide, a metal carbide and a metal, silicon on the surface of the silicon carbide single crystal. , A layer containing a plurality of kinds of composite compounds composed of carbon or a layer containing a plurality of kinds of composite compounds composed of metal silicide, metal carbide and metal, silicon, carbon on a surface of a silicon carbide single crystal and an arbitrary metal layer. It is laminated to form an ohmic electrode. In particular, the contact resistance is lowered by stacking a layer containing a plurality of kinds of metal silicide, metal carbide and a complex compound composed of metal, silicon and carbon on a silicon carbide single crystal having a high impurity concentration to form an ohmic electrode. . Also, even if a layer containing a plurality of kinds of metal silicides, metal carbides and composite compounds composed of metal, silicon, and carbon and an arbitrary metal layer are laminated on the surface of a high-concentration silicon carbide single crystal, an ohmic bond is obtained. The contact resistance is low.
The metals used here include Ti, V, Cr, Zr, Nb,
It is suitable to select an alloy containing at least one kind of metal from Mo, Hf, Ta and W. Ti, V, C
An alloy of one kind of metal selected from r, Zr, Nb, Mo, Hf, Ta and W, or an alloy by stacking a laminated film of one kind of metal on a silicon carbide single crystal and then heat-treating
At the semiconductor interface, metal silicide, metal carbide and metal, silicon,
It is also possible to form a layer containing a plurality of types of composite compounds made of carbon. Further, in order to prevent oxidation during heat treatment, a metal such as Au, Pt, Pd, Ni, Cu or the like which is difficult to oxidize on an alloy layer made of at least one of the above metals, or Ti-Al, Ni- It is also effective to perform heat treatment after laminating at least one layer of Al-based alloy or the like.
Also, for connection with an external circuit, A on the ohmic electrode
A low resistance metal such as 1, Au, Cu, or Ni may be laminated. Moreover, Ti, V, Cr,
After ion-implanting one kind of metal from Zr, Nb, Mo, Hf, Ta, and W, heat treatment is performed to form a layer containing a plurality of kinds of metal silicide, metal carbide, and a compound compound of metal, silicon, and carbon. It is also possible to form and obtain an ohmic electrode. In addition, a silicon carbide semiconductor element and a semiconductor circuit using the above electrode structure having a low contact resistance have a high voltage,
High reliability in high current and high temperature use.

【0005】[0005]

【作用】低抵抗である金属珪化物,金属炭化物及び金
属,珪素,炭素からなる複合化合物の複数種類を含む層
を炭化珪素単結晶上に形成しオーム性電極として用いる
ことにより低いコンタクト抵抗が得られらた。また、金
属珪化物,金属炭化物及び金属,珪素,炭素からなる複
合化合物の複数種類を含む層を不純物濃度が1018/cm
3 以上である高不純物濃度の炭化珪素単結晶上に積層す
ることによりトンネル効果のために更に低コンタクト抵
抗のオーム性接合が得られた。電極構造上に任意の一種
類の金属を積層した場合も同様に低コンタクト抵抗のオ
ーム性接合が得られた。これらの電極構造に用いる金属
元素は珪化物,炭化物ともに安定相として存在するT
i,V,Cr,Zr,Nb,Mo,Hf,Ta,Wの中
から選択する。また、金属の中から少なくとも一種類の
金属を用いた合金を炭化珪素単結晶上に積層した後に熱
処理を加えることにより低抵抗である金属珪化物,金属
炭化物及び金属,珪素,炭素からなる複合化合物の複数
種類を含む層を金属/半導体界面に形成することが可能
ある。また、これらの、金属珪化物,金属炭化物及び金
属,珪素,炭素からなる複合化合物の複数種類を含む層
は炭化珪素に熱膨張率が近いので熱処理の際に炭化珪素
から剥がれることはない。また、高温での使用において
も劣化することはない。以上の理由により金属を用いる
ことにより熱処理により確実に低コンタクト抵抗のオー
ム性電極が得られる。また、Ti,V,Cr,Zr,N
b,Mo,Hf,Ta,Wは活性な金属であるので熱処
理の際に電極表面に高抵抗の酸化物層が形成されること
があるが、金属の少なくとも一種類の金属を含む合金を
炭化珪素単結晶上に積層した上に酸化しにくいAu,P
t,Pd,Ni,Cuなどの金属、またはTi−Al,
Ni−Al系合金などを少なくとも一層キャップメタル
として積層後熱処理を行うことにより、電極表面の酸化
を避けて確実に低コンタクト抵抗のオーム性電極が得ら
れる。また、Ti,V,Cr,Zr,Nb,Mo,H
f,Ta,Wの中からの一種類の金属をイオン注入にし
た後に熱処理を行うことにより金属珪化物,金属炭化物
及び金属,珪素,炭素からなる複合化合物の複数種類を
含む層の形成が可能である。この際イオン注入条件を適
当に選択し金属元素の打ち込み深さを制御することによ
り金属珪化物,金属炭化物及び金属,珪素,炭素からな
る複合化合物の複数種類を含む層の厚さの制御が容易に
実現できた。以上の手段により形成された炭化珪素半導
体の電極構造上に電気抵抗の低いAl,Cu,Au,N
iなどを積層することにより外部回路と容易に接続可能
であった。また、これらの低コンタクト抵抗の電極構造
を有した炭化珪素半導体素子は高電圧,大電流用に適
し、高い信頼性を示した。また、これらの半導体素子を
用いた回路は高電圧,大電流制御において同様に優れた
信頼性を示した。
[Function] A low contact resistance can be obtained by forming a layer containing a low resistance metal silicide, metal carbide, and a plurality of kinds of composite compounds composed of metal, silicon, and carbon on a silicon carbide single crystal and using it as an ohmic electrode. I was asked. In addition, a layer containing a plurality of kinds of metal silicide, metal carbide, and a complex compound of metal, silicon, and carbon has an impurity concentration of 10 18 / cm 3.
By stacking on a high-impurity concentration silicon carbide single crystal of 3 or more, an ohmic junction with a lower contact resistance was obtained due to the tunnel effect. In the case where any one kind of metal was laminated on the electrode structure, the ohmic contact with low contact resistance was similarly obtained. The metal element used for these electrode structures is T which exists as a stable phase in both silicide and carbide.
It is selected from among i, V, Cr, Zr, Nb, Mo, Hf, Ta and W. Further, a metal silicide, a metal carbide, and a composite compound composed of metal, silicon, and carbon, which have a low resistance, are obtained by stacking an alloy using at least one kind of metal on a silicon carbide single crystal and then applying a heat treatment. It is possible to form a layer containing a plurality of types of the above at the metal / semiconductor interface. Further, these layers containing a plurality of kinds of metal silicides, metal carbides, and composite compounds composed of metals, silicon, and carbon have a coefficient of thermal expansion close to that of silicon carbide, and therefore do not peel off from silicon carbide during heat treatment. Further, it does not deteriorate even when used at high temperatures. For the above reasons, by using a metal, an ohmic electrode having a low contact resistance can be surely obtained by heat treatment. Also, Ti, V, Cr, Zr, N
Since b, Mo, Hf, Ta, and W are active metals, a high resistance oxide layer may be formed on the electrode surface during heat treatment, but carbonization of an alloy containing at least one metal Au, P stacked on a silicon single crystal and resistant to oxidation
metals such as t, Pd, Ni, Cu, or Ti-Al,
By performing post-lamination heat treatment using at least one layer of a Ni-Al alloy as a cap metal, oxidation of the electrode surface is avoided and an ohmic electrode having a low contact resistance can be reliably obtained. Also, Ti, V, Cr, Zr, Nb, Mo, H
It is possible to form a layer containing multiple kinds of metal silicide, metal carbide, and a complex compound of metal, silicon, and carbon by performing heat treatment after ion implantation of one kind of metal from f, Ta, and W. Is. At this time, it is easy to control the thickness of the layer containing a plurality of kinds of metal silicide, metal carbide, and a composite compound of metal, silicon, and carbon by appropriately selecting the ion implantation conditions and controlling the implantation depth of the metal element. Was realized. Al, Cu, Au, N having a low electric resistance is formed on the electrode structure of the silicon carbide semiconductor formed by the above means.
It was possible to easily connect to an external circuit by stacking i and the like. In addition, these silicon carbide semiconductor devices having an electrode structure of low contact resistance are suitable for high voltage and large current, and show high reliability. In addition, circuits using these semiconductor elements also showed excellent reliability in high voltage and large current control.

【0006】[0006]

【実施例】【Example】

(実施例1)図2は本発明の実施例の一つを示す。炭化
珪素単結晶11上にスパッタ法によりタングステン珪化
物(WSix),タングステン炭化物(WCy)の混合相
よりなる層21を200nm積層した後に10-8Torrの
真空雰囲気において1000℃の熱処理を行った。この
ようにして得られた電極は図3に示すようにオーム性を
示した。図4はn型SiCの不純物濃度(N)に対するコ
ンタクト抵抗(Rc)を示している。特に、高不純物濃
度域において低抵抗のオーム性接合が得られた。図5に
示すようにAl層51を200nmタングステン珪化
物,タングステン炭化物の混合相からなる層21上に積
層することによりAlワイヤ52により容易に外部回路
と接続が可能になった。
(Embodiment 1) FIG. 2 shows one of the embodiments of the present invention. A layer 21 made of a mixed phase of tungsten silicide (WSix) and tungsten carbide (WCy) having a thickness of 200 nm was laminated on the silicon carbide single crystal 11 by a sputtering method, and then heat treatment was performed at 1000 ° C. in a vacuum atmosphere of 10 −8 Torr. The electrode thus obtained exhibited ohmic properties as shown in FIG. FIG. 4 shows the contact resistance (Rc) with respect to the impurity concentration (N) of n-type SiC. In particular, a low resistance ohmic junction was obtained in the high impurity concentration region. As shown in FIG. 5, by stacking the Al layer 51 on the layer 21 composed of the mixed phase of 200 nm tungsten silicide and tungsten carbide, it was possible to easily connect to the external circuit by the Al wire 52.

【0007】(実施例2)図6(a)に示すように炭化
珪素単結晶11上に真空蒸着によりTi層13を200
nm積層した後に10-8Torrの真空雰囲気において10
00℃の熱処理を行った。熱処理により図1(b)に示
すように炭化珪素単結晶11,チタン珪化物(TiSi
x),チタン炭化物(TiCy)の混合相からなる層1
2,Ti層13の積層構造が得られた。図7に熱処理温
度に対する接合のI−V特性を示す。図8に熱処理温度
Taによるコンタクト抵抗Rcの変化を示す。高温での
熱処理によりTiSix,TiCyの混合相からなる層
12が均質に形成されるために低コンタクト抵抗のオー
ム性電極が得られた。図9(a)に示すようにSiC単結
晶11上に真空蒸着によりTi層13を200nm、白
金Pt層91を200nm積層した後に10-8Torrの真
空雰囲気およびArフロー中において熱処理を行った。
各雰囲気でのコンタクト抵抗Rcに電極自身の抵抗を加
えた見かけのコンタクト抵抗Rc′の熱処理温度Taに
対する変化を図10に示す。SiCにTi層のみを積層
した電極はArフロー中においては電極表面の酸化のた
めに高温でRc′が増大する。一方、SiC上のTi層
上にキャップメタルとしてPt層を積層した電極は各雰
囲気において低抵抗のオーム性電極が実現できた。
(Example 2) As shown in FIG. 6 (a), a Ti layer 13 was formed on a silicon carbide single crystal 11 by vacuum evaporation to a thickness of 200
10 nm in a vacuum atmosphere of 10 −8 Torr after stacking
Heat treatment was performed at 00 ° C. By heat treatment, as shown in FIG. 1B, silicon carbide single crystal 11, titanium silicide (TiSi
x), a layer 1 composed of a mixed phase of titanium carbide (TiCy)
2, a laminated structure of the Ti layer 13 was obtained. FIG. 7 shows the IV characteristics of the junction with respect to the heat treatment temperature. FIG. 8 shows changes in the contact resistance Rc depending on the heat treatment temperature Ta. An ohmic electrode having a low contact resistance was obtained because the layer 12 composed of a mixed phase of TiSix and TiCy was uniformly formed by the heat treatment at a high temperature. As shown in FIG. 9A, a Ti layer 13 having a thickness of 200 nm and a platinum Pt layer 91 having a thickness of 200 nm were laminated on the SiC single crystal 11 by vacuum deposition, and then heat treatment was performed in a vacuum atmosphere of 10 −8 Torr and an Ar flow.
FIG. 10 shows changes in the apparent contact resistance Rc ′ obtained by adding the resistance of the electrode itself to the contact resistance Rc in each atmosphere with respect to the heat treatment temperature Ta. In an electrode in which only a Ti layer is laminated on SiC, Rc 'increases at high temperature due to oxidation of the electrode surface during Ar flow. On the other hand, an electrode in which a Pt layer as a cap metal was laminated on a Ti layer on SiC was able to realize an ohmic electrode with low resistance in each atmosphere.

【0008】(実施例3)図11に示すように炭化珪素
単結晶11上にスパッタ法によりタングステン−銅(W
−Cu)合金層111を200nm積層した後に10-8
Torrの真空雰囲気におて1000℃の熱処理を行った。
熱処理により図12に示すようにSiC単結晶11,W
Six,WiCyの混合相からなる層21,W−Cu合
金層111の積層構造が得られた。この電極は低コンタ
クト抵抗のオーム性を示した。
(Embodiment 3) As shown in FIG. 11, tungsten-copper (W) is formed on a silicon carbide single crystal 11 by a sputtering method.
-Cu) alloy layer 111 is laminated to a thickness of 200 nm and then 10 -8
A heat treatment at 1000 ° C. was performed in a Torr vacuum atmosphere.
By heat treatment, as shown in FIG. 12, SiC single crystal 11, W
A layered structure of the layer 21 composed of the mixed phase of Six and WiCy and the W—Cu alloy layer 111 was obtained. This electrode exhibited low contact resistance and ohmic characteristics.

【0009】(実施例4)図13に示すようにn型酸化
珪素層121表面に1200℃で熱処理をすることによ
り酸化膜122を形成した後に弗酸エッチングによりパ
ターンを形成した。イオン注入により加速電圧400k
eVで窒素を注入した後に1600℃の熱処理で回復を
行い高不純物濃度であるn+ 層123を形成した(図1
4(a))。n+ 層の不純物濃度は1019/cm3 であっ
た。真空蒸着によりチタン層13を200nm積層した
後に1000℃で熱処理を行い金属/高不純物濃度半導
体界面にTiSix,TiCyの混合相からなる層12
が形成することにより低コンタクト抵抗のオーム性電極
を選択的に得ることができた(図14(b))。
Example 4 As shown in FIG. 13, the surface of the n-type silicon oxide layer 121 was heat-treated at 1200 ° C. to form an oxide film 122, and then a pattern was formed by etching with hydrofluoric acid. Acceleration voltage 400k due to ion implantation
After implanting nitrogen at eV, heat treatment was performed at 1600 ° C. to recover and form an n + layer 123 having a high impurity concentration (FIG. 1).
4 (a)). The impurity concentration of the n + layer was 10 19 / cm 3 . A titanium layer 13 having a thickness of 200 nm is deposited by vacuum evaporation, and then heat treatment is performed at 1000 ° C. to form a layer 12 made of a mixed phase of TiSix and TiCy at a metal / high impurity concentration semiconductor interface.
By forming the above-mentioned structure, it was possible to selectively obtain an ohmic electrode having a low contact resistance (FIG. 14 (b)).

【0010】(実施例5)図13に示すようにイオン加
速機によりチタンを加速電圧400keV でSiC単結晶
11表面に打ち込んだ。10-8Torrの真空雰囲気で18
00℃で熱処理することにより図14(a)に示すよう
にSiC単結晶11表面にTiSix,TiCyの混合
相からなる層12が形成される。この後にAl層51を
200nmを積層することにより低コンタクト抵抗のオ
ーム性電極が形成可能であった。また、図に示すように
SiC単結晶上に酸化雰囲気熱処理により酸化膜をマス
クとして形成することにより選択的にオーム性電極の形
成が可能である。
(Example 5) As shown in FIG. 13, titanium was implanted into the surface of the SiC single crystal 11 at an acceleration voltage of 400 keV by an ion accelerator. 18 in a vacuum atmosphere of 10 -8 Torr
By heat treatment at 00 ° C., a layer 12 made of a mixed phase of TiSix and TiCy is formed on the surface of the SiC single crystal 11 as shown in FIG. After that, an Al layer 51 having a thickness of 200 nm was laminated to form an ohmic electrode having a low contact resistance. Further, as shown in the drawing, the ohmic electrode can be selectively formed by forming the oxide film on the SiC single crystal by heat treatment in an oxidizing atmosphere using the oxide film as a mask.

【0011】(実施例6)図17に本発明による電極構
造を具備した炭化珪素MOS型電界効果トランジスタの
断面模式図を示す。酸化珪素層121には炭化珪素を1
200℃の酸化雰囲気で熱処理することにより形成した
酸化珪素膜を用いた。また、ゲート電極142には他結
晶炭化珪素を用いた。
(Embodiment 6) FIG. 17 is a schematic sectional view of a silicon carbide MOS field effect transistor having an electrode structure according to the present invention. 1 silicon carbide is used for the silicon oxide layer 121.
A silicon oxide film formed by heat treatment in an oxidizing atmosphere at 200 ° C. was used. Further, another crystalline silicon carbide was used for the gate electrode 142.

【0012】[0012]

【発明の効果】本発明によれば、炭化珪素単結晶上に金
属硅化物,金属炭化物、または複合化合物を含む層を設
けることにより低抵抗のオーム性電極が形成できた。ま
た炭化珪素と電極との熱膨張率の差が小さいので低コン
タクト抵抗の信頼性の高いオーム性電極を具備した高電
圧,大電流および高温で信頼性の高い炭化珪素半導体素
子を得ることがでる。
According to the present invention, a low resistance ohmic electrode can be formed by providing a layer containing a metal silicide, a metal carbide, or a composite compound on a silicon carbide single crystal. Further, since the difference in the coefficient of thermal expansion between silicon carbide and the electrode is small, it is possible to obtain a highly reliable silicon carbide semiconductor device equipped with a highly reliable ohmic electrode having a low contact resistance at high voltage, large current and high temperature. .

【図面の簡単な説明】[Brief description of drawings]

【図1】炭化珪素半導体の電極構造を示す断面図。FIG. 1 is a cross-sectional view showing an electrode structure of a silicon carbide semiconductor.

【図2】炭化珪素半導体の電極構造を示す断面図。FIG. 2 is a cross-sectional view showing an electrode structure of a silicon carbide semiconductor.

【図3】図1に示す炭化珪素半導体の電極構造のI−V
特性図。
3 is an IV of the electrode structure of the silicon carbide semiconductor shown in FIG.
Characteristic diagram.

【図4】図1に示す炭化珪素半導体の電極構造の炭化珪
素単結晶の不純物濃度に対するコンタクト抵抗の変化の
説明図。
FIG. 4 is an explanatory diagram of a change in contact resistance with respect to the impurity concentration of the silicon carbide single crystal of the electrode structure of the silicon carbide semiconductor shown in FIG.

【図5】炭化珪素半導体のオーム性電極形成方法の説明
図。
FIG. 5 is an explanatory diagram of a method for forming an ohmic electrode of a silicon carbide semiconductor.

【図6】炭化珪素半導体のオーム性電極形成方法の説明
図。
FIG. 6 is an explanatory diagram of a method for forming an ohmic electrode of a silicon carbide semiconductor.

【図7】図6に示す炭化珪素半導体の電極構造のI−V
特性の熱処理温度依存性の説明図。
FIG. 7 is an IV of the electrode structure of the silicon carbide semiconductor shown in FIG.
Explanatory drawing of heat treatment temperature dependence of a characteristic.

【図8】図6に示す炭化珪素半導体の電極構造のコンタ
クト抵抗の熱処理温度依存性の説明図。
8 is an explanatory diagram of heat treatment temperature dependence of contact resistance of the electrode structure of the silicon carbide semiconductor shown in FIG.

【図9】炭化珪素半導体のオーム性電極形成方法の説明
図。
FIG. 9 is an explanatory diagram of a method for forming an ohmic electrode of a silicon carbide semiconductor.

【図10】図6,図9に示す炭化珪素半導体の電極構造
の熱処理雰囲気による見かけのコンタクト抵抗の熱処理
温度依存性の説明図。
FIG. 10 is an explanatory diagram of heat treatment temperature dependency of apparent contact resistance in a heat treatment atmosphere of the electrode structure of the silicon carbide semiconductor shown in FIGS. 6 and 9.

【図11】炭化珪素半導体のオーム性電極形成方法の説
明図。
FIG. 11 is an explanatory diagram of a method for forming an ohmic electrode of a silicon carbide semiconductor.

【図12】炭化珪素半導体のオーム性電極形成方法の説
明図。
FIG. 12 is an explanatory diagram of a method for forming an ohmic electrode of a silicon carbide semiconductor.

【図13】炭化珪素半導体のオーム性電極形成方法の説
明図。
FIG. 13 is an explanatory diagram of a method for forming an ohmic electrode of a silicon carbide semiconductor.

【図14】炭化珪素半導体のオーム性電極形成方法の説
明図。
FIG. 14 is an explanatory diagram of a method for forming an ohmic electrode of a silicon carbide semiconductor.

【図15】炭化珪素半導体のオーム性電極形成方法の説
明図。
FIG. 15 is an explanatory diagram of a method for forming an ohmic electrode of a silicon carbide semiconductor.

【図16】炭化珪素半導体のオーム性電極形成方法の説
明図。
FIG. 16 is an explanatory diagram of a method for forming an ohmic electrode of a silicon carbide semiconductor.

【図17】本発明による電極構造を具備した電解効果型
トランジスタの断面図。
FIG. 17 is a cross-sectional view of a field effect transistor having an electrode structure according to the present invention.

【符号の説明】[Explanation of symbols]

11…炭化珪素単結晶、12…チタン珪化物,チタン炭
化物の混合相からなる層、13…チタン層21タングス
テン珪化物,タングステン炭化物の混合相よりなる層、
51…アルミ層、52…アルミワイヤ、91…白金層、
111…タングステン−銅合金層、121…酸化珪素
層、131…n型炭化珪素単結晶、132…高濃度n型
炭化珪素単結晶、141…p型炭化珪素単結晶、142
…ゲート電極。
11 ... Silicon carbide single crystal, 12 ... Layer composed of mixed phase of titanium silicide and titanium carbide, 13 ... Titanium layer 21 Layer composed of mixed phase of tungsten silicide and tungsten carbide,
51 ... Aluminum layer, 52 ... Aluminum wire, 91 ... Platinum layer,
111 ... Tungsten-copper alloy layer, 121 ... Silicon oxide layer, 131 ... N-type silicon carbide single crystal, 132 ... High concentration n-type silicon carbide single crystal, 141 ... P-type silicon carbide single crystal, 142
... gate electrode.

フロントページの続き (72)発明者 八尾 勉 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内Front Page Continuation (72) Inventor Tsutomu Yao 7-1-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】炭化珪素単結晶に金属珪化物,金属炭化物
及び金属,珪素,炭素からなる複合化合物の複数種類を
含む層を積層してオーム性電極としたことを特徴とする
炭化珪素半導体素子。
1. A silicon carbide semiconductor device characterized in that an ohmic electrode is formed by laminating a layer containing a plurality of kinds of a metal silicide, a metal carbide and a composite compound consisting of metal, silicon and carbon on a silicon carbide single crystal. .
【請求項2】炭化珪素単結晶に金属珪化物,金属炭化物
及び金属,珪素,炭素からなる複合化合物の複数種類を
含む層と任意の金属層を積層してオーム性電極としたこ
とを特徴とする炭化珪素半導体素子。
2. An ohmic electrode is obtained by laminating a layer containing a plurality of kinds of a metal silicide, a metal carbide and a composite compound consisting of metal, silicon and carbon on a silicon carbide single crystal and an arbitrary metal layer. A silicon carbide semiconductor device.
【請求項3】1018/cm3 以上の不純物濃度の炭化珪素
単結晶上に金属珪化物,金属炭化物及び金属,珪素,炭
素からなる複合化合物の複数種類を含む層と任意の金属
層を積層してオーム性電極としたことを特徴とする炭化
珪素半導体素子。
3. A layer containing a plurality of kinds of metal silicides, metal carbides and composite compounds composed of metal, silicon and carbon and an arbitrary metal layer are laminated on a silicon carbide single crystal having an impurity concentration of 10 18 / cm 3 or more. A silicon carbide semiconductor device characterized by being formed into an ohmic electrode.
【請求項4】炭化珪素単結晶にTi,V,Cr,Zr,
Nb,Mo,Hf,Ta,Wの中から少なくとも一種類
の金属を含む金属珪化物、金属炭化物及び前記金属,珪
素,炭素からなる複合化合物の複数種類を含む層と任意
の一種類の金属層または合金層を積層したことを特徴と
する炭化珪素半導体素子。
4. A silicon carbide single crystal containing Ti, V, Cr, Zr,
A layer containing a plurality of kinds of metal silicides and metal carbides containing at least one kind of metal selected from Nb, Mo, Hf, Ta and W, and any one kind of metal layer. Alternatively, a silicon carbide semiconductor element is obtained by stacking alloy layers.
【請求項5】炭化珪素単結晶にTi,V,Cr,Zr,
Nb,Mo,Hf,Ta,Wの中からの一種類の金属の
合金をまたは一種類の金属の積層膜を積層した後に熱処
理することにより合金/半導体界面に金属珪化物,金属
炭化物及び金属,珪素,炭素からなる複合化合物の複数
種類を含む層を形成してオーム性電極としたことを特徴
とする炭化珪素半導体素子。
5. A silicon carbide single crystal containing Ti, V, Cr, Zr,
An alloy of one kind of metal among Nb, Mo, Hf, Ta and W, or a metal silicide, a metal carbide and a metal at the alloy / semiconductor interface by heat treatment after laminating a laminated film of one kind of metal, A silicon carbide semiconductor device characterized in that an ohmic electrode is formed by forming a layer containing a plurality of kinds of composite compounds composed of silicon and carbon.
【請求項6】炭化珪素単結晶にTi,V,Cr,Zr,
Nb,Mo,Hf,Ta,Wの中からの一種類の金属の
合金をまたは一種類の金属を積層後、その上に他金属層
もしくは他金属合金層を積層した後に熱処理することに
より合金/半導体界面に金属珪化物,金属炭化物及び金
属,珪素,炭素からなる複合化合物の複数種類を含む層
を形成してオーム性電極としたことを特徴とする炭化珪
素半導体素子。
6. A silicon carbide single crystal containing Ti, V, Cr, Zr,
An alloy of one kind of metal selected from Nb, Mo, Hf, Ta and W or one kind of metal is laminated, and then another metal layer or another metal alloy layer is laminated thereon, and then heat treated to form an alloy / A silicon carbide semiconductor device characterized in that an ohmic electrode is formed by forming a layer containing a plurality of kinds of a metal silicide, a metal carbide, and a composite compound composed of metal, silicon, and carbon on a semiconductor interface.
【請求項7】炭化珪素単結晶表面にTi,V,Cr,Z
r,Nb,Mo,Hf,Ta,Wの中からの一種類の金
属をイオン注入した後に熱処理を行い金属珪化物,金属
炭化物及び金属,珪素,炭素からなる複合化合物の複数
種類を含む層を形成した後に一種類の金属を積層したこ
とを特徴とする炭化珪素半導体素子。
7. Ti, V, Cr, Z on the surface of a silicon carbide single crystal.
After ion-implanting one kind of metal selected from r, Nb, Mo, Hf, Ta, and W, a heat treatment is performed to form a layer containing a plurality of kinds of metal silicide, metal carbide, and a complex compound of metal, silicon, and carbon. A silicon carbide semiconductor device characterized by laminating one kind of metal after being formed.
【請求項8】請求項1,2,3,4,5,6または7に
おいて、前記炭化珪素半導体の電極構造上にAlまたは
Auを積層した炭化珪素半導体素子。
8. A silicon carbide semiconductor device according to claim 1, 2, 3, 4, 5, 6 or 7, wherein Al or Au is laminated on the electrode structure of the silicon carbide semiconductor.
【請求項9】請求項1から請求項8のいずれかに記載さ
れた電極構造を具備したダイオード。
9. A diode comprising the electrode structure according to any one of claims 1 to 8.
【請求項10】請求項1から請求項8のいずれかに記載
された電極構造を具備したサイリスタ。
10. A thyristor equipped with the electrode structure according to claim 1. Description:
【請求項11】請求項1から請求項8のいずれかに記載
された電極構造を具備したトランジスタ。
11. A transistor comprising the electrode structure according to any one of claims 1 to 8.
【請求項12】請求項1から請求項11のいずれかに記
載された半導体素子を具備した電気回路。
12. An electric circuit comprising the semiconductor device according to any one of claims 1 to 11.
JP20043494A 1994-08-25 1994-08-25 Silicon carbide semiconductor device Pending JPH0864800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20043494A JPH0864800A (en) 1994-08-25 1994-08-25 Silicon carbide semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20043494A JPH0864800A (en) 1994-08-25 1994-08-25 Silicon carbide semiconductor device

Publications (1)

Publication Number Publication Date
JPH0864800A true JPH0864800A (en) 1996-03-08

Family

ID=16424235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20043494A Pending JPH0864800A (en) 1994-08-25 1994-08-25 Silicon carbide semiconductor device

Country Status (1)

Country Link
JP (1) JPH0864800A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001084609A1 (en) * 2000-05-02 2001-11-08 Case Western Reserve University Method for low temperature formation of stable ohmic contacts to silicon carbide
JP2002076022A (en) * 2000-09-01 2002-03-15 New Japan Radio Co Ltd Semiconductor device
GB2427071A (en) * 2005-06-07 2006-12-13 Denso Corp SiC ohmic contacts
JP2010205824A (en) * 2009-03-02 2010-09-16 Denso Corp Method for manufacturing silicon carbide semiconductor device
US8237172B2 (en) 2007-10-24 2012-08-07 Panasonic Corporation Semiconductor device having a silicon carbide substrate with an ohmic electrode layer in which a reaction layer is arranged in contact with the silicon carbide substrate
JP2015065315A (en) * 2013-09-25 2015-04-09 新日鐵住金株式会社 Silicon carbide semiconductor device, and method for manufacturing the same
JP2017224694A (en) * 2016-06-15 2017-12-21 三菱電機株式会社 Sic semiconductor device and manufacturing method therefor
US10833199B2 (en) 2016-11-18 2020-11-10 Acorn Semi, Llc Nanowire transistor with source and drain induced by electrical contacts with negative Schottky barrier height
US10872964B2 (en) 2016-06-17 2020-12-22 Acorn Semi, Llc MIS contact structure with metal oxide conductor
US10879366B2 (en) 2011-11-23 2020-12-29 Acorn Semi, Llc Metal contacts to group IV semiconductors by inserting interfacial atomic monolayers
US10937880B2 (en) 2002-08-12 2021-03-02 Acorn Semi, Llc Method for depinning the Fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US11043571B2 (en) 2002-08-12 2021-06-22 Acorn Semi, Llc Insulated gate field effect transistor having passivated schottky barriers to the channel
CN114959899A (en) * 2022-04-13 2022-08-30 北京青禾晶元半导体科技有限责任公司 Silicon carbide composite substrate and preparation method thereof

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001084609A1 (en) * 2000-05-02 2001-11-08 Case Western Reserve University Method for low temperature formation of stable ohmic contacts to silicon carbide
JP2002076022A (en) * 2000-09-01 2002-03-15 New Japan Radio Co Ltd Semiconductor device
US10937880B2 (en) 2002-08-12 2021-03-02 Acorn Semi, Llc Method for depinning the Fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US11355613B2 (en) 2002-08-12 2022-06-07 Acorn Semi, Llc Method for depinning the Fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US11056569B2 (en) 2002-08-12 2021-07-06 Acorn Semi, Llc Method for depinning the fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US11043571B2 (en) 2002-08-12 2021-06-22 Acorn Semi, Llc Insulated gate field effect transistor having passivated schottky barriers to the channel
US11018237B2 (en) 2002-08-12 2021-05-25 Acorn Semi, Llc Method for depinning the fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US10950707B2 (en) 2002-08-12 2021-03-16 Acorn Semi, Llc Method for depinning the Fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
GB2427071A (en) * 2005-06-07 2006-12-13 Denso Corp SiC ohmic contacts
GB2427071B (en) * 2005-06-07 2011-03-09 Denso Corp Semiconductor device having SiC substrate and method for manufacturing the same
US8237172B2 (en) 2007-10-24 2012-08-07 Panasonic Corporation Semiconductor device having a silicon carbide substrate with an ohmic electrode layer in which a reaction layer is arranged in contact with the silicon carbide substrate
JP2010205824A (en) * 2009-03-02 2010-09-16 Denso Corp Method for manufacturing silicon carbide semiconductor device
US10879366B2 (en) 2011-11-23 2020-12-29 Acorn Semi, Llc Metal contacts to group IV semiconductors by inserting interfacial atomic monolayers
US11610974B2 (en) 2011-11-23 2023-03-21 Acorn Semi, Llc Metal contacts to group IV semiconductors by inserting interfacial atomic monolayers
US11804533B2 (en) 2011-11-23 2023-10-31 Acorn Semi, Llc Metal contacts to group IV semiconductors by inserting interfacial atomic monolayers
JP2015065315A (en) * 2013-09-25 2015-04-09 新日鐵住金株式会社 Silicon carbide semiconductor device, and method for manufacturing the same
JP2017224694A (en) * 2016-06-15 2017-12-21 三菱電機株式会社 Sic semiconductor device and manufacturing method therefor
US10872964B2 (en) 2016-06-17 2020-12-22 Acorn Semi, Llc MIS contact structure with metal oxide conductor
US11843040B2 (en) 2016-06-17 2023-12-12 Acorn Semi, Llc MIS contact structure with metal oxide conductor
US10833199B2 (en) 2016-11-18 2020-11-10 Acorn Semi, Llc Nanowire transistor with source and drain induced by electrical contacts with negative Schottky barrier height
US11462643B2 (en) 2016-11-18 2022-10-04 Acorn Semi, Llc Nanowire transistor with source and drain induced by electrical contacts with negative Schottky barrier height
CN114959899A (en) * 2022-04-13 2022-08-30 北京青禾晶元半导体科技有限责任公司 Silicon carbide composite substrate and preparation method thereof

Similar Documents

Publication Publication Date Title
US9059071B2 (en) Semiconductor device and method of manufacturing the same
JP4858791B2 (en) Semiconductor device and manufacturing method thereof
JP5449786B2 (en) Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
US10600921B2 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
JP3930561B2 (en) Ohmic contact and method for manufacturing a semiconductor device comprising such an ohmic contact
JP2006324585A (en) Silicon carbide semiconductor device and manufacturing method thereof
JPH0582991B2 (en)
WO2007108439A1 (en) Power semiconductor device
JPH0864800A (en) Silicon carbide semiconductor device
JP3361061B2 (en) Semiconductor device
JP4091931B2 (en) SiC semiconductor device and method of manufacturing SiC semiconductor device
JP3152739B2 (en) Method for manufacturing semiconductor integrated circuit device
JP2000101064A (en) ELECTRODE, SiC ELECTRODE, AND SiC DEVICE
JP3309887B2 (en) Semiconductor device
JP4087365B2 (en) Method for manufacturing SiC semiconductor device
JP4087368B2 (en) Method for manufacturing SiC semiconductor device
JP3970142B2 (en) Silicon carbide ohmic electrode structure and semiconductor device
JP4038499B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP3360945B2 (en) Electrode structure and manufacturing method thereof
JP4038498B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP2003023099A (en) Field effect transistor
JP2000299479A (en) Schottky diode and manufacture thereof
JP2006332230A (en) Schottky barrier diode and method of manufacturing the same
JPS6015970A (en) Semiconductor device
JP2006073923A (en) SiC SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD FOR SiC SEMICONDUCTOR DEVICE