JPH0864218A - Operating method for solid high polymer electrolyte fuel cell - Google Patents

Operating method for solid high polymer electrolyte fuel cell

Info

Publication number
JPH0864218A
JPH0864218A JP6200398A JP20039894A JPH0864218A JP H0864218 A JPH0864218 A JP H0864218A JP 6200398 A JP6200398 A JP 6200398A JP 20039894 A JP20039894 A JP 20039894A JP H0864218 A JPH0864218 A JP H0864218A
Authority
JP
Japan
Prior art keywords
fuel cell
polymer electrolyte
humidifier
solid polymer
electrolyte fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6200398A
Other languages
Japanese (ja)
Inventor
Hiroshi Kusunoki
啓 楠
Saneji Otsuki
実治 大槻
Shinichi Maruyama
晋一 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Fuji Electric Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Fuji Electric Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP6200398A priority Critical patent/JPH0864218A/en
Publication of JPH0864218A publication Critical patent/JPH0864218A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

PURPOSE: To provide a solid high polymer electrolyte fuel cell preventing a solid high polymer electrolyte film from being excessively dried or wetted and easy to start. CONSTITUTION: The fuel gas and air reaction gas humidified via humidifiers 24, 25 are fed to the fuel electrode 22 and air electrode 23 of a solid high polymer electrolyte fuel cell 21 respectively. The humidifiers 24, 25 are heat- exchanged with the reaction gas discharged from the solid high polymer electrolyte fuel cell and heated at this time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は固体高分子電解質型燃
料電池の運転方法に係り、特に加湿器の温度制御方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a solid polymer electrolyte fuel cell, and more particularly to a method for controlling the temperature of a humidifier.

【0002】[0002]

【従来の技術】固体高分子電解質型燃料電池は固体高分
子電解質膜の二つの主面にそれぞれ電極であるアノード
とカソードを配して形成される。アノードまたはカソー
ドの各電極は電極基材上に電極触媒層を配している。固
体高分子電解質膜はスルホン酸基を持つポリスチレン系
の陽イオン交換膜をカチオン導電性膜として使用したも
の、フロロカーボンスルホン酸とポリビニリデンフロラ
イドの混合膜、あるいはフロロカーボンマトリックスに
トリフロロエチレンをグラフト化したものなどが知られ
ているが最近ではパーフロロカーボンスルホン酸膜を用
いて燃料電池の長寿命化を図ったものが知られるに至っ
た。
2. Description of the Related Art A solid polymer electrolyte fuel cell is formed by disposing an anode and a cathode, which are electrodes, on two main surfaces of a solid polymer electrolyte membrane. Each electrode of the anode or the cathode has an electrode catalyst layer arranged on an electrode base material. The solid polymer electrolyte membrane uses polystyrene type cation exchange membrane with sulfonic acid group as cation conductive membrane, mixed membrane of fluorocarbon sulfonic acid and polyvinylidene fluoride, or trifluoroethylene grafted on fluorocarbon matrix. However, recently, a perfluorocarbon sulfonic acid membrane has been used to extend the life of the fuel cell.

【0003】固体高分子電解質膜は分子中にプロトン
(水素イオン)交換基を有し、飽和に含水させることに
より常温で20Ω・cm以下の比抵抗を示しプロトン導
電性電解質として機能する。飽和含水量は温度によって
可逆的に変化する。電極基材は多孔質体で燃料電池の反
応ガス供給手段または反応ガス排出手段および集電体と
して機能する。アノード(燃料極)またはカソード(空
気極)の電極においては三相界面が形成され電気化学反
応が起こる。
The solid polymer electrolyte membrane has a proton (hydrogen ion) exchange group in the molecule, and when it is saturated with water, it exhibits a specific resistance of 20 Ω · cm or less at room temperature and functions as a proton conductive electrolyte. The saturated water content changes reversibly with temperature. The electrode base material is a porous body and functions as a reaction gas supply means or a reaction gas discharge means and a current collector of the fuel cell. At the anode (fuel electrode) or cathode (air electrode) electrode, a three-phase interface is formed and an electrochemical reaction occurs.

【0004】アノードでは(1)式の反応が起こる。 H2 =2H+ +2e (1) カソードでは(2)式の反応が起こる。 1/2O2 +2H+ +2e=H2 O (2) つまりアノードにおいては系の外部より供給された水素
がプロトンと電子を生成する。生成したプロトンはイオ
ン交換膜中をカソードに向かって移動し電子は外部回路
を通ってカソードに移動する。一方カソードにおいては
系の外部より供給された酸素とイオン交換膜中をアノー
ドより移動してきたプロトンと外部回路より移動してき
た電子が反応し、水を生成する。
At the anode, the reaction of the formula (1) occurs. H 2 = 2H + + 2e (1) At the cathode, the reaction of the formula (2) occurs. 1 / 2O 2 + 2H + + 2e = H 2 O (2) That is, at the anode, hydrogen supplied from the outside of the system produces protons and electrons. The generated protons move toward the cathode in the ion exchange membrane, and the electrons move to the cathode through an external circuit. On the other hand, in the cathode, oxygen supplied from the outside of the system reacts with protons moving from the anode in the ion exchange membrane and electrons moving from the external circuit to generate water.

【0005】図5は固体高分子電解質型燃料電池を示す
断面図である。電極基材の上に電極触媒層が積層されて
燃料極2または空気極3が構成される。電極2または3
は固体高分子電解質膜(固体高分子膜,高分子膜ともい
う)1の両主面にホットプレスにより密着して配置され
る。電極の配置された固体高分子電解質膜1は集電子
4,5を介してガスセパレータ8,9により挟持され
る。集電子4,5を介してガスセパレータ8,9は図示
しないが冷却水を通流させるための冷却水通路が設けら
れる。集電子4の内部には燃料通路6が設けられて燃料
ガスが、また集電子5の内部には空気通路7が設けられ
て酸化剤ガスである空気が流される。ガスセパレータ
8,9は酸化剤ガスと燃料ガスを相互に分離する。
FIG. 5 is a sectional view showing a solid polymer electrolyte fuel cell. The electrode catalyst layer is laminated on the electrode base material to form the fuel electrode 2 or the air electrode 3. Electrode 2 or 3
Is placed on both main surfaces of a solid polymer electrolyte membrane (also referred to as a solid polymer membrane or polymer membrane) by hot pressing. The solid polymer electrolyte membrane 1 on which the electrodes are arranged is sandwiched by the gas separators 8 and 9 via the current collectors 4 and 5. Although not shown, the gas separators 8 and 9 are provided with cooling water passages for passing cooling water through the current collectors 4 and 5. A fuel passage 6 is provided inside the current collector 4 to flow fuel gas, and an air passage 7 is provided inside the current collector 5 to flow air as an oxidant gas. The gas separators 8 and 9 separate the oxidant gas and the fuel gas from each other.

【0006】このような固体高分子電解質型燃料電池は
固体高分子電解質のイオン伝導性が高いために従来のリ
ン酸型の燃料電池に比し高い出力密度の電池となる。ま
たこの燃料電池はその定常運転温度が一般的に60ない
し100℃であるために室温付近におけるイオン伝導率
が他の燃料電池程低くなく室温からも負荷運転できる特
徴を持っている。
Such a solid polymer electrolyte fuel cell has a higher power density than a conventional phosphoric acid fuel cell because the solid polymer electrolyte has a high ionic conductivity. Further, since the steady operating temperature of this fuel cell is generally 60 to 100 ° C., the ionic conductivity near room temperature is not so low as that of other fuel cells, and the fuel cell can be operated under load from room temperature.

【0007】固体高分子電解質膜1はその内部に水を包
含しており、電解質として機能するばかりでなく燃料ガ
スと酸化剤ガスが相互に混合するクロスリークを防止す
る。しかしながら上述のような従来の固体高分子電解質
型燃料電池にあっては固体高分子電解質膜の伝導性は膜
の湿潤性に大きく左右されるために乾燥空気にさらされ
ると膜が乾燥して導電性が悪くなる。即ちこの燃料電池
では乾燥した反応ガスが供給されると、高分子膜の乾燥
により、イオン導電率の低下による内部抵抗の増大によ
り、燃料電池の特性が低下する。
Since the solid polymer electrolyte membrane 1 contains water inside, it not only functions as an electrolyte, but also prevents cross-leakage in which fuel gas and oxidant gas are mixed with each other. However, in the conventional solid polymer electrolyte fuel cell as described above, the conductivity of the solid polymer electrolyte membrane is greatly influenced by the wettability of the membrane, and therefore the membrane will dry and become conductive when exposed to dry air. The sex becomes worse. That is, in this fuel cell, when a dry reaction gas is supplied, the characteristics of the fuel cell deteriorate due to the drying of the polymer film and the increase in internal resistance due to the decrease in ionic conductivity.

【0008】この乾燥状態が継続されると、高分子膜の
体積減少により、高分子膜と電極,電極と集電子間の電
気的接触がわるくなり、燃料電池の特性が低下する。従
って固体高分子電解質型燃料電池においては反応ガスを
加湿して供給している。図6は従来の加湿器を含む固体
高分子電解質型燃料電池を示す配置図である。この加湿
器12,12Aは水中に反応ガスを通過して加湿するも
のである。加湿器は一定の温度に制御されており所定の
飽和蒸気圧の反応ガスが燃料電池のセル21に供給され
る。加湿器12,12Aの温度は温度調節器11,13
により温度T1,2 に制御される。
When the dry state is continued, the volume of the polymer film is reduced, so that the electrical contact between the polymer film and the electrode and between the electrode and the current collector becomes poor, and the characteristics of the fuel cell deteriorate. Therefore, in the solid polymer electrolyte fuel cell, the reaction gas is humidified and supplied. FIG. 6 is a layout view showing a solid polymer electrolyte fuel cell including a conventional humidifier. The humidifiers 12 and 12A are for humidifying by passing a reaction gas in water. The humidifier is controlled at a constant temperature, and a reaction gas having a predetermined saturated vapor pressure is supplied to the cells 21 of the fuel cell. The temperature of the humidifier 12, 12A is controlled by the temperature controller 11, 13
Are controlled to temperatures T 1 and T 2 .

【0009】図7は従来の散水型の加湿器を示す配置図
である。加湿タンク14に収納された補給水はポンプ1
5により汲み上げられて加湿器16の上部から散水され
る。反応ガスは所定の水蒸気圧に加湿されて燃料電池に
供給される。加湿量の制御は従来加湿器の温度を所定の
温度に設定することにより行われた
FIG. 7 is a layout showing a conventional water spray type humidifier. Make-up water stored in the humidification tank 14 is pump 1
5 is pumped up and sprinkled with water from the upper part of the humidifier 16. The reaction gas is humidified to a predetermined water vapor pressure and supplied to the fuel cell. The control of the amount of humidification was performed by setting the temperature of the humidifier to a predetermined temperature.

【0010】。[0010]

【発明が解決しようとする課題】しかしながらこのよう
な従来の加湿方法では例えば水温を70℃に制御した場
合は運転温度を室温から上昇させると加湿量が高すぎる
ためにセル内部で水蒸気が凝縮し、電極中の触媒層が水
で濡れて電極反応が円滑に進行しなくなる。また室温か
らの運転に備えて、加湿器の設定温度を低く設定すると
室温付近では問題はないがセルの温度が高くなると反応
ガスの加湿量が低く結果として乾燥したガスをセルに供
給することとなり、燃料電池の良好な始動ができないと
いう問題があった。加湿器の設定温度をセル温度に対応
して変化させる方法を採用したがセル運転が大変煩雑で
ある上に熱源として電気を利用するために電池により発
電したエネルギを消費することとなりエネルギの総合効
率が低下するという問題があった。
However, in such a conventional humidifying method, for example, when the water temperature is controlled at 70 ° C., when the operating temperature is raised from room temperature, the amount of humidification is too high and the water vapor condenses inside the cell. The catalyst layer in the electrode gets wet with water, and the electrode reaction does not proceed smoothly. In addition, if the set temperature of the humidifier is set low to prepare for operation from room temperature, there will be no problem near room temperature, but if the temperature of the cell rises, the humidification amount of the reaction gas will be low and as a result dry gas will be supplied to the cell. However, there is a problem that the fuel cell cannot be started properly. We adopted the method of changing the set temperature of the humidifier according to the cell temperature, but the cell operation is very complicated and the energy generated by the battery is consumed because electricity is used as a heat source. There was a problem that it decreased.

【0011】この発明は上述の点に鑑みてなされ、その
目的は固体高分子電解質型燃料電池の運転における加湿
器の温度制御方法を改良して容易且つ安定した始動が可
能な上にエネルギ効率にも優れる固体高分子電解質型燃
料電池の運転方法を提供することにある。
The present invention has been made in view of the above points, and an object thereof is to improve the temperature control method of the humidifier in the operation of the solid polyelectrolyte fuel cell to enable easy and stable starting and to improve energy efficiency. Another object of the present invention is to provide a method for operating a solid polymer electrolyte fuel cell, which is excellent.

【0012】[0012]

【課題を解決するための手段】上述の目的はこの発明に
よれば固体高分子電解質膜と、電極と、ガスセパレータ
を有する固体高分子電解質型燃料電池に加湿器を介して
加湿された燃料ガスと酸化剤ガスの反応ガスをそれぞれ
供給する固体高分子電解質型燃料電池の運転方法におい
て、加湿器を固体高分子電解質型燃料電池からの排熱媒
体と熱交換させて加熱するとすることにより達成され
る。
According to the present invention, the above object is to provide a solid polymer electrolyte fuel cell having a solid polymer electrolyte membrane, an electrode, and a gas separator with a humidified fuel gas through a humidifier. In a method for operating a solid polymer electrolyte fuel cell, which supplies reaction gases of an oxidizer gas and an oxidant gas, the humidifier is heated by exchanging heat with an exhaust heat medium from the solid polymer electrolyte fuel cell. It

【0013】この際に排熱媒体は固体高分子電解質型燃
料電池の排出ガスと冷却水のうちの少なくとも一つを用
いる。さらに排熱媒体は加湿器を通流する前の反応ガス
と、通流したあとの反応ガスの少なくとも一つと熱交換
させることが有効である。
At this time, as the exhaust heat medium, at least one of the exhaust gas of the solid polymer electrolyte fuel cell and the cooling water is used. Further, it is effective that the exhaust heat medium exchanges heat with the reaction gas before flowing through the humidifier and at least one of the reaction gas after flowing through.

【0014】[0014]

【作用】加湿器を固体高分子電解質型燃料電池からの排
熱媒体と熱交換させて加熱すると加湿器の温度が燃料電
池の運転温度と連動することとなり反応ガス中の水蒸気
圧が固体高分子電解質からの水分の乾燥を防止するに必
要な最適の蒸気圧に常時制御される。
[Function] When the humidifier is heated by exchanging heat with the exhaust heat medium from the solid polymer electrolyte fuel cell, the temperature of the humidifier will be linked to the operating temperature of the fuel cell, and the water vapor pressure in the reaction gas will be the solid polymer. It is constantly controlled to the optimum vapor pressure required to prevent the water from drying out from the electrolyte.

【0015】加湿器の加熱に排熱を利用するので発電に
よる電気を消費しない。さらに排熱媒体は加湿器を通流
する前の反応ガスと、通流したあとの反応ガスの少なく
とも一つと熱交換させると排熱の利用の効率が促進され
る。
Since waste heat is used for heating the humidifier, electricity generated by power generation is not consumed. Further, when the exhaust heat medium exchanges heat with the reaction gas before flowing through the humidifier and at least one of the reaction gases after flowing through the humidifier, the efficiency of utilization of exhaust heat is promoted.

【0016】[0016]

【実施例】次にこの発明の実施例を図面に基いて説明す
る。 実施例1 図1はこの発明の実施例に係る固体高分子電解質型燃料
電池システムを示す構成図である。
Embodiments of the present invention will now be described with reference to the drawings. Example 1 FIG. 1 is a configuration diagram showing a solid polymer electrolyte fuel cell system according to an example of the present invention.

【0017】燃料極22を通流した燃料ガスは加湿器2
4において熱交換し加湿器24を加熱する。加湿器にお
いて燃料ガスは加熱された温度に対応する水蒸気圧の水
分を含む。空気極においても同様のことが起こる。この
ようにして反応ガスの水蒸気圧は燃料電池の運転温度に
対応した水蒸気圧となり反応ガスが乾燥したり過剰の水
分を含むことがなくなる。 実施例2 図2はこの発明の異なる実施例に係る固体高分子電解質
型燃料電池システムを示す構成図である。
The fuel gas flowing through the fuel electrode 22 is humidified by the humidifier 2.
In 4 the heat is exchanged and the humidifier 24 is heated. In the humidifier, the fuel gas contains water having a water vapor pressure corresponding to the heated temperature. The same thing happens at the cathode. In this way, the water vapor pressure of the reaction gas becomes the water vapor pressure corresponding to the operating temperature of the fuel cell, and the reaction gas does not dry or contain excess water. Example 2 FIG. 2 is a configuration diagram showing a solid polymer electrolyte fuel cell system according to another example of the present invention.

【0018】この場合は反応排ガスは加湿器と熱交換す
ることがない。排出反応ガスに替わって燃料電池の冷却
水が加湿器の加熱に利用される。冷却水は燃料ガスの加
湿器26を経て空気極23の加湿器27へと循環する。
燃料ガスの加湿器26は空気極23の加湿器27よりも
温度が高くなるので燃料ガス中の水蒸気圧は空気中の水
蒸気圧よりも高くなる。燃料極は空気極に比して水分が
少なくなるので上述のような水蒸気圧の分配は燃料電池
の運転を安定化する。 実施例3 図3はこの発明のさらに異なる実施例に係る固体高分子
電解質型燃料電池システムを示す構成図である。
In this case, the reaction exhaust gas does not exchange heat with the humidifier. Instead of the exhaust reaction gas, the cooling water of the fuel cell is used to heat the humidifier. The cooling water circulates through the fuel gas humidifier 26 to the humidifier 27 of the air electrode 23.
Since the humidifier 26 for the fuel gas has a higher temperature than the humidifier 27 for the air electrode 23, the water vapor pressure in the fuel gas becomes higher than the water vapor pressure in the air. Since the fuel electrode has less water than the air electrode, the distribution of the water vapor pressure as described above stabilizes the operation of the fuel cell. Embodiment 3 FIG. 3 is a constitutional view showing a solid polymer electrolyte fuel cell system according to still another embodiment of the present invention.

【0019】この場合は排出ガスと冷却水の両方が加湿
器を加熱する。燃料極の加湿器28は燃料排ガスにより
加熱されるが空気極の加湿器29は空気排ガスと冷却水
により加熱される。この場合には排熱の利用効率がより
高まる。 実施例4 図4はこの発明のさらに異なる実施例に係る固体高分子
電解質型燃料電池システムを示す構成図である。
In this case, both the exhaust gas and the cooling water heat the humidifier. The fuel electrode humidifier 28 is heated by the fuel exhaust gas, while the air electrode humidifier 29 is heated by the air exhaust gas and the cooling water. In this case, the utilization efficiency of exhaust heat is further enhanced. Embodiment 4 FIG. 4 is a constitutional view showing a solid polymer electrolyte fuel cell system according to a further embodiment of the present invention.

【0020】加湿器30は前段の熱交換器32と後段の
熱交換器33を有する。加湿器31は同様に前段の熱交
換器34と後段の熱交換器35を有する。前段の熱交換
器は反応ガス中の水分の凝結を防止する。後段の熱交換
器は反応ガスを予熱する。前段の熱交換器32,34と
後段の熱交換器33,35を設けると排熱利用の熱効率
が向上する。
The humidifier 30 has a front heat exchanger 32 and a rear heat exchanger 33. The humidifier 31 also has a heat exchanger 34 in the front stage and a heat exchanger 35 in the rear stage. The former heat exchanger prevents the condensation of water in the reaction gas. The latter heat exchanger preheats the reaction gas. When the heat exchangers 32 and 34 in the front stage and the heat exchangers 33 and 35 in the rear stage are provided, the thermal efficiency of utilizing the exhaust heat is improved.

【0021】[0021]

【発明の効果】この発明によれば加湿器を固体高分子電
解質型燃料電池からの排熱媒体と熱交換させて加熱する
ので加湿器の温度が燃料電池の運転温度と連動すること
となり反応ガス中の水蒸気圧が固体高分子電解質からの
水分の乾燥を防止するに必要な最適の蒸気圧に常時制御
され燃料電池の始動から定常運転への移行が滑らかに進
行し始動容易な固体高分子電解質型燃料電池が得られ
る。
According to the present invention, since the humidifier is heated by exchanging heat with the exhaust heat medium from the solid polymer electrolyte fuel cell, the temperature of the humidifier is linked to the operating temperature of the fuel cell. The water vapor pressure inside is constantly controlled to the optimum vapor pressure required to prevent the water from drying out from the solid polymer electrolyte, and the transition from the start of the fuel cell to the steady operation proceeds smoothly and the solid polymer electrolyte is easy to start. Type fuel cell is obtained.

【0022】排熱媒体は加湿器を通流する前の反応ガス
と、通流したあとの反応ガスの少なくとも一つと熱交換
させると排熱の利用の効率が促進され電池駆動により得
られた電気エネルギを消費することがないことと相まっ
てエネルギ効率の高い固体高分子電解質型燃料電池が得
られる。
When the exhaust heat medium is heat-exchanged with the reaction gas before flowing through the humidifier and at least one of the reaction gases after flowing through the humidifier, the efficiency of utilization of the exhaust heat is promoted and the electricity obtained by the battery drive is increased. A solid polymer electrolyte fuel cell with high energy efficiency can be obtained in combination with the fact that energy is not consumed.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例に係る固体高分子電解質型燃
料電池システムを示す構成図
FIG. 1 is a configuration diagram showing a solid polymer electrolyte fuel cell system according to an embodiment of the present invention.

【図2】この発明の異なる実施例に係る固体高分子電解
質型燃料電池システムを示す構成図
FIG. 2 is a configuration diagram showing a solid polymer electrolyte fuel cell system according to another embodiment of the present invention.

【図3】この発明のさらに異なる実施例に係る固体高分
子電解質型燃料電池システムを示す構成図
FIG. 3 is a configuration diagram showing a solid polymer electrolyte fuel cell system according to still another embodiment of the present invention.

【図4】この発明のさらに異なる実施例に係る固体高分
子電解質型燃料電池システムを示す構成図
FIG. 4 is a configuration diagram showing a solid polymer electrolyte fuel cell system according to still another embodiment of the present invention.

【図5】固体高分子電解質型燃料電池を示す断面図FIG. 5 is a sectional view showing a solid polymer electrolyte fuel cell.

【図6】従来の加湿器を含む固体高分子電解質型燃料電
池システムを示す構成図
FIG. 6 is a configuration diagram showing a solid polymer electrolyte fuel cell system including a conventional humidifier.

【図7】従来の散水型の加湿器を示す配置図FIG. 7 is a layout view showing a conventional sprinkler type humidifier.

【符号の説明】[Explanation of symbols]

1 高分子膜 2 燃料極 3 空気極 4 集電子 5 集電子 6 燃料通路 7 空気通路 8 ガスセパレータ 9 ガスセパレータ 10 セル 11 温度調節器 12 加湿器 12A 加湿器 13 温度調節器 14 加湿タンク 15 ポンプ 16 加湿器 1 Polymer Membrane 2 Fuel Electrode 3 Air Electrode 4 Current Collector 5 Current Collector 6 Fuel Passage 7 Air Passage 8 Gas Separator 9 Gas Separator 10 Cell 11 Temperature Controller 12 Humidifier 12A Humidifier 13 Temperature Controller 14 Humidification Tank 15 Pump 16 humidifier

───────────────────────────────────────────────────── フロントページの続き (72)発明者 丸山 晋一 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Shinichi Maruyama 1-1, Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】固体高分子電解質膜と、電極と、ガスセパ
レータを有する固体高分子電解質型燃料電池に加湿器を
介して加湿された燃料ガスと酸化剤ガスの反応ガスをそ
れぞれ供給する固体高分子電解質型燃料電池の運転方法
において、加湿器を、固体高分子電解質型燃料電池から
の排熱媒体と熱交換させて加熱することを特徴とする固
体高分子電解質型燃料電池の運転方法。
1. A solid polymer electrolyte membrane, an electrode, and a solid polymer electrolyte fuel cell having a gas separator, each of which supplies a humidified fuel gas and an oxidant gas reaction gas through a humidifier. A method for operating a polymer electrolyte fuel cell, comprising heating the humidifier by exchanging heat with an exhaust heat medium from the polymer electrolyte fuel cell.
【請求項2】請求項1記載の燃料電池において、排熱媒
体は固体高分子電解質型燃料電池の排出ガスと冷却水の
うちの少なくとも一つであることを特徴とする固体高分
子電解質型燃料電池の運転方法。
2. The solid polymer electrolyte fuel according to claim 1, wherein the exhaust heat medium is at least one of exhaust gas from the solid polymer electrolyte fuel cell and cooling water. How to operate the battery.
【請求項3】請求項1記載の燃料電池において、排熱媒
体は加湿器を通流する前の反応ガスと通流したあとの反
応ガスの少なくとも一つと熱交換するものであることを
特徴とする固体高分子電解質型燃料電池の運転方法。
3. The fuel cell according to claim 1, wherein the exhaust heat medium exchanges heat with at least one of the reaction gas before flowing through the humidifier and the reaction gas after flowing through the humidifier. Method for operating a solid polymer electrolyte fuel cell.
JP6200398A 1994-08-25 1994-08-25 Operating method for solid high polymer electrolyte fuel cell Pending JPH0864218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6200398A JPH0864218A (en) 1994-08-25 1994-08-25 Operating method for solid high polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6200398A JPH0864218A (en) 1994-08-25 1994-08-25 Operating method for solid high polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH0864218A true JPH0864218A (en) 1996-03-08

Family

ID=16423664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6200398A Pending JPH0864218A (en) 1994-08-25 1994-08-25 Operating method for solid high polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH0864218A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0831543A1 (en) * 1996-09-02 1998-03-25 Honda Giken Kogyo Kabushiki Kaisha Gas humidifying device for use with a fuel cell
WO2001048850A1 (en) * 1999-12-24 2001-07-05 Sanyo Electric Co., Ltd. Fuel cell power generating system
JP2002216814A (en) * 2001-01-22 2002-08-02 Honda Motor Co Ltd Fuel cell system equipped with humidifying part and humidifying method using same
EP1311014A1 (en) * 2000-08-10 2003-05-14 Sanyo Electric Co., Ltd. Fuel cell system
JP2004111397A (en) * 2002-09-18 2004-04-08 Modine Mfg Co Humidification of reactant stream in fuel cell
JP2006004748A (en) * 2004-06-17 2006-01-05 Sanyo Electric Co Ltd Cooling device of solid polymer type fuel cell
JP2006244786A (en) * 2005-03-01 2006-09-14 Kawamura Electric Inc Fuel cell
JP2008016376A (en) * 2006-07-07 2008-01-24 Sanyo Electric Co Ltd Humidifier tank for solid polymer electrolyte fuel cell
JP2012508947A (en) * 2008-11-05 2012-04-12 ベレノス・クリーン・パワー・ホールディング・アーゲー Fuel cell system including heat exchanger

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0831543A1 (en) * 1996-09-02 1998-03-25 Honda Giken Kogyo Kabushiki Kaisha Gas humidifying device for use with a fuel cell
WO2001048850A1 (en) * 1999-12-24 2001-07-05 Sanyo Electric Co., Ltd. Fuel cell power generating system
EP1311014A1 (en) * 2000-08-10 2003-05-14 Sanyo Electric Co., Ltd. Fuel cell system
EP1311014A4 (en) * 2000-08-10 2006-12-27 Sanyo Electric Co Fuel cell system
JP2002216814A (en) * 2001-01-22 2002-08-02 Honda Motor Co Ltd Fuel cell system equipped with humidifying part and humidifying method using same
JP2004111397A (en) * 2002-09-18 2004-04-08 Modine Mfg Co Humidification of reactant stream in fuel cell
JP2006004748A (en) * 2004-06-17 2006-01-05 Sanyo Electric Co Ltd Cooling device of solid polymer type fuel cell
JP4687867B2 (en) * 2004-06-17 2011-05-25 株式会社Eneosセルテック Cooling device for polymer electrolyte fuel cell
JP2006244786A (en) * 2005-03-01 2006-09-14 Kawamura Electric Inc Fuel cell
JP2008016376A (en) * 2006-07-07 2008-01-24 Sanyo Electric Co Ltd Humidifier tank for solid polymer electrolyte fuel cell
JP2012508947A (en) * 2008-11-05 2012-04-12 ベレノス・クリーン・パワー・ホールディング・アーゲー Fuel cell system including heat exchanger

Similar Documents

Publication Publication Date Title
JP3352716B2 (en) Solid polymer electrolyte fuel cell device
JP3111697B2 (en) Solid polymer electrolyte fuel cell
JPH1131520A (en) Solid high molecular type fuel cell
JP2008524813A (en) Operation of the fuel cell stack in summer and winter modes
JPH06338338A (en) Humidification of high polymer ion exchange film of fuel cell
JPH09180743A (en) Solid polymeric fuel cell
CN101210750A (en) Method for driving air-conditioner by utilizing fuel battery waste heat
JP3249282B2 (en) Solid polymer electrolyte fuel cell
JPH09283162A (en) Solid high molecular fuel cell
JP3147518B2 (en) Cell structure of solid polymer electrolyte fuel cell
JP3111682B2 (en) Solid polymer electrolyte fuel cell system
JPH0864218A (en) Operating method for solid high polymer electrolyte fuel cell
JP2001006698A (en) Solid polymer electrolyte fuel cell and manufacture of its diffusion layer
JP3337295B2 (en) Fuel cell system
JP5341624B2 (en) Fuel cell system
JP2000277128A (en) Solid polymer type fuel cell
JPH11214022A (en) Fuel cell power generating device
JPH08111231A (en) Solid high polymer electrolyte type fuel cell
CN101071878A (en) External gas humidifying device for fuel cell
JPH08306375A (en) Solid polymer type fuel sell
US6632555B2 (en) Proton electrolyte membrane fuel cell with anti-freeze coolant and humidifiers
JP2718239B2 (en) Solid polymer electrolyte fuel cell power generator
JPH0955218A (en) Fuel cell gas humidifying system and gas humidifying method
CN201440432U (en) External gas humidifier of fuel cell
JPH05190193A (en) Solid high polymeric electrolyte type fuel cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040721

A521 Written amendment

Effective date: 20040921

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20041020

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20050330

Free format text: JAPANESE INTERMEDIATE CODE: A02