JPH09180743A - Solid polymeric fuel cell - Google Patents

Solid polymeric fuel cell

Info

Publication number
JPH09180743A
JPH09180743A JP7334516A JP33451695A JPH09180743A JP H09180743 A JPH09180743 A JP H09180743A JP 7334516 A JP7334516 A JP 7334516A JP 33451695 A JP33451695 A JP 33451695A JP H09180743 A JPH09180743 A JP H09180743A
Authority
JP
Japan
Prior art keywords
fuel cell
polymer electrolyte
supplied
condenser
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7334516A
Other languages
Japanese (ja)
Inventor
Shinichi Maruyama
晋一 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7334516A priority Critical patent/JPH09180743A/en
Publication of JPH09180743A publication Critical patent/JPH09180743A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid polymeric fuel cell having the capability of properly humidifying reaction gas fed to a fuel cell body under th application of a simple configuration. SOLUTION: This fuel cell is formed to have the recirculation passage where almost all of hydrogen discharge gas delivered from the fuel electrode 12 of a fuel cell body 11, and oxygen discharge gas delivered from the air electrode 13 thereof are respectively made to joint externally supplied hydrogen or oxygen in pumps 14A and 14B after circulation through condensers 25A and 25B, and again supplied to the fuel electrode 12 and the air electrode 13. Also, the temperature of the condensers 25A and 25B is controlled with temperature controllers 20A and 20B, thereby controlling the moisture of gases supplied to the fuel electrode 12 and the air electrode 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、固体高分子膜を
電解質層として用いる固体高分子形燃料電池に係わり、
特に燃料電池本体へ供給される反応ガスを加湿する構成
に関する。
TECHNICAL FIELD The present invention relates to a polymer electrolyte fuel cell using a polymer electrolyte membrane as an electrolyte layer,
In particular, it relates to a configuration for humidifying a reaction gas supplied to the fuel cell main body.

【0002】[0002]

【従来の技術】図5は、固体高分子形燃料電池の基本構
成要素である単セルの一般的な構成を示す模式断面図で
ある。電解質層となるイオン導電性の高分子膜1の両主
面に、燃料極2と空気極3とが配され、さらに燃料極2
の外側の主面には燃料ガス流路6を備えた集電子4が、
また空気極3の外側の主面には空気流路7を備えた集電
子5が配設されており、ガスセパレータ8、9により隣
接する単セルとの間が分離されている。本構成におい
て、燃料ガス流路6および空気流路7に、それぞれ燃料
ガス、例えば水素と、空気あるいは酸素を通流させる
と、高分子膜1と燃料極2、空気極3との界面において
電気化学反応が生じ発電されることとなる。
2. Description of the Related Art FIG. 5 is a schematic cross-sectional view showing a general structure of a single cell which is a basic constituent element of a polymer electrolyte fuel cell. A fuel electrode 2 and an air electrode 3 are arranged on both main surfaces of an ion-conductive polymer film 1 serving as an electrolyte layer.
A current collector 4 having a fuel gas channel 6 is provided on the outer main surface of the
A current collector 5 having an air flow path 7 is disposed on the outer main surface of the air electrode 3, and gas separators 8 and 9 separate the adjacent single cells. In this configuration, when a fuel gas such as hydrogen and air or oxygen are passed through the fuel gas flow path 6 and the air flow path 7, respectively, electricity is generated at the interface between the polymer membrane 1, the fuel electrode 2 and the air electrode 3. A chemical reaction occurs and electricity is generated.

【0003】この固体高分子形燃料電池は、電解質層と
して用いられるイオン導電性の高分子膜1のイオン導電
率が高いため、従来のりん酸形燃料電池や溶融炭酸塩形
燃料電池などと比べて高出力密度を得ることができる。
また、本固体高分子形燃料電池では、定常運転温度は一
般的に 60 〜100 ℃程度であるが、室温付近におけるイ
オン導電率が他の燃料電池に比べて高く、室温から負荷
運転できるという特長がある。また、燃料ガスとして水
素を使用し、酸化剤ガスとして酸素を使用すれば、特に
高い出力密度が得られるので、据え置き用の燃料電池の
みならず移動用の燃料電池としても極めて効果的であ
る。
In this polymer electrolyte fuel cell, since the ion conductive polymer membrane 1 used as the electrolyte layer has a high ionic conductivity, it is different from conventional phosphoric acid fuel cells and molten carbonate fuel cells. It is possible to obtain high power density.
In addition, in this solid polymer electrolyte fuel cell, the steady-state operating temperature is generally about 60 to 100 ℃, but the ionic conductivity near room temperature is higher than other fuel cells, and it is possible to operate under load from room temperature. There is. Further, when hydrogen is used as the fuel gas and oxygen is used as the oxidant gas, a particularly high output density can be obtained, so that it is extremely effective not only as a stationary fuel cell but also as a mobile fuel cell.

【0004】この水素と酸素を用いる固体高分子形燃料
電池においては、水素と酸素を効果的に使用するため
に、電池本体より排出される排出ガスの過半を、外部よ
り供給される水素あるいは酸素と混合し、再び電池本体
へと供給して使用する再循環方式が一般的に用いられ
る。一方、高分子膜の導電性は膜の湿潤度に大きく影響
され、乾燥気体中に暴露されると、高分子膜の水分が蒸
発し、膜が乾燥して導電性が低下する。すなわち、反応
ガスである燃料ガスや酸素、空気等の酸化剤ガスを乾燥
した状態で供給すると、高分子膜が乾燥してイオン導電
率が低下し、これに伴って内部抵抗が増加し、燃料電池
特性が低下することとなる。さらに、この乾燥状態が促
進されると、高分子膜の体積の縮小が生じるので、高分
子膜1と燃料極2あるいは空気極3との間、燃料極2と
集電子4との間、空気極3と集電子5との間の接触が悪
くなり、電極反応の不良や集電の不良を引き起こして、
燃料電池としての機能を果たさなくなる。したがって、
従来の固体高分子形燃料電池においては、これらの事態
の発生を防止するために、反応ガスの供給回路に加湿器
を組み込み、加湿して供給する方法が採られている。
In the polymer electrolyte fuel cell using hydrogen and oxygen, in order to effectively use hydrogen and oxygen, a majority of the exhaust gas discharged from the cell body is supplied with hydrogen or oxygen supplied from the outside. A recirculation method is generally used in which the recirculation method is used by mixing with, and supplying again to the battery body. On the other hand, the conductivity of the polymer film is greatly affected by the wettability of the film, and when exposed to a dry gas, the water content of the polymer film evaporates, the film dries and the conductivity decreases. That is, when a reactant gas such as fuel gas or oxygen, or an oxidant gas such as air is supplied in a dry state, the polymer membrane dries and the ionic conductivity decreases, and the internal resistance increases accordingly, and the fuel The battery characteristics will deteriorate. Further, when the dry state is promoted, the volume of the polymer film is reduced, so that the air between the polymer film 1 and the fuel electrode 2 or the air electrode 3, between the fuel electrode 2 and the current collector 4, and the air. The contact between the electrode 3 and the current collector 5 deteriorates, causing poor electrode reaction and poor current collection.
It will no longer function as a fuel cell. Therefore,
In the conventional polymer electrolyte fuel cell, in order to prevent such a situation from occurring, a method of incorporating a humidifier in a reaction gas supply circuit and humidifying and supplying it is adopted.

【0005】図6は、従来の固体高分子形燃料電池の反
応ガス供給回路の基本構成の一例を示すフロー図であ
る。本構成においては、燃料電池本体11の燃料極12
より排出された排出ガスの過半は、凝縮器15Aへと送
られて過剰の水分を除去されたのち、ポンプ14Aにお
いて加湿器16Aで加湿されて供給される水素と合流
し、再び燃料電池本体11の燃料極12へと送られる。
同様に、空気極13より排出された排出ガスの過半は、
凝縮器15Bへと送られて過剰の水分を除去されたの
ち、ポンプ14Bにおいて加湿器16Bで加湿されて供
給される酸素と合流し、再び燃料電池本体11の空気極
13へと送られる。本構成において用いられる加湿器1
6A、16Bには、反応ガスを水中を通して通流させ加
湿する方式の加湿器や、反応ガスに水を散水して加湿す
る方式の加湿器などが用いられる。
FIG. 6 is a flow chart showing an example of the basic structure of a reaction gas supply circuit of a conventional polymer electrolyte fuel cell. In this configuration, the fuel electrode 12 of the fuel cell body 11 is
The majority of the exhaust gas discharged from the exhaust gas is sent to the condenser 15A to remove excess water, and then combined with hydrogen supplied by being humidified by the humidifier 16A in the pump 14A and supplied again to the fuel cell main body 11 Is sent to the fuel electrode 12.
Similarly, the majority of the exhaust gas discharged from the air electrode 13 is
After being sent to the condenser 15B to remove excess water, the pump 14B joins with the oxygen supplied by the humidifier 16B and then sent to the air electrode 13 of the fuel cell main body 11 again. Humidifier 1 used in this configuration
As 6A and 16B, a humidifier of a type in which a reaction gas is caused to flow through water to humidify it, a humidifier of a type in which water is sprayed to the reaction gas to humidify it, and the like are used.

【0006】図7は、従来の固体高分子形燃料電池の反
応ガス供給回路の基本構成の他の例を示すフロー図であ
る。本構成においては、燃料極12より排出された排出
ガスの過半は、凝縮器15Aで過剰の水分を除去された
のち、ポンプ14Aにおいて外部より送られる水分量の
微量な水素と合流し、加湿器16Aで加湿されて再び燃
料極12へと送られる。同様に、空気極13より排出さ
れた排出ガスの過半も、ポンプ14Bにおいて外部より
供給された水分量の微量な酸素と合流したのち、加湿器
16Bで加湿され空気極13へと送られる。この構成に
おいて用いられる加湿器16A、16Bは、圧力損失が
少ないことが必要となるので、水分を透過する膜の片面
に水を通流させ、その反対面に反応ガスを送って加湿す
る膜加湿方式が一般的に用いられている。
FIG. 7 is a flow chart showing another example of the basic configuration of the reaction gas supply circuit of the conventional polymer electrolyte fuel cell. In the present configuration, a majority of the exhaust gas discharged from the fuel electrode 12 is combined with the trace amount of hydrogen sent from the outside in the pump 14A after the excess water is removed by the condenser 15A, and the humidifier is then supplied. It is humidified by 16 A and sent to the fuel electrode 12 again. Similarly, a majority of the exhaust gas discharged from the air electrode 13 joins with a small amount of oxygen having a water content supplied from the outside in the pump 14B, and then is humidified by the humidifier 16B and sent to the air electrode 13. Since the humidifiers 16A and 16B used in this configuration are required to have a small pressure loss, water is allowed to flow through one side of a membrane that permeates moisture, and a reaction gas is sent to the opposite side to humidify the membrane. The method is commonly used.

【0007】これらの構成においては、加湿器16A、
16Bの水の温度を制御することによって加湿量を制御
し、供給する反応ガスを飽和水蒸気圧の近傍まで加湿す
る方法が採られている。
In these configurations, the humidifier 16A,
A method of controlling the humidification amount by controlling the temperature of the water of 16B and humidifying the supplied reaction gas to near the saturated steam pressure is adopted.

【0008】[0008]

【発明が解決しようとする課題】上記のように、従来の
固体高分子形燃料電池では、反応ガスの供給回路に加湿
器を組み込み、反応ガスを加湿して供給することによ
り、高分子膜を湿潤に保持し、所定のイオン導電率を維
持させる方法が採られている。しかしながら、これらの
方法においては、装置に加湿器を組み込む必要があるの
で、装置全体が大きくなり、重量も重くなってしまうと
いう難点がある。また、組み込んだ加湿器に供給する加
湿水には、通常反応水が用いられているが、反応水の戻
し配管の組み込み、加湿水の流量制御が必要となり、配
管系統の構成が複雑となってしまうという欠点がある。
As described above, in the conventional polymer electrolyte fuel cell, a humidifier is installed in the reaction gas supply circuit to humidify and supply the reaction gas to form a polymer membrane. A method of keeping it wet and maintaining a predetermined ionic conductivity is adopted. However, in these methods, since it is necessary to incorporate a humidifier in the device, there is a problem that the entire device becomes large and the weight becomes heavy. Although the reaction water is usually used as the humidification water supplied to the built-in humidifier, it is necessary to incorporate a reaction water return pipe and control the flow rate of the humidification water, which complicates the piping system configuration. There is a drawback that it ends up.

【0009】本発明は、上記のごとき従来技術の難点を
解消し、燃料電池本体に供給される反応ガスが簡便な構
成により的確に加湿される固体高分子形燃料電池を提供
することを目的とする。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide a polymer electrolyte fuel cell in which the reaction gas supplied to the fuel cell body is accurately humidified with a simple structure. To do.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明においては、 (1) 固体高分子膜を電解質層として用いる固体高分子形
燃料電池において、燃料電池本体から排出される排出ガ
スの少なくとも一部が、過剰な水分を除去する凝縮器に
通流されたのち、外部より供給される反応ガスと合流さ
れて、再び燃料電池本体へ供給される再循環回路を備
え、かつ、凝縮器に、通流するガスの温度を制御する温
度調整機能を備えることとし、燃料極へ供給される燃料
ガス系統と、空気極へ供給される酸化剤ガス系統とのう
ち、少なくともいずれか一方の系統に、上記の温度調整
機能を有する凝縮器を備えた再循環回路を備えることと
する。
In order to achieve the above object, in the present invention, (1) a solid polymer fuel cell using a solid polymer membrane as an electrolyte layer is discharged from a fuel cell main body. At least a part of the exhaust gas is passed through a condenser that removes excess water, then merged with a reaction gas supplied from the outside, and a recirculation circuit is supplied again to the fuel cell main body. , The condenser is provided with a temperature adjustment function for controlling the temperature of the flowing gas, and at least one of a fuel gas system supplied to the fuel electrode and an oxidant gas system supplied to the air electrode is provided. One system is provided with a recirculation circuit including the condenser having the above-mentioned temperature adjusting function.

【0011】(2) また、上記の固体高分子形燃料電池に
おいて、再循環回路に、温度調整機能を有する凝縮器を
通流した後の排出ガスを加熱し、露点以上に保持する機
能を有する熱交換器を備えることとし、例えば、燃料電
池本体から排出される排出ガスを加熱源として構成され
る熱交換器を備えることとする。 (3) さらに、上記の固体高分子形燃料電池において、凝
縮器を、外部より燃料電池本体へ供給される反応ガスを
冷媒として構成することとする。
(2) In the polymer electrolyte fuel cell described above, the recirculation circuit has a function of heating the exhaust gas after flowing through the condenser having a temperature adjusting function and keeping the exhaust gas above the dew point. A heat exchanger is provided, and for example, a heat exchanger configured by using exhaust gas discharged from the fuel cell main body as a heating source is provided. (3) Further, in the above-described polymer electrolyte fuel cell, the condenser is constituted by using a reaction gas supplied from the outside to the fuel cell main body as a refrigerant.

【0012】上記(1) のごとくにすれば、温度を制御す
ることにより凝縮器を通流するガスの水分が制御され、
外部より供給される反応ガスと合流して燃料電池本体へ
供給されるガスの水分が制御されることとなるので、従
来のように加湿器を用いなくとも、所定の湿潤なガスを
燃料電池本体へ供給できる。また、(2) のごとくにすれ
ば、凝縮器を通流したガスが加熱され、ガスの露点が上
昇するので、供給されるガスの水分が凝縮する危険性が
なく、安定して湿潤なガスを燃料電池本体へ供給できる
こととなる。
According to the above (1), by controlling the temperature, the moisture content of the gas flowing through the condenser is controlled,
Since the moisture content of the gas supplied to the fuel cell main body is controlled by joining with the reaction gas supplied from the outside, a predetermined moist gas can be supplied to the fuel cell main body without using a humidifier as in the conventional case. Can be supplied to. In addition, as in (2), the gas flowing through the condenser is heated, and the dew point of the gas rises, so there is no risk of the water content of the supplied gas condensing, and a stable, moist gas is obtained. Can be supplied to the fuel cell body.

【0013】また、(3) のごとくにすれば、凝縮器の冷
媒回路に冷却水を別途供給することなく、排気ガスを冷
却することができることとなる。
Further, according to (3), the exhaust gas can be cooled without separately supplying cooling water to the refrigerant circuit of the condenser.

【0014】[0014]

【発明の実施の形態】図1は、本発明の固体高分子形燃
料電池の第1の実施の形態の反応ガス供給系の基本構成
を示すフロー図である。本構成は、水素と酸素を反応ガ
スとして使用する固体高分子形燃料電池の反応ガス供給
系で、 75 ℃の運転温度で用いられる燃料電池本体11
の燃料極12より排出される水素系の排出ガス、および
空気極13より排出される酸素系の排出ガスの過半を、
それぞれ温度コントローラ20A、20Bにより温度制
御される凝縮器25A、25Bに通流させたのち、ポン
プ14A、14Bにおいて、外部より供給される水分量
の微量な水素、あるいは酸素と合流させ、再び燃料極1
2と空気極13とに供給する再循環回路を備えて構成さ
れている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a flow chart showing the basic constitution of a reaction gas supply system of a first embodiment of a polymer electrolyte fuel cell of the present invention. This configuration is a reaction gas supply system for a polymer electrolyte fuel cell that uses hydrogen and oxygen as reaction gases, and the fuel cell body 11 is used at an operating temperature of 75 ° C.
Of the hydrogen-based exhaust gas discharged from the fuel electrode 12 and the oxygen-based exhaust gas discharged from the air electrode 13 of
After passing through the condensers 25A and 25B whose temperatures are controlled by the temperature controllers 20A and 20B, respectively, the pumps 14A and 14B are combined with a minute amount of hydrogen or oxygen having a water content supplied from the outside, and then the fuel electrodes are recombined. 1
2 and the air electrode 13 are provided with a recirculation circuit.

【0015】本構成において、水素系の凝縮器25Aを
通流する再循環流量を外部より供給する流量の5倍と
し、凝縮器25Aを温度コントローラ20Aにより 65
℃に制御して運転するものとすれば、 65 ℃の飽和水蒸
気圧は 25.01 kPaであるので、燃料極12に供給される
ガスの飽和水蒸気圧は、その 5/6の 20.84 kPaとなり、
露点は 62 ℃に制御されることとなる。同様に、酸素系
の凝縮器25Bを通流する再循環流量を外部より供給す
る流量の4倍とし、凝縮器25Bを温度コントローラ2
0Bにより 60 ℃に制御して運転するものとすれば、空
気極13に供給されるガスの露点は 55 ℃に制御される
こととなる。
In this structure, the flow rate of recirculation flowing through the hydrogen-based condenser 25A is set to 5 times the flow rate supplied from the outside, and the condenser 25A is controlled by the temperature controller 20A.
Assuming that the operation is controlled at ℃, the saturated steam pressure at 65 ℃ is 25.01 kPa, so the saturated steam pressure of the gas supplied to the fuel electrode 12 is 5/6, which is 20.84 kPa.
The dew point will be controlled at 62 ° C. Similarly, the recirculation flow rate flowing through the oxygen-based condenser 25B is set to four times the flow rate supplied from the outside, and the condenser 25B is connected to the temperature controller 2
If the operation is performed by controlling the temperature to 60 ° C. by 0B, the dew point of the gas supplied to the air electrode 13 will be controlled to 55 ° C.

【0016】図2は、本発明の固体高分子形燃料電池の
第2の実施の形態の反応ガス供給系の基本構成を示すフ
ロー図である。本構成は、水素と空気を反応ガスとして
使用する固体高分子形燃料電池の反応ガス供給系で、空
気系は吹き抜け方式としているため加湿量が多いので従
来の加湿器を用いている。これに対して水素系は、第1
の実施の形態の水素系と同様に、排出ガスの過半を凝縮
器25Aに通流させ、凝縮器25Aを温度コントローラ
20Aにより温度制御して再循環させ、その水分量を制
御している。
FIG. 2 is a flow chart showing the basic constitution of the reaction gas supply system of the second embodiment of the polymer electrolyte fuel cell of the present invention. This structure is a reaction gas supply system for a polymer electrolyte fuel cell that uses hydrogen and air as reaction gases. Since the air system is a blow-by type, the humidification amount is large, so that the conventional humidifier is used. On the other hand, the hydrogen system is
Similar to the hydrogen system of the above embodiment, a majority of the exhaust gas is caused to flow through the condenser 25A, the temperature of the condenser 25A is controlled by the temperature controller 20A, and the condenser 25A is recirculated to control the amount of water.

【0017】本構成において、燃料電池本体11を 75
℃の運転温度で使用し、水素系の凝縮器25Aを通流す
る再循環流量を外部より供給する流量の8倍とすると
き、凝縮器25Aを 70 ℃に制御して運転すれば、燃料
極12に供給されるガスの飽和水蒸気圧は 27.70 kPaと
なり、露点は 67 ℃に制御される。また、 60 ℃に制御
して運転すれば、燃料極12に供給されるガスの飽和水
蒸気圧は 17.25 kPaとなり、露点は 57 ℃に制御され
る。すなわち、凝縮器25Aの温度を温度コントローラ
20Aによって制御することにより、燃料極12に供給
されるガスの露点が自由に制御でき、燃料電池本体11
の運転温度以下の必要な加湿露点に調整して、所要の加
湿ガスを供給することができる。
In this structure, the fuel cell main body 11 is
When operating at an operating temperature of ℃, and when the recirculation flow rate through the hydrogen-based condenser 25A is 8 times the flow rate supplied from the outside, if the condenser 25A is operated at 70 ℃, the fuel electrode The saturated vapor pressure of the gas supplied to 12 is 27.70 kPa, and the dew point is controlled at 67 ° C. Also, if the operation is controlled at 60 ° C, the saturated vapor pressure of the gas supplied to the fuel electrode 12 becomes 17.25 kPa, and the dew point is controlled at 57 ° C. That is, by controlling the temperature of the condenser 25A by the temperature controller 20A, the dew point of the gas supplied to the fuel electrode 12 can be freely controlled, and the fuel cell main body 11
The required humidifying gas can be supplied by adjusting the humidifying dew point to the required operating temperature or less.

【0018】なお、本構成では空気系は吹き抜け方式と
しているが、第1の実施の形態の酸素系と同様に、空気
極13より排出される排出ガスの過半を凝縮器に通流さ
せたのち、ポンプにおいて外部より供給される空気と合
流させ、再び空気極13へと供給する再循環回路を備え
て構成し、凝縮器を温度コントローラにより温度制御し
て加湿量を制御する方式とすることもできる。
In this configuration, the air system is a blow-by type, but like the oxygen system of the first embodiment, after the majority of the exhaust gas discharged from the air electrode 13 is passed through the condenser. Alternatively, the pump may be configured to have a recirculation circuit that merges with air supplied from the outside and supplies the air to the air electrode 13 again, and the condenser may be temperature-controlled by a temperature controller to control the humidification amount. it can.

【0019】図3は、本発明の固体高分子形燃料電池の
第3の実施の形態の反応ガス供給系の基本構成を示すフ
ロー図である。本構成は、水素と酸素を反応ガスとして
使用する固体高分子形燃料電池の反応ガス供給系で、図
1に示した第1の実施の形態との差異は、水素系の再循
環回路に、凝縮器25Aで冷却された排出ガスを加熱す
る熱交換器17Aが備えられ、さらに酸素系の再循環回
路に、凝縮器25Bで冷却された排出ガスを加熱する熱
交換器17Bが備えられている点にある。
FIG. 3 is a flow chart showing the basic structure of the reaction gas supply system of the third embodiment of the polymer electrolyte fuel cell of the present invention. This configuration is a reaction gas supply system for a polymer electrolyte fuel cell that uses hydrogen and oxygen as reaction gases. The difference from the first embodiment shown in FIG. 1 lies in the hydrogen system recirculation circuit. A heat exchanger 17A for heating the exhaust gas cooled by the condenser 25A is provided, and further, a heat exchanger 17B for heating the exhaust gas cooled by the condenser 25B is provided in the oxygen-based recirculation circuit. In point.

【0020】本構成を用いると、再循環されるガスの温
度が露点よりも高くなるので、含まれる水分が系内に凝
縮することなく供給され、加湿ガスが安定して供給でき
ることとなる。また、図に示した構成では、熱交換器1
7A、17Bは、燃料極12と空気極13から排出され
る高温の排出ガスを通流して加熱する方式としているの
で、特別に加熱源を設置する必要がなく、簡便に加熱す
ることができる。
With this structure, the temperature of the recirculated gas becomes higher than the dew point, so that the contained water is supplied without condensing in the system, and the humidified gas can be stably supplied. Further, in the configuration shown in the figure, the heat exchanger 1
Since 7A and 17B are of a type in which high-temperature exhaust gas discharged from the fuel electrode 12 and the air electrode 13 is used for heating, it is not necessary to install a special heating source and heating can be performed easily.

【0021】図4は、本発明の固体高分子形燃料電池の
第4の実施の形態の反応ガス供給系の基本構成を示すフ
ロー図である。本構成は、水素と酸素を反応ガスとして
使用する固体高分子形燃料電池の反応ガス供給系で、そ
の特徴は、外部から供給される水素を、水素系の再循環
回路に備えられた凝縮器25Aの冷却媒体として通流し
たのち燃料極12へと供給し、同様に、外部から供給さ
れる酸素を、酸素系の再循環回路に備えられた凝縮器2
5Bの冷却媒体として通流したのち空気極13へと供給
する構成とした点にある。気体による冷却効率は液体に
よるものに比べて一般的に劣るが、本反応ガス供給系で
凝縮器25A、25Bに必要とされる冷却能力は小さ
く、本構成により所要の冷却を行うことができる。この
ように外部から供給される水素や酸素を冷却媒体として
用いることとすれば、特別に冷媒を供給する必要がなく
なり、簡便な系で所要の冷却を得ることができる。
FIG. 4 is a flow chart showing the basic constitution of the reaction gas supply system of the fourth embodiment of the polymer electrolyte fuel cell of the present invention. This configuration is a reaction gas supply system for a polymer electrolyte fuel cell that uses hydrogen and oxygen as reaction gases, and its feature is that the hydrogen supplied from the outside is a condenser provided in a hydrogen recirculation circuit. After passing through as a cooling medium of 25 A, it is supplied to the fuel electrode 12, and similarly, oxygen supplied from the outside is supplied to the condenser 2 provided in the oxygen-based recirculation circuit.
The point is that the cooling medium of 5B flows through and then is supplied to the air electrode 13. Although the cooling efficiency by the gas is generally inferior to that by the liquid, the cooling capacity required for the condensers 25A and 25B in the present reaction gas supply system is small, and the required cooling can be performed by this configuration. If hydrogen or oxygen supplied from the outside is used as a cooling medium in this way, it is not necessary to supply a special refrigerant, and the required cooling can be obtained with a simple system.

【0022】なお、本構成では、水素系、酸素系の再循
環回路に熱交換器17A、17Bを備えた反応ガス供給
系の場合について例示しているが、熱交換器17A、1
7Bを備えない場合についてもどうようの効果が得られ
ることは図示するまでもなく明らかであり、また水素
系、酸素系の再循環回路のいずれか一方にのみ用いても
効果的である。
In the present configuration, the case of the reaction gas supply system having the heat exchangers 17A and 17B in the hydrogen-based and oxygen-based recirculation circuits is shown as an example.
It is obvious that the same effect can be obtained even when 7B is not provided, and it is also effective if it is used only in one of the hydrogen-based and oxygen-based recirculation circuits.

【0023】[0023]

【発明の効果】上述のように、本発明によれば、 (1) 固体高分子膜を電解質層として用いる固体高分子形
燃料電池において、燃料電池本体から排出される排出ガ
スの少なくとも一部が、過剰な水分を除去する凝縮器に
通流されたのち、外部より供給される反応ガスと合流さ
れて、再び燃料電池本体へ供給される再循環回路を備
え、かつ、凝縮器に、通流するガスの温度を制御する温
度調整機能を備えることとしたので、従来のように加湿
器を用いなくとも、燃料電池本体に供給される反応ガス
が簡便な構成により的確に加湿される固体高分子形燃料
電池が得られることとなった。
As described above, according to the present invention, (1) in a polymer electrolyte fuel cell using a polymer electrolyte membrane as an electrolyte layer, at least a part of the exhaust gas discharged from the fuel cell body is It is equipped with a recirculation circuit that is passed through a condenser that removes excess water, then merges with a reaction gas that is supplied from the outside, and is then fed back to the fuel cell main body. Since it is equipped with a temperature adjustment function to control the temperature of the gas to be used, the reaction gas supplied to the fuel cell body can be accurately humidified with a simple structure without the use of a humidifier as in the past. Form fuel cell can be obtained.

【0024】(2) さらに、再循環回路に、温度調整機能
を有する凝縮器を通流した後の排出ガスを加熱し、露点
以上に保持する機能を有する熱交換器を備えることと
し、例えば、燃料電池本体から排出される排出ガスを加
熱源として構成される熱交換器を備えることとすれば、
ガスの水分が凝縮することなく安定して燃料電池本体へ
供給されることとなるので、より好適である。
(2) Further, the recirculation circuit is provided with a heat exchanger having a function of heating the exhaust gas after passing through the condenser having a temperature adjusting function and keeping the exhaust gas at a temperature above the dew point. If a heat exchanger configured with the exhaust gas discharged from the fuel cell body as a heating source is provided,
This is more preferable because the water content of the gas is stably supplied to the fuel cell body without condensing.

【0025】(3) さらに、凝縮器を、外部より燃料電池
本体へ供給される反応ガスを冷媒として構成することと
すれば、冷媒回路に冷却水を別途供給する必要がなく、
より簡便な構成とすることができることとなる。
(3) Further, if the condenser is constituted by the reaction gas supplied from the outside to the fuel cell main body as a refrigerant, it is not necessary to separately supply the cooling water to the refrigerant circuit,
A simpler structure can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の固体高分子形燃料電池の第1の実施の
形態の反応ガス供給系の基本構成を示すフロー図
FIG. 1 is a flowchart showing a basic configuration of a reaction gas supply system of a first embodiment of a polymer electrolyte fuel cell of the present invention.

【図2】本発明の固体高分子形燃料電池の第2の実施の
形態の反応ガス供給系の基本構成を示すフロー図
FIG. 2 is a flow chart showing the basic configuration of a reaction gas supply system of a second embodiment of the polymer electrolyte fuel cell of the present invention.

【図3】本発明の固体高分子形燃料電池の第3の実施の
形態の反応ガス供給系の基本構成を示すフロー図
FIG. 3 is a flow diagram showing the basic configuration of a reaction gas supply system of a third embodiment of the polymer electrolyte fuel cell of the present invention.

【図4】本発明の固体高分子形燃料電池の第4の実施の
形態の反応ガス供給系の基本構成を示すフロー図
FIG. 4 is a flowchart showing the basic structure of a reaction gas supply system of a fourth embodiment of the polymer electrolyte fuel cell of the present invention.

【図5】固体高分子形燃料電池の単セルの一般的な構成
を示す模式断面図
FIG. 5 is a schematic sectional view showing a general configuration of a single cell of a polymer electrolyte fuel cell.

【図6】従来の固体高分子形燃料電池のガス供給系の基
本構成の一例を示すフロー図
FIG. 6 is a flowchart showing an example of a basic configuration of a gas supply system of a conventional polymer electrolyte fuel cell.

【図7】従来の固体高分子形燃料電池のガス供給系の基
本構成の他の例を示すフロー図
FIG. 7 is a flowchart showing another example of the basic configuration of the gas supply system of the conventional polymer electrolyte fuel cell.

【符号の説明】[Explanation of symbols]

1 高分子膜 2 燃料極 3 空気極 4 集電子 5 集電子 6 燃料ガス流路 7 空気流路 8 ガスセパレータ 9 ガスセパレータ 11 燃料電池本体 12 燃料極 13 空気極 14A,14B ポンプ 15A,15B 凝縮器 16 加湿器 16A,16B 加湿器 17A,17B 熱交換器 20A,20B 温度コントローラ 25A,25B 凝縮器 1 Polymer Membrane 2 Fuel Electrode 3 Air Electrode 4 Current Collector 5 Current Collector 6 Fuel Gas Channel 7 Air Channel 8 Gas Separator 9 Gas Separator 11 Fuel Cell Main Body 12 Fuel Electrode 13 Air Electrode 14A, 14B Pump 15A, 15B Condenser 16 Humidifier 16A, 16B Humidifier 17A, 17B Heat exchanger 20A, 20B Temperature controller 25A, 25B Condenser

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】固体高分子膜からなる電解質層の両主面に
燃料極と空気極とを配し、燃料極に燃料ガスを、また空
気極に酸化剤ガスを通流して電気化学反応により電気エ
ネルギーを得る固体高分子形燃料電池において、燃料電
池本体から排出される排出ガスの少なくとも一部が、過
剰な水分を除去する凝縮器に通流されたのち、外部より
供給される反応ガスと合流されて、再び燃料電池本体へ
供給される再循環回路を備え、かつ、凝縮器が、通流す
るガスの温度を制御する温度調整機能を有してなること
を特徴とする固体高分子形燃料電池。
1. A fuel electrode and an air electrode are disposed on both main surfaces of an electrolyte layer made of a solid polymer membrane, and a fuel gas is passed through the fuel electrode and an oxidant gas is passed through the air electrode to cause an electrochemical reaction. In a polymer electrolyte fuel cell that obtains electric energy, at least a part of the exhaust gas discharged from the fuel cell main body is passed through a condenser that removes excess water, and then a reaction gas supplied from the outside A solid polymer type having a recirculation circuit that is merged and supplied again to the fuel cell main body, and the condenser has a temperature adjusting function for controlling the temperature of the flowing gas. Fuel cell.
【請求項2】請求項1に記載の固体高分子形燃料電池に
おいて、燃料極へ供給される燃料ガス系統と、空気極へ
供給される酸化剤ガス系統とのうち、少なくともいずれ
か一方の系統が、前記の温度調整機能を有する凝縮器を
再循環回路に備えてなることを特徴とする固体高分子形
燃料電池。
2. The polymer electrolyte fuel cell according to claim 1, wherein at least one of a fuel gas system supplied to the fuel electrode and an oxidant gas system supplied to the air electrode. However, the solid polymer fuel cell is characterized in that the recirculation circuit is provided with the condenser having the temperature adjusting function.
【請求項3】請求項1または2に記載の固体高分子形燃
料電池において、再循環回路が、温度調整機能を有する
凝縮器を通流した後の排出ガスを加熱し、露点以上に保
持する機能を有する熱交換器を備えてなることを特徴と
する固体高分子形燃料電池。
3. The polymer electrolyte fuel cell according to claim 1 or 2, wherein the recirculation circuit heats the exhaust gas after passing through the condenser having a temperature adjusting function and keeps it above the dew point. A polymer electrolyte fuel cell comprising a heat exchanger having a function.
【請求項4】請求項3に記載の固体高分子形燃料電池に
おいて、再循環回路に備える前記熱交換器が、燃料電池
本体から排出される排出ガスを加熱源として構成されて
なることを特徴とする固体高分子形燃料電池。
4. The polymer electrolyte fuel cell according to claim 3, wherein the heat exchanger provided in the recirculation circuit is constituted by using exhaust gas discharged from the fuel cell body as a heating source. Polymer electrolyte fuel cell.
【請求項5】請求項1、2、3または4に記載の固体高
分子形燃料電池において、前記の凝縮器が、外部より燃
料電池本体へ供給される反応ガスを冷媒として構成され
てなることを特徴とする固体高分子形燃料電池。
5. The polymer electrolyte fuel cell according to claim 1, 2, 3 or 4, wherein the condenser is constituted by using a reaction gas supplied to the fuel cell main body from the outside as a refrigerant. A polymer electrolyte fuel cell characterized by:
JP7334516A 1995-12-22 1995-12-22 Solid polymeric fuel cell Pending JPH09180743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7334516A JPH09180743A (en) 1995-12-22 1995-12-22 Solid polymeric fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7334516A JPH09180743A (en) 1995-12-22 1995-12-22 Solid polymeric fuel cell

Publications (1)

Publication Number Publication Date
JPH09180743A true JPH09180743A (en) 1997-07-11

Family

ID=18278285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7334516A Pending JPH09180743A (en) 1995-12-22 1995-12-22 Solid polymeric fuel cell

Country Status (1)

Country Link
JP (1) JPH09180743A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001041243A1 (en) * 1999-11-29 2001-06-07 Forschungszentrum Jülich GmbH Fuel cell with oxidising agent circuit
WO2002061867A2 (en) * 2001-01-31 2002-08-08 Viessmann Werke Gmbh & Co. Fuel cells with integrated humidification and method for humidifying fuel cell process gas
EP1284514A2 (en) * 2001-08-16 2003-02-19 Asia Pacific Fuel Cell Technologies, Ltd. Anode stream recirculation system for a fuel cell
KR20030018921A (en) * 2001-08-31 2003-03-06 현대자동차주식회사 Fuel cell system for vehicles
US6562501B1 (en) 1999-11-30 2003-05-13 Toyota Jidosha Kabushiki Kaisha Control system for fuel cell
JP2005332768A (en) * 2004-05-21 2005-12-02 Toyota Motor Corp Solid polyelectrolyte fuel cell system
JP2006134743A (en) * 2004-11-08 2006-05-25 Honda Motor Co Ltd Fuel cell system
WO2006012953A3 (en) * 2004-07-20 2006-08-10 Conception & Dev Michelin Sa Control of the polymer humidifying membrane of a fuel cell
JP2007103373A (en) * 2005-10-04 2007-04-19 Gm Global Technology Operations Inc Fuel cell system and balancing method of water mass
WO2007129719A1 (en) * 2006-05-10 2007-11-15 Toyota Jidosha Kabushiki Kaisha Fuel battery system and method for calculating circulation ratio in the fuel battery system
JP2009519567A (en) * 2005-12-13 2009-05-14 ビーワイディー カンパニー リミテッド Fuel cell system and control method thereof
JP2009238392A (en) * 2008-03-25 2009-10-15 Equos Research Co Ltd Fuel cell system
JP2009238390A (en) * 2008-03-25 2009-10-15 Equos Research Co Ltd Fuel cell system
US7919211B2 (en) 2001-01-18 2011-04-05 Toyota Jidosha Kabushiki Kaisha On-board fuel cell system and method of controlling the same
JP2011249321A (en) * 2010-05-27 2011-12-08 Korea Inst Of Machinery & Materials Open-type fuel cell system having unreacted substance removing function
KR101134702B1 (en) * 2005-05-04 2012-04-13 현대자동차주식회사 Exhaust Gas Recircling Apparatus For Fuel Cell System and Control Method
WO2013187110A1 (en) * 2012-06-13 2013-12-19 日産自動車株式会社 Fuel cell system and method for controlling fuel cell system
US9406956B2 (en) 2010-05-27 2016-08-02 Korea Institute Of Machinery & Materials Closed loop type fuel cell system with unreacted material removing function
JP2019106288A (en) * 2017-12-12 2019-06-27 株式会社東芝 Hydrogen power storage system and hydrogen power storage method
JP2021180085A (en) * 2020-05-12 2021-11-18 株式会社豊田自動織機 Method of activating fuel cell stack

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001041243A1 (en) * 1999-11-29 2001-06-07 Forschungszentrum Jülich GmbH Fuel cell with oxidising agent circuit
US6562501B1 (en) 1999-11-30 2003-05-13 Toyota Jidosha Kabushiki Kaisha Control system for fuel cell
US7919211B2 (en) 2001-01-18 2011-04-05 Toyota Jidosha Kabushiki Kaisha On-board fuel cell system and method of controlling the same
WO2002061867A2 (en) * 2001-01-31 2002-08-08 Viessmann Werke Gmbh & Co. Fuel cells with integrated humidification and method for humidifying fuel cell process gas
WO2002061867A3 (en) * 2001-01-31 2003-06-12 Viessmann Werke Kg Fuel cells with integrated humidification and method for humidifying fuel cell process gas
EP1284514A3 (en) * 2001-08-16 2007-01-24 Asia Pacific Fuel Cell Technologies, Ltd. Anode stream recirculation system for a fuel cell
EP1284514A2 (en) * 2001-08-16 2003-02-19 Asia Pacific Fuel Cell Technologies, Ltd. Anode stream recirculation system for a fuel cell
KR20030018921A (en) * 2001-08-31 2003-03-06 현대자동차주식회사 Fuel cell system for vehicles
JP2005332768A (en) * 2004-05-21 2005-12-02 Toyota Motor Corp Solid polyelectrolyte fuel cell system
WO2006012953A3 (en) * 2004-07-20 2006-08-10 Conception & Dev Michelin Sa Control of the polymer humidifying membrane of a fuel cell
JP2008507102A (en) * 2004-07-20 2008-03-06 コンセプション エ デヴェロップマン ミシュラン ソシエテ アノニム Humidification control of polymer membrane of fuel cell
JP2006134743A (en) * 2004-11-08 2006-05-25 Honda Motor Co Ltd Fuel cell system
JP4643972B2 (en) * 2004-11-08 2011-03-02 本田技研工業株式会社 Fuel cell system
KR101134702B1 (en) * 2005-05-04 2012-04-13 현대자동차주식회사 Exhaust Gas Recircling Apparatus For Fuel Cell System and Control Method
JP2007103373A (en) * 2005-10-04 2007-04-19 Gm Global Technology Operations Inc Fuel cell system and balancing method of water mass
JP2009519567A (en) * 2005-12-13 2009-05-14 ビーワイディー カンパニー リミテッド Fuel cell system and control method thereof
US8383279B2 (en) 2006-05-10 2013-02-26 Toyota Jidosha Kabushiki Kaisha Fuel cell system and method for calculating circulation ratio in the same
JP2007305390A (en) * 2006-05-10 2007-11-22 Toyota Motor Corp Fuel cell system and its circulation ratio calculating method
WO2007129719A1 (en) * 2006-05-10 2007-11-15 Toyota Jidosha Kabushiki Kaisha Fuel battery system and method for calculating circulation ratio in the fuel battery system
JP2009238392A (en) * 2008-03-25 2009-10-15 Equos Research Co Ltd Fuel cell system
JP2009238390A (en) * 2008-03-25 2009-10-15 Equos Research Co Ltd Fuel cell system
US9406956B2 (en) 2010-05-27 2016-08-02 Korea Institute Of Machinery & Materials Closed loop type fuel cell system with unreacted material removing function
JP2011249321A (en) * 2010-05-27 2011-12-08 Korea Inst Of Machinery & Materials Open-type fuel cell system having unreacted substance removing function
WO2013187110A1 (en) * 2012-06-13 2013-12-19 日産自動車株式会社 Fuel cell system and method for controlling fuel cell system
JP2013258061A (en) * 2012-06-13 2013-12-26 Nissan Motor Co Ltd Fuel cell system
CN104364953A (en) * 2012-06-13 2015-02-18 日产自动车株式会社 Fuel cell system and method for controlling fuel cell system
US9755257B2 (en) 2012-06-13 2017-09-05 Nissan Motor Co., Ltd. Fuel cell system and method for controlling fuel cell system
JP2019106288A (en) * 2017-12-12 2019-06-27 株式会社東芝 Hydrogen power storage system and hydrogen power storage method
JP2021180085A (en) * 2020-05-12 2021-11-18 株式会社豊田自動織機 Method of activating fuel cell stack

Similar Documents

Publication Publication Date Title
JPH09180743A (en) Solid polymeric fuel cell
JP3077618B2 (en) Solid polymer electrolyte fuel cell
JP4074061B2 (en) Polymer electrolyte fuel cell system
JP4072707B2 (en) Solid polymer electrolyte fuel cell power generator and its operation method
JP2006210004A (en) Fuel cell system
JP3606514B2 (en) Stacked fuel cell system
JP2004031135A (en) Fuel cell and its control method
JP2002025584A (en) Solid high polymer molecule electrolyte fuel cell and its humidifying method
CN108400351A (en) The method of fuel cell operation system and the relative humidity of setting cathode operation gas
JP2002158023A (en) Fuel cell system
JPH09283162A (en) Solid high molecular fuel cell
JP2001006698A (en) Solid polymer electrolyte fuel cell and manufacture of its diffusion layer
JP2017525102A (en) Internal humidification in low temperature PEM fuel cells using wicks
JP2002170584A (en) Solid polymer type fuel battery
JPH0668896A (en) Cell structure of solid polymer electrolytic fuel cell
JPH06124722A (en) Heating and humidifying device and fuel cell
JP2000164232A (en) Solid high molecular fuel cell system
JPH0689730A (en) Fuel cell with high polymer solid electrolyte
JP2001176529A (en) Solid high molecular fuel cell body and solid high molecular fuel cell power generating system
JPH1064569A (en) Solid polyelectrolyte type fuel cell
JP2010129482A (en) Fuel cell separator, fuel cell stack, and fuel cell system
JPH0864218A (en) Operating method for solid high polymer electrolyte fuel cell
JP4672120B2 (en) Fuel cell device and method of operating fuel cell device.
JPH08306375A (en) Solid polymer type fuel sell
JP3743339B2 (en) Polymer electrolyte fuel cell and method of operating the same