JP3111697B2 - Solid polymer electrolyte fuel cell - Google Patents
Solid polymer electrolyte fuel cellInfo
- Publication number
- JP3111697B2 JP3111697B2 JP04280358A JP28035892A JP3111697B2 JP 3111697 B2 JP3111697 B2 JP 3111697B2 JP 04280358 A JP04280358 A JP 04280358A JP 28035892 A JP28035892 A JP 28035892A JP 3111697 B2 JP3111697 B2 JP 3111697B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- fuel cell
- solid polymer
- reaction
- passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04119—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、固体高分子膜を電解
質膜として用いた固体高分子電解質型燃料電池、ことに
固体高分子膜を加湿するための反応ガスの加湿構造に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid polymer electrolyte fuel cell using a solid polymer membrane as an electrolyte membrane, and more particularly to a humidifying structure of a reaction gas for humidifying the solid polymer membrane.
【0002】[0002]
【従来の技術】図2は固体高分子電解質型燃料電池の単
セル構造を模式化して示す断面図であり、単セル1は、
イオン導電性を有する固体高分子膜2と、その両面に密
着するよう支持された燃料電極(アノ−ド電極)3およ
び酸化剤電極(カソ−ド電極)4とで構成される。ま
た、単セル1を挟持するバイポ−ラプレ−ト5は導電性
を有するガス不透過性板からなり、その燃料電極3に接
する面側に凹溝として形成された燃料ガス通路6に燃料
ガスとしての水素を、酸化剤電極4に接する面側に凹溝
として形成された酸化剤通路7に酸化剤としての酸素ま
たは反応空気を供給することにより、単セル1の一対の
電極間で電気化学反応に基づく発電が行われる。なお、
このように構成された単セル1の出力電圧は1V以下と
低いので、単セル1とバイポ−ラプレ−ト5を複数層積
層してスタックを構成することにより、所望の出力電圧
の固体高分子電解質型燃料電池が得られる。2. Description of the Related Art FIG. 2 is a cross-sectional view schematically showing a single cell structure of a solid polymer electrolyte fuel cell.
It is composed of a solid polymer membrane 2 having ionic conductivity, a fuel electrode (anode electrode) 3 and an oxidant electrode (cathode electrode) 4 supported in close contact with both surfaces thereof. The bipolar plate 5 sandwiching the unit cell 1 is formed of a gas-impermeable plate having conductivity, and is formed as a fuel gas in a fuel gas passage 6 formed as a concave groove on the surface in contact with the fuel electrode 3. Is supplied to the oxidizing agent passage 7 formed as a concave groove on the surface in contact with the oxidizing agent electrode 4, thereby causing an electrochemical reaction between the pair of electrodes of the single cell 1. The power generation based on is performed. In addition,
Since the output voltage of the single cell 1 thus configured is as low as 1 V or less, a solid polymer having a desired output voltage can be obtained by stacking a plurality of single cells 1 and bipolar plates 5 to form a stack. An electrolyte fuel cell is obtained.
【0003】一方、イオン導電性を有する固体高分子膜
1としては、例えばプロトン交換膜であるパ−フロロカ
−ボンスルホン酸膜(米国,デュポン社,商品名ナフィ
オン)を電解質膜として用いたものが知られており、分
子中にプロトン(水素イオン)交換基を持ち、飽和含水
することにより常温で20Ω-cm 以下の比抵抗を示し、
プロトン導電性電解質として機能するとともに、燃料ガ
スと酸化剤ガスの混合を防ぐ隔膜としても機能する。す
なわち、アノ−ド電極(燃料電極)側では水素分子を水
素イオンと電子に分解するアノ−ド反応(H2 →2H+
+2e- )が、カソ−ド電極(酸化剤電極)側では酸素
と水素イオンと電子から水を生成する電気化学反応(2
H+ +1/2 O2 +2e- →H2 O)なるカソ−ド反応が
それぞれ行われ、全体としてH2 +1/2 O2 →H2 Oな
る電気化学反応が行われ、アノ−ドからカソ−ドに向か
って外部回路を移動する電子により発電電力が負荷に供
給される。On the other hand, as the solid polymer membrane 1 having ionic conductivity, for example, a membrane using a perfluorocarbon sulfonic acid membrane (Dupont, USA, trade name: Nafion) as a proton exchange membrane is used as an electrolyte membrane. It is known, has a proton (hydrogen ion) exchange group in the molecule, and exhibits a specific resistance of 20 Ω-cm or less at room temperature by containing saturated water,
In addition to functioning as a proton conductive electrolyte, it also functions as a diaphragm that prevents mixing of a fuel gas and an oxidizing gas. That is, on the anode electrode (fuel electrode) side, an anodic reaction (H 2 → 2H + ) that decomposes hydrogen molecules into hydrogen ions and electrons.
+ 2e − ) at the cathode electrode (oxidant electrode) side, an electrochemical reaction (2) that produces water from oxygen, hydrogen ions and electrons.
H + +1/2 O 2 + 2e − → H 2 O), respectively, and an electrochemical reaction of H 2 +1/2 O 2 → H 2 O is carried out as a whole. The generated power is supplied to the load by the electrons moving through the external circuit toward the load.
【0004】上述のように、固体高分子電解質型燃料電
池ては、電解質膜を飽和含水させることにより、膜はプ
ロトン交換膜として機能するものであるから、固体高分
子電解質型燃料電池の発電効率を高く維持するためには
固体高分子膜2中を飽和含水状態に維持するとともに、
固体高分子電解質型燃料電池の運転温度を50〜100
°C 程度に保持して固体高分子膜の比抵抗を低く保つ必
要がある。このため、各単セル1の固体高分子電解質膜
2はあらかじめ飽和量の水を含水させた状態でスタック
の組立作業が行われる。ところが、運転温度を上記温度
範囲に高めて発電を行うと、下記に示す固体高分子膜2
の乾燥作用が発生し、固体高分子膜2を飽和含水状態に
維持できず固体高分子電解質型燃料電池の発電効率が低
下するという問題が発生する。すなわち、燃料ガスおよ
び酸化剤ガスにより電気化学反応で生成した水が系外に
持ち出されるとともに、アノ−ド反応において生成した
プロトン2H+ が固体高分子膜中をアノ−ドからカソ−
ドに向けて移動する際、プロトンに数分子の水が配向し
て一緒に移動し、燃料ガス,酸化剤とともに系外に持ち
出されることにより、固体高分子膜の乾燥が進行する。As described above, in a solid polymer electrolyte fuel cell, since the membrane functions as a proton exchange membrane by saturating the electrolyte membrane with water, the power generation efficiency of the solid polymer electrolyte fuel cell is increased. In order to maintain a high level, the solid polymer membrane 2 is maintained in a saturated water-containing state,
Operating temperature of the solid polymer electrolyte fuel cell is 50-100
It is necessary to keep the specific resistance of the solid polymer membrane low by keeping it at about ° C. For this reason, the assembly operation of the stack is performed in a state where the solid polymer electrolyte membrane 2 of each single cell 1 has been saturated with water in advance. However, when power is generated by raising the operating temperature to the above temperature range, the solid polymer membrane 2 shown below
This causes a problem that the solid polymer membrane 2 cannot be maintained in a saturated water-containing state and the power generation efficiency of the solid polymer electrolyte fuel cell decreases. That is, while the water generated by the electrochemical reaction by the fuel gas and the oxidizing gas is taken out of the system, the proton 2H + generated by the anodic reaction is converted from the anodic to cathodic by the proton 2H + in the solid polymer membrane.
When moving toward the proton, several molecules of water are oriented to the protons and move together, and are taken out of the system together with the fuel gas and the oxidizing agent, whereby the drying of the solid polymer membrane proceeds.
【0005】そこで、このような事態を回避するため
に、反応ガス通路6および7に供給する反応ガス(燃料
ガスおよび酸化剤)に水を添加して反応ガス中の水蒸気
濃度(水蒸気分圧)を高め、固体高分子膜2からの水分
の蒸発を抑えるよう構成したものが知られている。反応
ガスの加湿方法としては、燃料電池の外部に燃料電池の
運転温度あるいはそれ以上に加熱した湯を溜めた加湿器
を設け、この加湿器の温湯の中に反応ガスをバブリンク
して加湿し、加湿した反応ガスを固体高分子電解質型燃
料電池の各単セルに供給するバブリング加湿法が知られ
ている。In order to avoid such a situation, water is added to the reaction gas (fuel gas and oxidizing agent) supplied to the reaction gas passages 6 and 7 so that the water vapor concentration (water vapor partial pressure) in the reaction gas is increased. Is known so that the evaporation of water from the solid polymer film 2 is suppressed. As a method of humidifying the reaction gas, a humidifier storing hot water heated to the operating temperature of the fuel cell or higher is provided outside the fuel cell, and the reaction gas is bubbled and humidified in the hot water of the humidifier, There is known a bubbling humidification method in which a humidified reaction gas is supplied to each unit cell of a solid polymer electrolyte fuel cell.
【0006】[0006]
【発明が解決しようとする課題】上述のバブリング式加
湿器を用いる加湿方法においては、反応ガスの供給量に
応じて加湿器におけるガスのバブリング量を調節する必
要があるため、固体高分子電解質型燃料電池が大型化す
るとともにバブリング量が増し、これに対応して加湿器
が大型化するとともに、燃料電池の負荷の変動に対応し
てバブリング量を制御し、かつ充分加湿した状態で燃料
電池に遅滞なく供給する制御が困難になるという問題が
あった。In the humidification method using the above-described bubbling humidifier, it is necessary to adjust the amount of gas bubbling in the humidifier in accordance with the supply amount of the reaction gas. As the size of the fuel cell increases and the amount of bubbling increases, the size of the humidifier increases accordingly, and the amount of bubbling is controlled in response to fluctuations in the load of the fuel cell. There was a problem that it became difficult to control the supply without delay.
【0007】また、加湿器の水温を運転温度と同等以上
に保持するための熱源および給水を外部に求める必要が
あり、固体高分子電解質型燃料電池としての熱効率が低
下するという問題もあった。この発明の目的は、反応ガ
ス量の変化に関わりなく安定した加湿量が得られ、小型
化,大容量化が可能な反応ガス加湿装置を備えた固体高
分子電解質型燃料電池を得ることにある。In addition, it is necessary to obtain a heat source and water supply for keeping the water temperature of the humidifier equal to or higher than the operation temperature, and there is a problem that the thermal efficiency of the solid polymer electrolyte fuel cell is reduced. An object of the present invention is to provide a solid polymer electrolyte fuel cell equipped with a reaction gas humidifier capable of obtaining a stable humidification amount regardless of a change in the amount of reaction gas and capable of being downsized and having a large capacity. .
【0008】[0008]
【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、イオン導電性を有する固体高分
子膜と、その両面に密着して配された燃料電極および酸
化剤電極とからなる単セルを、ガス不透過性板の両面の
前記燃料電極および酸化剤電極それぞれに対向する部分
に凹溝からなる反応ガス通路を有するバイポ−ラプレ−
トを介して複数層積層してなる固体高分子電解質型燃料
電池において、水蒸気透過膜と、この水蒸気透過膜によ
り画成された加湿ガス室および被加湿ガス室とを備え、
前記反応ガス通路から排出されるオフガスを加湿ガス,
前記反応ガス通路に供給する反応ガスを被加湿ガスとし
て反応ガスを加湿する反応ガス加湿装置を設けてなるも
のとする。According to the present invention, there is provided a solid polymer membrane having ionic conductivity and a fuel electrode and an oxidant electrode which are disposed in close contact with both surfaces thereof. A bipolar cell having a reaction gas passage formed of a concave groove at portions of both surfaces of a gas-impermeable plate facing the fuel electrode and the oxidant electrode, respectively.
A solid polymer electrolyte fuel cell having a plurality of layers laminated through a water vapor permeable membrane, comprising a humidified gas chamber and a humidified gas chamber defined by the water vapor permeable membrane,
Off-gas discharged from the reaction gas passage is humidified gas,
A reaction gas humidifier for humidifying the reaction gas using the reaction gas supplied to the reaction gas passage as a gas to be humidified is provided.
【0009】また、反応ガス加湿装置の加湿ガス室が酸
化剤通路の出口側に連通して空気極オフガスを導入し、
被加湿ガス室が酸化剤通路の入口側に連通して加湿した
反応空気を酸化剤通路に供給するよう形成してなるもの
とする。さらに、反応ガス加湿装置の加湿ガス室が燃料
ガス通路の出口側に連通して燃料極オフガスを導入し、
被加湿ガス室が燃料ガス通路の入口側に連通して加湿し
た燃料ガスを燃料ガス通路に供給するよう形成してなる
ものとする。Further, the humidification gas chamber of the reaction gas humidifier communicates with the outlet side of the oxidizing agent passage to introduce the air electrode off-gas,
The humidified gas chamber is formed to communicate with the inlet side of the oxidizing agent passage so as to supply humidified reaction air to the oxidizing agent passage. Further, the humidified gas chamber of the reaction gas humidifier communicates with the outlet side of the fuel gas passage to introduce the fuel electrode off-gas,
The humidified gas chamber communicates with the inlet side of the fuel gas passage so as to supply the humidified fuel gas to the fuel gas passage.
【0010】[0010]
【作用】この発明の構成において、水蒸気透過膜と、こ
の水蒸気透過膜により画成された加湿ガス室および被加
湿ガス室とを備え、反応ガス通路から排出されるオフガ
スを加湿ガス,反応ガス通路に供給する反応ガスを被加
湿ガスとして反応ガスを加湿する反応ガス加湿装置を設
けるよう構成したことにより、反応ガス通路内で反応ガ
スに発電生成水が水蒸気となって加わることにより水蒸
気分圧が上昇したオフガスを加湿ガスとし、未加湿の反
応ガスに対する水蒸気分圧の差を利用して水蒸気透過膜
を透過した水蒸気により未加湿の反応ガスを加湿し、加
湿反応ガスとして燃料電池に供給する発電生成水の閉回
路が得られるとともに、燃料電池の発熱を奪って温度が
上昇したオフガスの熱エネルギ−を水蒸気透過膜を介し
て常温の反応ガスに回収する発電生成熱の閉回路を形成
できるので、固体高分子電解質型燃料電池が排出する生
成水および生成熱を反応ガスにリサイクルし、外部熱源
を必要とせずに反応ガスを加湿,予熱する機能が得られ
る。According to the structure of the present invention, there is provided a water vapor permeable membrane, and a humidified gas chamber and a humidified gas chamber defined by the water vapor permeable membrane. By providing a reaction gas humidifier that humidifies the reaction gas by using the reaction gas supplied to the humidification target gas as a gas to be humidified, the generated water as steam is added to the reaction gas in the reaction gas passage in the reaction gas passage, so that the partial pressure of steam is reduced The raised off-gas is used as a humidified gas, and the unhumidified reaction gas is humidified by the water vapor that has passed through the water vapor permeable membrane using the difference in the partial pressure of water vapor with respect to the non-humidified reaction gas, and power is supplied to the fuel cell as a humidified reaction gas A closed circuit of the generated water is obtained, and the thermal energy of the off-gas, whose temperature has risen by depriving the fuel cell of heat, is transferred to the reaction gas at room temperature through the water vapor permeable membrane. A closed circuit for the generated heat generated by power generation can be formed, so that the water and heat generated by the solid polymer electrolyte fuel cell can be recycled into the reaction gas, and the reaction gas can be humidified and preheated without the need for an external heat source. Is obtained.
【0011】また、燃料電池に供給する反応ガス量とオ
フガス量とは常に比例関係があり、かつ発電生成水およ
び生成熱も反応ガスの供給量に比例するので、反応ガス
の加湿および予熱を特別の制御を必要とせずに遅滞なく
行う機能が得られる。さらに、水蒸気透過膜を例えば波
型に折り畳んで配置することにより、反応ガス加湿装置
を大型化することなく水蒸気透過膜の表面積を反応ガス
量に対応して容易に拡張できるので、反応ガス加湿装置
の小型化,大容量化を容易化する機能が得られる。Further, since the amount of reactant gas supplied to the fuel cell and the amount of off-gas are always proportional to each other, and the generated water and heat generated are also proportional to the amount of supplied reactant gas, the humidification and preheating of the reactant gas are specially performed. Without delay control. Furthermore, by arranging the water vapor permeable membrane, for example, by folding it into a wave shape, the surface area of the water vapor permeable membrane can be easily expanded in accordance with the amount of the reaction gas without increasing the size of the reaction gas humidifier. A function that facilitates miniaturization and large capacity of the device is obtained.
【0012】さらにまた、反応ガス加湿装置は燃料ガス
側,酸化剤ガス側いずれに設けてもよく、また双方に設
けることにより、固体高分子電解質膜の乾燥をより確実
に防止する機能が得られる。Further, the reaction gas humidifier may be provided on either the fuel gas side or the oxidizing gas side, and by providing both, the function of more reliably preventing the drying of the solid polymer electrolyte membrane can be obtained. .
【0013】[0013]
【実施例】以下、この発明を実施例に基づいて説明す
る。図1はこの発明の実施例になる固体高分子電解質型
燃料電池を模式化して示すシステム構成図であり、従来
技術と同じ構成部分には同一参照符号を付すことによ
り、重複した説明を省略する。図において、反応ガス加
湿装置としての酸化剤加湿装置11および燃料ガス加湿
装置21は、ともにその気密容器内を加湿ガス室13と
被加湿ガス室14とに画成する水蒸気透過膜12を備え
る。水蒸気透過膜12には、例えば旭硝子社製,商品名
SUNSEP-Wが用いられる。なお、水蒸気透過膜12を蛇腹
状に折り畳んだ状態で気密容器内セットするか、あるい
は複数枚の水蒸気透過膜を用い、互いに並列な複数の加
湿ガス室13および被加湿ガス室14にそれぞれ画成す
るよう構成すれば、水蒸気透過膜12の表面積を気密容
器を大型化せずに反応ガスの最大供給量に対応して拡張
できる利点が得られる。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. FIG. 1 is a system configuration diagram schematically showing a solid polymer electrolyte fuel cell according to an embodiment of the present invention. The same components as in the prior art are denoted by the same reference numerals, and redundant description is omitted. . In the figure, an oxidizing agent humidifying device 11 and a fuel gas humidifying device 21 as reaction gas humidifying devices each include a water vapor permeable membrane 12 that defines an airtight container in a humidified gas chamber 13 and a humidified gas chamber 14. The water vapor permeable membrane 12 is manufactured by Asahi Glass Co., Ltd.
SUNSEP-W is used. The water vapor permeable membrane 12 is set in an airtight container with the bellows folded, or a plurality of water vapor permeable membranes are used to define a plurality of humidified gas chambers 13 and a humidified gas chamber 14 which are parallel to each other. With such a configuration, there is obtained an advantage that the surface area of the water vapor permeable membrane 12 can be expanded according to the maximum supply amount of the reaction gas without increasing the size of the airtight container.
【0014】また、燃料ガスとしての水素を貯蔵するボ
ンベ15を調整弁16および燃料ガス加湿装置21の被
加湿ガス室14を介して固体高分子電解質型燃料電池1
0の燃料電極3側の燃料ガス通路6に連結し、その出口
側から排出される燃料極オフガスを加湿ガス室13およ
びリリ−フ弁16を介して系外に放出するよう構成する
ことにより、燃料ガス加湿系が構成される。また、反応
空気ブロワ18により供給される酸化剤としての反応空
気を酸化剤加湿装置11の被加湿ガス室14を介して固
体高分子電解質型燃料電池10の酸化剤電極4側の酸化
剤通路7に連結し、その出口側から排出される空気極オ
フガスを加湿ガス室13およびリリ−フ弁19を介して
系外に放出するよう構成することにより、酸化剤の加湿
系が構成される。A cylinder 15 for storing hydrogen as a fuel gas is connected to a polymer electrolyte fuel cell 1 via a regulating valve 16 and a humidified gas chamber 14 of a fuel gas humidifier 21.
By connecting to the fuel gas passage 6 on the fuel electrode 3 side of the fuel cell 3 and discharging the fuel electrode off-gas discharged from the outlet side thereof through the humidified gas chamber 13 and the relief valve 16, A fuel gas humidification system is configured. In addition, the reaction air as the oxidant supplied by the reaction air blower 18 is supplied to the oxidant passage 7 on the oxidant electrode 4 side of the polymer electrolyte fuel cell 10 through the humidified gas chamber 14 of the oxidant humidifier 11. And the air electrode off-gas discharged from the outlet side is discharged to the outside of the system through the humidifying gas chamber 13 and the relief valve 19, thereby forming a humidifying system for the oxidizing agent.
【0015】上述のように構成された固体高分子電解質
型燃料電池において酸化剤加湿装置11は、例えば燃料
電池10の酸化剤通路7内で酸化剤電極4で生成した発
電生成水が水蒸気となって反応空気に加わるので、酸化
剤通路7から排出される空気極オフガスの水蒸気分圧が
上昇し、水蒸気透過膜12を介して向流接触する反応空
気との間に水蒸気分圧の差が発生する。また、燃料電池
の発熱を奪って燃料電池の運転温度以上に温度が上昇し
た空気極オフガスの熱エネルギ−は水蒸気透過膜12を
介して常温の反応空気に伝達され、反応空気の温度が運
転温度近くにまで上昇する。その結果、水蒸気分圧の差
を利用して水蒸気透過膜12を透過した水蒸気が運転温
度近くに予熱された未加湿の反応空気を加湿することに
なり、飽和状態に加湿された運転温度に近い反応空気を
固体高分子電解質型燃料電池の酸化剤通路7を介して酸
化剤電極4に供給し、電極の乾燥を防止することができ
る。このように、酸化剤加湿装置11によれば、固体高
分子電解質型燃料電池の発電生成水および生成熱を常
温,未加湿の反応空気側にリサイクルして反応空気の加
湿および予熱を同時に行うことができる。In the solid polymer electrolyte fuel cell configured as described above, the oxidant humidifier 11 converts the water generated by the oxidant electrode 4 in the oxidant passage 7 of the fuel cell 10 into steam. To the reaction air, the partial pressure of water vapor of the air electrode off-gas discharged from the oxidizing agent passage 7 rises, and a difference in the partial pressure of water vapor is generated between the reaction air and the reaction air in countercurrent contact through the water vapor permeable membrane 12. I do. Also, the heat energy of the air electrode off-gas, whose temperature has risen to be higher than the operating temperature of the fuel cell by depriving the fuel cell of heat, is transmitted to the reaction air at room temperature through the water vapor permeable membrane 12, and the temperature of the reaction air is reduced to the operating temperature. Rise up close. As a result, the water vapor that has passed through the water vapor permeable membrane 12 utilizing the difference in the water vapor partial pressure will humidify the unhumidified reaction air that has been preheated to near the operating temperature, and is close to the operating temperature humidified to a saturated state. The reaction air is supplied to the oxidant electrode 4 through the oxidant passage 7 of the solid polymer electrolyte fuel cell to prevent the electrode from drying. As described above, according to the oxidizing agent humidifying apparatus 11, the humidification and the preheating of the reaction air are simultaneously performed by recycling the power generation water and the heat of generation of the solid polymer electrolyte fuel cell to the normal temperature, non-humidified reaction air side. Can be.
【0016】また、燃料電池に供給する反応ガス量とオ
フガス量とは常に比例関係にあり、かつ発電生成水およ
び生成熱も反応ガスの供給量に比例するので、反応ガス
の加湿および予熱が特別の制御を必要とせずに遅滞なく
行われ、負荷の変動に対応して加湿された反応ガスを固
体高分子電解質型燃料電池に供給できる利点が得られ
る。Further, since the amount of reaction gas supplied to the fuel cell and the amount of off-gas are always in a proportional relationship, and the power generation water and the generated heat are also proportional to the supply amount of the reaction gas, the humidification and preheating of the reaction gas are special. The control is performed without delay without the need for control, and the advantage is obtained that the humidified reaction gas can be supplied to the solid polymer electrolyte fuel cell in response to the fluctuation of the load.
【0017】さらに、水蒸気透過膜を例えば波型に折り
畳んで配置することにより、反応ガス加湿装置を大型化
することなく水蒸気透過膜の表面積を反応ガスガ量に対
応して容易に拡張できるので、反応ガス加湿装置の小型
化,大容量化を容易化できる利点が得られる。なお、燃
料ガス加湿装置21についても得られる機能は酸化剤加
湿装置11のそれと同様であるが、発電生成水の放出量
が酸化剤通路7側に多く、燃料ガス通路側に少ないた
め、燃料ガス加湿装置21による燃料ガスの加湿量が不
足する場合には、バブリング式加湿器などを補助的に設
け、加湿量の不足を補うよう構成されてよい。Further, by arranging the water vapor permeable membrane in a folded shape, for example, in a corrugated form, the surface area of the water vapor permeable membrane can be easily expanded in accordance with the reaction gas amount without increasing the size of the reaction gas humidifier. The advantage that the gas humidifier can be easily reduced in size and capacity can be obtained. The function obtained with the fuel gas humidifier 21 is the same as that of the oxidant humidifier 11, but the amount of generated water generated by the power generation is larger on the oxidant passage 7 side and smaller on the fuel gas passage side. When the humidification amount of the fuel gas by the humidification device 21 is insufficient, a bubbling humidifier or the like may be additionally provided to compensate for the humidification amount.
【0018】[0018]
【発明の効果】この発明は前述のように、水蒸気透過膜
と、この水蒸気透過膜により画成された加湿ガス室およ
び被加湿ガス室とを備え、反応ガス通路から排出される
オフガスを加湿ガス,反応ガス通路に供給する反応ガス
を被加湿ガスとして反応ガスを加湿する反応ガス加湿装
置を設けるよう構成した。その結果、固体高分子電解質
型燃料電池の発電生成水および生成熱を水蒸気透過膜を
介して常温,未加湿の反応ガス側にリサイクルし、反応
ガスの加湿および予熱を同時に行えるとともに、燃料電
池に供給する反応ガス量とオフガス量とは常に比例関係
にあり、負荷の変動に対応して反応ガスの加湿および予
熱を特別の制御を必要とせずに遅滞なく行え、かつ反応
ガス加湿装置を大型化することなく水蒸気透過膜の表面
積を反応ガス量に対応して容易に拡張できるので、バブ
リング式加湿器を用いた従来の加湿方法での問題点が排
除され、外部熱源や水の補給を必要とせずに大容量化,
小型化容易な水蒸気加湿装置を用い、負荷の変動に遅滞
なく対応して加湿かつ予熱した反応ガスを燃料電池に供
給し、固体高分子電解質膜の乾燥を防止できる固体高分
子電解質型燃料電池を提供することができる。As described above, the present invention comprises a water vapor permeable membrane, a humidified gas chamber and a humidified gas chamber defined by the water vapor permeable membrane, and converts off gas discharged from the reaction gas passage into a humidified gas. And a reaction gas humidifier for humidifying the reaction gas using the reaction gas supplied to the reaction gas passage as the gas to be humidified. As a result, the water and heat generated by the power generation of the solid polymer electrolyte fuel cell are recycled to the non-humidified reaction gas side at room temperature through the water vapor permeable membrane, so that the reaction gas can be humidified and preheated at the same time. The amount of reactant gas supplied and the amount of off-gas are always in a proportional relationship, so that the reaction gas can be humidified and preheated in response to fluctuations in load without any special control without delay, and the reaction gas humidifier is enlarged. Since the surface area of the water vapor permeable membrane can be easily expanded in response to the amount of reaction gas without the need for humidification, problems with the conventional humidification method using a bubbling humidifier are eliminated, and an external heat source and water supply are required. Large capacity without
A solid polymer electrolyte fuel cell that uses a steam humidifier that is easy to miniaturize, supplies humidified and preheated reaction gas to the fuel cell in response to load fluctuations without delay, and prevents drying of the solid polymer electrolyte membrane. Can be provided.
【図1】この発明の実施例になる固体高分子電解質型燃
料電池を模式化して示すシステム構成図FIG. 1 is a system configuration diagram schematically showing a solid polymer electrolyte fuel cell according to an embodiment of the present invention.
【図2】固体高分子電解質型燃料電池の単セル構造を模
式化して示す断面図FIG. 2 is a cross-sectional view schematically showing a single cell structure of a solid polymer electrolyte fuel cell.
1 固体高分子電解質型燃料電池の単セル 2 固体高分子電解質膜 3 燃料電極 4 酸化剤電極 5 バイポ−ラプレ−ト 6 燃料ガス通路 7 酸化剤通路 10 固体高分子電解質型燃料電池(スタック) 11 反応ガス加湿装置(酸化剤加湿装置) 12 固体高分子電解質膜 13 加湿ガス室 14 被加湿ガス室 15 水素ボンベ 18 反応空気ブロワ 21 反応ガス加湿装置(燃料ガス加湿装置) DESCRIPTION OF SYMBOLS 1 Single cell of solid polymer electrolyte fuel cell 2 Solid polymer electrolyte membrane 3 Fuel electrode 4 Oxidant electrode 5 Bipolar plate 6 Fuel gas passage 7 Oxidant passage 10 Solid polymer electrolyte fuel cell (stack) 11 Reaction gas humidifier (oxidant humidifier) 12 solid polymer electrolyte membrane 13 humidified gas chamber 14 humidified gas chamber 15 hydrogen cylinder 18 reaction air blower 21 reaction gas humidifier (fuel gas humidifier)
Claims (3)
の両面に密着して配された燃料電極および酸化剤電極と
からなる単セルを、ガス不透過性板の両面の前記燃料電
極および酸化剤電極それぞれに対向する部分に凹溝から
なる反応ガス通路を有するバイポ−ラプレ−トを介して
複数層積層してなるものにおいて、水蒸気透過膜と、こ
の水蒸気透過膜により画成された加湿ガス室および被加
湿ガス室とを備え、前記反応ガス通路から排出されるオ
フガスを加湿ガス,前記反応ガス通路に供給する反応ガ
スを被加湿ガスとして反応ガスを加湿する反応ガス加湿
装置を設けてなることを特徴とする固体高分子電解質型
燃料電池。1. A single cell comprising a solid polymer membrane having ionic conductivity and a fuel electrode and an oxidant electrode disposed in close contact with both surfaces thereof, the fuel cell and the oxidant electrode being disposed on both sides of a gas-impermeable plate. A water vapor permeable membrane and a humidifier defined by the water vapor permeable membrane, in which a plurality of layers are laminated via a bipolar plate having a reaction gas passage formed of a concave groove in a portion facing each of the oxidant electrodes. A gas chamber and a humidified gas chamber, and a reaction gas humidifier for humidifying the reaction gas using the off gas discharged from the reaction gas passage as a humidification gas and the reaction gas supplied to the reaction gas passage as a humidification gas. A solid polymer electrolyte fuel cell.
路の出口側に連通して空気極オフガスを導入し、被加湿
ガス室が酸化剤通路の入口側に連通して加湿した反応空
気を酸化剤通路に供給するよう形成してなることを特徴
とする請求項1記載の固体高分子電解質型燃料電池。2. The humidified gas chamber of the reaction gas humidifier communicates with the outlet side of the oxidant passage to introduce an air electrode off-gas, and the humidified gas chamber communicates with the inlet side of the oxidant passage to humidify the reaction air. 2. The solid polymer electrolyte fuel cell according to claim 1, wherein the fuel cell is formed so as to be supplied to the oxidant passage.
通路の出口側に連通して燃料極オフガスを導入し、被加
湿ガス室が燃料ガス通路の入口側に連通して加湿した燃
料ガスを燃料ガス通路に供給するよう形成してなること
を特徴とする請求項1記載の固体高分子電解質型燃料電
池。3. The humidified gas chamber of the reactive gas humidifier communicates with the outlet side of the fuel gas passage to introduce the fuel electrode off-gas, and the humidified gas chamber communicates with the inlet side of the fuel gas passage to humidify the fuel gas. 2. The solid polymer electrolyte fuel cell according to claim 1, wherein the fuel cell is formed so as to be supplied to a fuel gas passage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04280358A JP3111697B2 (en) | 1992-10-20 | 1992-10-20 | Solid polymer electrolyte fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04280358A JP3111697B2 (en) | 1992-10-20 | 1992-10-20 | Solid polymer electrolyte fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06132038A JPH06132038A (en) | 1994-05-13 |
JP3111697B2 true JP3111697B2 (en) | 2000-11-27 |
Family
ID=17623897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04280358A Expired - Lifetime JP3111697B2 (en) | 1992-10-20 | 1992-10-20 | Solid polymer electrolyte fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3111697B2 (en) |
Families Citing this family (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3337295B2 (en) * | 1993-12-21 | 2002-10-21 | 三菱重工業株式会社 | Fuel cell system |
JP3581495B2 (en) * | 1996-09-02 | 2004-10-27 | 本田技研工業株式会社 | Gas humidifier for fuel cells |
US6013385A (en) * | 1997-07-25 | 2000-01-11 | Emprise Corporation | Fuel cell gas management system |
JP3923627B2 (en) * | 1997-11-25 | 2007-06-06 | 株式会社東芝 | Solid polymer electrolyte fuel cell system |
JP3483116B2 (en) * | 1998-06-15 | 2004-01-06 | 松下電器産業株式会社 | Polymer electrolyte fuel cell |
EP1030396B8 (en) | 1998-09-04 | 2012-03-14 | Kabushiki Kaisha Toshiba | Solid polymer type fuel cell system |
JP4476489B2 (en) | 1998-10-26 | 2010-06-09 | 株式会社東芝 | Polymer electrolyte fuel cell system |
DE19918850C2 (en) * | 1999-04-19 | 2002-10-24 | Vodafone Ag | Humidification device for fuel cells, method for humidifying a fuel cell membrane and use of the humidification device in a fuel cell |
US6432566B1 (en) * | 1999-10-25 | 2002-08-13 | Utc Fuel Cells, Llc | Direct antifreeze cooled fuel cell power plant |
JP2001143733A (en) * | 1999-11-16 | 2001-05-25 | Daikin Ind Ltd | Humidifier of fuel cell system |
US6416891B1 (en) * | 1999-11-22 | 2002-07-09 | Utc Fuel Cells, Llc | Operating system for a direct antifreeze cooled fuel cell power plant |
US6361891B1 (en) * | 1999-12-20 | 2002-03-26 | Utc Fuel Cells, Llc | Direct antifreeze cooled fuel cell power plant system |
JP4892770B2 (en) | 1999-12-28 | 2012-03-07 | ダイキン工業株式会社 | Humidifier for fuel cell |
JP2001185196A (en) * | 1999-12-28 | 2001-07-06 | Daikin Ind Ltd | Fuel cell system |
JP2001185197A (en) * | 1999-12-28 | 2001-07-06 | Daikin Ind Ltd | Fuel cell system |
US6554261B2 (en) | 2000-01-19 | 2003-04-29 | Honda Giken Kogyo Kabushiki Kaisha | Humidifier |
JP3725387B2 (en) * | 2000-01-31 | 2005-12-07 | 本田技研工業株式会社 | Humidifier for fuel cell |
JP2001202975A (en) * | 2000-01-19 | 2001-07-27 | Honda Motor Co Ltd | Humidifier for fuel cell |
JP2001216986A (en) * | 2000-01-31 | 2001-08-10 | Honda Motor Co Ltd | Humidifying system for fuel cell |
JP2001216982A (en) | 2000-01-31 | 2001-08-10 | Honda Motor Co Ltd | Humidifying system for fuel cell |
JP4540786B2 (en) * | 2000-01-31 | 2010-09-08 | 本田技研工業株式会社 | Heat exchange humidification system for fuel cells |
US6656620B2 (en) | 2000-01-31 | 2003-12-02 | Honda Giken Kogyo Kabushiki Kaisha | Humidification system for a fuel cell |
JP4710111B2 (en) * | 2000-08-09 | 2011-06-29 | トヨタ自動車株式会社 | Fuel cell system considering prevention of freezing of cooling system |
JP4996005B2 (en) * | 2000-09-01 | 2012-08-08 | 本田技研工業株式会社 | Humidifier for fuel cell |
JP2002100384A (en) * | 2000-09-22 | 2002-04-05 | Asahi Kasei Corp | Fuel cell and water vapor permeable membrane used therein |
JP2002117878A (en) * | 2000-10-05 | 2002-04-19 | Asahi Kasei Corp | Fuel cell and vapor permeation membrane used for this |
JP5132857B2 (en) * | 2000-10-05 | 2013-01-30 | 本田技研工業株式会社 | Fuel cell system |
JP5189719B2 (en) * | 2001-01-22 | 2013-04-24 | 本田技研工業株式会社 | Fuel cell system |
JP4801261B2 (en) * | 2001-01-23 | 2011-10-26 | 本田技研工業株式会社 | Fuel cell system |
DE10104246C1 (en) * | 2001-01-31 | 2002-06-06 | Zsw | Fuel cell e.g. for electric traction drive, incorporates dampening of process gas used for operation of fuel cell |
JP5019672B2 (en) * | 2001-02-23 | 2012-09-05 | 旭化成ケミカルズ株式会社 | Humidifier |
JP2002257388A (en) * | 2001-02-28 | 2002-09-11 | Nok Corp | Steam permeation film and its using method |
JP5019673B2 (en) * | 2001-03-30 | 2012-09-05 | 旭化成ケミカルズ株式会社 | Humidifier |
JP2002373686A (en) * | 2001-06-14 | 2002-12-26 | Mitsubishi Electric Corp | Temperature and humidity regulating device and temperature and humidity regulating method for fuel cell reactant gas |
JP4884604B2 (en) * | 2001-07-04 | 2012-02-29 | 本田技研工業株式会社 | Fuel cell cooling system |
JP4806139B2 (en) * | 2001-07-05 | 2011-11-02 | 本田技研工業株式会社 | Fuel cell humidification system |
JP4708623B2 (en) * | 2001-08-22 | 2011-06-22 | 株式会社西部技研 | Fuel cell |
KR20030042640A (en) * | 2001-11-23 | 2003-06-02 | (주)세티 | System for Heating and Moisturing Air Entering into Cathode in Fuel Cell Stack |
KR20030054925A (en) * | 2001-12-26 | 2003-07-02 | 현대자동차주식회사 | Polymer electrolyte fuel cell system using humidification-pipe |
EP1323669A3 (en) | 2001-12-28 | 2004-07-21 | Matsushita Electric Industrial Co., Ltd. | Hydrogen generation apparatus and fuel cell system |
JP3601516B2 (en) * | 2002-01-29 | 2004-12-15 | 日産自動車株式会社 | Fuel cell system |
EP1369945B1 (en) | 2002-04-15 | 2012-08-15 | Panasonic Corporation | Fuel cell system |
EP1551073B1 (en) | 2002-06-28 | 2010-08-18 | Toyota Jidosha Kabushiki Kaisha | Fuel battery |
DE10232871A1 (en) * | 2002-07-19 | 2004-02-05 | Daimlerchrysler Ag | Fuel cell with internal gas regulation has distributor structure for feed channels for reagents of anode and/or cathode divided into at least two fields, each with input and output ports for reagents |
JP4510361B2 (en) * | 2002-08-08 | 2010-07-21 | 本田技研工業株式会社 | Humidifier |
JP4790964B2 (en) * | 2002-12-24 | 2011-10-12 | 本田技研工業株式会社 | Fuel cell with dehumidifying device |
WO2004062016A1 (en) * | 2002-12-26 | 2004-07-22 | Sony Corporation | Hydrogen gas humidity controller, fuel cell, hydrogen gas humidity controlling method, and humidity controlling method of fuel cell |
US8114554B2 (en) * | 2003-09-16 | 2012-02-14 | The Gillette Company—South Boston | Enhanced fuel delivery for direct methanol fuel cells |
US8084166B2 (en) * | 2003-09-16 | 2011-12-27 | The Gillette Company | Enhanced fuel delivery for direct methanol fuel cells |
JP4543645B2 (en) * | 2003-09-17 | 2010-09-15 | トヨタ自動車株式会社 | Fuel cell and gas separator for fuel cell |
WO2005110581A1 (en) * | 2004-05-18 | 2005-11-24 | Asahi Kasei Chemicals Corporation | Gas separator and operating method for the same |
DE602005024180D1 (en) * | 2004-12-28 | 2010-11-25 | Panasonic Corp | PRODUCTION SYSTEM FOR FUEL CELLS OF THE POLYMER ELECTROLYTE TYPE |
JP2007194070A (en) * | 2006-01-19 | 2007-08-02 | Toyota Motor Corp | Humidifier for fuel cell |
JP4543015B2 (en) * | 2006-07-03 | 2010-09-15 | 株式会社東芝 | Polymer electrolyte fuel cell system |
JP4746511B2 (en) * | 2006-10-23 | 2011-08-10 | 株式会社東芝 | Polymer electrolyte fuel cell system |
DE102007057191A1 (en) * | 2007-11-28 | 2009-06-04 | Daimler Ag | The fuel cell system |
JP5300517B2 (en) * | 2009-02-12 | 2013-09-25 | 株式会社東芝 | FUEL CELL STACK AND FUEL CELL SYSTEM INCLUDING THE SAME |
US9048469B2 (en) | 2009-07-24 | 2015-06-02 | Honda Motor Co., Ltd | Hollow-fiber membrane module for moisture exchange |
JP5044676B2 (en) | 2010-03-31 | 2012-10-10 | 本田技研工業株式会社 | Fuel cell system with water injection means |
-
1992
- 1992-10-20 JP JP04280358A patent/JP3111697B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH06132038A (en) | 1994-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3111697B2 (en) | Solid polymer electrolyte fuel cell | |
JP3352716B2 (en) | Solid polymer electrolyte fuel cell device | |
CA2490877C (en) | Humidity controlled solid polymer electrolyte fuel cell assembly | |
US5786104A (en) | Method and apparatus for humidification of incoming fuel cell process gases | |
JPH1131520A (en) | Solid high molecular type fuel cell | |
JPH0547394A (en) | Solid polymer electrolyte fuel cell and operating method thereof | |
JPH06338338A (en) | Humidification of high polymer ion exchange film of fuel cell | |
JP3510285B2 (en) | Solid polymer electrolyte fuel cell system | |
JP3147518B2 (en) | Cell structure of solid polymer electrolyte fuel cell | |
JP3249282B2 (en) | Solid polymer electrolyte fuel cell | |
JP3141619B2 (en) | Solid polymer electrolyte fuel cell power generator | |
JP2002015759A (en) | Operating method of phosphoric acid fuel cell | |
JP3111682B2 (en) | Solid polymer electrolyte fuel cell system | |
JP2004172125A (en) | Fuel cell system by dry cathode supply | |
JP2001357869A (en) | Solid high-polymer type fuel cell stack | |
JP5341624B2 (en) | Fuel cell system | |
JP2000277128A (en) | Solid polymer type fuel cell | |
JP5259146B2 (en) | Fuel cell and fuel cell system | |
JPH05144451A (en) | Reaction gas/cooling medium flowing structure of fuel cell with solid highpolymer electrolyte | |
JP2000003718A (en) | Method for activating high molecular electrolyte fuel cell | |
JP2000164232A (en) | Solid high molecular fuel cell system | |
JP4665353B2 (en) | Solid polymer electrolyte fuel cell power generator and its operation method | |
JPH0864218A (en) | Operating method for solid high polymer electrolyte fuel cell | |
JP2001236977A (en) | Solid high polymer fuel cell generator and method of operating solid high polymer fuel cell | |
JP3416578B2 (en) | Solid polymer electrolyte fuel cell |