JPH0864216A - Oxygen ion conductor thin film and manufacture thereof - Google Patents

Oxygen ion conductor thin film and manufacture thereof

Info

Publication number
JPH0864216A
JPH0864216A JP6200685A JP20068594A JPH0864216A JP H0864216 A JPH0864216 A JP H0864216A JP 6200685 A JP6200685 A JP 6200685A JP 20068594 A JP20068594 A JP 20068594A JP H0864216 A JPH0864216 A JP H0864216A
Authority
JP
Japan
Prior art keywords
thin film
substrate
film
single crystal
stabilized zirconia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6200685A
Other languages
Japanese (ja)
Inventor
Osamu Nakamura
修 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP6200685A priority Critical patent/JPH0864216A/en
Publication of JPH0864216A publication Critical patent/JPH0864216A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE: To provide a solid electrolyte for a solid electrolyte fuel cell (SOFC) by forming an oxygen ion conductor thin film with a substrate different from a film forming material and having uniformly distributed small holes and a required single crystal thin film stuck to the substrate. CONSTITUTION: A stabilized zirconia single crystal thin film 2 of a film forming material is stuck to a substrate 1 different from the film forming material by the CVD method or the like. Uniformly distributed multiple small holes 3 are bored on the substrate 1 to form an oxygen ion conductor thin film. Since the sintering method is not used, this thin film has large strength, low electric resistance, and high gas transmission efficiency, the deterioration of the material can be reduced, and the oxygen ion conductor thin film suitable for the solid electrolyte for the SOFC is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質型燃料電
池、高温気相水電解材料、酸素センサーなどに利用可能
な新規な酸素イオン導電体薄膜及びその製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel oxygen ion conductor thin film which can be used in a solid oxide fuel cell, a high temperature gas phase water electrolyte material, an oxygen sensor and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】カルシアやイットリアが混入された安定
化ジルコニアは、高温での高い酸素イオン導電度と優れ
た強度を有する酸素イオン導電体として知られており、
固体電解質型燃料電池(以下SOFCという)用の固体
電解質などへの応用研究が広く進められている。
2. Description of the Related Art Stabilized zirconia mixed with calcia and yttria is known as an oxygen ion conductor having high oxygen ion conductivity and excellent strength at high temperature,
Application research to a solid electrolyte for a solid oxide fuel cell (hereinafter referred to as SOFC) and the like has been widely promoted.

【0003】この安定化ジルコニア酸素イオン導電体の
応用として重要であるSOFC用固体電解質を例にとる
と、その製造工程においては、先ず一般的なセラミック
スプロセスを利用して安定化ジルコニア多結晶薄板を製
造し、次いでその両面に燃料極、空気極となる酸化ニッ
ケルやSr混入型ランタンマンガン複合酸化物などの電
極を形成するのが一般的である。
Taking a solid electrolyte for SOFC, which is important as an application of the stabilized zirconia oxygen ion conductor, as an example, in the manufacturing process, first, a stabilized ceramic zirconia polycrystalline thin plate is used by utilizing a general ceramics process. It is common to manufacture and then form electrodes such as nickel oxide or Sr-containing lanthanum-manganese composite oxide, which will become the fuel electrode and the air electrode, on both sides.

【0004】その際のセラミックスプロセスは、通常、
適当量のカルシア又はイットリアを含有するジルコニア
微細粉末を用意し、これを用いてドクターブレード法又
は粉末プレス法などで未焼成のグリーンシートを作成
し、次いで電気炉中で1000℃以上の高温で焼成する
ことによるが、このような焼結法で得られる安定化ジル
コニア多結晶薄板については、自立するとともに、電池
作製工程に十分耐えうる機械的強度が要求され、そのた
め厚さは少なくとも0.1mm程度とすることが必要で
あった。
The ceramic process at that time is usually
Prepare a zirconia fine powder containing an appropriate amount of calcia or yttria, use it to make an unfired green sheet by the doctor blade method or powder pressing method, and then fire it in an electric furnace at a high temperature of 1000 ° C or higher. However, the stabilized zirconia polycrystalline thin plate obtained by such a sintering method is required to be self-supporting and have sufficient mechanical strength to withstand the battery manufacturing process. Therefore, the thickness is at least about 0.1 mm. It was necessary to

【0005】このセラミックスプロセスの最大の問題点
は、低導電率の安定化ジルコニアしか得られないことで
ある。このような安定化ジルコニアを電解質としたSO
FCについて、導電率を向上させ、燃料電池の直列抵抗
成分を低下させるには作動温度を上昇させねばならな
い。そのため、燃料電池の構成部材が耐えられる限界領
域付近の1000℃程度の高温での作動を要し、それで
も電解質部分の直列抵抗成分が燃料電池効率を最も低下
させているのが現状である。つまり、安定化ジルコニア
多結晶薄板を利用するSOFCでは、作動効率を上げる
ためには作動温度を極限付近まで上昇させねばならない
が、そうすると電池寿命が短くなるのを免れないし、ま
た寿命を重視すると作動効率が低下してしまうという問
題点がある。
The biggest problem with this ceramic process is that only low conductivity stabilized zirconia can be obtained. SO using such stabilized zirconia as an electrolyte
For FC, the operating temperature must be increased to improve the conductivity and reduce the series resistance component of the fuel cell. Therefore, it is necessary to operate at a high temperature of about 1000 ° C. in the vicinity of the limit region where the constituent members of the fuel cell can withstand, and the series resistance component of the electrolyte portion still most deteriorates the fuel cell efficiency. In other words, in SOFC that uses a stabilized zirconia polycrystalline thin plate, the operating temperature must be raised to near the limit in order to increase the operating efficiency. However, if this is the case, the battery life is unavoidably shortened, and if the life is emphasized, it will operate. There is a problem that efficiency is reduced.

【0006】一方、上記のようなセラミックスプロセス
で得た多結晶薄板を用いた場合の問題点を回避するた
め、薄膜プロセスで安定化ジルコニア薄膜を形成し、導
電率の低さを膜厚の薄さで補い、燃料電池の直列抵抗成
分を低下させようとする試みもある。例えば、多孔質ア
ルミナ基板上にプラズマ溶射法やCVD法などの薄膜作
製手段を利用して安定化ジルコニア薄膜を析出させ、燃
料極薄膜と空気極薄膜も同様に積層した薄膜をSOFC
に利用しようとするものである。
On the other hand, in order to avoid the problems in the case of using the polycrystalline thin plate obtained by the ceramics process as described above, a stabilized zirconia thin film is formed by the thin film process to reduce the conductivity and reduce the film thickness. There is also an attempt to compensate for this and reduce the series resistance component of the fuel cell. For example, a stabilized zirconia thin film is deposited on a porous alumina substrate using a plasma spraying method, a CVD method or the like, and a fuel electrode thin film and an air electrode thin film are similarly laminated to form a SOFC.
Is intended to be used for.

【0007】しかしながら、このものにも次のような幾
つかの問題点がある。先ず第一に、基板上に成長させる
電極薄膜や固体電解質薄膜中にピンホールを生じさせず
均質に保つためには、多孔質アルミナ基板は比較的緻密
で細孔径も小さくすることが必要であるが、そうすると
多孔質アルミナ基板中のガス透過が阻害されて高い燃料
電池作動効率は得られないし、またガス透過に問題のな
い十分大きな孔径をもつ多孔質アルミナ基板を用いると
ピンホールのない均質な薄膜を形成するには膜厚を十分
大きくする必要があり、やはり燃料電池作動効率を低下
させてしまう。
However, this one also has some problems as follows. First of all, in order to keep the electrode thin film and solid electrolyte thin film grown on the substrate homogeneous without causing pinholes, it is necessary that the porous alumina substrate be relatively dense and have a small pore size. However, if this is done, gas permeation through the porous alumina substrate will be hindered and high fuel cell operating efficiency will not be obtained, and if a porous alumina substrate with a sufficiently large pore size that does not cause gas permeation is used, it will be uniform with no pinholes. In order to form a thin film, it is necessary to make the film thickness sufficiently large, which also lowers the fuel cell operating efficiency.

【0008】第二の問題点は、多孔質アルミナ基板上に
成膜された安定化ジルコニア薄膜は多結晶体であること
である。燃料電池の作動時には安定化ジルコニア薄膜中
で酸素イオンの移動があり、このような物質移動現象は
アトミックマイグレーションと呼ばれる現象の範疇に属
し、必然的に材料の変形、破壊をもたらすものである。
ICアルミ配線の破壊現象(これは伝導電子の移動によ
るためエレクトロマイグレーションと呼ばれる現象の範
疇に属する)の例では材料破壊は粒界から進行すること
が知られているが、燃料電池作動時の安定化ジルコニア
薄膜においてもアトミックマイグレーションにより同様
に粒界から材料変形、破壊が進行することが十分予想で
き、このような安定化ジルコニア薄膜の材料破壊は、膜
厚が小さいほど深刻となり薄膜型SOFCの実現に対し
大きな制約要因であった。
The second problem is that the stabilized zirconia thin film formed on the porous alumina substrate is polycrystalline. Oxygen ions move in the stabilized zirconia thin film during the operation of the fuel cell, and such a mass transfer phenomenon belongs to the category of a phenomenon called atomic migration, which inevitably causes deformation and destruction of the material.
In the example of the destruction phenomenon of the IC aluminum wiring (this belongs to the category of the phenomenon called electromigration because it is due to the movement of conduction electrons), it is known that the material destruction progresses from the grain boundary, but it is stable during the operation of the fuel cell. It can be fully expected that material deformation and destruction will proceed from grain boundaries due to atomic migration even in the case of thin film zirconia thin film. Such material destruction of stabilized zirconia thin film becomes more serious as the film thickness becomes smaller, and thin film type SOFC can be realized. Was a major limiting factor.

【0009】[0009]

【発明が解決しようとする課題】本発明は、このような
従来の酸素イオン導電体薄膜の有する欠点を克服し、電
気抵抗を低減し、ガス透過効率を高め、しかも材料劣化
を低減しうる酸素イオン導電体薄膜を提供することを目
的としてなされたものである。
SUMMARY OF THE INVENTION The present invention overcomes the drawbacks of the conventional oxygen ion conductor thin film, reduces electrical resistance, enhances gas permeation efficiency, and can reduce material deterioration. It was made for the purpose of providing an ionic conductor thin film.

【0010】[0010]

【課題を解決するための手段】本発明者らは、前記の好
ましい特性を有する酸素イオン導電体薄膜を開発するた
めに鋭意研究を重ねた結果、成膜材料として安定化ジル
コニアを用いるとともに基板としてこの成膜材料とは異
なる材質の異種基板を用い、基板上に成膜材料の安定化
ジルコニアを気相成長により成膜させて単結晶薄膜を形
成させ、次いで異種基板に均一分布の多数の小開口を開
設することにより、その目的を達成しうることを見出
し、この知見に基づいて本発明をなすに至った。
Means for Solving the Problems As a result of intensive studies to develop an oxygen ion conductor thin film having the above-mentioned preferable characteristics, the present inventors have used stabilized zirconia as a film-forming material and used it as a substrate. Using a heterogeneous substrate made of a material different from this film-forming material, stabilized zirconia of the film-forming material is vapor-deposited on the substrate to form a single crystal thin film. It was found that the object can be achieved by opening the opening, and the present invention has been completed based on this finding.

【0011】すなわち、本発明は、均一に分布させた多
数の小開口をもつ異種基板とそれに被着された安定化ジ
ルコニア単結晶薄膜とから成る酸素イオン導電体薄膜、
あるいは均一に分布させた多数の小開口をもつ異種基板
と、それに被着された安定化ジルコニア単結晶薄膜と、
安定化ジルコニア単結晶薄膜上に被着された一方の電極
膜と、該電極膜面と反対の面に被着された他方の電極膜
とから成る酸素イオン導電体薄膜、あるいは均一に分布
させた多数の小開口をもつ異種基板と、それに一方の電
極膜を介して被着された安定化ジルコニア単結晶薄膜
と、安定化ジルコニア単結晶薄膜上に被着された他方の
電極膜とから成る酸素イオン導電体薄膜を提供するもの
である。
That is, the present invention provides an oxygen ion conductor thin film comprising a heterogeneous substrate having a large number of uniformly distributed small openings and a stabilized zirconia single crystal thin film deposited thereon.
Alternatively, a heterogeneous substrate having a large number of uniformly distributed small openings, and a stabilized zirconia single crystal thin film deposited thereon,
Oxygen ion conductor thin film consisting of one electrode film deposited on the stabilized zirconia single crystal thin film and the other electrode film deposited on the surface opposite to the electrode film surface, or uniformly distributed Oxygen consisting of a heterogeneous substrate having a large number of small openings, a stabilized zirconia single crystal thin film deposited on one of the electrode films via one electrode film, and the other electrode film deposited on the stabilized zirconia single crystal film. An ionic conductor thin film is provided.

【0012】本発明の酸素イオン導電体薄膜は、異種基
板上に、安定化ジルコニアの気相成長を行わせて単結晶
薄膜を形成させ、次いで異種基板に多数の開口を均一に
分布するようにあけるか、あるいは異種基板上に、安定
化ジルコニアの気相成長を行わせて単結晶薄膜を形成さ
せ、次いで異種基板に多数の開口を均一に分布するよう
にあける工程と単結晶薄膜上に一方の電極を成膜させる
工程とを任意の順序で行ったのち、異種基板側に他方の
電極を成膜させるか、あるいは異種基板上に、一方の電
極形成性物質の気相成長及び安定化ジルコニアの気相成
長をそれぞれ順次行わせて単結晶薄膜を形成させ、次い
で異種基板に多数の開口を均一に分布するようにあける
工程と単結晶薄膜上に他方の電極を成膜させる工程とを
任意の順序で行うことによって製造することができる。
In the oxygen ion conductor thin film of the present invention, a single crystal thin film is formed by performing vapor phase growth of stabilized zirconia on a heterogeneous substrate, and then a large number of openings are uniformly distributed on the heterogeneous substrate. Opening or vapor-depositing stabilized zirconia on a heterogeneous substrate to form a single-crystal thin film, and then forming a large number of openings uniformly on the heterogeneous substrate. After performing the step of forming the electrode of (1) and (2) in an arbitrary order, the other electrode is formed on the side of the different substrate, or the vapor phase growth and the stabilized zirconia of one electrode forming substance are formed on the different substrate. The step of forming a single crystal thin film by sequentially performing the vapor phase growth of each of the above, and then the step of uniformly distributing a large number of openings in the different substrate and the step of forming the other electrode on the single crystal thin film are optional. In order It can be produced by the.

【0013】本発明においては、安定化ジルコニア単結
晶薄膜は、異種基板上又は場合により後述のように形成
させた電極膜上に安定化ジルコニアを気相より成長させ
ることによって形成させることができ、場合によりそれ
と異種基板との間に介在させる一方の電極膜は、異種基
板上に該電極形成性物質を気相より成長させることによ
って形成させることができる。
In the present invention, the stabilized zirconia single crystal thin film can be formed by growing stabilized zirconia from the vapor phase on a different substrate or on an electrode film formed as described below in some cases, One of the electrode films, which is interposed between it and the heterogeneous substrate in some cases, can be formed on the heterogeneous substrate by growing the electrode-forming substance from the vapor phase.

【0014】この気相成長法としては、従来公知の薄膜
形成方法、例えば電子ビーム蒸着法などの蒸着法、スパ
ッタリング法、プラズマCVD法などのCVD法、レー
ザー・アブレーション法などを適用することができる。
As the vapor phase growth method, a conventionally known thin film forming method, for example, an evaporation method such as an electron beam evaporation method, a sputtering method, a CVD method such as a plasma CVD method, or a laser ablation method can be applied. .

【0015】本発明において、異種基板としては、安定
化ジルコニアとは異なる材質の異種基板が用いられる。
この異種基板の材質としては、シリコンが挙げられる。
In the present invention, a heterogeneous substrate made of a material different from that of the stabilized zirconia is used as the heterogeneous substrate.
Silicon can be used as a material for the different type of substrate.

【0016】本発明において、異種基板としてシリコン
基板を用い、該基板上に安定化ジルコニア単結晶薄膜を
形成させる場合について、さらに詳述する。すなわち、
近年の半導体エレクトロニクスと超伝導エレクトロニク
スを融合する試みとしてシリコン基板上に高温超伝導薄
膜を作製することが知られ、その際の緩衝膜として単結
晶安定化ジルコニア薄膜が検討されており、その研究結
果として、600℃程度以上の基板温度で基板上に安定
化ジルコニア薄膜をヘテロエピタキシャル成長させて得
た単結晶薄膜は広い組成範囲(イットリア安定化ジルコ
ニアを例に取ると(Y23X/2(ZrO21-Xなる組
成式において、0.05<x<0.3)で正方晶構造の
安定化ジルコニアとなることが明らかとなっているが、
本発明においてもこれを応用することができる。
In the present invention, the case where a silicon substrate is used as a different substrate and a stabilized zirconia single crystal thin film is formed on the substrate will be described in more detail. That is,
As a recent attempt to combine semiconductor electronics and superconducting electronics, it is known to produce high-temperature superconducting thin films on silicon substrates, and single-crystal-stabilized zirconia thin films have been investigated as buffer films in such cases. As a single crystal thin film obtained by heteroepitaxially growing a stabilized zirconia thin film on a substrate at a substrate temperature of about 600 ° C. or higher, a wide composition range (for example, in the case of yttria-stabilized zirconia (Y 2 O 3 ) X / 2 ) In the composition formula (ZrO 2 ) 1-X , it has been revealed that the stabilized zirconia having a tetragonal structure is obtained when 0.05 <x <0.3,
This can also be applied to the present invention.

【0017】また、シリコン基板上のエピタキシャル安
定化ジルコニア薄膜の作製は、レーザー・アブレーショ
ン法〔[1]D.K.Fork, D.B.Fenne
r,G.A.N.Connel, J.M.Phill
ips, and T.H.Geballe, App
l.Phys.Lett.,vol.57,p.113
7(1990);[2]P.Tiwari, S.M.
Kanetkar,S.Sharan, and J.
Narayan,Appl.Phys.Lett.,v
ol.57,p.1578(1990)〕、プラズマC
VD法〔H.Holzschuh,and H.Suh
r,Appl.Phys.Lett.,vol.59,
p.470(1991)〕、電子ビーム蒸着法〔A.B
ardal,M.Zwerger,O.Eibl,J.
Wecker,and Th.Matthee,App
l.Phys.Lett.,vol.61,p.124
3(1992)〕などの薄膜化方法を用いて行われる。
Further, the production of the epitaxially stabilized zirconia thin film on the silicon substrate is carried out by the laser ablation method [[1] D. K. Fork, D.D. B. Fenne
r, G. A. N. Connel, J.M. M. Phil
ips, and T.S. H. Geballe, App
l. Phys. Lett. , Vol. 57, p. 113
7 (1990); [2] P. Tiwari, S .; M.
Kanetkar, S .; Sharan, and J.M.
Narayan, Appl. Phys. Lett. , V
ol. 57, p. 1578 (1990)], plasma C
VD method [H. Holzschuh, and H.M. Suh
r, Appl. Phys. Lett. , Vol. 59,
p. 470 (1991)], electron beam evaporation method [A. B
ardal, M .; Zwerger, O .; Eibl, J .;
Wecker, and Th. Matthee, App
l. Phys. Lett. , Vol. 61, p. 124
3 (1992)] and the like.

【0018】シリコン基板表面は通常アモルファス構造
の自然酸化膜(SiO2)で覆われており、安定化ジル
コニア薄膜のヘテロエピタキシャル成長を実現するには
自然酸化膜を除去する必要がある。一般には自然酸化膜
の除去はフッ酸の5〜10%水溶液中に浸漬するか、薄
膜成長直前に真空装置中高温・高真空でアニーリングす
ることにより行われる。自然酸化膜の除去が十分でなか
ったり、または薄膜成形条件が最適化されないと単結晶
膜は得られず、ランダム配向の多結晶膜となったり、優
先配向は観測されても完全な単結晶膜にはならない。十
分最適化された条件では、シリコンの(100)配向基
板上には安定化ジルコニアの(100)配向膜が、シリ
コンの(111)配向基板上には安定化ジルコニアの
(111)配向膜を成長させることができる。
The surface of the silicon substrate is usually covered with a natural oxide film (SiO 2 ) having an amorphous structure, and it is necessary to remove the natural oxide film in order to realize heteroepitaxial growth of a stabilized zirconia thin film. Generally, the natural oxide film is removed by immersing it in a 5 to 10% aqueous solution of hydrofluoric acid or by annealing in a vacuum apparatus at high temperature and high vacuum immediately before thin film growth. A single crystal film cannot be obtained unless the natural oxide film is removed sufficiently or the thin film forming conditions are not optimized, resulting in a randomly oriented polycrystalline film, or even if a preferential orientation is observed, a complete single crystal film is obtained. It doesn't. Under sufficiently optimized conditions, a stabilized zirconia (100) oriented film is grown on a silicon (100) oriented substrate, and a stabilized zirconia (111) oriented film is grown on a silicon (111) oriented substrate. Can be made.

【0019】次に、本発明においては、このように安定
化ジルコニア単結晶薄膜を被着させた異種基板に、多数
の小開口を均一に分布するようにあけることが必要であ
る。異種基板に開口をあけるには特に制限はないが、例
えば湿式エッチング法などが用いられる。先ず、湿式エ
ッチング法については、1970年以降、シリコンの異
方性エッチング技術が進展し、シリコンを電子材料に留
まらず微細加工が可能な構造材料として利用する道を開
き、これまで種々のセンサーやインクジェットプリンタ
ー用ノズルなどが開発された〔[1]E.Bassou
s,IEEE Trans.Electron Dev
ices,ED‐25、1178(1978);[2]
K.E.Petersen,Proceedings
of the IEEE,vol.70,p.420
(1982)〕。
Next, in the present invention, it is necessary to form a large number of small openings so as to be uniformly distributed in the different type substrate on which the stabilized zirconia single crystal thin film is deposited. There are no particular restrictions on how to form an opening in the different type substrate, but a wet etching method or the like is used, for example. First of all, regarding the wet etching method, since 1970, the anisotropic etching technology of silicon has progressed, opening the way to use silicon as a structural material capable of microfabrication as well as electronic materials, and various sensors and sensors have been used so far. Nozzles for inkjet printers have been developed [[1] E. Bassou
s, IEEE Trans. Electron Dev
ices, ED-25, 1178 (1978); [2]
K. E. Petersen, Proceedings
of the IEEE, vol. 70, p. 420
(1982)].

【0020】エッチング法に用いられる種々のシリコン
エッチング液は、エッチング速度がシリコン面方位に関
わらず一定である等方性エッチング液と、エッチング速
度がシリコン面方位に大きく依存する異方性エッチング
液に大別できる。異方性エッチング液としては水酸化カ
リウムまたは水酸化ナトリウム水溶液に必要に応じイソ
プロピルアルコールを添加した系、あるいはピロカテコ
ール、エチレンジアミンと水より成る系が代表的であ
る。これら異方性エッチング液はシリコンの(100)
面に対するエッチング速度が(111)面に対するエッ
チング速度より数十倍から数百倍も大きいなど極めて異
方的で、最もエッチング速度の遅い(111)面が表面
に残存するようにシリコン基板の溶解が起こる。また、
熱酸化やCVDなどの方法で容易にシリコン上に製膜で
き、またフォトリソグラフィー技術で簡便にパターンを
形成するシリコン酸化膜やシリコン窒化膜に対するエッ
チング速度は数桁小さく、これらの膜をマスクとして利
用することで所望のパターンでシリコン基板のエッチン
グを行うことができる。
Various silicon etching solutions used in the etching method are an isotropic etching solution whose etching rate is constant regardless of the silicon plane orientation and an anisotropic etching solution whose etching rate largely depends on the silicon plane orientation. It can be roughly divided. As an anisotropic etching solution, a system in which isopropyl alcohol is added to a potassium hydroxide or sodium hydroxide aqueous solution as needed, or a system consisting of pyrocatechol, ethylenediamine and water is typical. These anisotropic etchants are silicon (100)
The etching rate with respect to the plane is extremely anisotropic such as several tens to several hundred times higher than the etching rate with respect to the (111) plane, and the silicon substrate is melted so that the (111) plane with the slowest etching rate remains on the surface. Occur. Also,
A film can be easily formed on silicon by a method such as thermal oxidation or CVD, and the etching rate for a silicon oxide film or a silicon nitride film that easily forms a pattern by photolithography technology is several orders of magnitude lower, and these films are used as masks. By doing so, the silicon substrate can be etched in a desired pattern.

【0021】本発明においてシリコン基板上に製膜され
た安定化ジルコニアは、上記いずれの異方性エッチング
液(水酸化カリウム・イソプロパノール系、またはエチ
レンジアミン‐ピロカテコール系)に対しても非常に安
定であり、シリコン基板がエッチングで除去された部位
には安定化ジルコニア薄膜の自立膜が残される。
The stabilized zirconia formed on a silicon substrate in the present invention is very stable against any of the above anisotropic etching solutions (potassium hydroxide / isopropanol type or ethylenediamine-pyrocatechol type). Therefore, a free-standing film of a stabilized zirconia thin film is left at the site where the silicon substrate is removed by etching.

【0022】このようにして作製された、エッチングで
一部溶解除去されたシリコン基板を支持体とする安定化
ジルコニア自立薄膜を用いて固体電解質型燃料電池用単
電池とするには、該薄膜の片面にアノードを、他面にカ
ソードを作製するのが効率的である。これらの電極の作
製は、該薄膜の各面にそれぞれこれらの電極として作用
する材料を薄膜状に積層することにより行われる。一般
的には、アノードにはLa1-xSrxMnO3(x=0.
05〜0.4)、La1-ySryCoO3(y=0〜0.
4)などのペロブスカイト材料が、カソードにはNi、
Ni/ZrO2サーメット、CeO2、Ptなどの材料が
用いられる。
To prepare a single cell for a solid oxide fuel cell using the stabilized zirconia self-supporting thin film having the silicon substrate, which is partially dissolved and removed by etching, as a support, the thin film of the thin film is prepared. It is efficient to make the anode on one side and the cathode on the other side. The production of these electrodes is performed by laminating the materials acting as these electrodes on the respective surfaces of the thin film in a thin film shape. Generally, the anode has La 1-x Sr x MnO 3 (x = 0.
05~0.4), La 1-y Sr y CoO 3 (y = 0~0.
4) and other perovskite materials such as Ni for the cathode,
Materials such as Ni / ZrO 2 cermet, CeO 2 and Pt are used.

【0023】図1に、本発明の酸素イオン導電体薄膜の
1例及びそれを単電池として用いたSOFCの1例の製
造工程概略図を示す。
FIG. 1 shows a schematic view of the manufacturing process of one example of the oxygen ion conductor thin film of the present invention and one example of SOFC using it.

【0024】すなわち、先ず、単結晶シリコン基板1の
片面上に、電子ビーム蒸着、スパッタリングなどにより
CeO2燃料電極、イットリア安定化ジルコニア(以下
YSZという)固体電解質、Sr混入型ランタンマンガ
ン複合酸化物(以下、LaMnO3:Srと略す)空気
極を各薄膜状に順次積層させて、アノード/安定化ジル
コニア単結晶薄膜/カソード積層膜2を形成させる〔図
1の(a)、(b)〕。次いで、シリコン基板の両面を
常圧CVDによる酸化膜(例えば厚さ5000Å)でコ
ーティングした後、シリコン基板裏面にフォトリソグラ
フィー法で図2のようなパターンを作製する。次いで、
基板裏面をフッ酸溶液中に浸漬して図2における白地部
分に相応する箇所の酸化膜のみを溶解除去し、フォトレ
ジストをアッシングして除いた後、シリコン基板をエチ
レンジアミン‐ピロカテコール‐水系の異方性エッチン
グ液中に約10時間浸漬させ、図1の(c)に示すよう
に、シリコン基板を上記白地部分に相応する箇所におい
てエッチングして部分的に取り除くことにより開口3を
あける。さらにフッ酸に浸漬して保護酸化膜を除く。こ
のようにして、基板に均一に分布させた小開口に相応し
て自立状態の酸素イオン導電体薄膜を作製することがで
きる。
That is, first, on one surface of the single crystal silicon substrate 1, a CeO 2 fuel electrode, a yttria-stabilized zirconia (hereinafter referred to as YSZ) solid electrolyte, an Sr-containing lanthanum-manganese composite oxide ( Hereinafter, air electrodes (abbreviated as LaMnO 3 : Sr) are sequentially laminated in the form of thin films to form an anode / stabilized zirconia single crystal thin film / cathode laminated film 2 [(a) and (b) of FIG. 1]. Then, both surfaces of the silicon substrate are coated with an oxide film (for example, 5000 Å in thickness) by atmospheric pressure CVD, and then a pattern as shown in FIG. 2 is formed on the back surface of the silicon substrate by photolithography. Then
The back surface of the substrate was dipped in a hydrofluoric acid solution to dissolve and remove only the oxide film at the portion corresponding to the white background portion in FIG. 2, and the photoresist was removed by ashing. Then, the silicon substrate was cleaned with an ethylenediamine-pyrocatechol-water system. By immersing the silicon substrate in an anisotropic etching solution for about 10 hours, as shown in FIG. 1 (c), the opening 3 is opened by partially removing the silicon substrate by etching at a portion corresponding to the white background portion. Further, it is immersed in hydrofluoric acid to remove the protective oxide film. In this way, a free-standing oxygen ion conductor thin film can be produced corresponding to the small openings uniformly distributed on the substrate.

【0025】次に、この酸素イオン導電体薄膜をSOF
C用単電池として用い、スタック型燃料電池を作製す
る。その際に用いるセパレータ4は、図3に示すように
シリコン基板を加工して作製される。次いで、図1の
(c)に示す単電池のシリコン基板の上部の周辺部分に
常圧CVD法などで燐ケイ酸ガラス(phosphos
ilicate glass)(以下、PSGという)
膜5を成膜することにより得られる、図1の(d)に示
す接着性周辺部を設けた単電池と図1の(d)に示すセ
パレータ4とをそれぞれ複数個、図1の(e)に示すよ
うに順次積層し、両末端セパレータについては端子板を
兼ねさせるようにする。
Next, the oxygen ion conductor thin film is subjected to SOF.
A stack type fuel cell is manufactured by using as a C single cell. The separator 4 used at that time is manufactured by processing a silicon substrate as shown in FIG. Then, a phosphosilicate glass (phosphos) glass is formed on the upper peripheral portion of the silicon substrate of the unit cell shown in FIG.
ilicate glass) (hereinafter referred to as PSG)
A plurality of unit cells provided with the adhesive peripheral part shown in FIG. 1D and a plurality of separators 4 shown in FIG. ) As shown in FIG. 3), and the terminal separators are used also for both end separators.

【0026】図1の(d)と図1の(e)で示される単
電池下部とセパレータ上部間の導電性接着は接続面のシ
リコン表面を希フッ酸に浸漬して疎水処理を行った後、
圧着させて電気的な導通も可能とすることによって行わ
れる〔K.Ljungberg,A.Soderbor
g,S.Bengtsson,and A.Jauhi
ainen,J.Electrochem.Soc.,
vol.141,p.562(1994)〕。また、単
電池上部の接着性周辺部とセパレータ下部との絶縁性接
着は、高温で圧着することにより行われる〔IEEE
Trans.Electron Devices,ED
−25(1978)〕。さらに、単電池上部の中央部分
とセパレータ下部との積層は、単電池の最上面とアノー
ド薄膜とセパレータ下部とが電気的に導通するように行
われる。これは、上記単電池上部の接着性周辺部とセパ
レータ下部との絶縁性接着を行うことによる物理的接触
で自動的に達成しうるが、より確実な電気的導通を得る
にはセパレータ下部のアノードとの接触部分にあらかじ
め銀ペーストのような導電性ペーストなどを塗布してお
くのがよい。
Conductive adhesion between the lower portion of the unit cell and the upper portion of the separator shown in FIGS. 1D and 1E is carried out by immersing the silicon surface of the connecting surface in dilute hydrofluoric acid to perform hydrophobic treatment. ,
This is performed by crimping and allowing electrical conduction [K. Ljungberg, A .; Soderbor
g, S. Bengtsson, and A.M. Jauhi
ainen, J .; Electrochem. Soc. ,
vol. 141, p. 562 (1994)]. Insulating adhesion between the adhesive peripheral part of the upper part of the unit cell and the lower part of the separator is performed by pressure bonding at high temperature [IEEE
Trans. Electron Devices, ED
-25 (1978)]. Further, the central portion of the upper part of the unit cell and the lower part of the separator are stacked so that the uppermost surface of the unit cell, the anode thin film and the lower part of the separator are electrically connected. This can be automatically achieved by physical contact by performing insulating adhesion between the adhesive peripheral part of the upper part of the cell and the lower part of the separator, but to obtain more reliable electrical conduction, the anode of the lower part of the separator can be obtained. It is preferable to apply a conductive paste such as a silver paste in advance to the contact portion with.

【0027】このようにして、単電池下部とセパレータ
上部とが低界面抵抗で積層されて電気的に接続され、セ
パレータ下部と単電池上部の周辺のシリコン部分とは電
気的に絶縁されるとともに、中央部分のセパレータ下部
と単電池最上部のアノードとが接する箇所では低い電気
抵抗値で電気的に接続された、所望のスタック型の固体
電解質型燃料電池を作製することができる。
In this manner, the lower portion of the unit cell and the upper portion of the separator are laminated and electrically connected with each other with low interface resistance, and the lower portion of the separator and the silicon portion around the upper portion of the unit cell are electrically insulated, and A desired stack type solid oxide fuel cell can be manufactured in which a lower portion of the separator in the central portion and an uppermost anode of the unit cell are electrically connected at a low electric resistance value.

【0028】[0028]

【実施例】次に実施例により本発明をさらに詳細に説明
するが、本発明はこれらの例によってなんら限定される
ものではない。
EXAMPLES The present invention will be described in more detail by way of examples, which should not be construed as limiting the invention thereto.

【0029】実施例1 リンが混入された抵抗率0.001〜0.002Ωcm
の(100)配向単結晶シリコン基板(4インチ径、厚
さ0.35mm)として、その両面を鏡面研磨したもの
を用い、これをダイシング・ソーで各辺が(110)方
向となるように、5cm角の正方形状に切断した。この
方形物をRCA洗浄〔W.Kern外1,RCA Re
view,p.187(1970)〕、すなわち90℃
に保った水:過酸化水素:水酸化アンモニウム=5:
1:0.05の混合溶液中10分間の浸漬処理に付した
のち、5%フッ酸水溶液に1分、純水に1分浸してから
取り出し、次いで窒素ガス噴射で乾燥後直ちに超高真空
仕様、複数ターゲット・スパッタリング装置に搬入し
た。該装置の基板ホルダーに収容した正方形シリコン基
板の成膜面について、その外縁部をインコネル製マスク
で覆って周辺部分が成膜されないようにした。成膜面積
は正方形基板の中心部分の4cm角部分となるようにし
た。
Example 1 Resistivity in which phosphorus is mixed 0.001 to 0.002 Ωcm
As the (100) -oriented single crystal silicon substrate (4 inch diameter, thickness 0.35 mm), one whose both surfaces were mirror-polished was used, and each side was made to be the (110) direction with a dicing saw. It was cut into a 5 cm square. This square was RCA washed [W. Out of Kern 1, RCA Re
view, p. 187 (1970)], that is, 90 ° C.
Water kept at: hydrogen peroxide: ammonium hydroxide = 5:
After soaking in a mixed solution of 1: 0.05 for 10 minutes, soak in 5% hydrofluoric acid solution for 1 minute and pure water for 1 minute, and then take it out, then dry with nitrogen gas injection and immediately after ultrahigh vacuum specifications , Was loaded into a multi-target sputtering system. The film formation surface of the square silicon substrate housed in the substrate holder of the device was covered with an Inconel mask so that the peripheral portion was not film-formed. The film forming area was set to be a 4 cm square portion in the central portion of the square substrate.

【0030】基板温度を室温のままにして、10-7トー
ル台まで排気し、次いで5℃/分の加熱速度で、輻射ヒ
ーターを用い基板温度850℃まで昇温した。850℃
到達時の真空度は1.5×10-6トールであった。上記
基板ホルダーを10cm径CeO2焼結ターゲット上に
移動させ、放電当初は基板上に成膜させないためにシャ
ッターを閉じ、純アルゴンガスを10ミリトールまで導
入し、13.56MHzの高周波電力100Wを導入し
て放電を開始させた。5分間の予備放電後、シャッター
を開き30秒間の成膜を行い、シャッターを閉じたの
ち、放電を停止させた。続いてアルゴンガス分圧270
ミリトール、酸素ガス分圧30ミリトール、全反応ガス
圧力300ミリトールとなるようにアルゴンガスと酸素
ガスを導入し、高周波電力300Wを導入し放電を開始
させた。5分間の予備放電後シャッターを開き、20分
間の成膜後、シャッターを閉じて放電を終了させた。こ
のようにして、膜厚約3000Åの(110)面配向C
eO2膜を成長させた。
With the substrate temperature kept at room temperature, the substrate was evacuated to the 10 −7 torr level, and then the substrate temperature was raised to 850 ° C. using a radiation heater at a heating rate of 5 ° C./min. 850 ° C
The vacuum degree at the time of arrival was 1.5 × 10 −6 Torr. The substrate holder was moved onto a CeO 2 sintering target with a diameter of 10 cm, the shutter was closed to prevent film formation on the substrate at the beginning of discharge, pure argon gas was introduced up to 10 mTorr, and 100 W of 13.56 MHz high frequency power was introduced. Then, the discharge was started. After pre-discharge for 5 minutes, the shutter was opened to form a film for 30 seconds, the shutter was closed, and then the discharge was stopped. Then, the argon gas partial pressure 270
Argon gas and oxygen gas were introduced so as to have a millitorr, a partial pressure of oxygen gas of 30 millitorr, and a total reaction gas pressure of 300 millitorr, and high-frequency power of 300 W was introduced to start discharge. After preliminary discharge for 5 minutes, the shutter was opened, and after film formation for 20 minutes, the shutter was closed to terminate the discharge. In this way, the (110) plane orientation C with a film thickness of about 3000Å
An eO 2 film was grown.

【0031】次に、アルゴンガス分圧270ミリトー
ル、酸素ガス分圧30ミリトール、全反応ガス圧力30
0ミリトールの反応ガス圧力は変化させず、基板温度を
800℃まで低下させ、基板ホルダーを10cm径の、
10モル%イットリア添加の安定化ジルコニア(以下1
0YSZという)焼結体ターゲット上に移動させ、該タ
ーゲットに高周波電力300Wを投入して放電開始後、
5分間の予備放電後シャッターを開き、3時間30分間
の成膜後、シャッターを閉じて放電を終了させた。この
ようにして、CeO2膜上に(110)配向の10YS
Z薄膜を約2μm成長させた。
Next, argon gas partial pressure 270 mTorr, oxygen gas partial pressure 30 mTorr, total reaction gas pressure 30
The reaction gas pressure of 0 mTorr was not changed, the substrate temperature was lowered to 800 ° C., and the substrate holder of 10 cm diameter was used.
Stabilized zirconia with 10 mol% yttria added (hereinafter 1
After moving to a sintered body target (referred to as 0YSZ) and applying high-frequency power of 300 W to the target to start discharge,
After preliminary discharge for 5 minutes, the shutter was opened, and after film formation for 3 hours and 30 minutes, the shutter was closed to terminate the discharge. Thus, the (110) -oriented 10YS on the CeO 2 film is obtained.
The Z thin film was grown to about 2 μm.

【0032】次に、アルゴンガス分圧270ミリトー
ル、酸素ガス分圧30ミリトール、全反応ガス圧力30
0ミリトールは変化させず、基板温度を500℃まで低
下させ、基板ホルダーを10cm径の、La0.8Sr0.2
MnO3焼結体ターゲット上に移動させ、該ターゲット
に高周波電力300Wを投入して放電を開始させ、5分
間の予備放電後シャッターを開き、30分間の成膜後、
シャッターを閉じて放電を終了させることにより、膜厚
約5000Åの多結晶La0.8Sr0.2MnO3膜を成長
させた。次いで反応ガス雰囲気のまま10℃/分の速度
で室温まで冷却後、スパッタリング装置より取出した。
このようにして、シリコン基板の片面上に順次単結晶C
eO2膜、単結晶YSZ膜、多結晶La0.8Sr0.2Mn
3膜が積層された。
Next, the argon gas partial pressure is 270 mTorr, the oxygen gas partial pressure is 30 mTorr, and the total reaction gas pressure is 30.
0 millitorr is not changed, the substrate temperature is lowered to 500 ° C., the substrate holder is set to a diameter of La 0.8 Sr 0.2 of 10 cm.
The MnO 3 sintered body is moved onto a target, high frequency power of 300 W is applied to the target to start discharge, and after 5 minutes of preliminary discharge, the shutter is opened and after 30 minutes of film formation,
By closing the shutter and ending the discharge, a polycrystalline La 0.8 Sr 0.2 MnO 3 film having a film thickness of about 5000Å was grown. Then, the reaction gas atmosphere was cooled to room temperature at a rate of 10 ° C./min, and then taken out from the sputtering device.
In this way, single crystal C is sequentially formed on one surface of the silicon substrate.
eO 2 film, single crystal YSZ film, polycrystalline La 0.8 Sr 0.2 Mn
The O 3 film was laminated.

【0033】次に、上記のシリコン基板両面に、常圧C
VD法で約5000Å厚のPSG膜(P25濃度約10
%)を析出させ、次いでシリコン基板の裏面(10YS
Z膜等が積層された面の裏面)に、図2に示す均一分布
状態を呈するパターンをフォトリソグラフィー法で転写
し、図2の白抜き部分に相応する転写部のみをフッ酸系
エッチング液への浸漬処理により除去した。フォトレジ
ストをアッシングして除去したのち、シリコン基板を約
60℃に保ったエチレンジアミン‐ピロカテコール‐水
(重量比8:1:1)系の異方性エッチング液中に約1
0時間浸漬し、図1(c)に示すように、シリコン基板
を上記パターンに相応させてエッチング除去し、均一に
分布させた小開口をあけ、積層薄膜が一部自立状態とな
るようにする。次いで、シリコン基板をフッ酸系エッチ
ング液中に浸し、保護PSG膜を除去した。以上の工程
により、酸素イオン導電体薄膜が作製された。
Next, a normal pressure C is applied to both surfaces of the silicon substrate.
The PSG film of about 5000 Å thickness by VD method (P 2 O 5 concentration of about 10
%), And then the back surface of the silicon substrate (10YS
The pattern showing the uniform distribution state shown in FIG. 2 is transferred to the back surface of the surface on which the Z film and the like are laminated) by the photolithography method, and only the transfer part corresponding to the white part in FIG. It was removed by the immersion treatment of. After the photoresist is removed by ashing, the silicon substrate is kept at about 60 ° C. in an anisotropic etchant of ethylenediamine-pyrocatechol-water (weight ratio 8: 1: 1).
After soaking for 0 hour, as shown in FIG. 1 (c), the silicon substrate is etched and removed in accordance with the above pattern, and uniformly distributed small openings are formed so that the laminated thin film becomes partially free-standing. . Then, the silicon substrate was immersed in a hydrofluoric acid-based etching solution to remove the protective PSG film. Through the above steps, the oxygen ion conductor thin film was produced.

【0034】この酸素イオン導電体薄膜をSOFC用単
電池として用い、燃料電池スタックとして積層化するた
めには、図3に示すセパレータを別途用意する。材料と
しては、燃料電池電極基板と同様、リンドープで抵抗率
が0.001〜0.002Ωcmの両面鏡面研磨済み
(100)配向単結晶シリコン基板(4インチ径、厚さ
約5mm)を用い、これをワイヤー・ソーで各辺が(1
10)方向となるように、5cm角の正方形状に切断
し、次いでダイシング・ソーを用いて、セパレータの両
面にガス通路部分を2mmの深さで切削加工した。上記
燃料電池電極基板1枚と上記セパレータ2枚(以下セパ
レータA、セパレータBという)を用意し、以下のとお
り単電池を作製し、その性能評価を行った。
In order to use this oxygen ion conductor thin film as a single cell for SOFC and stack it as a fuel cell stack, a separator shown in FIG. 3 is prepared separately. As the material, as in the fuel cell electrode substrate, a phosphorus-doped double-sided mirror-polished (100) oriented single crystal silicon substrate (4 inch diameter, thickness about 5 mm) having a resistivity of 0.001 to 0.002 Ωcm was used. With a wire saw,
It was cut into a square shape of 5 cm square so as to be oriented in the 10) direction, and then a gas passage portion was cut to a depth of 2 mm on both surfaces of the separator using a dicing saw. One fuel cell electrode substrate and two separators (hereinafter referred to as separator A and separator B) were prepared, and a unit cell was prepared as described below, and its performance was evaluated.

【0035】先ず、燃料電池電極基板の表面の外縁部約
5mm幅のみ、約4μm厚のPSG膜を常圧CVD法で
作製した。次いで、燃料電池電極基板の下部とセパレー
タAの上部を希フッ酸に約1分浸漬して酸化膜を除去し
て表面を疎水性とし、直ちに室温で両面を接触させ、接
着を行った。次いで、セパレータBを燃料電池電極基板
上に配置し、約2kgの石英製重りを上に載せた状態
で、電気炉中、アルゴン雰囲気で1000℃、約30分
のアニーリングを行い、2つの接触面を完全に接着させ
た。以上の処理で、燃料電池電極基板とセパレータAは
電気的導通を保って接着され、燃料電池電極基板とセパ
レータBは電気的絶縁状態で接着された。ただし、燃料
電池電極基板の最表面のアノード膜とセパレータBとは
物理的に接触し、電気的にも導通している。
First, a PSG film having a thickness of about 4 μm was formed by an atmospheric pressure CVD method only on the outer edge portion of the surface of the fuel cell electrode substrate having a width of about 5 mm. Next, the lower part of the fuel cell electrode substrate and the upper part of the separator A were immersed in dilute hydrofluoric acid for about 1 minute to remove the oxide film to make the surface hydrophobic, and immediately both surfaces were brought into contact at room temperature for adhesion. Next, the separator B is placed on the fuel cell electrode substrate, and with the weight of about 2 kg made of quartz placed thereon, annealing is performed in an electric furnace at 1000 ° C. for about 30 minutes in an argon atmosphere to obtain two contact surfaces. Was completely bonded. Through the above processing, the fuel cell electrode substrate and the separator A were bonded while maintaining electrical continuity, and the fuel cell electrode substrate and the separator B were bonded in an electrically insulated state. However, the anode film on the outermost surface of the fuel cell electrode substrate and the separator B are in physical contact with each other and electrically connected.

【0036】このようにして、セパレータAを陽極、セ
パレータBを陰極とするクロスフロー型SOFC単電池
が得られた。上記SOFC単電池は、電気炉中に設置さ
れ、700℃で純酸素と純水素をそれぞれ原料ガスとし
て用い、発電試験を行った。その結果、開放起電力1.
05V、最大出力0.4W/cm2が得られた。
In this way, a cross-flow type SOFC cell having separator A as the anode and separator B as the cathode was obtained. The SOFC unit cell was installed in an electric furnace and subjected to a power generation test at 700 ° C. using pure oxygen and pure hydrogen as raw material gases. As a result, open electromotive force 1.
A maximum output of 05 V and a maximum output of 0.4 W / cm 2 was obtained.

【0037】実施例2 実施例1と同じシリコン基板を用い、実施例1と同様に
加工、処理を施し、複数ターゲット・スパッタリング装
置に搬入した。該装置の基板ホルダーに収容した正方形
シリコン基板の成膜面について、その外縁部をインコネ
ル製マスクで覆って周辺部分が成膜されないようにし
た。成膜面積は正方形基板の中心部分の4cm角部分と
なるようにした。
Example 2 The same silicon substrate as in Example 1 was used, processed and treated in the same manner as in Example 1, and loaded into a multiple target sputtering apparatus. The film formation surface of the square silicon substrate housed in the substrate holder of the device was covered with an Inconel mask so that the peripheral portion was not film-formed. The film forming area was set to be a 4 cm square portion in the central portion of the square substrate.

【0038】基板温度を室温のままにして、10-7トー
ル台まで排気し、次いで5℃/分の加熱速度で、輻射ヒ
ーターを用い基板温度800℃まで昇温した。800℃
到達時の真空度は1.2×10-6トールであった。
With the substrate temperature kept at room temperature, the substrate was evacuated to the 10 −7 torr range, and then the substrate temperature was raised to 800 ° C. using a radiant heater at a heating rate of 5 ° C./min. 800 ° C
The vacuum degree at the time of arrival was 1.2 × 10 −6 Torr.

【0039】基板ホルダーを10cm径の10YSZ焼
結体ターゲット上に移動させ、基板上成膜を行わないた
めのシャッターを閉め、純アルゴンガスを10ミリトー
ルまで導入し、13.56MHzの高周波電力100W
を投入して放電を開始させた。5分間の予備放電後シャ
ッターを開き、30秒間の成膜を行い、シャッターを閉
じて放電を停止させた。続いてアルゴンガス分圧270
ミリトール、酸素ガス分圧30ミリトール、全反応ガス
圧力300ミリトールとなるようにアルゴンガスと酸素
ガスを導入し、高周波電力300Wを導入し放電を開始
させた。5分間の予備放電後シャッターを開き、3時間
30分間の成膜後、シャッターを閉じて放電を終了させ
た。このようにして、シリコン基板上に約2μm厚の
(100)配向10YSZ薄膜が成膜された。
The substrate holder is moved onto a 10YSZ sintered compact target having a diameter of 10 cm, a shutter for not forming a film on the substrate is closed, pure argon gas is introduced up to 10 mTorr, and a high frequency power of 13.56 MHz 100 W.
Was charged to start the discharge. After preliminary discharge for 5 minutes, the shutter was opened, film formation was performed for 30 seconds, and the shutter was closed to stop the discharge. Then, the argon gas partial pressure 270
Argon gas and oxygen gas were introduced so as to have a millitorr, a partial pressure of oxygen gas of 30 millitorr, and a total reaction gas pressure of 300 millitorr, and high-frequency power of 300 W was introduced to start discharge. After preliminary discharge for 5 minutes, the shutter was opened, and after film formation for 3 hours and 30 minutes, the shutter was closed to terminate the discharge. Thus, a (100) -oriented 10YSZ thin film having a thickness of about 2 μm was formed on the silicon substrate.

【0040】次に、アルゴンガス分圧270ミリトー
ル、酸素ガス分圧30ミリトール、全反応ガス圧力30
0ミリトールの反応ガス圧力は変化させず、基板温度を
500℃まで低下させ、基板ホルダーを10cm径の、
La0.8Sr0.2MnO3焼結体ターゲット上に移動さ
せ、該ターゲットに高周波電力300Wを投入して放電
を開始させ、5分間の予備放電後シャッターを開き、3
0分間の成膜後、シャッターを閉じて放電を終了させ
た。このようにして膜厚約5000Åの多結晶La0. 8
Sr0.2MnO3膜を成長させた。次いで反応ガス雰囲気
のまま10℃/分の速度で室温まで冷却後、スパッタリ
ング装置より取出した。このようにして、シリコン基板
の片面上に順次単結晶YSZ膜、多結晶La0. 8Sr0.2
MnO3膜が積層された。
Next, the argon gas partial pressure is 270 mTorr, the oxygen gas partial pressure is 30 mTorr, and the total reaction gas pressure is 30.
The reaction gas pressure of 0 mTorr was not changed, the substrate temperature was lowered to 500 ° C., and the substrate holder of 10 cm diameter was used.
La 0.8 Sr 0.2 MnO 3 sintered body is moved onto a target, high-frequency power of 300 W is applied to the target to start discharge, and after 5 minutes of preliminary discharge, the shutter is opened.
After the film formation for 0 minutes, the shutter was closed to terminate the discharge. Polycrystalline La 0. 8 of this way, the film thickness of about 5000Å
A Sr 0.2 MnO 3 film was grown. Then, the reaction gas atmosphere was cooled to room temperature at a rate of 10 ° C./min, and then taken out from the sputtering device. In this manner, sequentially monocrystalline YSZ film on one side of the silicon substrate, polycrystalline La 0. 8 Sr 0.2
The MnO 3 film was laminated.

【0041】次に、実施例1と同様に、フォトリソグラ
フィー法、異方性シリコンエッチング法などにより、図
1(c)と類似の状態を実現した。続いて、基板裏面に
電子ビーム蒸着法で、蒸着源金属Ni、蒸着雰囲気とし
て酸素分圧1ミリトール、基板温度室温の条件下で約5
000Å厚の酸化ニッケル膜を成膜した。その際には、
YSZ膜などの成膜時と同様、金属製マスクで基板周辺
部を覆い、中心部の約4cm×4cmの方形面のみが成
膜されるようにした。
Next, as in Example 1, a state similar to that of FIG. 1C was realized by photolithography, anisotropic silicon etching, and the like. Then, on the back surface of the substrate, a deposition source metal Ni, an oxygen partial pressure of 1 mTorr as a deposition atmosphere, and a substrate temperature of about 5 at room temperature by electron beam evaporation.
A nickel oxide film having a thickness of 000Å was formed. In that case,
Similar to the case of depositing a YSZ film or the like, the peripheral portion of the substrate was covered with a metal mask so that only a square surface of about 4 cm × 4 cm in the central portion was deposited.

【0042】次いで、実施例1と同様のセパレータの作
製、積層を行い、セパレータ板2枚と燃料電池電極基板
1枚とからなるクロスフロー型SOFC単電池を作製
し、実施例1と同様にして発電試験によりその性能評価
を行った。その結果、開放起電力1.08V、最大出力
0.6W/cm2が得られた。
Next, the same separator as in Example 1 was prepared and laminated to prepare a cross-flow type SOFC cell consisting of two separator plates and one fuel cell electrode substrate, and in the same manner as in Example 1. The performance was evaluated by a power generation test. As a result, an open electromotive force of 1.08 V and a maximum output of 0.6 W / cm 2 were obtained.

【0043】[0043]

【発明の効果】本発明の酸素イオン導電体薄膜は、従来
0.1mm程度もあった膜厚を1〜2μmへと3桁程度
きわめて大幅に薄くしうるので、電気抵抗が低減され、
ガス透過効率が高められ、しかも構成成分の物質移動が
低減され、材料劣化を抑制しうるという顕著な効果を奏
する。従って、本発明の酸素イオン導電体薄膜は、酸素
センサー、気相水電解材料、特に固体電解質型燃料電池
用材料として好適に用いられる。
EFFECTS OF THE INVENTION The oxygen ion conductor thin film of the present invention can be made extremely thin by about 3 digits from 1 mm to 2 μm, which was conventionally about 0.1 mm, so that the electric resistance is reduced,
The gas permeation efficiency is increased, the mass transfer of the constituent components is reduced, and the material deterioration can be suppressed. Therefore, the oxygen ion conductor thin film of the present invention is suitably used as an oxygen sensor, a vapor-phase water electrolytic material, particularly a material for a solid oxide fuel cell.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の酸素イオン導電体薄膜の1例及びそ
れを電極付き薄膜固体電解質として用いたSOFCの1
例の製造工程概略図。
FIG. 1 is an example of an oxygen ion conductor thin film of the present invention and an SOFC using the thin film solid electrolyte with an electrode.
The manufacturing process schematic of an example.

【図2】 シリコン基板パターニング図。FIG. 2 is a patterning diagram of a silicon substrate.

【図3】 セパレータの概略図。FIG. 3 is a schematic view of a separator.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 アノード/安定化ジルコニア単結晶薄膜/カソード
積層膜 3 開口 4 セパレータ 5 PSG(リンケイ酸ガラス)膜
1 Silicon Substrate 2 Anode / Stabilized Zirconia Single Crystal Thin Film / Cathode Laminated Film 3 Opening 4 Separator 5 PSG (phosphosilicate glass) Film

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01B 1/06 A H01M 8/12 9444−4K // C09K 3/00 C Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location H01B 1/06 A H01M 8/12 9444-4K // C09K 3/00 C

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 均一に分布させた多数の小開口をもつ異
種基板と、それに被着された安定化ジルコニア単結晶薄
膜とから成る酸素イオン導電体薄膜。
1. An oxygen ion conductor thin film comprising a heterogeneous substrate having a large number of uniformly distributed small openings, and a stabilized zirconia single crystal thin film deposited thereon.
【請求項2】 均一に分布させた多数の小開口をもつ異
種基板と、それに被着された安定化ジルコニア単結晶薄
膜と、安定化ジルコニア単結晶薄膜上に被着された一方
の電極膜と、該電極膜面と反対の面に被着された他方の
電極膜とから成る酸素イオン導電体薄膜。
2. A heterogeneous substrate having a large number of uniformly distributed small openings, a stabilized zirconia single crystal thin film deposited thereon, and one electrode film deposited on the stabilized zirconia single crystal thin film. An oxygen ion conductor thin film comprising the other electrode film deposited on the surface opposite to the electrode film surface.
【請求項3】 均一に分布させた多数の小開口をもつ異
種基板と、それに一方の電極膜を介して被着された安定
化ジルコニア単結晶薄膜と、安定化ジルコニア単結晶薄
膜上に被着された他方の電極膜とから成る酸素イオン導
電体薄膜。
3. A heterogeneous substrate having a large number of uniformly distributed small openings, a stabilized zirconia single crystal thin film deposited via one electrode film thereof, and a stabilized zirconia single crystal thin film deposited thereon. Oxygen ion conductor thin film composed of the other electrode film formed.
【請求項4】 異種基板上に、安定化ジルコニアの気相
成長を行わせて単結晶薄膜を形成させ、次いで異種基板
に多数の開口を均一に分布するようにあけることを特徴
とする請求項1記載の酸素イオン導電体薄膜の製造方
法。
4. A single crystal thin film is formed on a heterogeneous substrate by vapor phase growth of stabilized zirconia, and then a large number of openings are formed in the heterogeneous substrate so as to be uniformly distributed. 1. The method for producing an oxygen ion conductor thin film according to 1.
【請求項5】 異種基板上に、安定化ジルコニアの気相
成長を行わせて単結晶薄膜を形成させ、次いで異種基板
に多数の開口を均一に分布するようにあける工程と単結
晶薄膜上に一方の電極を成膜させる工程とを任意の順序
で行ったのち、異種基板側に他方の電極を成膜させるこ
とを特徴とする請求項2記載の酸素イオン導電体薄膜の
製造方法。
5. A step of vapor-depositing stabilized zirconia on a heterogeneous substrate to form a single crystal thin film, and then forming a large number of openings uniformly on the heterogeneous substrate, and a step of forming the single crystal thin film on the single crystal thin film. The method for producing an oxygen ion conductor thin film according to claim 2, wherein the step of forming one electrode is performed in an arbitrary order, and then the other electrode is formed on the different substrate side.
【請求項6】 異種基板上に、一方の電極形成性物質の
気相成長及び安定化ジルコニアの気相成長をそれぞれ順
次行わせて単結晶薄膜を形成させ、次いで異種基板に多
数の開口を均一に分布するようにあける工程と単結晶薄
膜上に他方の電極を成膜させる工程とを任意の順序で行
うことを特徴とする請求項3記載の酸素イオン導電体薄
膜の製造方法。
6. A single crystal thin film is formed on a heterogeneous substrate by sequentially performing vapor phase growth of one electrode-forming substance and vapor phase growth of stabilized zirconia, respectively, and then forming a large number of openings on the heterogeneous substrate uniformly. 4. The method for producing an oxygen ion conductor thin film according to claim 3, wherein the step of distributing the oxygen ion conductor thin film and the step of forming the other electrode on the single crystal thin film are performed in an arbitrary order.
JP6200685A 1994-08-25 1994-08-25 Oxygen ion conductor thin film and manufacture thereof Pending JPH0864216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6200685A JPH0864216A (en) 1994-08-25 1994-08-25 Oxygen ion conductor thin film and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6200685A JPH0864216A (en) 1994-08-25 1994-08-25 Oxygen ion conductor thin film and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0864216A true JPH0864216A (en) 1996-03-08

Family

ID=16428555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6200685A Pending JPH0864216A (en) 1994-08-25 1994-08-25 Oxygen ion conductor thin film and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0864216A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319665A (en) * 2000-05-08 2001-11-16 Honda Motor Co Ltd Manufacturing method of fuel cell and its electrolyte
WO2002007244A1 (en) * 2000-07-14 2002-01-24 Sofco L.P. Single crystal electrolyte for fuel cells
WO2002080299A1 (en) * 2001-03-29 2002-10-10 Matsushita Electric Industrial Co., Ltd. High-polymer electrolyte type thin film fuel cell and its driving method
JP2002535224A (en) * 1999-01-12 2002-10-22 マイクロコーティング テクノロジーズ,インコーポレイティド Epitaxial thin film
JP2004342584A (en) * 2003-02-18 2004-12-02 Sulzer Markets & Technology Ag Battery having miniaturized sofc fuel cell
US6926852B2 (en) 2001-08-13 2005-08-09 Nissan Motor Co., Ltd. Cell plate structure for solid electrolyte fuel cell, solid electrolyte fuel cell and related manufacturing method
JP2005533364A (en) * 2001-10-26 2005-11-04 フリースケール セミコンダクター インコーポレイテッド Removal of amorphous oxides from single crystal surfaces.
US7081317B2 (en) 2001-03-29 2006-07-25 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte thin film fuel cell and method of operating the same
US7122265B2 (en) 2000-11-27 2006-10-17 Nissan Motor Co., Ltd. Single cell for fuel cell and solid oxide fuel cell
US7727665B2 (en) 2002-05-09 2010-06-01 Honda Motor Co., Ltd Fuel cell assembly, separator-diffusion layer assembly for fuel cell assembly and manufacturing method therefor
JP6457126B1 (en) * 2018-02-15 2019-01-23 カルソニックカンセイ株式会社 Fuel cell and manufacturing method thereof
CN111837280A (en) * 2018-04-23 2020-10-27 森村索福克科技股份有限公司 Composite body and electrochemical reaction cell stack

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002535224A (en) * 1999-01-12 2002-10-22 マイクロコーティング テクノロジーズ,インコーポレイティド Epitaxial thin film
JP2001319665A (en) * 2000-05-08 2001-11-16 Honda Motor Co Ltd Manufacturing method of fuel cell and its electrolyte
WO2002007244A1 (en) * 2000-07-14 2002-01-24 Sofco L.P. Single crystal electrolyte for fuel cells
US7790328B2 (en) 2000-11-27 2010-09-07 Nissan Motor Co., Ltd. Single cell for fuel cell and solid oxide fuel cell
US7122265B2 (en) 2000-11-27 2006-10-17 Nissan Motor Co., Ltd. Single cell for fuel cell and solid oxide fuel cell
EP2144320A2 (en) 2000-11-27 2010-01-13 Nissan Motor Co., Ltd. Single cell for fuel cell and solid oxide fuel cell
WO2002080299A1 (en) * 2001-03-29 2002-10-10 Matsushita Electric Industrial Co., Ltd. High-polymer electrolyte type thin film fuel cell and its driving method
US7081317B2 (en) 2001-03-29 2006-07-25 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte thin film fuel cell and method of operating the same
US6926852B2 (en) 2001-08-13 2005-08-09 Nissan Motor Co., Ltd. Cell plate structure for solid electrolyte fuel cell, solid electrolyte fuel cell and related manufacturing method
JP2005533364A (en) * 2001-10-26 2005-11-04 フリースケール セミコンダクター インコーポレイテッド Removal of amorphous oxides from single crystal surfaces.
US7727665B2 (en) 2002-05-09 2010-06-01 Honda Motor Co., Ltd Fuel cell assembly, separator-diffusion layer assembly for fuel cell assembly and manufacturing method therefor
JP2004342584A (en) * 2003-02-18 2004-12-02 Sulzer Markets & Technology Ag Battery having miniaturized sofc fuel cell
JP6457126B1 (en) * 2018-02-15 2019-01-23 カルソニックカンセイ株式会社 Fuel cell and manufacturing method thereof
JP2019145211A (en) * 2018-02-15 2019-08-29 カルソニックカンセイ株式会社 Fuel cell and manufacturing method thereof
CN111837280A (en) * 2018-04-23 2020-10-27 森村索福克科技股份有限公司 Composite body and electrochemical reaction cell stack
EP3787083A4 (en) * 2018-04-23 2022-01-05 Morimura SOFC Technology Co., Ltd. Composite, and electrochemical reaction cell stack
US11462759B2 (en) 2018-04-23 2022-10-04 Morimura Sofc Technology Co., Ltd. Composite, and electrochemical reaction cell stack
CN111837280B (en) * 2018-04-23 2023-07-04 森村索福克科技股份有限公司 Composite body and electrochemical reactor

Similar Documents

Publication Publication Date Title
JP5131629B2 (en) Method for producing solid oxide fuel cell
JP3674840B2 (en) Fuel cell stack and method for manufacturing the same
US6645656B1 (en) Thin film solid oxide fuel cell and method for forming
CN101771168B (en) Method for preparing miniature lithium battery
JP5129530B2 (en) LiCoO2 deposition
US6841490B2 (en) Semiconductor substrate, SOI substrate and manufacturing method therefor
JPH10265948A (en) Substrate for semiconductor device and manufacture of the same
JPH0864216A (en) Oxygen ion conductor thin film and manufacture thereof
US7381492B2 (en) Thin film solid oxide fuel cell and method for forming
TWI717343B (en) Advanced solid electrolyte and method of fabrication
WO2009096399A1 (en) Electrolyte-electrode junction
JP2008130514A (en) Deposition method of electrolyte membrane, and manufacturing method of fuel cell
JP4026411B2 (en) Solid oxide fuel cell and method for producing the same
JPH1186647A (en) Oxide superconducting conductor
JP2004158313A (en) Electrolyte material for solid electrolyte fuel cell, cell of solid electrolyte fuel cell, and manufacturing method of these
JPH11122073A (en) Surface acoustic wave element
KR20150042011A (en) Preparation method of a film comprising nanowires, the film comprising nanowires and a thin film battery conprsing the same
US7901730B2 (en) Thin film ceramic proton conducting electrolyte
JP4153298B2 (en) Electrochemical cell and method for producing the same
JP2009108420A (en) Low-resistance ito thin film and its manufacturing method
JPH11329463A (en) Solid electrolyte type fuel cell and its manufacture
CN100483700C (en) Conductive oxide electrode material and its preparation method
JP4342267B2 (en) Solid oxide fuel cell and method for producing the same
Jankowski et al. Thin film synthesis of novel electrode materials for solid-oxide fuel cells
JP2004288382A (en) Solid oxide fuel battery cell, cell plate, and its manufacturing method