New! View global litigation for patent families

CN100483700C - Conductive oxide electrode material and its preparation method - Google Patents

Conductive oxide electrode material and its preparation method Download PDF

Info

Publication number
CN100483700C
CN100483700C CN 200510021161 CN200510021161A CN100483700C CN 100483700 C CN100483700 C CN 100483700C CN 200510021161 CN200510021161 CN 200510021161 CN 200510021161 A CN200510021161 A CN 200510021161A CN 100483700 C CN100483700 C CN 100483700C
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
conductive
oxide
method
electrode
material
Prior art date
Application number
CN 200510021161
Other languages
Chinese (zh)
Other versions
CN1758432A (en )
Inventor
鹰 张
俊 朱
李言荣
亮 郑
Original Assignee
电子科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

导电氧化物电极材料及其制备方法,属微电子材料领域,特别涉及导电氧化物电极材料及其制备方法。 A conductive oxide electrode material and a preparation method, material belongs to the field of microelectronics, and more particularly to an electrode material and a conductive oxide preparation. 本发明提供一种可应用于铁电微波器件的底电极材料,特别是在氧化镁衬底上的双晶外延导电氧化物镍酸镧薄膜的制备方法。 The present invention provides a material may be applied to the bottom electrode of ferroelectric microwave devices, methods of preparation twinned lanthanum nickelate epitaxial conductive oxide film particularly on magnesia substrate. 本发明提供的导电氧化物电极材料,微观结构为双晶外延结构。 A conductive oxide electrode material of the present invention provides, as a double-crystal microstructure epitaxial structure. 本发明的有益效果是,本发明的电极材料,特别是导电氧化物镍酸镧薄膜具有很好的表面平整度、较小的晶粒尺寸以及较低的电阻率,可完全满足作为铁电材料在MgO(100)基片上集成的电极材料的要求。 Advantageous effect of the invention, the electrode material of the present invention, in particular, a conductive oxide film having a lanthanum nickelate good surface flatness, smaller grain size and lower resistivity, can fully meet as a ferroelectric material It requires the integration of the electrode material on the substrate in a MgO (100).

Description

导电氧化物电极材料制备方法 The method of preparing a conductive oxide electrode material

技术领域 FIELD

本发明属微电子材料领域,特别涉及导电氧化物电极材料及其制备方法。 The present invention belongs to the field of microelectronic materials, in particular, it relates to an electrode material and a conductive oxide preparation. 背景技术 Background technique

AB03钙态矿结构的铁电薄膜如PbxZri.xTi03 ( PZT )、 BaxSr^Ti03(BST)、等,具有铁电、压电、热释电、电光、声光及非线性光学等性质,在微电子、光电子、集成光学和微机电等领域有着重要地应用。 AB03 ferroelectric thin film structure, such as mineral calcium state properties PbxZri.xTi03 (PZT), BaxSr ^ Ti03 (BST), and the like, having a ferroelectric, piezoelectric, pyroelectric, electro-optical, acousto-optical and nonlinear optics, micro electronics, optoelectronics, integrated optics and micro-electromechanical fields has an important application. 近年来受到了极大的关注。 In recent years it has been of great concern. 在把铁电薄膜集成到器件上, 薄膜的底电极材料的选择是十分关键的。 In selecting the ferroelectric thin film is integrated into the device, the bottom electrode material film is critical. 电极的质量好坏极大地影响着集成铁电器件的性能。 The quality of the electrode greatly affects the performance of the integrated ferroelectric devices. 一个好的电极应满足三个条件:(1)、与铁电材料结构匹配;(2)、良好的化学稳定性;(3)、低的电阻率。 A good electrode should meet three conditions: (1) match the structure of the ferroelectric material; (2), good chemical stability; (3), a low resistivity.

金属钼(Pt)由于其具有低电阻率(8.9^Hxm)和良好的化学稳定性而被广泛地作为电极材料应用在铁电薄膜器件里。 Molybdenum (Pt) due to its low resistivity (8.9 ^ Hxm) good chemical stability and are widely applied as an electrode material in ferroelectric thin film devices. 但是,Pt 由于与f!钛矿结构的铁电材料存在结构上的不匹配,难以在Pt电极上外延生长铁电薄膜得到结构取向很好的铁电薄膜。 However, since Pt and F! Present perovskite structure ferroelectric material does not match the structure, it is difficult to epitaxially grown on the Pt electrode oriented ferroelectric thin film structure to obtain good ferroelectric thin film. 其次,在Pt电极的制备过程中,金属电极会和铁电薄膜之间发生互扩散, 一方面与氧形成偶极缺陷对电畴造成钉扎,从而会使薄膜的铁电疲劳性增强, 另外一方面会形成一层低介电常数的界面层,致使在铁电薄膜上的实际的电压减小而造成极化反转困难。 Secondly, during the preparation of a Pt electrode, the interdiffusion will occur between the metal electrode and the ferroelectric thin film, on the one hand with oxygen to form an electrical dipole defects caused by pinning the domain, such fatigue causes the ferroelectric film is enhanced, further on the one hand forms an interface layer of low dielectric constant, so that the actual voltage on the ferroelectric film decreases causing polarization inversion difficult. 最后,通常制备的Pt电极表面平整度较低,有较明显的突起小丘,会导致漏电流增大。 Finally, the lower Pt electrode surface flatness generally prepared, there is obvious protrusion hill, will cause increase in leakage current.

由于Pt等金属电极存在以上诸多缺点, 一类具有AB03钙钛矿结构的导电氧化物,如(Lao.5Sro.5)Co03 (简写为LSCO)、 (La1/3Sr1/3Ca1/3)Co03 (简写LSCCO)、 SrRu03 (简写SRO)、 YBa2Cu307 (简写YBCO)以及LaNi03 (简写LNO)等,被作为铁电薄膜的电极材料加以广泛研究。 Because of the above metal electrodes such as Pt, there are many shortcomings, a conductive oxide-based AB03 having a perovskite structure, such as (Lao.5Sro.5) Co03 (abbreviated as LSCO), (La1 / 3Sr1 / 3Ca1 / 3) Co03 (abbreviated LSCCO), SrRu03 (abbreviated SRO), YBa2Cu307 (abbreviated YBCO) and LaNi03 (abbreviated the LNO) and the like, are widely studied as an electrode material to be the ferroelectric thin film. 相比于金属电极,钙钛矿型导电氧化物作为铁电薄膜的电极有着金属电极材料不可比拟的优点。 Compared to the metal electrode, the perovskite-type conductive oxide ferroelectric thin film as an electrode a metal electrode material has advantages unparalleled. 首先,在适当的工艺条件下,可以在Si基片和氧化物基片上实现外延生长,并且有着良好的表面平整度,有利于得到高质量的后续沉积的铁电薄膜,从而能有效地降低其漏电流。 First, under appropriate conditions, it may be implemented on a Si substrate and epitaxially growing an oxide substrate, and has a good surface flatness, advantageous for obtaining a high-quality ferroelectric thin film subsequently deposited, which can effectively reduce leakage current. 其次,由于与铁电材料都为钙钛矿结构且晶格常数相近,在它们之间可以形成一个较光滑的界面,位错等界面缺陷较少。 Second, since the ferroelectric material are perovskite structure and a lattice constant close to, and form a relatively smooth interface therebetween, fewer defects such as dislocations interface. 这有助于提高其铁电性能。 This helps to improve its ferroelectric properties.

但是,LSCO、 LSCCO等是多元氧化物,成份不好控制,不易得到成份为化学计量的薄膜;而SRO中所含Ru元素十分昂贵,会增加 However, LSCO, LSCCO like are polyhydric oxide, poor control components, is difficult to obtain a thin film of stoichiometric composition; Ru elements contained in the SRO very expensive, will increase

样品的成本。 The cost of the sample. LNO是一种伪立方结构的导电氧化物,晶格常数是3.83A,在很广的温度范围都能保持金属导电性,是最具有应用前景的钙钛矿型导电氧化物电极材料。 LNO is an electrically conductive oxide pseudo cubic structure, lattice constant 3.83A, conductive metal can be maintained in a wide temperature range, is a perovskite-type conductive oxide electrode material having the most promising.

在铁电薄膜的微波器件方面的应用中,氧化镁MgO是常用的最重要的衬底材料。 Application of the device in terms of a microwave in the ferroelectric thin film, magnesium oxide MgO is the most important materials commonly used in the substrate. 氧化镁具有很小的受温度影响的介电常数(e-10)和很低的介电损耗(在微波频段131^<10-5)。 Magnesium oxide having a small dielectric constant (e-10) is affected by temperature and low dielectric loss (at microwave frequencies 131 ^ <10-5). 目前,在MgO衬底上制备的导电氧化物LNO薄膜只能得到多晶结构,这导致后续的铁电薄膜性能的恶化。 Currently, LNO conductive oxide film prepared on a MgO substrate can obtain polycrystalline structure, which results in deterioration of the follow-up performance of the ferroelectric film. 因此,在MgO衬底上制备具有外延结晶结构的LNO 薄膜,对铁电薄膜在微波器件上的应用,具有很大的理论意义和应用价值。 Thus, the preparation having LNO film epitaxial crystal structure on MgO substrate, the application of microwave in the ferroelectric thin film device, having great theoretical and practical value. 发明内容 SUMMARY

本发明所要解决的技术问题是,提供一种可应用于铁电微波器件的底电极材料,特别是在氧化镁衬底上的双晶外延导电氧化物镍酸镧薄膜的制备方法。 The present invention solves the technical problem is to provide a material which may be applied to the bottom electrode of ferroelectric microwave devices, methods of preparation twinned lanthanum nickelate epitaxial conductive oxide film particularly on magnesia substrate.

本发明解决所述技术问题采用的技术方案是: The present invention solves the technical problem using the technical solution is:

导电氧化物电极材料的制备方法,包括以下步骤: The method of preparing a conductive oxide electrode material, comprising the steps of:

1) 将氧化物基片和靶材置于氧气氛环境; 1) The oxide substrate and the target was placed in an oxygen atmosphere environment;

2) 加热氧化物基片; 2) heating the oxide substrate;

3) 用激光剥离靶材,产生的等离子体沉积在氧化物基片上,得到电极材料薄膜。 3) stripping the target with a laser, the plasma generated is deposited on the oxide substrate to obtain an electrode material film.

4) 升高环境气压,将步骤2)得到的电极材料薄膜保温15-30 分钟,然后降温。 4) increased ambient pressure, electrode material film incubated in step 2) obtained in 15-30 minutes, then cooled. 所述氧化物基片为MgO基片,所述靶材为LaNi03。 The oxide substrate is a MgO substrate, said target is LaNi03. 在步骤2—3中,保持10〜20Pa的02气氛。 In step 2-3, keeping the atmosphere 10~20Pa of 02. 步骤2)中,加热氧化物基片至450〜750°C。 Step 2), the oxide-based substrate was heated to 450~750 ° C. 所述MgO基片按照以下方法制得:选取(100)取向的MgO单晶基片,将基片在髙温下退火处理。 The MgO substrate was prepared in the following manner: selecting (100) -oriented MgO single crystal substrate, the substrate is annealed at a temperature Gao.

本发明的有益效果是,本发明的电极材料,特别是导电氧化物镍 Advantageous effect of the invention, the electrode material of the present invention, in particular a nickel conductive oxide

酸镧薄膜具有很好的表面平整度、较小的晶粒尺寸以及较低的电阻率,可完全满足作为铁电材料在MgO(100)基片上集成的电极材料的要求。 Lanthanum film having good surface flatness, smaller grain size and lower resistivity, can fully meet the requirements of a ferroelectric material is used as the electrode material integrated on a MgO (100) substrate.

以下结合附图和具体实施方式对本发明作进一步的说明。 Hereinafter, the present invention will be further described in conjunction with the accompanying drawings and specific embodiments. 附图说明 BRIEF DESCRIPTION

图1:制备双晶外延的LaNi03导电薄膜的PLD薄膜生长系统的结构示意图。 Figure 1: schematic view of a PLD film growth system LaNi03 electroconductive thin film epitaxial bimorph prepared.

1一LaNi03陶瓷靶台;2—KrF准分子激光器;3—聚焦激光的透镜;4一机械泵和分子泵的连接口; 5—基片台;6—MgO(100)基片材料;7—加热电阻炉;8—生长室;9一通气口。 1 a ceramic target station LaNi03; 2-KrF excimer laser; 3- laser focusing lens; 4 molecular pump and a mechanical pump connecting port; 5- substrate stage; 6-MgO (100) substrate material; 7- heating resistance furnace; 8- growth chamber; 9 a vent.

图2: LaNi03薄膜的XRD^"^9扫描图谱。其中x轴表示^9角(单位是度),y轴表示相对强度(单位是任意)。 FIG 2: LaNi03 film XRD ^ "^ 9 wherein the x axis represents the scan pattern 9 ^ angle (in degrees), y-axis represents the relative intensity (in arbitrary units).

图3:优选温度700°C时制备的(110)取向的LaM03薄膜的(111) XRD的极图。 Figure 3: (111) pole figure of LaM03 film XRD (110) orientation is preferably prepared at the temperature of 700 ° C.

(a) 是3维立体视图,x、 y轴表示^角(单位是度),z轴表示相对强度(单位是任意)。 (A) is a perspective view of a 3-dimensional, x, y ^ axis represents the angle (in degrees), z-axis represents the relative intensity (in arbitrary units).

(b) 是2维平面视图,三个圆分别相对于v角为30 °、 60 。 (B) is a plan view of a two-dimensional, three circles with respect to an angle v of 30 °, 60. with

8000 8000

图4: LaNi03 (110)薄膜的RHEED衍射图谱。 Figure 4: LaNi03 (110) film RHEED diffraction pattern.

(a) 为电子束沿<01-1>入射方向的衍射图谱; (A) an electron beam along the <01-1> direction of incidence diffraction pattern;

(b) 为电子束沿<11-1>入射方向的衍射图谱。 (B) is an electron beam along the <11-1> direction of incidence diffraction pattern.

图5显示,双晶外延LaNi03薄膜在MgO(100)基片上生长示意 Figure 5 shows, twinned thin films epitaxially grown LaNi03 schematically on MgO (100) substrate

图,LaNi03的晶粒在(100)取向的MgO基片上沿两个互相垂直的 FIG, LaNi03 grains along two perpendicular to each other in the (100) -oriented MgO substrate

方向上外延生长。 Epitaxial growth direction. 图6:双晶外延LaNi03薄膜的表面形貌图。 Figure 6: Surface topography twinned LaNi03 epitaxial films. (a) 为lnm区域内的扫描图谱; (A) scanning the map of the region lnm;

(b) 是(a)的局部放大。 (B) is (a) a partially enlarged. 具体实施方式 detailed description

一种应用于铁电微波器件的底电极的双晶外延的导电氧化物镍酸镧薄膜的制备方法,其特征在于采用脉冲激光沉积(PLD)技术, 使用LaNiCb陶瓷靶材,在氧气氛中制备镍酸镧薄膜,其具体步骤如下: The method of preparing a conductive oxide film of lanthanum nickelate twinned one kind of ferroelectric microwave devices applied to the bottom electrode extension, characterized in that the pulsed laser deposition (PLD) technique using a ceramic target LaNiCb prepared in an oxygen atmosphere lanthanum nickelate film having the following steps:

(1) 将LaNi03陶瓷靶材安置在靶台l上,将氧化镁基片6安置在基片台5上,加热电阻丝7安置在基片台下方,靶台1、基片台5 、基片6 、加热电阻丝7均放置在生长室8内,在生长室的左侧有一个通氧气的气孔9,左侧上部开口放置透镜3,下部开口接真空泵4 (机械泵和分子泵)。 (1) The LaNi03 ceramic target disposed on a target stage L, the magnesium oxide substrate 6 is disposed on the substrate stage 5, the heating resistor 7 is disposed below the substrate stage, the target station 1, the substrate stage 5, the base sheet 6, heating resistor 7 are placed in the growth chamber 8, a through hole 9 of oxygen in the growth chamber of the left side, the upper left of the opening 3 placed in the lens, the lower opening 4 connected to a vacuum pump (mechanical pump and molecular pump).

(2) 用真空泵4将生长室8抽真空至lxlO'Spa以下,然后从通气孔9向生长室8内充入高纯氧气(99.9%),并使生长室内保持20Pa 02气氛。 (2) a growth chamber by a vacuum pump 4 to 8 lxlO'Spa less evacuated and then filled with high purity oxygen from the air vent into the growth chamber 8 9 (99.9%), and growth chamber maintained an atmosphere of 20Pa 02.

(3) 用加热电阻丝7加热基片台5,使MgO基片6达到设定温度450。 (3) heating the substrate stage 5 with the heating resistor 7, 6 of MgO substrate 450 reaches the set temperature. C-750。 C-750. C。 C.

(4) 启动脉冲激光器2,通过聚焦透镜3将激光束聚焦在LaNi03 陶瓷靶上,用脉冲激光剥离陶瓷靶,产生的激光等离子体沉积在 (4) a start pulse lasers 2, 3 through a focusing lens focuses the laser beam on the ceramic target LaNi03, release ceramic target with a pulsed laser, the laser produced plasma deposition

MgO基片上而制得LaNK)3薄膜。 MgO substrate prepared LaNK) 3 film. 此后,从通气孔9向生长室8内充入高纯氧气,使生长室内氧气压升至0.5&加,然后将样品在原位保温半小时后降温到室温。 Thereafter, the vent hole 9 is charged into the growing high purity oxygen chamber 8, so that the growth chamber pressure was raised to 0.5 & oxygen added, the samples were incubated in half an hour and then cooled to room temperature in situ. 在制膜过程中,耙台1和基片台5以恒定的速度旋转,保证激光束等离子体,均匀地沉积在MgO基片6上,以使制成厚度均匀的薄膜。 In the film formation process, a rake table 5 and the substrate table rotating at a constant speed, to ensure that the laser beam plasma uniformly deposited on the MgO substrate 6, so that a uniform thickness of the film formed.

上述步骤(2)中,充入生长室的氧气,在薄膜生长过程中优选20Pa高纯氧气。 The above step (2), the growth chamber is charged with oxygen, preferably 20Pa high purity oxygen in the thin film growth process.

上述步骤(3)中的电阻炉可在20。 Resistance furnace above step (3) may be 20. C-900。 C-900. C之间任一温度保持恒定,加热MgO基片的优选设定温度为700nC。 Preferably a temperature is maintained constant between any of C, MgO substrate heating temperature is set to 700nC. 上述步骤(4)中所说的脉冲激光器是选用的氟化氪(KrF)准分子激光器,波长为248nm,脉冲宽度为30ns,单脉冲能量为50-600mJ, 能量密度为5J/cm2。 The above step (4) of said pulsed laser is selected krypton fluoride (a KrF) excimer laser, a wavelength of 248 nm, a pulse width of 30ns, pulse energy 50-600mJ, an energy density of 5J / cm2.

上述的LaNi03陶瓷靶材,分两步制备完成。 Ceramic target LaNi03 above, was prepared in two steps to complete. 首先,用柠檬酸法制备LaNi03粉末。 First, with citric acid prepared LaNi03 powder. 把Ni02粉末和La203粉末的混料和制备采用的是小火蒸干法。 And mixing the powder Ni02 and La203 powder prepared by the method of small fires evaporated to dryness. 即用稀硝酸将按1:1的摩尔比混合的Ni(N03)3和La(N03)3溶解,然后将配制的溶液置于恒温炉上以120 °C的温度加热,在加热的过程中用电动搅拌器不断搅拌溶液。 That will dilute nitric acid 1: 1 molar ratio mixture of Ni (N03) 3 and La (N03) 3 were dissolved, then the formulated solution was placed at a temperature of the thermostatic oven heated to 120 ° C, in the heating process The solution was stirred constantly with an electric mixer. 当溶液蒸发至粘稠状时,将溶液置于温度为80。 When the solution was evaporated to a viscous solution was placed in a temperature of 80. C的烘箱中,直至其凝固。 C in an oven until it solidifies. 将凝固的物料用湮没磨成粉末,然后箱式电炉中以700 。 The solidified mass was pulverized by annihilation, then box furnace at 700. C烧制2小时即得均匀LaNi03粉末。 C for 2 hours to obtain a uniform fired LaNi03 powder. 然后,将粉末在120MPa下冷压成<D60mraX3mn]的圆片,并在箱式电炉中,将圆片在1500。 Then, the powder was cold pressed at 120MPa <D60mraX3mn] wafer, and in a box type electric furnace, the wafer 1500. C的温度下烧结6小时。 C sintering temperature for 6 hours. 最终得到致密的LaNi03陶瓷耙材。 LaNi03 eventually obtain a dense ceramic material rake.

MgO基片的选择和处理:选用(100)取向的MgO单晶基片, 将基片在800°C的高温下原位退火5分钟。 MgO substrate selection and processing of: selection of (100) -oriented MgO single crystal substrate, the substrate is annealed in situ at elevated temperature to 800 ° C for 5 minutes.

将以上制得的LaNi03薄膜进行结构分析与电性能测试的仪器如 LaNi03 film prepared above was subjected to structural analysis instrument and electrical properties, such as

下: under:

X射线衍射仪(XRD),型号为英国BEDED1;反射式高能电子衍射仪(RHEED),型号为沈阳中科仪公司生产的LMBE-RHEED系统;原子力显徼镜(AFM),型号为日本SEIKO SPA-300HV;四探针测试仪,型号为SZ82型数字式四探针测试仪。 X-ray diffraction (XRD), model British BEDED1; reflection high energy electron diffraction (RHEED), Model Shenyang Tech produced LMBE-RHEED system; atomic force Jiao microscope (AFM), Model Japanese SEIKO SPA -300HV; four-probe tester, model SZ82 digital four-point probe.

下面结合对LaNi03薄膜结构与性能测试结果,来进一步说明本发明的有益效果: The following binding to LaNi03 film structure and performance test results, to further illustrate the advantages of the present invention:

图2显示,LaNiO3薄膜的XRD0-i)9扫描图谱,表明优选温度700。 Figure 2 shows, a thin film of LaNiO3 XRD0-i) 9 scanning pattern, preferably show a temperature of 700. C时制备的LaNi03薄膜具有高度的(110)择优取向。 LaNi03 films prepared when C has a height (110) preferred orientation.

图3显示,优选温度700 。 Figure 3 shows, preferably a temperature of 700. C时制备的(110)取向的LaNi03薄膜的(lll)XRD极图。 (Lll) XRD pole figure LaNi03 film (110) prepared at the orientation C. (a)是3维立体视图;(b)是2维平面视图。 (A) is a perspective view of a 3-dimensional; (b) is a view of a two-dimensional plane. 两图中显示的在^约为40。 Both figures show about 40 ^. 处出现四个等高峰,表明(110)取向的LaNiO3薄膜是在MgO(100)基片上双晶外延生长的。 Other peaks occur at four, indicating (110) LaNiO3 oriented film is MgO (100) substrate bimorph epitaxial growth. 因此,LaNi03 (110) /MgO(100)是双晶外延薄膜。 Thus, LaNi03 (110) / MgO (100) is a double-crystal epitaxial thin film.

图4显示,LaNi03 (110)薄膜的RHEED衍射图谱。 4 shows, LaNi03 (110) film RHEED diffraction pattern. (a)和(b)射图谱。 (A) and (b) emission spectrum. 基片沿法线转动一周,每隔90° (a)就出现一次,每隔180。 The substrate is rotated in the normal one week, every 90 ° (a) to occur once every 180. (b)就出现一次,进一步证明(110)取向的LaNiO3薄膜是在MgO(100)基片上双晶外延生长的。 (B) appeared once, LaNiO3 further proof film (110) is oriented on MgO (100) double-crystal substrates epitaxial growth.

图5显示,双晶外延LaNi03薄膜在MgO(100)基片上生长示意图,LaNi03的晶粒在(100)取向的MgO基片上沿两个互相垂直的方向上外延生长。 Figure 5 shows, twinned thin films epitaxially grown schematic LaNi03 on MgO (100) substrate, LaNi03 grain epitaxially grown on (100) -oriented MgO substrate in the two mutually perpendicular directions.

图6显示,双晶外延LaNiCV薄膜的表面形貌图。 Figure 6 shows the surface morphology of the epitaxial LaNiCV FIG twinned films. (a)为l拜区域内的扫描图谱;(b)是(a)的局部放大。 (A) is l thanks scan map of the area; (b) is (a) a partially enlarged. (a)显示双晶外延的LaNi03 薄膜具有原子级的平整度(1.465nm)和特别小的晶粒尺寸(30-50nm)。 (A) shows the double-crystal epitaxial film having LaNi03 atomic level flatness (1.465nm) and particularly small grain size (30-50nm).

(b)显示在(a)中的晶粒是按两个互相垂直的方向排列的。 (B) shows grains (a) are arranged in two mutually perpendicular directions. 因此, 双晶外延的LaNi03薄膜具有很好的平整度和晶粒尺寸,因而可用来作为模板层生长后续的铁电薄膜。 Thus, the double crystal epitaxial film LaNi03 has good flatness and grain size, and thus can be used as a template for growth of subsequent layers ferroelectric thin film.

特别的,本发明在700 。 In particular, the present invention at 700. C时制备的双晶外延的LaNi03薄膜具有 Twin crystal epitaxial film prepared at the C LaNi03 having

比其它温度制备的LaNi03薄膜更低的电阻率。 Preparation LaNi03 lower temperature than the other film resistivity. 双晶外延的LaNi03 薄膜的电阻率达到300pQ.cm,该值足以满足双晶外延的LaNi03薄膜作为电极材料在铁电集成中的应用。 LaNi03 resistivity of the epitaxial film reaches a bimorph 300pQ.cm, this value is sufficient for application of twin crystal epitaxial film LaNi03 as an electrode material in the ferroelectric integration.

Claims (6)

  1. 1、导电氧化物电极材料的制备方法,包括以下步骤:1)将氧化镁基片和靶材置于氧气氛环境;2)加热氧化镁基片;3)用激光剥离靶材,产生的等离子体沉积在氧化镁基片上,得到电极材料薄膜。 A process for preparing a conductive oxide electrode material, comprising the following steps: 1) the magnesium oxide substrate and the target placed in an oxygen ambient atmosphere; 2) heating the MgO substrate; 3) with the laser lift off the target, plasma is generated deposited on a MgO substrate, to obtain an electrode material film.
  2. 2、 如权利要求1所述的导电氧化物电极材料的制备方法,其特征在于,还包括步骤4):升高环境气压,将步骤2)得到的电极材料薄膜保温15〜30分钟,然后降温。 2. The method as claimed in preparing the conductive oxide electrode material according to claim 1, characterized by further comprising the step 4): increased ambient pressure, electrode material film incubated in step 2) obtained 15~30 minutes, and then cooled .
  3. 3、 如权利要求1或2所述的导电氧化物电极材料的制备方法, 其特征在于,所述靶材为LaNi03。 3, the conductive oxide prepared as claimed in claim 12 or method of electrode material, characterized in that said target is LaNi03.
  4. 4、 如权利要求3所述的导电氧化物电极材料的制备方法,其特征在于,步骤2—3中,保持10Pa〜20Pa的O2气氛。 4. The method of claim conductive oxide prepared according to the electrode material of claim 3, wherein, in the step 2-3, the holding 10Pa~20Pa O2 atmosphere.
  5. 5、 如权利要求3所述的导电氧化物电极材料的制备方法,其特征在于,步骤2)中,加热氧化镁基片至450〜750'C。 5. The method claimed in preparing the conductive oxide electrode material of claim 3, wherein in step 2), the magnesium oxide substrate is heated to 450~750'C.
  6. 6、 如权利要求3所述的导电氧化物电极材料的制备方法,其特征在于,所述氧化镁基片按照以下方法制得:选取(100)取向的MgO单晶基片,将基片在高温下退火处理。 6, a conductive oxide as claimed in claim 3 prepared electrode material, characterized in that said substrate is magnesium oxide prepared according to the following method: selecting (100) -oriented MgO single crystal substrate, in the substrate annealing treatment at a high temperature.
CN 200510021161 2005-06-27 2005-06-27 Conductive oxide electrode material and its preparation method CN100483700C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200510021161 CN100483700C (en) 2005-06-27 2005-06-27 Conductive oxide electrode material and its preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200510021161 CN100483700C (en) 2005-06-27 2005-06-27 Conductive oxide electrode material and its preparation method

Publications (2)

Publication Number Publication Date
CN1758432A true CN1758432A (en) 2006-04-12
CN100483700C true CN100483700C (en) 2009-04-29

Family

ID=36703711

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200510021161 CN100483700C (en) 2005-06-27 2005-06-27 Conductive oxide electrode material and its preparation method

Country Status (1)

Country Link
CN (1) CN100483700C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4344942B2 (en) * 2004-12-28 2009-10-14 セイコーエプソン株式会社 An ink jet recording head and a piezoelectric actuator
CN101712549B (en) 2008-11-20 2012-08-08 河南大学 Method for preparing lanthanum nickel oxide ceramic target

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1487564A (en) 2002-09-05 2004-04-07 精工爱普生株式会社 Substrate for electronic apparatus, method for producing substrate of electronic apparatus, and electronic apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1487564A (en) 2002-09-05 2004-04-07 精工爱普生株式会社 Substrate for electronic apparatus, method for producing substrate of electronic apparatus, and electronic apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
异质外延MgO/SrTiO3薄膜中界面应力研究. 郑亮等.真空科学与技术学报,第25卷第1期. 2005

Also Published As

Publication number Publication date Type
CN1758432A (en) 2006-04-12 application

Similar Documents

Publication Publication Date Title
Spierings et al. Preparation and ferroelectric properties of PbZr0. 53Ti0. 47O3 thin films by spin coating and metalorganic decomposition
US7407858B2 (en) Resistance random access memory devices and method of fabrication
US20060134522A1 (en) Deposition of LiCoO2
US5912068A (en) Epitaxial oxides on amorphous SiO2 on single crystal silicon
Tuttle et al. Microstructural evolution of Pb (Zr, Ti) O 3 thin films prepared by hybrid metallo-organic decomposition
Tuttle et al. Highly oriented, chemically prepared Pb (Zr, Ti) O3 thin films
Buhay et al. Pulsed laser deposition and ferroelectric characterization of bismuth titanate films
US6653211B2 (en) Semiconductor substrate, SOI substrate and manufacturing method therefor
US20070125638A1 (en) DEPOSITION OF LiCoO2
US6312819B1 (en) Oriented conductive oxide electrodes on SiO2/Si and glass
US5188902A (en) Production of PT/PZT/PLZI thin films, powders, and laser `direct write` patterns
Nakagawara et al. Effects of buffer layers in epitaxial growth of SrTiO3 thin film on Si (100)
Li et al. Preparation of perovskite conductive LaNiO3 films by metalorganic decomposition
Lee et al. Heteroepitaxial growth of BaTiO3 films on Si by pulsed laser deposition
Meng et al. Growth of (1 0 0)-oriented LaNiO3 thin films directly on Si substrates by a simple metalorganic decomposition technique for the highly oriented PZT thin films
EP0797244A2 (en) Thin ferroelectric film element and method for manufacturing the same
Auciello et al. Synthesis and characterization of Pb (Zr x Ti1− x) O3 thin films produced by an automated laser ablation deposition technique
JP2004241396A (en) Method for manufacturing resistance varying element, method for manufacturing nonvolatile resistance varying memory device, and nonvolatile resistance varying memory device
JPH08253324A (en) Ferroelectric thin film constitution body
JPH09110592A (en) Thin laminated film, substrate for electronic device, electronic device and production of thin laminated film
Kim et al. Electrical characteristics of (100),(111), and randomly aligned lead zirconate titanate thin films
JP2002164586A (en) Electronic device substrate, manufacturing method thereof, and thin-film piezoelectric element using it
Koep et al. Microstructure and electrochemical properties of cathode materials for SOFCs prepared via pulsed laser deposition
US20050105038A1 (en) Thin film multilayer body, electronic device and actuator using the thin film multilayer body, and method of manufacturing the actuator
Jia et al. Characteristics of conductive SrRuO 3 thin films with different microstructures

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C17 Cessation of patent right