JP2008130514A - Deposition method of electrolyte membrane, and manufacturing method of fuel cell - Google Patents

Deposition method of electrolyte membrane, and manufacturing method of fuel cell Download PDF

Info

Publication number
JP2008130514A
JP2008130514A JP2006317439A JP2006317439A JP2008130514A JP 2008130514 A JP2008130514 A JP 2008130514A JP 2006317439 A JP2006317439 A JP 2006317439A JP 2006317439 A JP2006317439 A JP 2006317439A JP 2008130514 A JP2008130514 A JP 2008130514A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
membrane
forming
electrolyte
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006317439A
Other languages
Japanese (ja)
Inventor
Satoshi Aoyama
智 青山
Ryoko Kanda
良子 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Toyota Motor Corp
Original Assignee
Sumitomo Electric Industries Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Toyota Motor Corp filed Critical Sumitomo Electric Industries Ltd
Priority to JP2006317439A priority Critical patent/JP2008130514A/en
Priority to PCT/IB2007/003563 priority patent/WO2008062278A1/en
Publication of JP2008130514A publication Critical patent/JP2008130514A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9058Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of noble metals or noble-metal based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/94Non-porous diffusion electrodes, e.g. palladium membranes, ion exchange membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a deposition method of an electrolyte membrane having a high proton conductivity, and a manufacturing method of a fuel cell. <P>SOLUTION: In the deposition method of the electrolyte membrane, a deposition process is included in which a metal oxide type electrolyte membrane (20) having the proton conductivity is membrane formed on a hydrogen separation membrane (10) having hydrogen permeability under an oxygen atmosphere of more than 0.0001 Torr and less than 0.1 Torr. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電解質膜の成膜方法および燃料電池の製造方法に関する。   The present invention relates to a method for forming an electrolyte membrane and a method for manufacturing a fuel cell.

燃料電池は、一般的には水素及び酸素を燃料として電気エネルギーを得る装置である。この燃料電池は、環境面において優れかつ高いエネルギー効率を実現することができることから、今後のエネルギー供給システムとして広く開発が進められてきている。   A fuel cell is a device that generally obtains electric energy using hydrogen and oxygen as fuel. Since this fuel cell is excellent in terms of environment and can realize high energy efficiency, it has been widely developed as a future energy supply system.

燃料電池のうち固体の電解質を用いたものには、固体高分子型燃料電池、固体酸化物型燃料電池、水素分離膜電池等がある。ここで、水素分離膜電池とは、緻密な水素分離膜を備えた燃料電池である。緻密な水素分離膜は水素透過性を有する金属によって形成される層であり、アノードとしても機能する。水素分離膜電池は、この水素分離膜上にプロトン伝導性を有する電解質が積層された構造をとっている。水素分離膜に供給された水素はプロトンに変換され、プロトン伝導性の電解質中を移動し、カソードにおいて酸素と結合して発電が行われる。この電解質は、例えば、成膜工程を経て水素分離膜上に成膜される(例えば、特許文献1参照)。   Among the fuel cells, those using solid electrolytes include solid polymer fuel cells, solid oxide fuel cells, hydrogen separation membrane cells, and the like. Here, the hydrogen separation membrane battery is a fuel cell provided with a dense hydrogen separation membrane. The dense hydrogen separation membrane is a layer formed of a metal having hydrogen permeability and also functions as an anode. The hydrogen separation membrane battery has a structure in which an electrolyte having proton conductivity is laminated on the hydrogen separation membrane. Hydrogen supplied to the hydrogen separation membrane is converted into protons, moves through the proton conductive electrolyte, and combines with oxygen at the cathode to generate power. This electrolyte is formed on a hydrogen separation membrane through a film forming process, for example (see, for example, Patent Document 1).

特開2006−32192号公報JP 2006-32192 A

しかしながら、電解質膜のプロトン伝導性は、電解質膜の成膜工程における雰囲気の真空度に応じて変化してしまう。したがって、水素分離膜電池の発電性能にばらつきが生じる。   However, the proton conductivity of the electrolyte membrane changes depending on the degree of vacuum of the atmosphere in the electrolyte membrane formation process. Therefore, variation occurs in the power generation performance of the hydrogen separation membrane battery.

本発明は、高いプロトン伝導性を有する電解質膜の成膜方法および燃料電池の製造方法を提供することを目的とする。   An object of the present invention is to provide a method for forming an electrolyte membrane having high proton conductivity and a method for manufacturing a fuel cell.

本発明に係る電解質膜の成膜方法は、水素透過性を有する水素分離膜上に、プロトン伝導性を有する金属酸化物型の電解質膜を0.0001Torrより大きく0.1Torrより小さい酸素雰囲気で成膜する成膜工程を含むことを特徴とするものである。本発明に係る電解質膜の成膜方法においては、0.0001Torrより大きく0.1Torrより小さい酸素雰囲気で電解質膜が成膜される。この場合、成膜された電解質膜の膜密度が向上する。それにより、電解質膜のプロトン伝導性が向上する。   In the method for forming an electrolyte membrane according to the present invention, a proton-conductive metal oxide type electrolyte membrane is formed on a hydrogen permeable hydrogen separation membrane in an oxygen atmosphere greater than 0.0001 Torr and less than 0.1 Torr. A film forming step for forming a film is included. In the method for forming an electrolyte membrane according to the present invention, the electrolyte membrane is formed in an oxygen atmosphere greater than 0.0001 Torr and less than 0.1 Torr. In this case, the membrane density of the deposited electrolyte membrane is improved. Thereby, the proton conductivity of the electrolyte membrane is improved.

電解質膜は、ペロブスカイト型であってもよい。また、電解質膜は、SrZr(1−x)Inからなるものであってもよい。ここで、xは、0<x<1を満たす値である。また、電解質膜は、SrZr0.8In0.2からなるものであってもよい。また、成膜工程において、電解質膜は、PLD法によって成膜されてもよい。この場合、電解質膜の組成調整が容易になる。 The electrolyte membrane may be a perovskite type. The electrolyte membrane may be made of SrZr (1-x) In x O 3 . Here, x is a value satisfying 0 <x <1. The electrolyte membrane may be made of SrZr 0.8 In 0.2 O 3 . In the film forming step, the electrolyte film may be formed by a PLD method. In this case, the composition adjustment of the electrolyte membrane is facilitated.

本発明に係る電解質膜の製造方法は、水素透過性を有する水素分離膜上にプロトン伝導性を有する金属酸化物型の電解質膜を成膜する成膜工程を含み、成膜工程において、水素分離膜上に電解質膜が成膜されるときの酸素分圧は、成膜後の電解質膜が電解質膜を構成する電解質の略理論密度を有しかつ電解質膜を構成する成分が十分に酸化される値に設定されることを特徴とするものである。この場合、電解質膜のプロトン伝導性が向上する。   The method for producing an electrolyte membrane according to the present invention includes a film forming step of forming a metal oxide type electrolyte membrane having proton conductivity on a hydrogen permeable hydrogen separating membrane. The oxygen partial pressure when the electrolyte membrane is formed on the membrane is such that the electrolyte membrane after deposition has a substantially theoretical density of the electrolyte constituting the electrolyte membrane, and the components constituting the electrolyte membrane are sufficiently oxidized It is set to a value. In this case, the proton conductivity of the electrolyte membrane is improved.

本発明に係る燃料電池の製造方法は、請求項1〜6のいずれかの電解質膜の成膜方法により成膜された電解質膜上にカソードを形成するカソード形成工程を含むことを特徴とするものである。本発明に係る燃料電池の製造方法においては、電解質膜のプロトン伝導性が向上する。それにより、本発明に係る燃料電池の発電性能が向上する。   The fuel cell manufacturing method according to the present invention includes a cathode forming step of forming a cathode on the electrolyte membrane formed by the electrolyte membrane forming method according to any one of claims 1 to 6. It is. In the fuel cell manufacturing method according to the present invention, the proton conductivity of the electrolyte membrane is improved. Thereby, the power generation performance of the fuel cell according to the present invention is improved.

本発明によれば、成膜された電解質膜のプロトン伝導性が向上する。   According to the present invention, the proton conductivity of the deposited electrolyte membrane is improved.

以下、本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

図1は、本発明の一実施の形態に係る電解質膜20の成膜方法および燃料電池100の製造方法について説明するための図である。まず、図1(a)に示すように、水素分離膜10を準備する。水素分離膜10は、燃料ガスが供給されるアノードとして機能するとともに、後述する電解質膜20を支持および補強する支持体として機能する。   FIG. 1 is a diagram for explaining a method of forming an electrolyte membrane 20 and a method of manufacturing a fuel cell 100 according to an embodiment of the present invention. First, as shown in FIG. 1A, a hydrogen separation membrane 10 is prepared. The hydrogen separation membrane 10 functions as an anode to which fuel gas is supplied, and also functions as a support that supports and reinforces an electrolyte membrane 20 described later.

水素分離膜10は、水素透過性を有する金属層から構成される。水素分離膜10を構成する材料は、水素透過性および導電性を有していれば特に限定されるものではない。水素分離膜10としては、例えば、Pd(パラジウム)、V(バナジウム)、Ta(タンタル)、Nb(ニオブ)等の金属、または、これらの合金等を用いることができる。また、これらの水素透過性金属層の2面のうち後述する電解質膜20が形成される側の面上に、水素解離能を有するパラジウム、パラジウム合金等の膜が形成されたものを水素分離膜10として用いてもよい。水素分離膜10の膜厚は、例えば、5μm〜100μm程度である。水素分離膜10は、自立膜であってもよく、多孔質状の卑金属板によって支持されていてもよい。   The hydrogen separation membrane 10 is composed of a metal layer having hydrogen permeability. The material constituting the hydrogen separation membrane 10 is not particularly limited as long as it has hydrogen permeability and conductivity. As the hydrogen separation membrane 10, for example, a metal such as Pd (palladium), V (vanadium), Ta (tantalum), Nb (niobium), or an alloy thereof can be used. Further, a hydrogen separation membrane obtained by forming a film of palladium, palladium alloy or the like having hydrogen dissociation ability on the surface of the two surfaces of these hydrogen permeable metal layers on the side on which the electrolyte membrane 20 described later is formed. 10 may be used. The film thickness of the hydrogen separation membrane 10 is, for example, about 5 μm to 100 μm. The hydrogen separation membrane 10 may be a self-supporting membrane or may be supported by a porous base metal plate.

次に、図1(b)に示すように、水素分離膜10上に電解質膜20を成膜する。電解質膜20は、プロトン伝導性を有する金属酸化物型の電解質からなる。電解質膜20を構成する電解質は、プロトン伝導性を有する金属酸化物であれば特に限定されるものではない。電解質膜20としては、例えば、ペロブスカイト型電解質(SrZrInO等)、パイロクロア型電解質(LnZr(Ln:La(ランタン)、Nd(ネオジム)、Sm(サマリウム)等))、モナザイト型希土類オルトリン酸塩電解質(LnPO(Ln:La、Pr(プラセオジム)、Nd、Sm等))、ゼニタイプ型希土類オルトリン酸塩電解質(LnPO(Ln:La、Pr、Nd、Sm等))、希土類メタリン酸塩電解質(LnP(Ln:La、Pr、Nd、Sm等))、希土類オキシリン酸塩電解質(Ln18(Ln:La、Pr、Nd、Sm等))等を用いることができる。 Next, as shown in FIG. 1B, an electrolyte membrane 20 is formed on the hydrogen separation membrane 10. The electrolyte membrane 20 is made of a metal oxide electrolyte having proton conductivity. The electrolyte constituting the electrolyte membrane 20 is not particularly limited as long as it is a metal oxide having proton conductivity. Examples of the electrolyte membrane 20 include perovskite electrolytes (SrZrInO 3 and the like), pyrochlore electrolytes (Ln 2 Zr 2 O 7 (Ln: La (lanthanum), Nd (neodymium), Sm (samarium), etc.)), monazite type, and the like. Rare earth orthophosphate electrolyte (LnPO 4 (Ln: La, Pr (praseodymium), Nd, Sm, etc.)), Zeni type rare earth orthophosphate electrolyte (LnPO 4 (Ln: La, Pr, Nd, Sm, etc.)), rare earth Metaphosphate electrolyte (LnP 3 O 9 (Ln: La, Pr, Nd, Sm, etc.)), rare earth oxyphosphate electrolyte (Ln 7 P 3 O 18 (Ln: La, Pr, Nd, Sm, etc.)), etc. Can be used.

図1(b)の成膜工程においては、0.0001Torrより大きく0.1Torrより小さい酸素雰囲気下で電解質膜20を成膜する。ここで、1Torrは、1/760気圧である。上記酸素雰囲気は、例えば、真空ポンプを用いて真空チャンバ内の圧力を真空チャンバ内に導入する酸素流量と真空ポンプの排気能力(真空ポンプラインの開閉度等)とで調整することによって実現される。電解質膜20の成膜方法としては、PLD法(パルスレーザ蒸着法)、スパッタ法、イオンプレーティング法等を用いることができる。なお、PLD法を用いれば、電解質膜20の組成調整が容易になる。したがって、PLD法を用いることが好ましい。   In the film forming step of FIG. 1B, the electrolyte membrane 20 is formed in an oxygen atmosphere greater than 0.0001 Torr and less than 0.1 Torr. Here, 1 Torr is 1/760 atm. The oxygen atmosphere is realized, for example, by adjusting the pressure in the vacuum chamber by using a vacuum pump with the oxygen flow rate for introducing the pressure into the vacuum chamber and the exhaust capacity of the vacuum pump (such as the degree of opening and closing of the vacuum pump line). . As a method for forming the electrolyte film 20, a PLD method (pulse laser deposition method), a sputtering method, an ion plating method, or the like can be used. If the PLD method is used, the composition of the electrolyte membrane 20 can be easily adjusted. Therefore, it is preferable to use the PLD method.

電解質膜20がSrZrOからなる場合には、成膜時の基板温度を500℃〜800℃の範囲に設定する。500℃未満では、SrZrOが結晶ではなく非晶質(アモルファス)を含むものとなるためである。非晶質は不安定であるため、燃料電池100の運転中に所定温度(例えば400℃以上)で結晶化し、電解質膜20に亀裂が発生しやすくなる。一方、成膜時の温度が上記範囲よりも高いと、水素分離膜10(例えば、Pd)の熱的変形、水素分離膜10と電解質膜20との熱膨張率差に伴う応力変形等によって、不具合が生じる。 When the electrolyte membrane 20 is made of SrZrO 3 , the substrate temperature during film formation is set in the range of 500 ° C. to 800 ° C. This is because at less than 500 ° C., SrZrO 3 contains not a crystal but amorphous. Since amorphous is unstable, it is crystallized at a predetermined temperature (for example, 400 ° C. or higher) during operation of the fuel cell 100, and cracks are likely to occur in the electrolyte membrane 20. On the other hand, when the temperature at the time of film formation is higher than the above range, due to thermal deformation of the hydrogen separation membrane 10 (for example, Pd), stress deformation accompanying a difference in thermal expansion coefficient between the hydrogen separation membrane 10 and the electrolyte membrane 20, etc. A malfunction occurs.

次いで、図1(c)に示すように、電解質膜20上にカソード30を形成する。カソード30は、酸化剤ガスが供給される電極であり、La0.6Sr0.4CoO等からなる。カソード30は、スクリーン印刷法等によって形成される。以上の工程により、燃料電池100が完成する。 Next, as shown in FIG. 1C, a cathode 30 is formed on the electrolyte membrane 20. The cathode 30 is an electrode to which an oxidant gas is supplied, and is made of La 0.6 Sr 0.4 CoO 3 or the like. The cathode 30 is formed by a screen printing method or the like. The fuel cell 100 is completed through the above steps.

本実施の形態においては、電解質膜20の成膜工程における酸素雰囲気の酸素分圧が上記範囲にあることから、電解質膜20の膜密度が向上する。それにより、電解質膜20のプロトン伝導性が向上する。なお、上記酸素分圧は、0.001Torr以上0.05Torr以下であることが好ましい。   In the present embodiment, since the oxygen partial pressure of the oxygen atmosphere in the film forming process of the electrolyte membrane 20 is in the above range, the membrane density of the electrolyte membrane 20 is improved. Thereby, the proton conductivity of the electrolyte membrane 20 is improved. The oxygen partial pressure is preferably 0.001 Torr or more and 0.05 Torr or less.

続いて、燃料電池100の動作について説明する。まず、水素を含有する燃料ガスが水素分離膜10に供給される。燃料ガス中の水素は、水素分離膜10を透過して電解質膜20に到達する。電解質膜20に到達した水素は、プロトンと電子とに解離する。プロトンは、電解質膜20を伝導し、カソード30に到達する。一方、酸素を含有する酸化剤ガスは、カソード30に供給される。カソード30においては、酸化剤ガス中の酸素とカソード30に到達したプロトンとから、水が発生するとともに、電力が発生する。以上の動作により、燃料電池100による発電が行われる。したがって、電解質膜20のプロトン伝導性が向上することによって、燃料電池100の発電性能が向上する。   Next, the operation of the fuel cell 100 will be described. First, a fuel gas containing hydrogen is supplied to the hydrogen separation membrane 10. Hydrogen in the fuel gas passes through the hydrogen separation membrane 10 and reaches the electrolyte membrane 20. The hydrogen that has reached the electrolyte membrane 20 is dissociated into protons and electrons. Protons are conducted through the electrolyte membrane 20 and reach the cathode 30. On the other hand, an oxidant gas containing oxygen is supplied to the cathode 30. In the cathode 30, water is generated and electric power is generated from oxygen in the oxidant gas and protons reaching the cathode 30. With the above operation, power generation by the fuel cell 100 is performed. Therefore, the power generation performance of the fuel cell 100 is improved by improving the proton conductivity of the electrolyte membrane 20.

なお、図1(b)の成膜工程における酸素分圧は、本実施の形態においては0.0001Torrより大きく0.1Torrより小さい値に設定されているが、成膜後の電解質膜20が電解質膜20を構成する電解質の略理論密度を有しかつ電解質膜20を構成する成分が十分に酸化される値に設定されてもよい。   Note that the oxygen partial pressure in the film formation step of FIG. 1B is set to a value greater than 0.0001 Torr and less than 0.1 Torr in the present embodiment, but the electrolyte membrane 20 after the film formation is an electrolyte. It may be set to a value that has a substantially theoretical density of the electrolyte constituting the membrane 20 and that the components constituting the electrolyte membrane 20 are sufficiently oxidized.

以下、上記実施の形態に従って電解質膜20を成膜し、その特性について調べた。   Hereinafter, the electrolyte membrane 20 was formed according to the above embodiment, and the characteristics thereof were examined.

(実施例1)
実施例1においては、水素分離膜10として、膜厚80μmのパラジウム基板を用いた。次に、水素分離膜10を真空チャンバ内に配置した。次いで、真空ポンプを用いて真空チャンバ内のエアを引きつつ純酸素を真空チャンバ内に供給することによって、真空チャンバ内を0.01Torrの酸素雰囲気に調整した。次に、SrZr0.8In0.2からなり膜厚2μmの電解質膜20を、PLD法により水素分離膜10上に成膜した。その後、電解質膜20上に、La0.6Sr0.4CoOからなるカソード30を形成した。それにより、燃料電池100を完成させた。
(Example 1)
In Example 1, a palladium substrate having a thickness of 80 μm was used as the hydrogen separation membrane 10. Next, the hydrogen separation membrane 10 was placed in a vacuum chamber. Next, pure oxygen was supplied into the vacuum chamber while drawing air in the vacuum chamber using a vacuum pump, thereby adjusting the inside of the vacuum chamber to an oxygen atmosphere of 0.01 Torr. Next, an electrolyte membrane 20 made of SrZr 0.8 In 0.2 O 3 and having a thickness of 2 μm was formed on the hydrogen separation membrane 10 by the PLD method. Thereafter, a cathode 30 made of La 0.6 Sr 0.4 CoO 3 was formed on the electrolyte membrane 20. Thereby, the fuel cell 100 was completed.

(実施例2)
実施例2においては、真空チャンバ内を0.001Torrの酸素雰囲気に調整し、電解質膜20を成膜した。その他の条件は、実施例1と同様である。
(Example 2)
In Example 2, the inside of the vacuum chamber was adjusted to an oxygen atmosphere of 0.001 Torr, and the electrolyte membrane 20 was formed. Other conditions are the same as in the first embodiment.

(比較例1)
比較例1においては、真空チャンバ内を0.1Torrの酸素雰囲気に調整し、電解質膜20を成膜した。その他の条件は、実施例1と同様である。
(Comparative Example 1)
In Comparative Example 1, the inside of the vacuum chamber was adjusted to an oxygen atmosphere of 0.1 Torr, and the electrolyte membrane 20 was formed. Other conditions are the same as in the first embodiment.

(比較例2)
比較例2においては、真空チャンバを0.0001Torrの酸素雰囲気に調整し、電解質膜20を成膜した。その他の条件は、実施例1と同様である。なお、実施例1,2および比較例2に係る燃料電池100は複数作製してある。
(Comparative Example 2)
In Comparative Example 2, the vacuum chamber was adjusted to an oxygen atmosphere of 0.0001 Torr, and the electrolyte membrane 20 was formed. Other conditions are the same as in the first embodiment. A plurality of fuel cells 100 according to Examples 1 and 2 and Comparative Example 2 are manufactured.

(分析1)
実施例1,2および比較例1,2に係る電解質膜20のプロトン伝導性について調べた。400℃の温度条件下において、水素分離膜10に純水素ガスを供給し、カソード30に40℃加湿エアを供給し、各燃料電池100に発電させた。この場合の電流密度を図2に示す。図2の縦軸は発電電圧0.5Vの場合における電流密度(A/cm)を示し、図2の横軸は電解質膜20の成膜工程における酸素雰囲気の酸素分圧を示す。
(Analysis 1)
The proton conductivity of the electrolyte membranes 20 according to Examples 1 and 2 and Comparative Examples 1 and 2 was examined. Under a temperature condition of 400 ° C., pure hydrogen gas was supplied to the hydrogen separation membrane 10 and 40 ° C. humidified air was supplied to the cathode 30 to cause each fuel cell 100 to generate power. The current density in this case is shown in FIG. The vertical axis in FIG. 2 indicates the current density (A / cm 2 ) when the power generation voltage is 0.5 V, and the horizontal axis in FIG. 2 indicates the oxygen partial pressure in the oxygen atmosphere in the step of forming the electrolyte membrane 20.

図2に示すように、実施例1,2に係る電解質膜20の電流密度は、比較例1,2に係る電解質膜20の電流密度に比較して大幅に大きくなった。これは、電解質膜20の成膜工程における酸素分圧が最適化されたからであると考えられる。   As shown in FIG. 2, the current density of the electrolyte membranes 20 according to Examples 1 and 2 was significantly larger than the current density of the electrolyte membranes 20 according to Comparative Examples 1 and 2. This is considered to be because the oxygen partial pressure in the film forming process of the electrolyte membrane 20 was optimized.

(分析2)
次に、各電解質膜20の膜密度を測定した。膜密度は、成膜された電解質膜20の重量、膜厚および面積を計測することによって求めた。図3にその結果を示す。図3の縦軸は各電解質膜20の膜密度を示し、図3の横軸は電解質膜20の成膜工程における酸素雰囲気の酸素分圧を示す。
(Analysis 2)
Next, the film density of each electrolyte membrane 20 was measured. The film density was determined by measuring the weight, film thickness, and area of the electrolyte membrane 20 formed. The result is shown in FIG. The vertical axis in FIG. 3 indicates the film density of each electrolyte membrane 20, and the horizontal axis in FIG. 3 indicates the oxygen partial pressure in the oxygen atmosphere in the step of forming the electrolyte membrane 20.

図3に示すように、酸素分圧に応じて膜密度は変化した。したがって、電解質膜20の膜密度は、電解質膜20の成膜工程における酸素分圧に依存する。実施例1,2に係る電解質膜20の膜密度は、比較例1に係る電解質膜20の膜密度に比較して大きくなった。また、実施例1,2に係る電解質膜20の膜密度は、理論密度に近い値となった。以上のことから、電解質膜20の成膜工程における雰囲気を0.0001Torrより大きく0.1Torrより小さい酸素雰囲気に調整することによって、電解質膜20のプロトン伝導性が向上することがわかった。なお、比較例2において膜密度が理論密度になっているにも関わらず十分な電流密度が得られないのは、電解質膜が不十分な酸化状態で成膜されるからであると考えられる。   As shown in FIG. 3, the film density changed according to the oxygen partial pressure. Therefore, the film density of the electrolyte membrane 20 depends on the oxygen partial pressure in the step of forming the electrolyte membrane 20. The membrane density of the electrolyte membrane 20 according to Examples 1 and 2 was larger than the membrane density of the electrolyte membrane 20 according to Comparative Example 1. Moreover, the film density of the electrolyte membrane 20 according to Examples 1 and 2 was a value close to the theoretical density. From the above, it was found that the proton conductivity of the electrolyte membrane 20 is improved by adjusting the atmosphere in the film forming step of the electrolyte membrane 20 to an oxygen atmosphere larger than 0.0001 Torr and smaller than 0.1 Torr. In Comparative Example 2, the reason why the sufficient current density cannot be obtained despite the fact that the film density is the theoretical density is considered that the electrolyte film is formed in an insufficiently oxidized state.

本発明の一実施の形態に係る電解質膜の成膜方法および燃料電池の製造方法について説明するための図である。It is a figure for demonstrating the film-forming method of the electrolyte membrane which concerns on one embodiment of this invention, and the manufacturing method of a fuel cell. 成膜工程における真空度と電流密度との関係を示す図である。It is a figure which shows the relationship between the vacuum degree and current density in a film-forming process. 成膜工程における真空度と膜密度との関係を示す図である。It is a figure which shows the relationship between the vacuum degree and film | membrane density in a film-forming process.

符号の説明Explanation of symbols

10 水素分離膜
20 電解質膜
30 カソード
100 燃料電池
10 Hydrogen separation membrane 20 Electrolyte membrane 30 Cathode 100 Fuel cell

Claims (7)

水素透過性を有する水素分離膜上に、プロトン伝導性を有する金属酸化物型の電解質膜を0.0001Torrより大きく0.1Torrより小さい酸素雰囲気で成膜する成膜工程を含むことを特徴とする電解質膜の成膜方法。 And a film forming step of forming a proton-conducting metal oxide type electrolyte membrane in an oxygen atmosphere greater than 0.0001 Torr and less than 0.1 Torr on a hydrogen permeable hydrogen separation membrane. A method for forming an electrolyte membrane. 前記電解質膜は、ペロブスカイト型であることを特徴とする請求項1記載の電解質膜の成膜方法。 The method of forming an electrolyte membrane according to claim 1, wherein the electrolyte membrane is a perovskite type. 前記電解質膜は、SrZr(1−x)Inからなることを特徴とする請求項2記載の電解質膜の成膜方法。 The method for forming an electrolyte membrane according to claim 2, wherein the electrolyte membrane is made of SrZr (1-x) In x O 3 . 前記電解質膜は、SrZr0.8In0.2からなることを特徴とする請求項2記載の電解質膜の成膜方法。 The electrolyte membrane, the electrolyte film forming method according to claim 2, characterized in that it consists SrZr 0.8 In 0.2 O 3. 前記成膜工程において、前記電解質膜は、PLD法によって成膜されることを特徴とする請求項1〜4のいずれかに記載の電解質膜の成膜方法。 5. The method for forming an electrolyte membrane according to claim 1, wherein in the film formation step, the electrolyte membrane is formed by a PLD method. 水素透過性を有する水素分離膜上に、プロトン伝導性を有する金属酸化物型の電解質膜を成膜する成膜工程を含み、
前記成膜工程において、前記水素分離膜上に前記電解質膜が成膜されるときの酸素分圧は、成膜後の前記電解質膜が前記電解質膜を構成する電解質の略理論密度を有しかつ前記電解質膜を構成する成分が十分に酸化される値に設定されることを特徴とする電解質膜の成膜方法。
Including a film forming step of forming a metal oxide electrolyte membrane having proton conductivity on a hydrogen separation membrane having hydrogen permeability;
In the film formation step, the oxygen partial pressure when the electrolyte membrane is formed on the hydrogen separation membrane has a substantially theoretical density of the electrolyte in which the electrolyte membrane after film formation constitutes the electrolyte membrane, and A method for forming an electrolyte membrane, characterized in that the component constituting the electrolyte membrane is set to a value that is sufficiently oxidized.
請求項1〜6のいずれかの電解質膜の成膜方法により成膜された電解質膜上にカソードを形成するカソード形成工程を含むことを特徴とする燃料電池の製造方法。

A method for producing a fuel cell, comprising a cathode forming step of forming a cathode on the electrolyte membrane formed by the electrolyte membrane deposition method according to claim 1.

JP2006317439A 2006-11-24 2006-11-24 Deposition method of electrolyte membrane, and manufacturing method of fuel cell Pending JP2008130514A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006317439A JP2008130514A (en) 2006-11-24 2006-11-24 Deposition method of electrolyte membrane, and manufacturing method of fuel cell
PCT/IB2007/003563 WO2008062278A1 (en) 2006-11-24 2007-11-20 Electrolyte membrane forming method and fuel cell manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006317439A JP2008130514A (en) 2006-11-24 2006-11-24 Deposition method of electrolyte membrane, and manufacturing method of fuel cell

Publications (1)

Publication Number Publication Date
JP2008130514A true JP2008130514A (en) 2008-06-05

Family

ID=39284124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006317439A Pending JP2008130514A (en) 2006-11-24 2006-11-24 Deposition method of electrolyte membrane, and manufacturing method of fuel cell

Country Status (2)

Country Link
JP (1) JP2008130514A (en)
WO (1) WO2008062278A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008407A1 (en) * 2013-07-16 2015-01-22 パナソニックIpマネジメント株式会社 Proton conductor
JP2016021420A (en) * 2015-11-02 2016-02-04 一般財団法人電力中央研究所 Composite film structure and fuel battery
US9437343B2 (en) 2013-07-16 2016-09-06 Panasonic Intellectual Property Management Co., Ltd. Proton conductor
US9458544B2 (en) 2014-02-07 2016-10-04 Panasonic Intellectual Property Management Co., Ltd. Organic hydride conversion device
US9514855B2 (en) 2014-01-31 2016-12-06 Panasonic Intellectual Property Management Co., Ltd. Proton conductor
US9896771B2 (en) 2014-02-07 2018-02-20 Panasonic Intellectual Property Management Co., Ltd. Dehydrogenation device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5741406A (en) * 1996-04-02 1998-04-21 Northerwestern University Solid oxide fuel cells having dense yttria-stabilized zirconia electrolyte films and method of depositing electrolyte films
JP4934949B2 (en) * 2004-07-20 2012-05-23 トヨタ自動車株式会社 Fuel cell, hydrogen separation membrane module, and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008407A1 (en) * 2013-07-16 2015-01-22 パナソニックIpマネジメント株式会社 Proton conductor
US9437343B2 (en) 2013-07-16 2016-09-06 Panasonic Intellectual Property Management Co., Ltd. Proton conductor
US9514855B2 (en) 2014-01-31 2016-12-06 Panasonic Intellectual Property Management Co., Ltd. Proton conductor
US10147513B2 (en) 2014-01-31 2018-12-04 Panasonic Intellectual Property Management Co., Ltd. Proton conductor
US9458544B2 (en) 2014-02-07 2016-10-04 Panasonic Intellectual Property Management Co., Ltd. Organic hydride conversion device
US9896771B2 (en) 2014-02-07 2018-02-20 Panasonic Intellectual Property Management Co., Ltd. Dehydrogenation device
JP2016021420A (en) * 2015-11-02 2016-02-04 一般財団法人電力中央研究所 Composite film structure and fuel battery

Also Published As

Publication number Publication date
WO2008062278A1 (en) 2008-05-29

Similar Documents

Publication Publication Date Title
Fabbri et al. Towards the next generation of solid oxide fuel cells operating below 600 C with chemically stable proton‐conducting electrolytes
EP1403954B1 (en) Unit cell for solid oxide fuel cell and related method
US7510819B2 (en) Thin film solid oxide fuel cell with lithographically patterned electrolyte and anode layers
US20110262839A1 (en) Proton conducting electrolyte membranes having nano-grain ysz as protective layers, and membrane electrode assemblies and ceramic fuel cells comprising same
KR101215338B1 (en) Solid oxide electrolyte membrane, manufacturing method thereof, and fuel cell employing the same
JP2003059496A (en) Solid electrolyte fuel cell and its manufacturing method
US7829235B2 (en) Fuel cell production method and fuel cell
JP2008130514A (en) Deposition method of electrolyte membrane, and manufacturing method of fuel cell
JP2004319491A (en) Fuel cell or electrode having passive support
JP2004319492A (en) Fuel cell and passive support
KR101290577B1 (en) Solid oxide electrolyte membrane, manufacturing method thereof, and fuel cell employing the same
JP6600300B2 (en) Multi-layer arrangement for solid electrolyte
US9806367B2 (en) Fabrication process for production of SOFC-MEA with a pore array anode structure for improving output power density
JP4341454B2 (en) Method for producing solid oxide fuel cell
JP2007090132A (en) Hydrogen permeable membrane and fuel cell using it
JP2005302424A (en) Electrolyte membrane for fuel cell, fuel cell, and manufacturing method therefor
KR20110118544A (en) Proton conducting ceramic fuel cells having nano-grain ysz as protective layer of electrolyte layer
JP2005078951A (en) Single cell for solid oxide fuel battery and its manufacturing method
JP2009054515A (en) Fuel cell and its manufacturing method
JP4994645B2 (en) Hydrogen permeable structure, method for producing the same, and fuel cell using the same
JP2007173104A (en) Hydrogen separation membrane type fuel cell and its manufacturing method
TW202412369A (en) Electrochemical cell
TW202411441A (en) Method for creating a protective coating on a component of an electrochemical cell
JP4994629B2 (en) Method for manufacturing hydrogen permeable structure, hydrogen permeable structure, and fuel cell
JP2009231104A (en) Method for manufacturing fuel cell