JP2009231104A - Method for manufacturing fuel cell - Google Patents

Method for manufacturing fuel cell Download PDF

Info

Publication number
JP2009231104A
JP2009231104A JP2008076100A JP2008076100A JP2009231104A JP 2009231104 A JP2009231104 A JP 2009231104A JP 2008076100 A JP2008076100 A JP 2008076100A JP 2008076100 A JP2008076100 A JP 2008076100A JP 2009231104 A JP2009231104 A JP 2009231104A
Authority
JP
Japan
Prior art keywords
hydrogen
fuel cell
hydrogen separation
separation membrane
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008076100A
Other languages
Japanese (ja)
Inventor
Yasuhiro Izawa
康浩 伊澤
Hiroyasu Kazama
宏泰 風間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008076100A priority Critical patent/JP2009231104A/en
Publication of JP2009231104A publication Critical patent/JP2009231104A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a fuel cell, wherein the interfacial delamination between a hydrogen separation film and an electrolyte film at the time of power generation can be suppressed. <P>SOLUTION: The method for manufacturing a fuel cell includes a hydrogen treatment step of performing the hydrogen treatment for a hydrogen separation film-electrolyte film junction (10) where an electrolyte film (14) having the proton conductivity is provided on a hydrogen separation film (12) for transmitting the hydrogen in a state of proton and/or hydrogen atom prior to power generation of the hydrogen separation film-electrolyte film junction. The method for manufacturing the fuel cell suppresses the delamination between the hydrogen separation film and the electrolyte film during power generation or after power generation because a stress between the hydrogen separation film and the electrolyte film has been relaxed prior to power generation. As a result, degradation in the power generation performance of the fuel cell is suppressed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、燃料電池の製造方法に関する。   The present invention relates to a method for manufacturing a fuel cell.

燃料電池は、一般的には水素および酸素を燃料として電気エネルギを得る装置である。この燃料電池は、環境面において優れており、また高いエネルギ効率を実現できることから、今後のエネルギ供給システムとして広く開発が進められてきている。   A fuel cell is a device that generally obtains electric energy using hydrogen and oxygen as fuel. Since this fuel cell is excellent in terms of the environment and can realize high energy efficiency, it has been widely developed as a future energy supply system.

燃料電池のうち固体の電解質を用いたものには、固体高分子型燃料電池、固体酸化物型燃料電池、水素分離膜電池等がある。ここで、水素分離膜電池とは、緻密な水素分離膜を備えた燃料電池である。緻密な水素分離膜は、水素をプロトンおよび/または水素原子の状態で透過する水素透過性金属によって形成される膜である。緻密な水素分離膜は、電解質膜の支持基板としての機能を有するとともに、発電時にはアノードとしての機能も有する。   Among the fuel cells, those using solid electrolytes include solid polymer fuel cells, solid oxide fuel cells, hydrogen separation membrane cells, and the like. Here, the hydrogen separation membrane battery is a fuel cell provided with a dense hydrogen separation membrane. A dense hydrogen separation membrane is a membrane formed of a hydrogen-permeable metal that permeates hydrogen in the state of protons and / or hydrogen atoms. The dense hydrogen separation membrane functions not only as a support substrate for the electrolyte membrane but also as an anode during power generation.

特許文献1には、水素透過時における水素分離金属層の膨張に伴う水素分離金属層と電解質層との層間剥離を抑制するための技術が開示されている。   Patent Document 1 discloses a technique for suppressing delamination between a hydrogen separation metal layer and an electrolyte layer accompanying expansion of the hydrogen separation metal layer during hydrogen permeation.

WO2004−084333号公報WO2004-084333

しかしながら、特許文献1の技術では、燃料電池を発電雰囲気にさらした場合に、水素分離金属層と電解質層との間に剥離が発生するおそれがある。   However, in the technique of Patent Document 1, when the fuel cell is exposed to a power generation atmosphere, there is a possibility that separation occurs between the hydrogen separation metal layer and the electrolyte layer.

本発明は、発電時における水素分離膜と電解質膜との界面剥離を抑制することができる燃料電池の製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of the fuel cell which can suppress the interface peeling of the hydrogen separation membrane and electrolyte membrane at the time of electric power generation.

本発明に係る燃料電池の製造方法は、水素をプロトンおよび/または水素原子の状態で透過する水素分離膜上にプロトン伝導性を有する電解質膜が設けられた水素分離膜−電解質膜接合体に対し、水素分離膜−電解質膜接合体の発電前に、水素処理を施す水素処理工程を含むことを特徴とするものである。本発明に係る燃料電池の製造方法によれば、発電前に水素分離膜と電解質膜との間の応力が緩和されていることから、発電時または発電後における水素分離膜と電解質膜との剥離が抑制される。それにより、燃料電池の発電性能低下が抑制される。   The fuel cell manufacturing method according to the present invention is directed to a hydrogen separation membrane-electrolyte membrane assembly in which an electrolyte membrane having proton conductivity is provided on a hydrogen separation membrane that transmits hydrogen in the state of protons and / or hydrogen atoms. And a hydrogen treatment step of performing a hydrogen treatment before the power generation of the hydrogen separation membrane-electrolyte membrane assembly. According to the fuel cell manufacturing method of the present invention, since the stress between the hydrogen separation membrane and the electrolyte membrane is relaxed before power generation, the hydrogen separation membrane and the electrolyte membrane are separated from each other during or after power generation. Is suppressed. As a result, a decrease in power generation performance of the fuel cell is suppressed.

上記製造方法において、水素処理とは、水素含有雰囲気において水素分離膜−電解質膜接合体に熱処理を行う処理であってもよい。上記製造方法において、水素処理工程前に、電解質膜の水素分離膜と反対側にカソードを形成する工程をさらに含んでいてもよい。この製造方法によれば、カソードの形成時に水素分離膜−電解質膜接合体に応力がかかっていたとしても、水素処理によってその応力が緩和される。したがって、カソードの形成後に水素処理を行うことによって、水素分離膜と電解質膜との間の応力がより緩和される。   In the above manufacturing method, the hydrogen treatment may be a treatment in which a heat treatment is performed on the hydrogen separation membrane-electrolyte membrane assembly in a hydrogen-containing atmosphere. The manufacturing method may further include a step of forming a cathode on the opposite side of the electrolyte membrane from the hydrogen separation membrane before the hydrogen treatment step. According to this manufacturing method, even if stress is applied to the hydrogen separation membrane-electrolyte membrane assembly during the formation of the cathode, the stress is relieved by the hydrogen treatment. Therefore, by performing the hydrogen treatment after the formation of the cathode, the stress between the hydrogen separation membrane and the electrolyte membrane is further relaxed.

上記製造方法において、水素分離膜は、パラジウムからなってもよい。上記製造方法において、電解質膜は、SrZn(1−X)Inからなってもよい。 In the above manufacturing method, the hydrogen separation membrane may be made of palladium. In the above manufacturing method, the electrolyte membrane may be made of SrZn (1-X) In X O 3 .

本発明によれば、発電時における水素分離膜と電解質膜との界面剥離を抑制することができる燃料電池の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the fuel cell which can suppress the interface peeling of the hydrogen separation membrane and electrolyte membrane at the time of electric power generation can be provided.

以下、本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

(第1の実施の形態)
本発明の第1の実施の形態に係る燃料電池の製造方法について説明する。図1(a)〜図1(c)は、第1の実施の形態に係る燃料電池の製造方法を示すフロー図である。まず、図1(a)に示すように、水素分離膜−電解質膜接合体10を準備する。水素分離膜−電解質膜接合体10は、水素をプロトンおよび/または水素原子の状態で透過する水素透過性金属からなる水素分離膜12上にプロトン伝導性を有する電解質膜14が設けられたものである。
(First embodiment)
A method for manufacturing a fuel cell according to the first embodiment of the present invention will be described. FIG. 1A to FIG. 1C are flowcharts showing a fuel cell manufacturing method according to the first embodiment. First, as shown in FIG. 1A, a hydrogen separation membrane-electrolyte membrane assembly 10 is prepared. The hydrogen separation membrane-electrolyte membrane assembly 10 is obtained by providing an electrolyte membrane 14 having proton conductivity on a hydrogen separation membrane 12 made of a hydrogen permeable metal that permeates hydrogen in the state of protons and / or hydrogen atoms. is there.

水素分離膜12を構成する水素透過性金属として、例えば、Pd(パラジウム)、V(バナジウム)、Ta(タンタル)、Nb(ニオブ)等の金属、またはこれらの合金等を用いることができる。また、これらの水素透過性金属層の2面のうち電解質膜14が設けられる側の面上に、水素解離能を有するPd、Pd合金等の膜が形成されたものを水素分離膜12として用いてもよい。水素分離膜12の膜厚は、特に限定されないが、例えば5μm〜100μm程度である。水素分離膜12は、自立膜であってもよく、多孔質状の卑金属板によって支持されていてもよい。   As the hydrogen permeable metal constituting the hydrogen separation membrane 12, for example, a metal such as Pd (palladium), V (vanadium), Ta (tantalum), Nb (niobium), or an alloy thereof can be used. Further, a hydrogen separation membrane 12 in which a film of Pd, Pd alloy or the like having hydrogen dissociation ability is formed on the surface of the two surfaces of the hydrogen permeable metal layer on which the electrolyte membrane 14 is provided is used. May be. The thickness of the hydrogen separation membrane 12 is not particularly limited, but is, for example, about 5 μm to 100 μm. The hydrogen separation membrane 12 may be a self-supporting membrane or may be supported by a porous base metal plate.

電解質膜14として、プロトン伝導性電解質が用いられる。例えば、ペロブスカイト型電解質(SrZn(1−X)In等)、パイロクロア型電解質(LnZr(Ln:La(ランタン)、Nd(ネオジム)、Sm(サマリウム)等))、モナザイト型希土類オルトリン酸塩電解質(LnPO(Ln:La、Pr(プラセオジム)、Nd、Sm等))、ゼニタイプ型希土類オルトリン酸塩電解質(LnPO(Ln:La、Pr、Nd、Sm等))、希土類メタリン酸塩電解質(LnP(Ln:La、Pr、Nd、Sm等))、希土類オキシリン酸塩電解質(Ln18(Ln:La、Pr、Nd、Sm等))等を電解質膜14に用いることができる。電解質膜14の膜厚は、特に限定されないが、例えば1μm程度である。 A proton conductive electrolyte is used as the electrolyte membrane 14. For example, perovskite electrolyte (SrZn (1-X) In X O 3 etc.), pyrochlore electrolyte (Ln 2 Zr 2 O 7 (Ln: La (lanthanum), Nd (neodymium), Sm (samarium) etc.)), Monazite type rare earth orthophosphate electrolyte (LnPO 4 (Ln: La, Pr (praseodymium), Nd, Sm, etc.)), Zenitype type rare earth orthophosphate electrolyte (LnPO 4 (Ln: La, Pr, Nd, Sm, etc.)) , Rare earth metaphosphate electrolyte (LnP 3 O 9 (Ln: La, Pr, Nd, Sm, etc.)), rare earth oxyphosphate electrolyte (Ln 7 P 3 O 18 (Ln: La, Pr, Nd, Sm, etc.)) Or the like can be used for the electrolyte membrane 14. Although the film thickness of the electrolyte membrane 14 is not specifically limited, For example, it is about 1 micrometer.

次いで、図1(b)に示すように、図1(a)で準備された水素分離膜−電解質膜接合体10に水素処理を施す。水素処理とは、水素含有雰囲気において水素分離膜−電解質膜接合体10に熱処理を行う処理のことをいう。この場合の水素含有雰囲気は、特に限定されるものではないが、例えば50kPa〜120kPa程度の水素分圧を有する。熱処理時の水素分離膜−電解質膜接合体10の温度は、特に限定されるものではないが、燃料電池として発電する場合の温度(例えば400℃程度)を含む所定温度範囲内であってもよい。一例として、水素分離膜−電解質膜接合体10の温度を350℃〜500℃程度に維持してもよい。なお、水素処理時間は、特に限定されるものではないが、0.2hr〜2.0hr程度であってもよい。   Next, as shown in FIG. 1B, the hydrogen separation membrane-electrolyte membrane assembly 10 prepared in FIG. 1A is subjected to hydrogen treatment. The hydrogen treatment refers to a treatment in which heat treatment is performed on the hydrogen separation membrane-electrolyte membrane assembly 10 in a hydrogen-containing atmosphere. The hydrogen-containing atmosphere in this case is not particularly limited, but has a hydrogen partial pressure of, for example, about 50 kPa to 120 kPa. The temperature of the hydrogen separation membrane-electrolyte membrane assembly 10 at the time of heat treatment is not particularly limited, but may be within a predetermined temperature range including a temperature (for example, about 400 ° C.) when power is generated as a fuel cell. . As an example, the temperature of the hydrogen separation membrane-electrolyte membrane assembly 10 may be maintained at about 350 ° C. to 500 ° C. The hydrogen treatment time is not particularly limited, but may be about 0.2 hr to 2.0 hr.

水素処理が実行されると、水素雰囲気が作用して電解質膜14に応力がかかる。一方、水素雰囲気中においては、時間経過とともに、水素分離膜12の水素透過性金属が動きやすくなる。それにより、水素分離膜12と電解質膜14との間の応力が緩和される。   When the hydrogen treatment is executed, a hydrogen atmosphere acts and stress is applied to the electrolyte membrane 14. On the other hand, in the hydrogen atmosphere, the hydrogen permeable metal of the hydrogen separation membrane 12 becomes easy to move with time. Thereby, the stress between the hydrogen separation membrane 12 and the electrolyte membrane 14 is relaxed.

続いて、図1(c)に示すように、水素分離膜−電解質膜接合体10の電解質膜14上にカソード20を形成する。カソード20として、例えば、La0.6Sr0.4CoO、La0.5Sr0.5MnO、La0.5Sr0.5FeO等のセラミックスを用いることができる。カソード20は、例えば、PVD等により形成することができる。 Subsequently, as shown in FIG. 1C, the cathode 20 is formed on the electrolyte membrane 14 of the hydrogen separation membrane-electrolyte membrane assembly 10. As the cathode 20, for example, it can be used La 0.6 Sr 0.4 CoO 3, La 0.5 Sr 0.5 MnO 3, La 0.5 Sr 0.5 FeO 3 or the like ceramics. The cathode 20 can be formed by, for example, PVD.

以上の方法で、燃料電池30は製造される。なお、燃料電池30において、水素分離膜12は、電解質膜14を支持および補強する支持体として機能するとともに、アノードとしても機能する。また、複数の燃料電池30を積層して、燃料電池スタックを構成してもよい。   The fuel cell 30 is manufactured by the above method. In the fuel cell 30, the hydrogen separation membrane 12 functions as a support for supporting and reinforcing the electrolyte membrane 14 and also functions as an anode. A plurality of fuel cells 30 may be stacked to constitute a fuel cell stack.

燃料電池30は、以下の作用によって発電を行う。まず、水素を含む燃料ガスが水素分離膜12に供給される。燃料ガス中の水素はプロトンおよび/または水素原子の状態で水素分離膜12を透過して電解質膜14に到達する。電解質膜14に到達した水素原子は、プロトンおよび電子に解離する。プロトンは、電解質膜14を伝導してカソード20に到達する。電子は、水素分離膜12を伝導して、水素分離膜12とモータ、補機等の負荷(図示せず)とカソード20とを電気的に接続する外部回路(図示せず)を通って、カソード20側へ供給される。   The fuel cell 30 generates power by the following action. First, a fuel gas containing hydrogen is supplied to the hydrogen separation membrane 12. Hydrogen in the fuel gas passes through the hydrogen separation membrane 12 in the state of protons and / or hydrogen atoms and reaches the electrolyte membrane 14. The hydrogen atoms that have reached the electrolyte membrane 14 are dissociated into protons and electrons. Protons pass through the electrolyte membrane 14 and reach the cathode 20. The electrons are conducted through the hydrogen separation membrane 12 and pass through an external circuit (not shown) that electrically connects the hydrogen separation membrane 12 and a load (not shown) such as a motor and an auxiliary machine to the cathode 20. Supplied to the cathode 20 side.

一方、酸素を含む酸化剤ガスは、カソード20に供給される。カソード20においては、酸化剤ガス中の酸素と電解質膜14を伝導してきたプロトンと外部回路を通って供給された電子とから、水が発生する。以上の作用により、燃料電池30による発電が行われる。なお、発電時において燃料電池30は、反応熱によって発熱する。その結果、燃料電池30は、400℃程度の温度になる。   On the other hand, an oxidant gas containing oxygen is supplied to the cathode 20. In the cathode 20, water is generated from oxygen in the oxidant gas, protons conducted through the electrolyte membrane 14, and electrons supplied through an external circuit. With the above operation, power generation by the fuel cell 30 is performed. During power generation, the fuel cell 30 generates heat due to reaction heat. As a result, the temperature of the fuel cell 30 is about 400 ° C.

本実施の形態に係る燃料電池の製造方法によれば、発電前に水素分離膜12と電解質膜14との間の応力が緩和されていることから、発電時または発電後における水素分離膜12と電解質膜14との剥離が抑制される。それにより、燃料電池30の発電性能低下が抑制される。   According to the fuel cell manufacturing method of the present embodiment, since the stress between the hydrogen separation membrane 12 and the electrolyte membrane 14 is relaxed before power generation, the hydrogen separation membrane 12 during power generation or after power generation Separation from the electrolyte membrane 14 is suppressed. Thereby, a decrease in power generation performance of the fuel cell 30 is suppressed.

なお、発電時にも水素分離膜−電解質膜接合体10に水素雰囲気が作用する。したがって、あらかじめ水素処理を行わなくても、発電時に水素分離膜12と電解質膜14との間の応力を緩和させることも考えられる。しかしながら、発電時には、水素に加えて酸素が供給されることから、電解質膜14に応力がかかった場合に水素分離膜12と電解質膜14との間に酸素が入り込むおそれがある。この場合、水素と酸素との燃焼により、水素分離膜12と電解質膜14との剥離を誘発するおそれがある。   Note that a hydrogen atmosphere acts on the hydrogen separation membrane-electrolyte membrane assembly 10 also during power generation. Therefore, it is conceivable to relieve stress between the hydrogen separation membrane 12 and the electrolyte membrane 14 during power generation without performing hydrogen treatment in advance. However, since oxygen is supplied in addition to hydrogen during power generation, oxygen may enter between the hydrogen separation membrane 12 and the electrolyte membrane 14 when stress is applied to the electrolyte membrane 14. In this case, there is a possibility that peeling between the hydrogen separation membrane 12 and the electrolyte membrane 14 is induced by combustion of hydrogen and oxygen.

これに比較して、本実施の形態に係る製造方法においては、カソード20にエアが供給されない状態で水素処理が行われる。したがって、水素と酸素との燃焼の影響を受けずに済む。その結果、水素分離膜12と電解質膜14との剥離を抑制することができる。   Compared to this, in the manufacturing method according to the present embodiment, the hydrogen treatment is performed in a state where air is not supplied to the cathode 20. Therefore, it is not affected by the combustion of hydrogen and oxygen. As a result, peeling between the hydrogen separation membrane 12 and the electrolyte membrane 14 can be suppressed.

なお、電解質膜14を成膜する前の水素分離膜12に、水素透過処理をあらかじめ実施しておいてもよい。この場合、水素分離膜12をあらかじめ変形させた後に電解質膜14を成膜することができる。この場合、燃料電池30の発電時または発電後における水素分離膜12と電解質膜14との剥離がより抑制される。   Note that a hydrogen permeation treatment may be performed in advance on the hydrogen separation membrane 12 before the electrolyte membrane 14 is formed. In this case, the electrolyte membrane 14 can be formed after the hydrogen separation membrane 12 is deformed in advance. In this case, peeling of the hydrogen separation membrane 12 and the electrolyte membrane 14 during or after power generation of the fuel cell 30 is further suppressed.

ここで、水素分離膜−電解質膜接合体10に水素処理を行わなくても、電解質膜14の成膜前の水素分離膜12に水素透過処理を行うだけで水素分離膜12と電解質膜14との剥離が十分に抑制されるとも考えられる。しかしながら、電解質膜14の成膜時には雰囲気、温度等の影響により水素分離膜12中の水素が除去されてしまうことから、水素分離膜−電解質膜接合体10を水素雰囲気にさらすと、再び水素分離膜12が変形するおそれがある。この場合、水素分離膜12と電解質膜14とが剥離するおそれがある。したがって、本実施の形態のように、水素分離膜−電解質膜接合体10に水素処理を実施することによって、水素分離膜12と電解質膜14との剥離をより抑制することができる。   Here, even if the hydrogen separation membrane-electrolyte membrane assembly 10 is not subjected to hydrogen treatment, the hydrogen separation membrane 12 and the electrolyte membrane 14 can be obtained only by performing hydrogen permeation treatment on the hydrogen separation membrane 12 before the formation of the electrolyte membrane 14. It is considered that peeling of the film is sufficiently suppressed. However, when the electrolyte membrane 14 is formed, hydrogen in the hydrogen separation membrane 12 is removed due to the influence of the atmosphere, temperature, etc. Therefore, when the hydrogen separation membrane-electrolyte membrane assembly 10 is exposed to a hydrogen atmosphere, hydrogen separation is performed again. The film 12 may be deformed. In this case, the hydrogen separation membrane 12 and the electrolyte membrane 14 may be peeled off. Therefore, the separation of the hydrogen separation membrane 12 and the electrolyte membrane 14 can be further suppressed by performing the hydrogen treatment on the hydrogen separation membrane-electrolyte membrane assembly 10 as in the present embodiment.

(第2の実施の形態)
続いて、本発明の第2の実施の形態に係る燃料電池の製造方法について説明する。図2(a)および図2(b)は、第2の実施の形態に係る燃料電池の製造方法を示すフロー図である。まず、図2(a)に示すように、燃料電池30aを準備する。燃料電池30aは、水素分離膜−電解質膜接合体10の電解質膜14上にカソード20が形成された水素分離膜電池である。
(Second Embodiment)
Then, the manufacturing method of the fuel cell which concerns on the 2nd Embodiment of this invention is demonstrated. FIG. 2A and FIG. 2B are flowcharts showing a method of manufacturing a fuel cell according to the second embodiment. First, as shown in FIG. 2A, a fuel cell 30a is prepared. The fuel cell 30 a is a hydrogen separation membrane cell in which the cathode 20 is formed on the electrolyte membrane 14 of the hydrogen separation membrane-electrolyte membrane assembly 10.

次いで、図2(b)に示すように、燃料電池30aに水素処理が実行される。水素処理は、図1(b)で説明した水素処理と同様の方法で実行される。   Next, as shown in FIG. 2B, hydrogen treatment is performed on the fuel cell 30a. The hydrogen treatment is performed by the same method as the hydrogen treatment described with reference to FIG.

本実施の形態に係る燃料電池の製造方法においても、水素分離膜12と電解質膜14との間の応力が緩和される。それにより、燃料電池30aの発電時または発電後における水素分離膜12と電解質膜14との剥離が抑制される。また、本実施の形態においては、カソード20の成膜時に水素分離膜−電解質膜接合体10に応力がかかっていたとしても、水素処理によってその応力が緩和される。したがって、カソード20の成膜後に水素処理を行うことによって、水素分離膜12と電解質膜14との間の応力がより緩和される。   Also in the fuel cell manufacturing method according to the present embodiment, the stress between the hydrogen separation membrane 12 and the electrolyte membrane 14 is relieved. Thereby, peeling of the hydrogen separation membrane 12 and the electrolyte membrane 14 during or after power generation of the fuel cell 30a is suppressed. In the present embodiment, even if stress is applied to the hydrogen separation membrane-electrolyte membrane assembly 10 when the cathode 20 is formed, the stress is relieved by the hydrogen treatment. Therefore, by performing the hydrogen treatment after the formation of the cathode 20, the stress between the hydrogen separation membrane 12 and the electrolyte membrane 14 is further relaxed.

以下、上記実施の形態に係る製造方法で製造された燃料電池の特性を調べた。   Hereinafter, the characteristics of the fuel cell manufactured by the manufacturing method according to the above embodiment were examined.

(実施例1)
実施例1においては、第2の実施の形態に係る製造方法に従って、燃料電池30aを作製した。水素分離膜12として、パラジウムを用いた。電解質膜14として、SrZn(1−X)Inを用いた。カソード20として、La0.6Sr0.4CoOを用いた。まず、燃料電池30aをエア雰囲気で400℃まで昇温させ、50kPa〜120kPaの水素雰囲気で0.5時間水素処理した。その後、水素分離膜12を水素雰囲気にさらし、カソード20をエアにさらした。
Example 1
In Example 1, a fuel cell 30a was manufactured according to the manufacturing method according to the second embodiment. Palladium was used as the hydrogen separation membrane 12. SrZn (1-X) In X O 3 was used as the electrolyte membrane 14. As the cathode 20, La 0.6 Sr 0.4 CoO 3 was used. First, the fuel cell 30a was heated to 400 ° C. in an air atmosphere and subjected to hydrogen treatment for 0.5 hours in a hydrogen atmosphere of 50 kPa to 120 kPa. Thereafter, the hydrogen separation membrane 12 was exposed to a hydrogen atmosphere, and the cathode 20 was exposed to air.

(比較例1)
比較例1においては、燃料電池30aに対して水素処理を実施しなかった。その他は、実施例1と同様である。
(Comparative Example 1)
In Comparative Example 1, no hydrogen treatment was performed on the fuel cell 30a. Others are the same as in the first embodiment.

(分析)
図3(a)は実施例1に係る燃料電池を水素分離膜側からみた写真である。図3(b)は、比較例1に係る燃料電池を水素分離膜側からみた写真である。図3(b)に示すように、比較例1に係る燃料電池においては、剥離が多数発生した。これに対して、実施例1に係る燃料電池においては、剥離が少なかった。したがって、燃料電池を発電雰囲気にさらす前に水素処理を施すことによって、剥離が抑制されることがわかった。
(analysis)
FIG. 3A is a photograph of the fuel cell according to Example 1 viewed from the hydrogen separation membrane side. FIG. 3B is a photograph of the fuel cell according to Comparative Example 1 viewed from the hydrogen separation membrane side. As shown in FIG. 3B, in the fuel cell according to Comparative Example 1, a large number of peelings occurred. On the other hand, in the fuel cell according to Example 1, there was little peeling. Therefore, it was found that peeling is suppressed by performing hydrogen treatment before exposing the fuel cell to the power generation atmosphere.

図1(a)〜図1(c)は、第1の実施の形態に係る燃料電池の製造方法を示すフロー図である。FIG. 1A to FIG. 1C are flowcharts showing a fuel cell manufacturing method according to the first embodiment. 図2(a)および図2(b)は、第2の実施の形態に係る燃料電池の製造方法を示すフロー図である。FIG. 2A and FIG. 2B are flowcharts showing a method of manufacturing a fuel cell according to the second embodiment. 図3(a)は実施例1に係る燃料電池を水素分離膜側からみた写真である。図3(b)は、比較例1に係る燃料電池を水素分離膜側からみた写真である。FIG. 3A is a photograph of the fuel cell according to Example 1 viewed from the hydrogen separation membrane side. FIG. 3B is a photograph of the fuel cell according to Comparative Example 1 viewed from the hydrogen separation membrane side.

符号の説明Explanation of symbols

10 水素分離膜−電解質膜接合体
12 水素分離膜
14 電解質膜
20 カソード
30 燃料電池
DESCRIPTION OF SYMBOLS 10 Hydrogen separation membrane-electrolyte membrane assembly 12 Hydrogen separation membrane 14 Electrolyte membrane 20 Cathode 30 Fuel cell

Claims (5)

水素をプロトンおよび/または水素原子の状態で透過する水素分離膜上にプロトン伝導性を有する電解質膜が設けられた水素分離膜−電解質膜接合体に対し、前記水素分離膜−電解質膜接合体の発電前に、水素処理を施す水素処理工程を含むことを特徴とする燃料電池の製造方法。   In contrast to a hydrogen separation membrane-electrolyte membrane assembly in which an electrolyte membrane having proton conductivity is provided on a hydrogen separation membrane that permeates hydrogen in the state of protons and / or hydrogen atoms, the hydrogen separation membrane-electrolyte membrane assembly A method for producing a fuel cell, comprising a hydrogen treatment step of performing hydrogen treatment before power generation. 前記水素処理とは、水素含有雰囲気において前記水素分離膜−電解質膜接合体に熱処理を行う処理であることを特徴とする請求項1記載の燃料電池の製造方法。   2. The method of manufacturing a fuel cell according to claim 1, wherein the hydrogen treatment is a treatment in which heat treatment is performed on the hydrogen separation membrane-electrolyte membrane assembly in a hydrogen-containing atmosphere. 前記水素処理工程前に、前記電解質膜の前記水素分離膜と反対側にカソードを形成する工程をさらに含むことを特徴とする請求項1または2記載の燃料電池の製造方法。   3. The method of manufacturing a fuel cell according to claim 1, further comprising a step of forming a cathode on the opposite side of the electrolyte membrane from the hydrogen separation membrane before the hydrogen treatment step. 前記水素分離膜は、パラジウムからなることを特徴とする請求項1〜3のいずれかに記載の燃料電池の製造方法。   The method for producing a fuel cell according to claim 1, wherein the hydrogen separation membrane is made of palladium. 前記電解質膜は、SrZn(1−X)Inからなることを特徴とする請求項1〜4のいずれかに記載の燃料電池の製造方法。 The method for manufacturing a fuel cell according to claim 1 , wherein the electrolyte membrane is made of SrZn (1-X) In X O 3 .
JP2008076100A 2008-03-24 2008-03-24 Method for manufacturing fuel cell Pending JP2009231104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008076100A JP2009231104A (en) 2008-03-24 2008-03-24 Method for manufacturing fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008076100A JP2009231104A (en) 2008-03-24 2008-03-24 Method for manufacturing fuel cell

Publications (1)

Publication Number Publication Date
JP2009231104A true JP2009231104A (en) 2009-10-08

Family

ID=41246264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008076100A Pending JP2009231104A (en) 2008-03-24 2008-03-24 Method for manufacturing fuel cell

Country Status (1)

Country Link
JP (1) JP2009231104A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015069920A (en) * 2013-09-30 2015-04-13 太陽誘電株式会社 Electrolyte-sealing structure and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015069920A (en) * 2013-09-30 2015-04-13 太陽誘電株式会社 Electrolyte-sealing structure and method of manufacturing the same

Similar Documents

Publication Publication Date Title
Fabbri et al. Towards the next generation of solid oxide fuel cells operating below 600 C with chemically stable proton‐conducting electrolytes
KR20160041309A (en) Air electorde structure, fuel cell comprising the same, battery module comprising the fuel cell and method of manufacturing the air electorde structure
WO2008062278A1 (en) Electrolyte membrane forming method and fuel cell manufacturing method
JP2003346817A (en) Solid electrolyte fuel cell and method for manufacturing the same
JP2009231104A (en) Method for manufacturing fuel cell
JP2006314925A (en) Hydrogen permeable membrane and fuel cell equipped with it
JP2006079888A (en) Manufacturing method of fuel cell and fuel cell
KR102070042B1 (en) Membrane electrode assembly of fuel cell comprising stacked thin film of hexagonal boron nitride and manufacturing method for the same
JP4341454B2 (en) Method for producing solid oxide fuel cell
JP2008034130A (en) Fuel cell
JP5061544B2 (en) Fuel cell
JP4576848B2 (en) Fuel cell and fuel cell manufacturing method
JP2007090132A (en) Hydrogen permeable membrane and fuel cell using it
JP2007098324A (en) Hydrogen separation membrane with support body, and fuel cell equipped with the same
JP2008226793A (en) Manufacturing method of hydrogen separation film-electrolyte membrane junction, and manufacturing method of fuel cells
JP2008027866A (en) Fuel cell
KR101353712B1 (en) Method for manufacturing metal supported solid oxide fuel cell
JP5412534B2 (en) Method for producing composite substrate and method for producing solid oxide fuel cell
JP2007173104A (en) Hydrogen separation membrane type fuel cell and its manufacturing method
JP2006221992A (en) Electrolyte membrane for fuel cell, and its manufacturing method
JP2008077849A (en) Hydrogen separation membrane-electrolytic membrane junction, and method of manufacturing fuel cell comprising the same
KR102117739B1 (en) Method of preparing anode-supported solid oxide fuel cell
TW202411441A (en) Method for creating a protective coating on a component of an electrochemical cell
JP6192063B2 (en) Composite membrane structure and fuel cell
WO2023117086A1 (en) Method for creating a protective coating on a component of an electrochemical cell