JPH085680B2 - Method for producing optical glass element molding die and method for producing optical glass element - Google Patents

Method for producing optical glass element molding die and method for producing optical glass element

Info

Publication number
JPH085680B2
JPH085680B2 JP18407089A JP18407089A JPH085680B2 JP H085680 B2 JPH085680 B2 JP H085680B2 JP 18407089 A JP18407089 A JP 18407089A JP 18407089 A JP18407089 A JP 18407089A JP H085680 B2 JPH085680 B2 JP H085680B2
Authority
JP
Japan
Prior art keywords
carbide
nitride
alloy
boride
optical glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18407089A
Other languages
Japanese (ja)
Other versions
JPH0350127A (en
Inventor
利昭 高野
正明 春原
清 栗林
隆夫 青山
芳則 白藤
芳雄 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18407089A priority Critical patent/JPH085680B2/en
Publication of JPH0350127A publication Critical patent/JPH0350127A/en
Publication of JPH085680B2 publication Critical patent/JPH085680B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/10Die base materials
    • C03B2215/12Ceramics or cermets, e.g. cemented WC, Al2O3 or TiC
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/16Metals or alloys, e.g. Ni-P, Ni-B, amorphous metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/16Metals or alloys, e.g. Ni-P, Ni-B, amorphous metals
    • C03B2215/17Metals or alloys, e.g. Ni-P, Ni-B, amorphous metals comprising one or more of the noble meals, i.e. Ag, Au, platinum group metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/22Non-oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/30Intermediate layers, e.g. graded zone of base/top material
    • C03B2215/32Intermediate layers, e.g. graded zone of base/top material of metallic or silicon material

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光学機器に使用されるレンズ,プリズム等
の高精度光学ガラス素子を超精密ガラス成形法により形
成する光学ガラス素子成形用型の作製方法および光学ガ
ラス素子の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing an optical glass element molding die for forming a high-precision optical glass element such as a lens or a prism used in optical equipment by an ultra-precision glass molding method. And a method for manufacturing an optical glass element.

従来の技術 近年、高精度光学レンズ、特に非球面ガラスレンズ等
の製造法として、光学研磨法を用いず、研磨工程なしの
一発成形により、形成する試みが多くなされ、具現化さ
れつつある。その成形法の一つとして、ガラス素材を変
形可能な温度、例えば、軟化点近傍の温度に加熱し、押
圧成形等の手段を用いて成形する方法がある。これらの
成形で用いられる光学ガラス素子成形用型には非常に高
精度な面形状、品質が要求されている。この成形用型に
は高温度のもとでガラスに対して化学的に不活性である
こと、型のガラスプレス面が十分硬く擦傷等の損傷を受
けにくいこと、また高温度でのプレスで型が塑性変形を
起こさないこと、耐熱性,耐熱衝撃性に優れているこ
と、さらに型の加工性がよく、精密加工が可能なこと等
が必要である。この目的を達成するために、例えばシリ
コンカーバイド,シリコンナイトライドを用いたプレス
成形用型(特開昭52−45613号公報)やタングステンカ
ーバイド、サーメット、ジルコニアを母材とし、この母
材上に貴金属合金膜を形成して構成したプレス成形用型
等が提案されており、種々の検討が行われている。
2. Description of the Related Art In recent years, as a method of manufacturing a high-precision optical lens, in particular, an aspherical glass lens or the like, many attempts have been made and realized by one-shot molding without using an optical polishing method and without a polishing step. As one of the forming methods, there is a method of heating a glass material to a temperature at which it can be deformed, for example, a temperature near the softening point, and forming it by means of press molding or the like. The optical glass element molding die used in these moldings is required to have extremely high-precision surface shape and quality. This molding die is chemically inert to glass at high temperatures, the glass press surface of the die is sufficiently hard to be easily damaged by scratches, etc. Must not cause plastic deformation, have excellent heat resistance and thermal shock resistance, and have good mold workability and capable of precision processing. In order to achieve this object, for example, a die for press molding using silicon carbide or silicon nitride (JP-A-52-45613), tungsten carbide, cermet, zirconia as a base material, and a precious metal on the base material. A press molding die or the like formed by forming an alloy film has been proposed, and various studies have been conducted.

発明が解決しようとする課題 しかしながら前述したような成形用型、例えばシリコ
ンカーバイド、シリコンナイトライド、タングステンカ
ーバイト、ジルコニア、サーメットおよび貴金属合金膜
を所望の面形状に仕上げるにはダイヤモンド砥石による
研削加工を用いて仕上げることになる。しかし、前記の
ような構成の成形型では材料の硬度は極めて硬いためダ
イヤモンド砥石の摩耗が激しく高精度な加工が困難で、
要求精度を満たすのに非常に長い時間を要する。例え
ば、大口径の成形型の加工の場合摩耗量を確認しながら
加工しなければ精度を満たさない。さらに一個の砥石で
の成形型加工面数が少ない。また、小口径の場合では曲
率半径が極めて小さいと加工可能なダイヤモンド砥石が
ない。このように加工制限により作成できる金型形状の
範囲が狭いうえ加工時間等が長く成形型は非常に高価な
ものとなっていた。加工性のみを考慮した材料を用いれ
ば加工時間は短縮され、形状精度の良い型ができるが型
寿命が短いという問題が生じる。さらに充分な面形状を
加工するのが困難なため前記の成形型で成形された光学
ガラス素子の性能は充分なものでなかった。
However, in order to finish the molding die as described above, for example, silicon carbide, silicon nitride, tungsten carbide, zirconia, cermet and a precious metal alloy film into a desired surface shape, grinding with a diamond grindstone is performed. It will be finished using. However, since the hardness of the material is extremely hard in the molding die having the above-described configuration, the diamond grindstone wears hard and high-precision machining is difficult,
It takes a very long time to meet the required accuracy. For example, in the case of machining a large-diameter mold, the accuracy cannot be satisfied unless the machining is performed while confirming the wear amount. In addition, the number of surfaces that can be processed by a single whetstone is small. Further, in the case of a small diameter, if the radius of curvature is extremely small, there is no machinable diamond grindstone. As described above, the range of mold shapes that can be created due to processing restrictions is narrow, the processing time is long, and the molding dies are very expensive. If a material that only considers workability is used, the processing time is shortened, and a mold with good shape accuracy can be obtained, but there is a problem that the mold life is short. Further, since it is difficult to process a sufficient surface shape, the performance of the optical glass element molded by the above-mentioned molding die was not sufficient.

課題を解決するための手段 本発明は上記問題点を解決するため、成形用型の母材
として、炭化タングステンを主成分とした超硬合金、ま
たは炭化チタン、窒化チタン、炭化クロムまたはアルミ
ナを主成分とするサーメットを用い、研削によりこれら
母材を所望する形状に近い状態に加工した後、前記母材
上に研削,切削加工性に優れ、高融点で化学的に安定な
ニッケル金属、ニッケル−リンを主成分とする合金また
は、ニッケル−ホウ素を主成分とする合金を中間層とし
て形成し、所望する形状に切削加工もしくは研削加工に
よって精密に加工した後、該中間層上に保護膜として、
金属窒化物、金属硼化物、金属炭化物、イリジウム−タ
ングステン合金、ルテニウム−タングステン合金、イリ
ジウム−タンタル合金、イリジウム−レニウム合金、あ
るいはルテニウム−レニウム合金膜を形成して光学ガラ
ス素子成形用型を作製する手段を用いるものである。
Means for Solving the Problems In order to solve the above problems, the present invention mainly uses a cemented carbide containing tungsten carbide as a main material, or titanium carbide, titanium nitride, chromium carbide or alumina as a base material of a molding die. Using a cermet as a component, after grinding these base materials into a shape close to a desired shape by grinding, the base material is excellent in grinding and cutting workability, and has a high melting point and is chemically stable nickel metal, nickel- An alloy containing phosphorus as a main component or an alloy containing nickel-boron as a main component is formed as an intermediate layer, which is precisely processed into a desired shape by cutting or grinding, and then as a protective film on the intermediate layer,
A metal nitride, a metal boride, a metal carbide, an iridium-tungsten alloy, a ruthenium-tungsten alloy, an iridium-tantalum alloy, an iridium-rhenium alloy, or a ruthenium-rhenium alloy film is formed to form an optical glass element molding die. It uses a means.

作用 本発明は上述した手段により、研削,切削加工性に優
れた中間層を備えたため、高精度な面形状を容易に得る
ことが可能となった。また、極めて硬い材質を加工する
必要がないため、タイヤモンドバイトや砥石の摩耗がほ
とんどなく、ダイヤモンドバイト,砥石の寿命も長くな
り大口径の成形型を一つのバイト及び砥石で数多く作成
できるようになった。また、ダイヤモンドバイトによる
切削加工が可能になったため小曲率半径の成形型の加工
もでき加工範囲も広がった。さらに、母材,保護膜は、
面品質,耐熱,耐衝撃性が優れた材質を用いていること
から、良好な加工性と成形型寿命を兼ね備えた成形型が
容易に作成でき、その型でプレス成形すると高精度な面
形状を有した安価な光学ガラス素子を得ることが可能と
なった。
Action The present invention includes the intermediate layer excellent in grindability and cutting workability by means of the above-described means, so that it is possible to easily obtain a highly accurate surface shape. Also, since it is not necessary to machine extremely hard materials, there is almost no wear on the tire bite and grindstone, the life of the diamond bite and grindstone is long, and a large-diameter molding die can be created with one bite and grindstone. became. In addition, since it is possible to perform cutting with a diamond bite, it is possible to process a mold with a small radius of curvature and expand the processing range. Furthermore, the base material and the protective film are
Since a material with excellent surface quality, heat resistance, and impact resistance is used, it is easy to create a mold with good workability and mold life, and press molding with that mold will give a highly accurate surface shape. It has become possible to obtain an inexpensive optical glass element having the same.

実施例 以下本発明の一実施例の光学ガラス素子成形用型の作
製方法及び光学ガラス素子の製造方法について図面,表
を参照しながら説明する。
EXAMPLES Hereinafter, a method for producing an optical glass element molding die and an optical glass element production method according to an example of the present invention will be described with reference to the drawings and tables.

先ず最初に中間層として用いる材料の加工性の実験を
行った。実験では各種材料を直径8mm、曲率半径7.5mmの
凹形状に仕上げることとした。材料によって前記のよう
な大きさの物が得られないのでそれらは母材に超硬合金
を用い所望の形状に近い形状にした後、母材上に材料を
形成し加工を行うこととした。加工方法としては、ダイ
ヤモンドバイトを用いた切削加工とダイヤモンド砥石を
用いた研削加工を各種材料で行い、評価方法は干渉計を
用いて表面形状の測定を行いその加工精度により加工性
を確認した。実験結果を表1に示す。
First, an experiment was conducted on the workability of the material used as the intermediate layer. In the experiment, we decided to finish various materials into a concave shape with a diameter of 8 mm and a radius of curvature of 7.5 mm. Since materials of the above-mentioned size cannot be obtained depending on the material, it was decided to use a cemented carbide as the base material to form a material close to the desired shape, then form the material on the base material and perform processing. As the processing method, cutting using a diamond bite and grinding using a diamond grindstone were performed on various materials, and the evaluation method was to measure the surface shape using an interferometer and confirm the workability by the processing accuracy. The experimental results are shown in Table 1.

実験結果よりニッケル、ニッケル−リン合金、ニッケ
ル−ホウ素合金は切削が可能で且つ加工精度も良好なも
のが得られた。その他の材料は切削加工は極めて硬度が
硬いためダイヤモンドバイトの摩耗が瞬時にして起こり
加工不可能であった。また、研削加工でも同様に摩耗が
生じており、非常に多くの時間を要する。加工後の面形
状も充分なものではない。
From the experimental results, nickel, nickel-phosphorus alloys, and nickel-boron alloys that can be cut and have good working accuracy were obtained. Since the other materials had extremely high hardness during cutting, the diamond bite was worn out instantly and could not be processed. Further, the grinding process also causes wear, which requires a very long time. The surface shape after processing is also not sufficient.

次に母材に超硬合金を用い、その上にニッケルを形成
した型表面を連続して切削加工した場合の表面形状と、
超硬合金上にイリジウム−タングステン合金を形成した
後連続して研削加工を行った場合の表面形状の推移を確
認する実験を行った。作成した型の形状は直径42mm,曲
率半径18.3mmの凹形状になるように母材を予め近い形状
に加工を施してから行った。結果を表2に示す。
Next, using a cemented carbide as the base material, the surface shape when continuously cutting the mold surface on which nickel is formed,
An experiment was conducted to confirm the transition of the surface shape when the iridium-tungsten alloy was formed on the cemented carbide and then continuously ground. The shape of the prepared die was performed after the base material was processed in advance into a similar shape so as to have a concave shape with a diameter of 42 mm and a radius of curvature of 18.3 mm. Table 2 shows the results.

ニッケル表面を加工した場合、高精度に面形状を得る
事ができる上、ダイヤモンド砥石の摩耗がなく、多くの
成形面を作成できることが分かる。一方、イリジウム−
タングステン合金膜の加工では1個目の型こそ精度を満
たしているが、加工数が増す事に精度が悪くなり、5個
目には加工ができなくなってしまった。
It can be seen that when the nickel surface is processed, the surface shape can be obtained with high accuracy, and the diamond grindstone is not worn, so that many molding surfaces can be formed. On the other hand, iridium-
In the processing of the tungsten alloy film, the accuracy of the first mold is sufficient, but the accuracy deteriorates as the number of processes increases, and it becomes impossible to process the fifth mold.

表1,表2からも分かるように本発明で中間層として用
いるニッケル、ニッケル−リン合金、ニッケル−ホウ素
合金は加工性がよく、ダイヤモンドバイトの摩耗がなく
寿命が長いことが実験より確認できた。また、加工時間
も他の材料と比較して大幅に短縮できる。上記材質であ
れば、大口径の型も一つのダイヤモンドバイトで多数の
成形型面を高精度で加工できる。また、切削加工では研
削加工に比べダイヤモンドバイトの加工先端半径が小さ
くでき、曲率半径の小さな面を有する型の加工もでき加
工範囲が大きく広がる。ここでは記載しなかったがニッ
ケル、ニッケル−リン合金、ニッケル−ホウ素合金と同
様以上の加工性と高融点で化学的に安定なニッケル−リ
ンを主成分とする合金、ニッケル−ホウ素を主成分とす
る合金を用いても問題はない。
As can be seen from Tables 1 and 2, it was confirmed by experiments that nickel, nickel-phosphorus alloy, and nickel-boron alloy used as the intermediate layer in the present invention have good workability and the diamond tool does not wear and has a long life. . Also, the processing time can be significantly shortened compared to other materials. With the above materials, even a large-diameter mold can be processed with high precision on a large number of molding die surfaces with one diamond tool. Further, in the cutting process, the radius of the cutting tip of the diamond bite can be made smaller than that of the grinding process, and a die having a surface having a small radius of curvature can be processed, so that the processing range is greatly expanded. Although not described here, nickel, an alloy containing nickel-phosphorus as a main component, nickel-phosphorus as a main component, which has the same or higher workability and high melting point as those of the nickel-phosphorus alloy, and is chemically stable, and nickel-boron as a main component. There is no problem even if the alloy used is used.

次に本発明の成形用型の作製方法と光学ガラス素子の
製造方法について説明する。
Next, a method for producing the molding die of the present invention and a method for producing the optical glass element will be described.

第1図は本発明の成形用型の作製方法の工程概略図で
ある。1は母材、2は中間層、3は保護膜である。
FIG. 1 is a process schematic view of a method for producing a molding die of the present invention. Reference numeral 1 is a base material, 2 is an intermediate layer, and 3 is a protective film.

直径30mm,厚さ6mmの超硬合金、サーメットを曲率半径
14mmおよび20mmの凹面形状の上成形型、下成形型からな
る一対の成形型の母材として研削により粗加工を施し、
最終形状からのズレ量10μm以下にした。第1図(a)
に示す。次にこれらの母材上にニッケル、ニッケル−リ
ンを主成分とする合金、ニッケル−ホウ素を主成分とす
る合金のいずれかを中間層としてイオンプレーティング
法により厚さ15μm形成した。第1図(b)に示す。そ
の後、ダイヤモンドバイトによる切削加工により高精度
に所望の形状に仕上げた。第1図(c)に示す。最後に
前記中間層上に金属窒化物、金属炭化物、金属硼化物ま
たはイリジウム−タングステン合金、ルテニウム−タン
グステン合金、イリジウム−タンタル合金、イリジウム
−レニウム合金、あるいはルテニウム−レニウム合金を
成膜した。第1図(d)に示す。いずれの成形型におい
ても光学ガラス素子に必要な形状精度(RMS0.04λ以
下)を容易に達成した。以上のように切削加工の容易な
中間層を設けることにより、極めて硬い材質を加工する
必要なく、加工時間が大幅に短縮され、かつ高精度の面
形状を有した成形用型が安価に作成できる。言うまでも
ないが、中間層,保護膜の形成方法はスパッタ法や、イ
オンプレーティング法以外の方法で形成しても問題な
い。
Curvature radius of cemented carbide and cermet with diameter 30 mm and thickness 6 mm
Roughly processed by grinding as a base material of a pair of molds consisting of 14 mm and 20 mm concave upper molds, lower molds,
The amount of deviation from the final shape was 10 μm or less. Fig. 1 (a)
Shown in Next, on each of these base materials, nickel, an alloy containing nickel-phosphorus as a main component, or an alloy containing nickel-boron as a main component was formed as an intermediate layer to a thickness of 15 μm by an ion plating method. It is shown in FIG. 1 (b). After that, a desired shape was accurately finished by cutting with a diamond tool. It is shown in FIG. 1 (c). Finally, a metal nitride, a metal carbide, a metal boride, or an iridium-tungsten alloy, a ruthenium-tungsten alloy, an iridium-tantalum alloy, an iridium-rhenium alloy, or a ruthenium-rhenium alloy was formed on the intermediate layer. It is shown in FIG. The shape accuracy (RMS 0.04λ or less) required for the optical glass element was easily achieved with any of the molds. By providing an intermediate layer that is easy to cut as described above, it is not necessary to process an extremely hard material, the processing time is significantly shortened, and a molding die having a highly accurate surface shape can be produced at low cost. . Needless to say, the intermediate layer and the protective film may be formed by a method other than the sputtering method or the ion plating method.

これら上下一対の成形型をプレスマシンにセットした
状態を第2図に示す。4は上成形型、5は下成形型、6
は上成形型用加熱ヒータ、7は下成形型用加熱ヒータ、
8は上成形型用加圧機構、9は下成形型用加圧機構、10
は供給ガラス、11はガラス供給用治具、12はプレス成形
された光学ガラス素子の取り出し口、13は供給ガラスの
予備加熱炉、14はチャンバーである。
FIG. 2 shows a state in which the pair of upper and lower molds are set in a press machine. 4 is an upper mold, 5 is a lower mold, 6
Is a heater for the upper mold, 7 is a heater for the lower mold,
8 is a pressure mechanism for the upper mold, 9 is a pressure mechanism for the lower mold, 10
Is a supply glass, 11 is a glass supply jig, 12 is an outlet for a press-molded optical glass element, 13 is a preheating furnace for supply glass, and 14 is a chamber.

プレス実験では酸化鉛(PbO)を70重量%、シリカ(S
iO2)を27重量%、及び残りが微量成分からなる酸化鉛
系光学ガラスを半径10mmの球形状に加工した硝材7を予
備加熱炉10で加熱した後、550℃に保持された上下の型
4、5の下型5の上におき、窒素ガス雰囲気中で上型4
でプレス圧5kg/mm2をかけ、硝材を変形させる。変形終
了後、上型,下型,硝材を380℃まで冷却する。そし
て、取り出し口12より成形された光学ガラス素子を取り
出し、常温まで冷却する。以上のような成形工程を各材
質の成形型で5000回繰り返した後、型4,5をプレスマシ
ンから取り外し、型表面の形状精度,表面粗さを測定し
型の優劣を評価した。
In a press experiment, 70% by weight of lead oxide (PbO) and silica (Sb
27% by weight of iO 2 ) and the balance is a trace of lead oxide type optical glass processed into a spherical glass material 7 with a radius of 10 mm, which is heated in a preheating furnace 10 and then held at 550 ° C. in the upper and lower molds. Place it on the lower molds 4 and 5 and place the upper molds 4 in a nitrogen gas atmosphere.
Pressing pressure of 5kg / mm 2 is applied to deform the glass material. After the deformation, the upper mold, the lower mold, and the glass material are cooled to 380 ° C. Then, the molded optical glass element is taken out from the take-out port 12 and cooled to room temperature. After the above-described molding process was repeated 5000 times with the molding dies of each material, the molds 4 and 5 were removed from the press machine, and the shape accuracy and surface roughness of the mold surface were measured to evaluate the superiority of the mold.

母材に超硬合金を用い、中間層としてニッケル、ニッ
ケル−リン合金を形成した後、中間層上に金属窒化物、
金属炭化物、金属硼化物、その他の合金を形成して構成
した成形型のプレス成形後の評価結果を表3に示す。
Using cemented carbide as a base material, nickel as an intermediate layer, after forming a nickel-phosphorus alloy, a metal nitride on the intermediate layer,
Table 3 shows the evaluation results after the press forming of the forming die formed by forming the metal carbide, the metal boride, and other alloys.

いずれの構成の成形型においても5000回の成形後、型
に表面荒れや形状の変化は見られなかった。母材と中間
層と保護膜の接着性は良好で成形による膜の剥離はなか
った。また、各保護膜ともガラスとの反応も見られな
い。光学ガラス素子成形用型として充分な寿命を持って
いると言える。また、成形された光学ガラス素子の形状
も型形状を良好に転写しており光学ガラス素子性能を充
分に満たしている。実施例では中間層をニッケル、ニッ
ケル−リン合金及びニッケル−ホウ素合金であったがニ
ッケル−リンを主成分とする合金、ニッケル−ホウ素を
主成分とする合金の中間層を設けても問題はない。
In each of the molding dies having any structure, after the molding was performed 5000 times, the surface was not roughened or the shape was not changed. The adhesion between the base material, the intermediate layer and the protective film was good, and there was no peeling of the film due to molding. In addition, no reaction with glass is observed in each protective film. It can be said that it has a sufficient life as an optical glass element molding die. Further, the shape of the molded optical glass element also satisfactorily transfers the shape of the mold, and the performance of the optical glass element is sufficiently satisfied. In the examples, the intermediate layer was nickel, a nickel-phosphorus alloy, and a nickel-boron alloy, but there is no problem if an intermediate layer of an alloy containing nickel-phosphorus as a main component or an alloy containing nickel-boron as a main component is provided. .

発明の効果 以上のように本発明の光学ガラス素子成形用型の作製
方法は極めて硬い材質である母材,保護膜を加工する必
要なく、加工性の良い中間層を用いる事でダンヤモンド
バイトの加工寿命を延ばす事が可能で、良好な面形状を
備えた型が短時間で容易に作成できる。切削加工が可能
であるため曲率半径の小さな成形型の作製が可能であ
り、ダイヤモンドバイトの摩耗がほとんど生じないので
大口径の成形型の作製も容易で、多種多様の形状を持っ
た成形用型が作成できる。これにより成形される光学ガ
ラス素子の形状や種類も大幅に増加する。さらに高精度
な成形面を備えた本発明の成形型で成形された光学ガラ
ス素子は従来よりも光学性能の向上した安価な光学ガラ
ス素子となる。また、母材及び保護膜には耐熱性,耐衝
撃性など優れた材質を用いたため型寿命も長寿命であ
り、連続した成形にも充分に対応できる。
EFFECTS OF THE INVENTION As described above, the method for producing a mold for molding an optical glass element of the present invention does not require processing of the base material and the protective film, which are extremely hard materials, and uses an intermediate layer having good workability, thereby making The working life can be extended, and a mold with a good surface shape can be easily created in a short time. Molding with a small radius of curvature is possible because it can be cut, and diamond dies are hardly worn, making it easy to manufacture large-diameter molds. Molds with a wide variety of shapes Can be created. As a result, the shape and type of the optical glass element to be molded is also significantly increased. The optical glass element molded with the molding die of the present invention having a highly accurate molding surface is an inexpensive optical glass element having improved optical performance as compared with conventional optical glass elements. In addition, since the base material and the protective film are made of materials having excellent heat resistance and impact resistance, the mold life is long, and continuous molding can be sufficiently performed.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例における光学ガラス素子成形
用型の作製工程を示す概略断面図、第2図は本発明の一
実施例における光学ガラス素子成形用型で成形を行って
いる成形装置の一部を示す概略断面図である。 1……母材、2……中間層、3……保護膜、4……上成
形型、5……下成形型、6……上成形型用加熱ヒータ、
7……下成形型用加熱ヒータ、8……上成形型用加圧機
構、9……下成形型用加圧機構、10……供給ガラス、11
……ガラス供給用治具、12……光学ガラス素子取り出し
口、13……供給ガラス予備加熱炉、14……チャンバー。
FIG. 1 is a schematic cross-sectional view showing a manufacturing process of an optical glass element molding die according to an embodiment of the present invention, and FIG. 2 is molding performed by the optical glass element molding die according to an embodiment of the present invention. It is a schematic sectional drawing which shows a part of apparatus. 1 ... Base material, 2 ... Intermediate layer, 3 ... Protective film, 4 ... Upper mold, 5 ... Lower mold, 6 ... Heater for upper mold,
7 ... Heater for lower mold, 8 ... Pressure mechanism for upper mold, 9 ... Pressure mechanism for lower mold, 10 ... Supply glass, 11
…… Glass supply jig, 12 …… Optical glass element outlet, 13 …… Supply glass preheating furnace, 14 …… Chamber.

フロントページの続き (72)発明者 青山 隆夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 白藤 芳則 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 井上 芳雄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Front page continuation (72) Inventor Takao Aoyama 1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Yoshinori Shirato 1006, Kadoma, Kadoma City, Osaka (72) Invention Yoshio Inoue 1006 Kadoma, Kadoma-shi, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】炭化タングステン(WC)を主成分とする超
硬合金、あるいは窒化チタン(TiN)、炭化チタン(Ti
C)、炭化クロム(Cr2C3)、またはアルミナ(Al2O3
の何れかを主成分とするサーメットの何れかを母材と
し、前記母材を所望する形状に近似した形状に加工した
後、中間層としてニッケル(Ni)金属、ニッケル(Ni)
−リン(P)を主成分とする合金、あるいはニッケル
(Ni)−ホウ素(B)を主成分とする合金の何れかを形
成した後、所望する形状に高精度に加工する工程を経た
後、前記中間層上に保護膜として金属窒化物、金属炭化
物、金属硼化物、イリジウム(Ir)−タングステン
(W)合金、ルテニウム(Ru)−タングステン(W)合
金、イリジウム(Ir)−タンタル(Ta)合金、ルテニウ
ム(Ru)−タンタル(Ta)合金、イリジウム(Ir)−レ
ニウム(Re)合金あるいはルテニウム(Ru)−レニウム
(Re)合金の何れかの合金膜を型の形状を崩さないよう
に被膜して作製することを特徴とする光学ガラス素子成
形用型の作製方法。
1. A cemented carbide containing tungsten carbide (WC) as a main component, or titanium nitride (TiN) and titanium carbide (Ti).
C), chromium carbide (Cr 2 C 3 ) or alumina (Al 2 O 3 )
Any of the cermets containing any of the above as a base material, and after processing the base material into a shape approximate to the desired shape, nickel (Ni) metal as an intermediate layer, nickel (Ni)
-After forming either an alloy containing phosphorus (P) as a main component or an alloy containing nickel (Ni) -boron (B) as a main component, after performing a step of highly accurately processing into a desired shape, A metal nitride, a metal carbide, a metal boride, an iridium (Ir) -tungsten (W) alloy, a ruthenium (Ru) -tungsten (W) alloy, an iridium (Ir) -tantalum (Ta) as a protective film on the intermediate layer. Alloy film, ruthenium (Ru) -tantalum (Ta) alloy, iridium (Ir) -rhenium (Re) alloy, or ruthenium (Ru) -rhenium (Re) alloy film so as not to destroy the shape of the mold A method for producing a mold for molding an optical glass element, the method comprising:
【請求項2】保護膜の窒化物が窒化チタン(TiN)、窒
化ジルコニア(ZrN)、窒化ハフニウム(HfN)、窒化タ
ンタル(TaN)、窒化クロム(CrN)及び窒化ニオブ(Nb
N)の何れかであることを特徴とする請求項(1)記載
の光学ガラス素子成形用型の作製方法。
2. The nitride of the protective film is titanium nitride (TiN), zirconia nitride (ZrN), hafnium nitride (HfN), tantalum nitride (TaN), chromium nitride (CrN) and niobium nitride (Nb).
The method for producing an optical glass element molding die according to claim 1, wherein the method is any one of N).
【請求項3】保護膜の炭化物が炭化チタン(TiC)、炭
化ジルコニア(ZrC)、炭化ハフニウム(HfC)、炭化タ
ンタル(TaC)、炭化クロム(CrC)及び炭化ニオブ(Nb
C)の何れかであることを特徴とする請求項(1)記載
の光学ガラス素子成形用型の作製方法。
3. Carbide of the protective film is titanium carbide (TiC), zirconia carbide (ZrC), hafnium carbide (HfC), tantalum carbide (TaC), chromium carbide (CrC) and niobium carbide (Nb).
The method for producing an optical glass element molding die according to claim 1, which is any one of C).
【請求項4】保護膜の硼化物が硼化チタン(TiB2)、硼
化ジルコニア(ZrB2)、硼化ハフニウム(HfB2)、硼化
タンタル(TaB2)、硼化クロム(CrB2)及び硼化ニオブ
(NbB2)の何れかであることを特徴とする請求項(1)
記載の光学ガラス素子成形用型の作製方法。
4. The boride of the protective film is titanium boride (TiB 2 ), zirconia boride (ZrB 2 ), hafnium boride (HfB 2 ), tantalum boride (TaB 2 ), chromium boride (CrB 2 ). and boride niobium claims, characterized in that either (NbB 2) (1)
A method for producing the optical glass element molding die described.
【請求項5】炭化タングステン(WC)を主成分とする超
硬合金、あるいは窒化チタン(TiN)、炭化チタン(Ti
C)、炭化クロム(Cr2C3)、またはアルミナ(Al2O3
の何れかを主成分とするサーメットの何れかを母材と
し、前記母材を所望する形状に近似した形状に加工した
後、中間層としてニッケル(Ni)金属、ニッケル(Ni)
−リン(P)を主成分とする合金、あるいはニッケル
(Ni)−ホウ素(B)を主成分とする合金の何れかを形
成した後、所望する形状に高精度に加工する工程を経た
後、前記中間層上に保護膜として金属窒化物、金属炭化
物、金属硼化物、イリジウム(Ir)−タングステン
(W)合金、ルテニウム(Ru)−タングステン(W)合
金、イリジウム(Ir)−タンタル(Ta)合金、ルテニウ
ム(Ru)−タンタル(Ta)合金、イリジウム(Ir)−レ
ニウム(Re)合金あるいはルテニウム(Ru)−レニウム
(Re)合金の何れかの合金膜を型の形状を崩さないよう
に被膜して作製した成形用型を用いてプレス成形するこ
とを特徴とする光学ガラス素子の製造方法。
5. A cemented carbide containing tungsten carbide (WC) as a main component, or titanium nitride (TiN) and titanium carbide (Ti).
C), chromium carbide (Cr 2 C 3 ) or alumina (Al 2 O 3 )
Any of the cermets containing any of the above as a base material, and after processing the base material into a shape approximate to the desired shape, nickel (Ni) metal as an intermediate layer, nickel (Ni)
-After forming either an alloy containing phosphorus (P) as a main component or an alloy containing nickel (Ni) -boron (B) as a main component, after performing a step of highly accurately processing into a desired shape, A metal nitride, a metal carbide, a metal boride, an iridium (Ir) -tungsten (W) alloy, a ruthenium (Ru) -tungsten (W) alloy, an iridium (Ir) -tantalum (Ta) as a protective film on the intermediate layer. Alloy film, ruthenium (Ru) -tantalum (Ta) alloy, iridium (Ir) -rhenium (Re) alloy, or ruthenium (Ru) -rhenium (Re) alloy film so as not to destroy the shape of the mold A method for manufacturing an optical glass element, which comprises press-molding using the molding die manufactured in this way.
【請求項6】保護膜の窒化物が窒化チタン(TiN)、窒
化ジルコニア(ZrN)、窒化ハフニウム(HfN)、窒化タ
ンタル(TaN)、窒化クロム(CrN)及び窒化ニオブ(Nb
N)の何れかである成形用型を用いてプレス成形するこ
とを特徴とする請求項(5)記載の光学ガラス素子の製
造方法。
6. The nitride of the protective film is titanium nitride (TiN), zirconia nitride (ZrN), hafnium nitride (HfN), tantalum nitride (TaN), chromium nitride (CrN) and niobium nitride (Nb).
The method for producing an optical glass element according to claim (5), wherein press molding is performed using the molding die that is any one of N).
【請求項7】保護膜の炭化物が炭化チタン(TiC)、炭
化ジルコニア(ZrC)、炭化ハフニウム(HfC)、炭化タ
ンタル(TaC)、炭化クロム(CrC)及び炭化ニオブ(Nb
C)の何れかである成形用型を用いてプレス成形するこ
とを特徴とする請求項(5)記載の光学ガラス素子の製
造方法。
7. The carbide of the protective film is titanium carbide (TiC), zirconia carbide (ZrC), hafnium carbide (HfC), tantalum carbide (TaC), chromium carbide (CrC) and niobium carbide (Nb).
The method for producing an optical glass element according to claim (5), characterized in that press molding is performed using the molding die which is any one of C).
【請求項8】保護膜の硼化物が硼化チタン(TiB2)、硼
化ジルコニア(ZrB2)、硼化ハフニウム(HfB2)、硼化
タンタル(TaB2)、硼化クロム(CrB2)及び硼化ニオブ
(NbB2)の何れかである成形用型を用いてプレス成形す
ることを特徴とする請求項(5)記載の光学ガラス素子
の製造方法。
8. The boride of the protective film is titanium boride (TiB 2 ), zirconia boride (ZrB 2 ), hafnium boride (HfB 2 ), tantalum boride (TaB 2 ), chromium boride (CrB 2 ). 6. The method for producing an optical glass element according to claim 5, wherein press molding is performed using a molding die that is either niobium boride (NbB 2 ).
JP18407089A 1989-07-17 1989-07-17 Method for producing optical glass element molding die and method for producing optical glass element Expired - Fee Related JPH085680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18407089A JPH085680B2 (en) 1989-07-17 1989-07-17 Method for producing optical glass element molding die and method for producing optical glass element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18407089A JPH085680B2 (en) 1989-07-17 1989-07-17 Method for producing optical glass element molding die and method for producing optical glass element

Publications (2)

Publication Number Publication Date
JPH0350127A JPH0350127A (en) 1991-03-04
JPH085680B2 true JPH085680B2 (en) 1996-01-24

Family

ID=16146855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18407089A Expired - Fee Related JPH085680B2 (en) 1989-07-17 1989-07-17 Method for producing optical glass element molding die and method for producing optical glass element

Country Status (1)

Country Link
JP (1) JPH085680B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6003336A (en) * 1993-07-28 1999-12-21 Matsushita Electric Industrial Co. Ltd. Method of manufacturing a die for press-molding optical elements
US5700307A (en) * 1993-07-28 1997-12-23 Matsushita Electric Industrial Co., Ltd. Die for press-molding optical elements
DE102006059775A1 (en) * 2006-12-15 2008-06-19 Schott Ag Coating for molding tools

Also Published As

Publication number Publication date
JPH0350127A (en) 1991-03-04

Similar Documents

Publication Publication Date Title
JP2964779B2 (en) Press mold for optical element
US5171348A (en) Die for press-molding optical element
EP0164930B1 (en) Molding method for producing optical glass element
JPS6228091B2 (en)
JPH085680B2 (en) Method for producing optical glass element molding die and method for producing optical glass element
JPH0421608B2 (en)
JPH0747493B2 (en) Optical glass element molding die, method for producing the same, and method for producing optical glass element
JPH0247411B2 (en) KOGAKUGARASUSOSHINOPURESUSEIKEIYOKATA
JP3109219B2 (en) Glass optical element molding die and method of manufacturing the same
JPS60264330A (en) Mold for press molding of optical glass element
JP2003073134A (en) Method for forming optical element and mold
JP2002274867A (en) Optical glass element press forming die and optical glass element
JPS61242922A (en) Pressing mold for optical glass element
JPH0451495B2 (en)
JP3149636B2 (en) Press-molding mold for optical glass element, method for producing the same, and press-molding method for optical glass element
JP2000351637A (en) Mold for forming optical element, its production and optical element formed by using the mold
JP3667198B2 (en) Manufacturing method of mold for optical element molding
JPH06144850A (en) Mold for forming optical glass element and method of forming optical glass element
JPH0572336B2 (en)
JPH07277747A (en) Mold for press molding of optics, its formation and press molding of optics
JP3221788B2 (en) Press-molding mold for optical glass element, method for producing the same, and method for press-molding optical glass element
JPH0421607B2 (en)
JPH06102554B2 (en) Optical element molding method and molding die thereof
JP2002114527A (en) Molding die for optical element and method for manufacturing the same
JP2007137724A (en) Glass-made mold

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees