JPH0855310A - Magnetoresistive effect head - Google Patents

Magnetoresistive effect head

Info

Publication number
JPH0855310A
JPH0855310A JP21218394A JP21218394A JPH0855310A JP H0855310 A JPH0855310 A JP H0855310A JP 21218394 A JP21218394 A JP 21218394A JP 21218394 A JP21218394 A JP 21218394A JP H0855310 A JPH0855310 A JP H0855310A
Authority
JP
Japan
Prior art keywords
layer
magnetic
layers
film
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21218394A
Other languages
Japanese (ja)
Inventor
Shuji Tanogami
修二 田ノ上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP21218394A priority Critical patent/JPH0855310A/en
Publication of JPH0855310A publication Critical patent/JPH0855310A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To solve a problem of short circuits between an electrode and magnetic shield layers in a magnetoresistive effect head and to narrow the magnetic gap. CONSTITUTION:Nonconductive magnetic ferrite layers 7a, 8a are formed between insulating layers 3a, 3b and metal magnetic layers 7b, 8b for shielding so that magnetic shield layers 7, 8 have a two-layer composite structure of the nonconductive magnetic ferrite layers 7a, 8a and metal magnetic layers 7a, 8b. By this method, short circuits between an electrode 5 and metal magnetic shield layers (metal magnetic layers 7b, 8b) can be prevented and the effective magnetic gap can be rendered narrower since the nonconductive magnetic ferrite layers 7a, 8a act as a magnetic shield with metal magnetic layers 7b, 8b. Thus, the obtd. magnetoresistive effect head is suitable for high recording density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高密度記録媒体の読
出し(再生)に利用される磁気抵抗効果素子を用いた薄
膜磁気ヘッドの改良に係り、磁気シールド層を非導電性
磁性フェライト層と金属磁性層の2層の複合層から構成
して、特に段差部がある電極と金属磁気シールド層との
短絡を防止し、実効的な狭磁気ギャップを達成した磁気
抵抗効果型ヘッドに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a thin film magnetic head using a magnetoresistive effect element used for reading (reproducing) a high density recording medium, and a magnetic shield layer is made of a non-conductive magnetic ferrite layer. The present invention relates to a magnetoresistive head which is composed of two composite layers of a metal magnetic layer and prevents an electrode having a step portion and a metal magnetic shield layer from being short-circuited to achieve an effective narrow magnetic gap.

【0002】[0002]

【従来の技術】高密度記録媒体として活用される磁気デ
ィスク装置において、その記録容量の向上や小型化、信
号伝送速度の高速化が極めて高いレベルで要求される今
日では、読出し磁気ヘッドには磁気抵抗効果素子を用い
た薄膜磁気ヘッドが採用されている。
2. Description of the Related Art In a magnetic disk device used as a high-density recording medium, there is a demand for extremely high recording capacity, downsizing, and high signal transmission speed. A thin film magnetic head using a resistance effect element is adopted.

【0003】かかる磁気抵抗効果型ヘッドの構成を、図
2の従来の磁気抵抗効果型ヘッドの浮上面方向からみた
断面図にて説明すると、例えば、Al23−TiC基板
1上にNiFe合金からなる磁気シールド層2aを設
け、下ギャップ層となるAl23からなる絶縁層3aの
上に、磁気抵抗効果膜と磁気分離膜とバイアス膜とが積
層されてなる3層構造のMR3層膜4を成膜形成し、そ
の上に電極5を形成してあり、さらに上ギャップ層とな
るAl23からなる絶縁層3bを成膜し、NiFe合金
からなる磁気シールド層2bを形成し、保護膜6を成膜
してヘッドを完成させる構成からなる。
[0003] The configuration of a magneto-resistive head, to describe in cross-sectional view as seen from the air bearing surface direction of the conventional magnetoresistive head of FIG. 2, for example, NiFe alloy on Al 2 O 3 -TiC substrate 1 The MR3 layer having a three-layer structure in which the magnetoresistive effect film, the magnetic separation film, and the bias film are laminated on the insulating layer 3a made of Al 2 O 3 which is the lower gap layer. A film 4 is formed, an electrode 5 is formed on the film 4, and an insulating layer 3b made of Al 2 O 3 to be an upper gap layer is further formed to form a magnetic shield layer 2b made of a NiFe alloy. The protective film 6 is formed to complete the head.

【0004】[0004]

【発明が解決しようとする課題】上記構成からなる磁気
抵抗効果型ヘッドにおいて、前述の高密度化を達成する
ためには、上下磁気シールド層間を狭くしてトータルの
ギャップを小さくする必要がある。しかし、該ギャップ
を小さくすると、特に段差部がある電極と磁気シールド
層が短絡する場合が多く、ウエーハ歩溜りの大きな低下
を招いていた。電極と磁気シールド層の短絡防止を目的
に、電極形状として広幅、薄膜のものが採用されるが、
この方法でも電極厚とギャップ厚はほぼ同等であり、短
絡するという欠点は解消されていない。
In the magnetoresistive head having the above structure, in order to achieve the above-mentioned high density, it is necessary to narrow the upper and lower magnetic shield layers to reduce the total gap. However, when the gap is made small, the electrode having the step portion and the magnetic shield layer are often short-circuited in many cases, resulting in a large decrease in the yield of the wafer. For the purpose of preventing short circuit between the electrode and the magnetic shield layer, a wide and thin electrode shape is adopted,
Even with this method, the electrode thickness and the gap thickness are almost equal, and the drawback of short-circuiting has not been solved.

【0005】この発明は、従来の磁気抵抗効果型ヘッド
における電極と磁気シールド層との短絡の問題を解消し
て、磁気ギャップを狭くできる構成からなる磁気抵抗効
果型ヘッドの提供を目的としている。
It is an object of the present invention to provide a magnetoresistive head having a structure capable of narrowing the magnetic gap by solving the problem of short circuit between the electrode and the magnetic shield layer in the conventional magnetoresistive head.

【0006】[0006]

【課題を解決するための手段】発明者は、磁気抵抗効果
型ヘッドにおける電極と磁気シールド層との短絡の問題
を解消して、磁気ギャップを狭くできる構成を目的に、
磁気シールド層について種々検討した結果、金属磁気シ
ールド層と絶縁層の間に非導電性フェライトを成膜する
ことにより、電極と金属磁気シールド層の短絡防止に役
立つとともに、金属磁気シールド層とともに磁気シール
ドの役割も果たすため、磁気ギャップ間隔は広がらない
ことを知見し、この発明を完成した。
DISCLOSURE OF THE INVENTION The inventor of the present invention aims to solve the problem of a short circuit between an electrode and a magnetic shield layer in a magnetoresistive head and to narrow the magnetic gap.
As a result of various studies on the magnetic shield layer, by forming a non-conductive ferrite between the metal magnetic shield layer and the insulating layer, it helps prevent short circuit between the electrode and the metal magnetic shield layer, and also together with the metal magnetic shield layer, the magnetic shield layer. The present invention has been completed based on the finding that the magnetic gap distance does not widen because it also plays a role of.

【0007】すなわち、この発明は、3層構造磁気抵抗
効果素子を挟むように絶縁層を介して磁気シールド層を
有する磁気抵抗効果型ヘッドにおいて、磁気シールド層
の一方又は両方が、絶縁層側から非導電性磁性フェライ
ト層と金属磁性層の2層の複合層からなることを特徴と
する磁気抵抗効果型ヘッドである。
That is, according to the present invention, in a magnetoresistive effect type head having a magnetic shield layer via an insulating layer so as to sandwich a three-layer structure magnetoresistive element, one or both of the magnetic shield layers are provided from the insulating layer side. A magnetoresistive head comprising a composite layer of two layers of a non-conductive magnetic ferrite layer and a metal magnetic layer.

【0008】また、この発明は、上記の磁気抵抗効果型
ヘッドの構成において、非導電性磁性フェライト層が比
抵抗 105Ωcm以上の材料であること、非導電性磁
性フェライト層厚が0.03μm〜0.4μmであるこ
と、を特徴とする。
Further, according to the present invention, in the structure of the magnetoresistive head described above, the non-conductive magnetic ferrite layer is a material having a specific resistance of 10 5 Ωcm or more, and the non-conductive magnetic ferrite layer thickness is 0.03 μm. .About.0.4 .mu.m.

【0009】この発明において、磁気シールド層を構成
する非導電性磁性フェライト層としては、NiZn系フ
ェライトのような比抵抗として105Ωcm以上のもの
がよく、成膜厚としては0.03μm以上で十分である
が、一般にフェライトは透磁率が金属磁性体より低く、
飽和磁束密度が小さいため0.4μm超える膜厚では磁
気ヘッドの実効ギャップ長が長くなるので好ましくな
い。また、金属磁性層としては、フェライトより透磁率
の高いNiFe系、CoZr系アモルファスなどを使用
できる。
In the present invention, the non-conductive magnetic ferrite layer constituting the magnetic shield layer preferably has a specific resistance of 10 5 Ωcm or more, such as NiZn ferrite, and a film thickness of 0.03 μm or more. Although sufficient, ferrite generally has a lower magnetic permeability than metal magnetic materials,
Since the saturation magnetic flux density is small, if the film thickness exceeds 0.4 μm, the effective gap length of the magnetic head becomes long, which is not preferable. Further, as the metal magnetic layer, NiFe-based or CoZr-based amorphous having a higher magnetic permeability than ferrite can be used.

【0010】[0010]

【作用】この発明による磁気抵抗効果型ヘッドの作用を
図面に基づいて詳述する。図1は磁気抵抗効果型ヘッド
の浮上面方向からみた断面図である。図1のAに示す例
は、基板1上に例えばNiFe合金からなる磁気シール
ド層2aを設け、下ギャップ層となるAl23などから
なる絶縁層3aの上に、磁気抵抗効果膜と磁気分離膜と
バイアス膜とが積層されてなる3層構造のMR3層膜4
を成膜形成し、その上に電極5を形成し、さらに上ギャ
ップ層となるAl23などからなる絶縁層3bを成膜し
てある。この絶縁層3b上に、NiZn系フェライトか
らなる非導電性磁性フェライト層7aを成膜してからN
iFe合金からなる金属磁性層7bを設けて2層の複合
層からなる磁気シールド層7を形成し、さらに保護膜6
を積層成膜してある。
The operation of the magnetoresistive head according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view of the magnetoresistive head viewed from the air bearing surface direction. In the example shown in A of FIG. 1, a magnetic shield layer 2a made of, for example, a NiFe alloy is provided on a substrate 1, and a magnetoresistive film and a magnetic resistance film are formed on an insulating layer 3a made of Al 2 O 3 or the like serving as a lower gap layer. MR three-layer film 4 having a three-layer structure in which a separation film and a bias film are laminated.
Is formed, an electrode 5 is formed thereon, and an insulating layer 3b made of Al 2 O 3 or the like serving as an upper gap layer is further formed. A non-conductive magnetic ferrite layer 7a made of NiZn-based ferrite is formed on the insulating layer 3b, and then N
A metal magnetic layer 7b made of an iFe alloy is provided to form a magnetic shield layer 7 made of two composite layers, and a protective film 6 is further formed.
Are laminated to form a film.

【0011】金属磁性層7bと絶縁層3bの間に非導電
性磁性フェライト層7aを成膜することにより、電極5
と磁気シールド層である金属磁性層7bの短絡防止に役
立つとともに、金属磁性層7bとともに磁気シールドの
役割も果たすため、実効的な磁気ギャップも狭く設定で
きる。一方、図1のCに示すごとく、上述の構成におい
て電極が形成されていないMR3層膜4の下側の磁気シ
ールド層をこの発明の2層の複合層からなる磁気シール
ド層8とすることができる。すなわち、基板1上にNi
Fe合金からなる金属磁性層8bを成膜し、さらに非導
電性磁性フェライト層8aを成膜してから絶縁層3aを
設けてある。
The electrode 5 is formed by forming a non-conductive magnetic ferrite layer 7a between the metal magnetic layer 7b and the insulating layer 3b.
In addition to helping prevent a short circuit of the metal magnetic layer 7b, which is a magnetic shield layer, and also functions as a magnetic shield together with the metal magnetic layer 7b, the effective magnetic gap can be set narrow. On the other hand, as shown in FIG. 1C, the lower magnetic shield layer of the MR three-layer film 4 in which the electrodes are not formed in the above-described structure may be the magnetic shield layer 8 composed of two composite layers of the present invention. it can. That is, Ni on the substrate 1
The metal magnetic layer 8b made of an Fe alloy is formed, and then the non-conductive magnetic ferrite layer 8a is formed, and then the insulating layer 3a is provided.

【0012】図1のAに示す例は、電極5がMR3層膜
4の上側にのみ形成される構成であるが、電極がMR3
層膜4の両面に配置される場合は、図1のBに示すごと
く、基板1上に金属磁性層8bを成膜し、非導電性磁性
層フェライト8aを成膜して複合層からなる磁気シール
ド層8を設けてから絶縁層3aを成膜し、電極5aをパ
ターニングしてからMR3層膜4を成膜形成し、さらに
電極5bを設けてから絶縁層3bを成膜し、この上に非
導電性磁性フェライト層7aを成膜し、金属磁性層7b
を積層して複合層からなる磁気シールド層7を設け、電
極5a,5bと金属磁性層7b,8bとの短絡を非導電
性磁性フェライト層7a,8aにて防止することができ
る。
In the example shown in FIG. 1A, the electrode 5 is formed only on the upper side of the MR3 layer film 4, but the electrode is MR3.
When it is arranged on both sides of the layer film 4, as shown in FIG. 1B, the metal magnetic layer 8b is formed on the substrate 1, and the non-conductive magnetic layer ferrite 8a is formed to form a magnetic layer composed of a composite layer. After the shield layer 8 is provided, the insulating layer 3a is formed, the electrode 5a is patterned, then the MR3 layer film 4 is formed, and further, the electrode 5b is provided and then the insulating layer 3b is formed. A non-conductive magnetic ferrite layer 7a is formed and a metal magnetic layer 7b is formed.
The magnetic shield layer 7 made of a composite layer is provided by stacking the above layers to prevent a short circuit between the electrodes 5a, 5b and the metal magnetic layers 7b, 8b by the non-conductive magnetic ferrite layers 7a, 8a.

【0013】[0013]

【実施例】【Example】

実施例1 Al23−TiC基板上にめっきによりNiFeを2μ
m形成して下磁気シールド層を設け、この上にAl23
を0.15μm成膜して下絶縁層とした。下絶縁層上
に、CoZrMo膜をソフト膜とし、Tiを磁気分離
膜、NiFe膜を磁気抵抗効果膜とする3層MR素子を
形成した。3層MR素子形状は厚み0.05μmであ
り、長さは60μm、幅は5μmである。さらにこの上
にトラック幅が6μmとなるようにCu電極を0.2μ
mの厚みで形成した。上絶縁層としてAl23を0.1
8μm厚みで成膜後、Ni−Znの非導電性フェライト
を0.01μm、0.03μm、0.05μm、0.1
μm、0.2μm、0.3μm、0.4μm、0.5μ
mの各厚みで成膜した8種類の構成のものを作製し、さ
らにNiFe膜をめっきにより2μm形成して金属磁性
層を積層し、その後、端子部を形成し、Al23膜の保
護層を30μm成膜してウエハプロセスを完了した。端
子出し加工後、金パッドを形成し、切断、研磨、組立て
を経て、磁気ヘッドを作製した。また、比較のため、上
記構成でNi−Znの非導電性フェライトを設けること
なく、NiFe膜をめっきにより2μm形成して磁気シ
ールド層を積層した従来の構成のものを作製して同様方
法で磁気ヘッドとなした。
Example 1 2 μm of NiFe was plated on an Al 2 O 3 —TiC substrate.
to form a lower magnetic shield layer on which Al 2 O 3 is formed.
Was deposited to a thickness of 0.15 μm to form a lower insulating layer. A three-layer MR element having a CoZrMo film as a soft film, a Ti magnetic separation film, and a NiFe film magnetoresistive film was formed on the lower insulating layer. The three-layer MR element has a thickness of 0.05 μm, a length of 60 μm, and a width of 5 μm. On top of this, a Cu electrode of 0.2 μm is formed so that the track width becomes 6 μm.
m. Al 2 O 3 is used as the upper insulating layer in an amount of 0.1
After forming a film with a thickness of 8 μm, a non-conductive ferrite of Ni—Zn is added to 0.01 μm, 0.03 μm, 0.05 μm, 0.1
μm, 0.2 μm, 0.3 μm, 0.4 μm, 0.5 μ
8 kinds of structures each having a thickness of m were prepared, and a NiFe film was further formed by plating to a thickness of 2 μm to form a metal magnetic layer and then a terminal portion was formed to protect the Al 2 O 3 film. A 30 μm layer was deposited to complete the wafer process. After the terminal processing, a gold pad was formed, cut, polished, and assembled to prepare a magnetic head. For comparison, a conventional structure having a structure in which a NiFe film is formed to a thickness of 2 μm and a magnetic shield layer is laminated in the above-described structure without providing a non-conductive ferrite of Ni—Zn is manufactured, and a magnetic field is formed by the same method. I made it a head.

【0014】表1にウエーハ段階での電気特性と完成し
た磁気ヘッドの読み込み信号特性とNi−Znの非導電
性フェライト層の厚みとの関係を示しているが、Ni−
Znの非導電性フェライト層が0.03μmで電極と金
属磁性層間の短絡が大きく減少し、0.05μm以上で
はほとんど短絡がなく、安定していた。また、Ni−Z
nの非導電性フェライト層が0.4μm以下であれば読
み込み信号から得られた実効ギャップ長に相当する信号
の半値幅は0.38μmであり、Ni−Znの非導電性
フェライト層がないものと同等であるが、Ni−Znの
非導電性フェライト層が0.5μmになると実効ギャッ
プ長は0.40μmと大きくなるので、非導電性フェラ
イト層の厚みとしては0.05μmから0.4μmが望
ましいことがわかる。
Table 1 shows the relationship between the electrical characteristics at the wafer stage, the read signal characteristics of the completed magnetic head, and the thickness of the non-conductive ferrite layer of Ni-Zn.
When the non-conductive ferrite layer of Zn was 0.03 μm, the short circuit between the electrode and the metal magnetic layer was significantly reduced, and when it was 0.05 μm or more, there was almost no short circuit and the stability was stable. Also, Ni-Z
If the non-conductive ferrite layer of n is 0.4 μm or less, the full width at half maximum of the signal corresponding to the effective gap length obtained from the read signal is 0.38 μm, and there is no non-conductive ferrite layer of Ni—Zn. However, since the effective gap length increases to 0.40 μm when the Ni—Zn non-conductive ferrite layer is 0.5 μm, the thickness of the non-conductive ferrite layer is 0.05 μm to 0.4 μm. I find it desirable.

【0015】実施例2 Al23−TiC基板上にスパッタでCoZr系アモル
ファス金属を1.8μm厚みで成膜して金属磁性層とな
し、Ni−Zn非導電性フェライトをイオンビームスパ
ッタで0.01μm、0.03μm、0.05μm、
0.1μm、0.2μm、0.4μm、0.5μmの7
種類の膜厚みで成膜して下磁性シールド層とした。この
上にAl23を0.10μm厚みで成膜して下絶縁層と
した。さらにCoZrMo膜をソフト膜とし、Tiを磁
気分離膜、NiFe膜を磁気抵抗効果膜とする3層MR
素子を形成した。3層MR素子形状は厚み0.05μm
であり、長さは100μm、幅は4μmである。さらに
トラック幅が5μmとなるようにCu電極を0.10μ
mの厚みで形成した。上絶縁層として、Al23を0.
08μm厚みで成膜後、Ni−Znの非導電性フェライ
トを下磁気シールド層の場合と同じ厚みで成膜し、さら
に金属磁性層としてCoZr系アモルファス金属を1.
8μm厚みで成膜して上磁気シールド層を形成した。こ
の後、端子部を形成し、Al23膜の保護層を30μm
成膜してウエーハプロセスを完了した。端子出し加工
後、金パッドを形成し、切断、研磨、組立てを経て、磁
気ヘッドを作製した。
Example 2 A CoZr-based amorphous metal film having a thickness of 1.8 μm was formed on an Al 2 O 3 —TiC substrate by sputtering to form a metal magnetic layer, and Ni—Zn non-conductive ferrite was removed by ion beam sputtering. 0.01 μm, 0.03 μm, 0.05 μm,
0.1 μm, 0.2 μm, 0.4 μm, 0.5 μm 7
The lower magnetic shield layer was formed by depositing films of different types. An Al 2 O 3 film having a thickness of 0.10 μm was formed thereon to form a lower insulating layer. Further, a three-layer MR in which the CoZrMo film is a soft film, the Ti is a magnetic separation film, and the NiFe film is a magnetoresistive film.
The device was formed. The thickness of the 3-layer MR element is 0.05 μm
And the length is 100 μm and the width is 4 μm. Furthermore, the Cu electrode is set to 0.10μ so that the track width becomes 5μm.
m. Al 2 O 3 was used as the upper insulating layer.
After forming the film with a thickness of 08 μm, a non-conductive ferrite of Ni—Zn is formed with the same thickness as in the case of the lower magnetic shield layer, and further CoZr-based amorphous metal is used as a metal magnetic layer.
A film having a thickness of 8 μm was formed to form an upper magnetic shield layer. After that, a terminal portion is formed and a protective layer of Al 2 O 3 film is formed to 30 μm.
A film was formed and the wafer process was completed. After the terminal processing, a gold pad was formed, cut, polished, and assembled to prepare a magnetic head.

【0016】表2にウエハ段階での電気特性と完成した
磁気ヘッドの読み込み信号特性とNi−Znの非導電性
フェライト層の厚みとの関係を示しているが、Ni−Z
nの非導電性フェライト層が0.03μmで電極と金属
磁性層間の短絡が大きく減少し、0.05μm以上では
ほとんど短絡がなく、安定していた。また、Ni−Zn
の非導電性フェライト層が0.4μm以下であれば読み
込み信号から得られた実効ギャップ長に相当する信号の
半値幅は0.24μmであり、Ni−Znの非導電性フ
ェライト層がないものと同等であるが、Ni−Znの非
導電性フェライト層が0.5μmになると実効ギャップ
長は0.28μmと大きくなるので、非導電性フェライ
ト層の厚みとしては0.05μmから0.4μmが望ま
しいことが確認された。
Table 2 shows the relationship between the electrical characteristics at the wafer stage, the read signal characteristics of the completed magnetic head, and the thickness of the non-conductive ferrite layer of Ni-Zn.
When the non-conductive ferrite layer of n was 0.03 μm, the short circuit between the electrode and the metal magnetic layer was greatly reduced, and when it was 0.05 μm or more, there was almost no short circuit and it was stable. In addition, Ni-Zn
If the non-conductive ferrite layer of 4 is 0.4 μm or less, the full width at half maximum of the signal corresponding to the effective gap length obtained from the read signal is 0.24 μm, and there is no Ni-Zn non-conductive ferrite layer. Although equivalent, the effective gap length increases to 0.28 μm when the Ni-Zn non-conductive ferrite layer becomes 0.5 μm, so the thickness of the non-conductive ferrite layer is preferably 0.05 μm to 0.4 μm. It was confirmed.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【発明の効果】この発明は、磁気シールド層として、絶
縁層とシールド用の金属磁性層との間に非導電性フェラ
イトを成膜して、非導電性磁性フェライト層と金属磁性
層の2層の複合層構成とすることにより、電極と金属磁
気シールド層(金属磁性層)の短絡防止に役立つととも
に、非導電性磁性フェライト層が金属磁性層とともに磁
気シールドの役割も果たすため、実効的な磁気ギャップ
も狭く設定でき、高記録密度用の磁気抵抗効果型ヘッド
として最適である。
According to the present invention, as a magnetic shield layer, a non-conductive ferrite film is formed between an insulating layer and a metal magnetic layer for shielding to form a two-layer structure of a non-conductive magnetic ferrite layer and a metal magnetic layer. The composite layer structure of helps to prevent short circuit between the electrode and the metal magnetic shield layer (metal magnetic layer), and the non-conductive magnetic ferrite layer also plays the role of magnetic shield together with the metal magnetic layer, so that the effective magnetic The gap can be set narrow, and it is optimal as a magnetoresistive head for high recording density.

【図面の簡単な説明】[Brief description of drawings]

【図1】A,B,Cはそれぞれ本発明による磁気抵抗効
果型ヘッドの構成を示す浮上面方向からみた断面説明図
である。
1A, 1B, and 1C are cross-sectional explanatory views showing the structure of a magnetoresistive head according to the present invention as seen from the air bearing surface direction.

【図2】従来の磁気抵抗効果型ヘッドの構成を示す浮上
面方向からみた断面説明図である。
FIG. 2 is a cross-sectional explanatory view showing a configuration of a conventional magnetoresistive head, viewed from the air bearing surface direction.

【符号の説明】[Explanation of symbols]

1 基板 2a,2b 磁気シールド層 3a,3b 絶縁層 4 MR3層膜 5,5a,5b 電極 6 保護膜 7,8 磁気シールド層 7a,8a 非導電性磁性フェライト層 7b,8b 金属磁性層 1 Substrate 2a, 2b Magnetic shield layer 3a, 3b Insulating layer 4 MR3 layer film 5, 5a, 5b Electrode 6 Protective film 7, 8 Magnetic shield layer 7a, 8a Non-conductive magnetic ferrite layer 7b, 8b Metal magnetic layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 3層構造磁気抵抗効果素子を挟むように
絶縁層を介して磁気シールド層を有する磁気抵抗効果型
ヘッドにおいて、磁気シールド層の一方又は両方が、絶
縁層側から非導電性磁性フェライト層と金属磁性層の2
層の複合層からなることを特徴とする磁気抵抗効果型ヘ
ッド。
1. In a magnetoresistive effect type head having a magnetic shield layer with an insulating layer sandwiching a three-layer structure magnetoresistive element, one or both of the magnetic shield layers are electrically non-conductive from the insulating layer side. Ferrite layer and metallic magnetic layer 2
A magnetoresistive head comprising a composite layer of layers.
JP21218394A 1994-08-12 1994-08-12 Magnetoresistive effect head Pending JPH0855310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21218394A JPH0855310A (en) 1994-08-12 1994-08-12 Magnetoresistive effect head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21218394A JPH0855310A (en) 1994-08-12 1994-08-12 Magnetoresistive effect head

Publications (1)

Publication Number Publication Date
JPH0855310A true JPH0855310A (en) 1996-02-27

Family

ID=16618300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21218394A Pending JPH0855310A (en) 1994-08-12 1994-08-12 Magnetoresistive effect head

Country Status (1)

Country Link
JP (1) JPH0855310A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5978183A (en) * 1997-12-11 1999-11-02 International Business Machines Corporation High resolution lead to shield short-resistant read head
US6754051B2 (en) 1999-03-24 2004-06-22 Tdk Corporation Spin valve transducer having partly patterned magnetoresistance element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5978183A (en) * 1997-12-11 1999-11-02 International Business Machines Corporation High resolution lead to shield short-resistant read head
US6162582A (en) * 1997-12-11 2000-12-19 International Business Machines Corporation Method of making a high resolution lead to shield short-resistant read head
US6754051B2 (en) 1999-03-24 2004-06-22 Tdk Corporation Spin valve transducer having partly patterned magnetoresistance element
US7079360B2 (en) 1999-03-24 2006-07-18 Tdk Corporation Spin valve transducer having partly patterned magnetoresistance element
US7085109B1 (en) 1999-03-24 2006-08-01 Tdk Corporation Spin valve type transducer capable of reducing reproducing gap

Similar Documents

Publication Publication Date Title
US5168409A (en) Integrated magnetic head having a magnetic layer functioning as both a magnetic shield and a magnetic pole
US6346338B1 (en) Combination magnetoresistive/inductive thin film magnetic head and its manufacturing method
JP2001155313A (en) Thin film magnetic head and its manufacturing method
US5312644A (en) Method of making a magnetoresistive head with integrated bias and magnetic shield layer
JPS59195311A (en) Vertical magnetic head
JPH0855310A (en) Magnetoresistive effect head
JP2502965B2 (en) Thin film magnetic head
JPH0329104A (en) Thin-film magnetic head
JP3034737B2 (en) Thin film magnetic head
JP2001297413A (en) Recording and reproducing separate type thin film head and method of manufacture
JPH0652517A (en) Thin film magnetic head and its manufacture
EP0585930A2 (en) Thin film magnetic head
JPH08167123A (en) Production of magnetic head, substrate having magnetic head element group, and production of substrate having magnetic head element group
US6826013B2 (en) Thin film magnetic head
JPH0664703B2 (en) Magnetic head
JPS63311615A (en) Thin film magnetic head
JPS63127408A (en) Thin film magnetic head
JP2720097B2 (en) Perpendicular magnetic recording / reproducing thin film head
JP2948182B2 (en) Recording / playback separation type magnetic head
JPH04157607A (en) Thin-film magnetic head
JPS61248212A (en) Magneto-resistance effect type head
JPS6154012A (en) Magneto-resistance effect head
JPH0661048A (en) Multilayer magnetoresistance effect film and magnetic head
KR0134458B1 (en) Manufacturing method of head assembly for rotary head
JPH05242433A (en) Magnetic head