JPH0854270A - Thermal type air flow rate detector - Google Patents

Thermal type air flow rate detector

Info

Publication number
JPH0854270A
JPH0854270A JP6209308A JP20930894A JPH0854270A JP H0854270 A JPH0854270 A JP H0854270A JP 6209308 A JP6209308 A JP 6209308A JP 20930894 A JP20930894 A JP 20930894A JP H0854270 A JPH0854270 A JP H0854270A
Authority
JP
Japan
Prior art keywords
flow rate
resistor
temperature
flow
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6209308A
Other languages
Japanese (ja)
Other versions
JP3174222B2 (en
Inventor
Masao Tsukada
正夫 塚田
Hiroshi Aoi
寛 青井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP20930894A priority Critical patent/JP3174222B2/en
Priority to US08/454,180 priority patent/US5635635A/en
Priority to PCT/JP1994/001958 priority patent/WO1995014215A1/en
Priority to DE4498938T priority patent/DE4498938T1/en
Priority to DE4498938A priority patent/DE4498938C2/en
Priority to KR1019950011576A priority patent/KR100236437B1/en
Publication of JPH0854270A publication Critical patent/JPH0854270A/en
Application granted granted Critical
Publication of JP3174222B2 publication Critical patent/JP3174222B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To improve the detection accuracy of flow rate by comparing flow rate signals outputted from first and second flow rate detection means to output flow direction signal. CONSTITUTION:When the flow of sucked air is in the normal direction in a detection circuit 44, a selection circuit 50 selects a flow rate addition voltage V3 outputted from an addition circuit 47 or an inversion flow rate addition voltage V3' outputted from an inversion circuit 49 based on a direction detecting voltage Vb from a comparison circuit 48. In this case, as the voltage Vb is a signal indicating the flow in the normal direction, the voltage V3 is selected and the voltage V3 as the flow in the normal direction is outputted as output signal VOUT to a control unit at an output terminal. On the other hand, when the flow of air is in the opposite direction, as the voltage Vb is a signal indicating the flow in the opposite direction, the voltage V3' is selected and the voltage V3' as the flow in the opposite direction is outputted as output signal VOUT to the control unit at the output terminal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば自動車用エンジ
ン等の吸入空気流量を検出するのに好適に用いられる熱
式空気流量検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal type air flow rate detecting device which is preferably used for detecting an intake air flow rate of an automobile engine or the like.

【0002】[0002]

【従来の技術】一般に、自動車用エンジン等では、エン
ジン本体の燃焼室内で燃料と吸入空気との混合気を燃焼
させ、その燃焼圧からエンジンの回転出力を取出すよう
にしており、燃料の噴射量を演算する上で吸入空気流量
を検出することが重要なファクターとなっている。
2. Description of the Related Art Generally, in an engine for an automobile or the like, a mixture of fuel and intake air is burned in a combustion chamber of an engine body, and a rotational output of the engine is taken out from the combustion pressure. Detecting the intake air flow rate is an important factor in calculating

【0003】そこで、図8および図9により、従来技術
の熱式空気流量検出装置について説明する。
A conventional thermal air flow rate detecting device will be described with reference to FIGS. 8 and 9.

【0004】図において、1は吸気管2の途中に設けら
れた熱式空気流量検出装置を示し、該熱式空気流量検出
装置1は、エンジン本体の燃焼室(図示せず)に向けて
矢示A方向に流通する吸入空気の流量を検出すべく、吸
気管2の途中に取付穴2Aを介して配設されている。
In the figure, reference numeral 1 denotes a thermal type air flow rate detecting device provided in the middle of an intake pipe 2. The thermal type air flow rate detecting device 1 is directed toward a combustion chamber (not shown) of an engine body. In order to detect the flow rate of the intake air flowing in the direction A shown, the intake pipe 2 is provided with a mounting hole 2A in the middle thereof.

【0005】3は熱式空気流量検出装置1の本体部を構
成する流量計本体を示し、該流量計本体3はインサート
モールド等の手段により図9に示すように成形され、巻
線状をなす後述の基準抵抗14を巻回すべく段付き円柱
状に形成された巻線部4と、該巻線部4の基端側に位置
して略円板状に形成され、後述の端子ピン8A〜8Dが
一体的に設けられた端子部5と、巻線部4の先端側から
吸気管2の径方向に延設され、吸気管2の中心部で後述
の発熱抵抗9および温度補償抵抗11を位置決めする検
出ホルダ6と、吸気管2の外側に位置して端子部5が接
続された後述の回路ケーシング7とから大略構成されて
いる。
Reference numeral 3 denotes a flow meter main body which constitutes the main body of the thermal air flow rate detecting device 1. The flow meter main body 3 is formed by means such as insert molding as shown in FIG. A winding portion 4 formed in a stepped columnar shape for winding a reference resistor 14 described below, and a substantially disk-shaped portion located on the base end side of the winding portion 4 and having terminal pins 8A to 8D is integrally provided, and is extended in the radial direction of the intake pipe 2 from the tip end side of the winding part 4, and a heating resistor 9 and a temperature compensating resistor 11 to be described later are provided at the center of the intake pipe 2. A detection holder 6 for positioning and a circuit casing 7 to be described later, which is located outside the intake pipe 2 and to which a terminal portion 5 is connected, are roughly configured.

【0006】7は吸気管2の取付穴2Aを閉塞するよう
に該吸気管2の外周側に設けられた回路ケーシングを示
し、該回路ケーシング7は絶縁性の樹脂材料等によって
形成され、その底部側には吸気管2の取付穴2Aに嵌合
する嵌合部7Aが一体的に設けられている。そして、該
回路ケーシング7は、例えばセラミック材料等からなる
絶縁基板上に流量調整抵抗および差動増幅器(いずれも
図示せず)等を実装した状態で、これらを内蔵するよう
になっている。
Reference numeral 7 denotes a circuit casing provided on the outer peripheral side of the intake pipe 2 so as to close the mounting hole 2A of the intake pipe 2, and the circuit casing 7 is made of an insulating resin material or the like and has a bottom portion. A fitting portion 7A that fits into the mounting hole 2A of the intake pipe 2 is integrally provided on the side. The circuit casing 7 incorporates a flow rate adjusting resistor, a differential amplifier (both not shown), and the like mounted on an insulating substrate made of, for example, a ceramic material.

【0007】8A,8B,8C,8Dは流量計本体3の
端子部5から軸方向に突出した4本の端子ピン(全体と
して各端子ピン8という)を示し、該各端子ピン8は流
量計本体3の巻線部4および検出ホルダ6内に埋設され
た例えば4本の端子板(図示せず)に一体化して設けら
れ、回路ケーシング7のコネクタ部(図示せず)に着脱
可能に接続されるものである。
Reference numerals 8A, 8B, 8C, and 8D denote four terminal pins (collectively referred to as terminal pins 8) axially protruding from the terminal portion 5 of the flowmeter body 3, and each of the terminal pins 8 is a flowmeter. It is provided integrally with, for example, four terminal plates (not shown) embedded in the winding portion 4 of the main body 3 and the detection holder 6, and is detachably connected to the connector portion (not shown) of the circuit casing 7. It is what is done.

【0008】9は流量計本体3の検出ホルダ6にターミ
ナル10A,10Bを介して設けられたホットフィルム
型の発熱抵抗を示し、該発熱抵抗9は温度変化に敏感に
反応して抵抗値が変化する白金等の感温性材料からな
り、例えば酸化アルミニウム(以下、「アルミナ」とい
う)等のセラミック材料からなる絶縁性の筒体に白金線
を巻回したり、白金膜を蒸着したりして形成される小径
の発熱抵抗素子によって構成されている。そして、該発
熱抵抗9はバッテリ(図示せず)からの通電により、例
えば240℃前,後の温度をもって発熱した状態とな
り、吸気管2内を矢示A方向に流れる吸入空気によって
冷却されるときには、この吸入空気の流量に応じて抵抗
値が変化し流量の検出信号を出力させるものである。
Reference numeral 9 denotes a hot film type heating resistor provided on the detection holder 6 of the flowmeter main body 3 via terminals 10A and 10B. The heating resistor 9 is sensitive to temperature changes and its resistance value changes. Formed by winding a platinum wire or depositing a platinum film on an insulating cylinder made of a temperature-sensitive material such as platinum and made of a ceramic material such as aluminum oxide (hereinafter referred to as "alumina"). It is composed of a small-diameter heating resistor element. When the heating resistor 9 is energized by a battery (not shown), the heating resistor 9 is heated at a temperature of, for example, 240 ° C. before and after it is cooled by the intake air flowing in the intake pipe 2 in the direction of arrow A. The resistance value changes according to the flow rate of the intake air, and a detection signal of the flow rate is output.

【0009】11は発熱抵抗9の上流側に位置して流量
計本体3の検出ホルダ6に設けられた温度補償抵抗を示
し、該温度補償抵抗11は例えばアルミナ等のセラミッ
ク材料からなる絶縁基板上にスパッタリング等の手段を
用いて白金膜を着膜形成することにより形成され、白金
膜の両端は前記検出ホルダ6に立設されたターミナル1
2A,12B間に接続されている。
Reference numeral 11 denotes a temperature compensating resistor provided on the upstream side of the heat generating resistor 9 and provided in the detection holder 6 of the flowmeter main body 3. The temperature compensating resistor 11 is on an insulating substrate made of a ceramic material such as alumina. It is formed by depositing a platinum film on the substrate using a means such as sputtering, and both ends of the platinum film are provided on the detection holder 6 in a standing manner on the terminal 1.
It is connected between 2A and 12B.

【0010】13は流量計本体3の検出ホルダ6上に装
着される保護カバーを示し、該保護カバー13は検出ホ
ルダ6上に発熱抵抗9および温度補償抵抗11を実装し
た後に、図9中に矢印で示す如く検出ホルダ6に被着さ
れ、発熱抵抗9および温度補償抵抗11を保護すると共
に、吸入空気の流通を許すようになっている。なお、図
8中では発熱抵抗9および温度補償抵抗11を明示すべ
く、保護カバー13を検出ホルダ6から取外した状態で
示している。
Reference numeral 13 denotes a protective cover which is mounted on the detection holder 6 of the flowmeter main body 3. The protective cover 13 has a heating resistor 9 and a temperature compensating resistor 11 mounted on the detection holder 6, and is shown in FIG. As shown by the arrow, it is attached to the detection holder 6 to protect the heat generating resistance 9 and the temperature compensating resistance 11 and allow the intake air to flow. In addition, in FIG. 8, in order to clearly show the heat generating resistor 9 and the temperature compensating resistor 11, the protective cover 13 is shown in a state of being removed from the detection holder 6.

【0011】さらに、14は流量計本体3の巻線部4に
巻回された巻線抵抗からなる基準抵抗を示し、該基準抵
抗14はその両端が、巻線部4に立設されたターミナル
15A,15Bに接続され、前記発熱抵抗9に直列接続
されている。ここで、前記各端子ピン8のうち、端子ピ
ン8Aはターミナル15Aに前記端子板を介して接続さ
れ、端子ピン8Bは他の端子板を介してターミナル15
B,10Aに接続されている。また、端子ピン8Cは別
の端子板を介してターミナル10B,12Bに接続さ
れ、端子ピン8Dはターミナル12Aにさらに別の端子
板を介して接続されている。
Reference numeral 14 denotes a reference resistance consisting of a winding resistance wound around the winding portion 4 of the flowmeter main body 3, and the reference resistance 14 has terminals at both ends thereof standing on the winding portion 4. 15A and 15B, which are connected in series with the heating resistor 9. Here, among the terminal pins 8, the terminal pin 8A is connected to the terminal 15A via the terminal plate, and the terminal pin 8B is connected to the terminal 15A via another terminal plate.
B, 10A. The terminal pin 8C is connected to the terminals 10B and 12B via another terminal plate, and the terminal pin 8D is connected to the terminal 12A via another terminal plate.

【0012】このように構成される従来技術の熱式空気
流量検出装置1は、自動車用エンジン等の吸入空気流量
を検出するときに、流量計本体3の端子部5を各端子ピ
ン8を介して回路ケーシング7のコネクタ部に接続した
状態で、流量計本体3の検出ホルダ6等を吸気管2内に
取付穴2Aを介して挿入し、該取付穴2Aに吸気管2の
外周側から回路ケーシング7を取付けることによって、
検出ホルダ6に設けた発熱抵抗9および温度補償抵抗1
1を吸気管2の中心部に配設する。
In the conventional thermal air flow rate detecting device 1 thus constructed, when detecting the intake air flow rate of an automobile engine or the like, the terminal portion 5 of the flow meter main body 3 is inserted through the terminal pins 8. The detection holder 6 of the flowmeter main body 3 is inserted into the intake pipe 2 through the mounting hole 2A in a state where it is connected to the connector portion of the circuit casing 7 and the circuit is inserted into the mounting hole 2A from the outer peripheral side of the intake pipe 2. By installing the casing 7,
Heating resistor 9 and temperature compensation resistor 1 provided on the detection holder 6
1 is arranged at the center of the intake pipe 2.

【0013】この場合、発熱抵抗9を基準抵抗14に直
列接続すると共に、温度補償抵抗11を回路ケーシング
7内の流量調整抵抗に直列接続することによって、これ
らの発熱抵抗9、基準抵抗14、温度補償抵抗11およ
び流量調整抵抗からブリッジ回路を構成し、これらに外
部から通電を行うことにより発熱抵抗9を240℃前,
後の温度をもって発熱させる。
In this case, the heating resistor 9 and the reference resistor 14 are connected in series, and the temperature compensating resistor 11 is connected in series to the flow rate adjusting resistor in the circuit casing 7. A bridge circuit is composed of the compensating resistor 11 and the flow rate adjusting resistor, and the heat generating resistor 9 is supplied 240 ° C. before by energizing these to the outside.
Heat at a later temperature.

【0014】そして、この状態で吸気管2内をエンジン
本体の燃焼室に向けて矢示A方向に吸入空気が流通する
ときには、この吸入空気の流れにより発熱抵抗9が冷却
されて該発熱抵抗9の抵抗値が変化するから、該発熱抵
抗9に直列接続された基準抵抗14の両端電圧に基づい
て吸入空気の流量に対応した検出信号を出力電圧の変化
として検出する。
In this state, when intake air flows through the intake pipe 2 toward the combustion chamber of the engine body in the direction of arrow A, the flow of the intake air cools the heat generating resistor 9 and the heat generating resistor 9 is cooled. Of the reference resistor 14 connected in series with the heating resistor 9, a detection signal corresponding to the flow rate of the intake air is detected as a change in the output voltage.

【0015】[0015]

【発明が解決しようとする課題】ところで、上述した従
来技術では、吸気管2内を流れる吸入空気の流れで発熱
抵抗9が冷却されるのを利用して、該発熱抵抗9の抵抗
値変化に基づき吸入空気流量を検出する構成であるか
ら、該発熱抵抗9は図8中の矢示A方向(順方向)に流
れる吸入空気流によって冷却されると共に、矢示B方向
(逆方向)に流れる空気流によっても冷却されてしま
い、この逆方向の空気流により吸入空気流量を誤検出す
るという問題がある。
By the way, in the above-mentioned prior art, the fact that the heating resistor 9 is cooled by the flow of the intake air flowing through the intake pipe 2 is utilized to change the resistance value of the heating resistor 9. Since the intake air flow rate is detected based on this, the heat generating resistor 9 is cooled by the intake air flow flowing in the direction A (forward direction) shown in FIG. 8 and flows in the direction B (reverse direction) shown in FIG. There is a problem in that the air flow is also cooled and the intake air flow rate is erroneously detected by the air flow in the opposite direction.

【0016】即ち、多気筒のシリンダを備えたエンジン
本体では、各シリンダ内でそれぞれピストンが往復動す
るに応じて各吸気弁(図示せず)が開弁する毎に、吸入
空気が各シリンダ内に向けて矢示A方向(順方向)に吸
込まれるから、吸気管2内を流れる空気の流速は各吸気
弁の開,閉弁に応じて図4に例示する如く増減を繰返し
脈動するようになる。
That is, in an engine body having a multi-cylinder cylinder, intake air is introduced into each cylinder each time an intake valve (not shown) is opened as the piston reciprocates in each cylinder. Since it is sucked in the direction A (forward direction) indicated by arrow, the flow velocity of the air flowing in the intake pipe 2 repeatedly pulsates as shown in FIG. 4 according to the opening and closing of each intake valve. become.

【0017】特に、エンジンの回転数が低速域から中速
域等に達して吸,排気量が増大してくると、吸気弁と排
気弁(図示せず)とがオーバラップし、排気の一部が吸
気弁の開弁に伴って吸気管2内に吹返すことがあるた
め、このときに吸気管2内では図4に示す時間t1 ,t
2 間のように流速が負(マイナス)となって、矢示B方
向(逆方向)に流れる空気流が発生し、吸入空気流量を
誤検出するという問題が生じる。
In particular, when the engine speed reaches from a low speed region to a medium speed region and the like, and the intake and exhaust amounts increase, the intake valve and the exhaust valve (not shown) overlap each other and the exhaust gas Since the part may blow back into the intake pipe 2 when the intake valve is opened, the time t1, t shown in FIG.
The flow velocity becomes negative (minus) like between 2 and an air flow that flows in the direction of arrow B (reverse direction) is generated, which causes a problem that the intake air flow rate is erroneously detected.

【0018】本発明は上述した従来技術の問題に鑑みな
されたもので、本発明は逆方向の空気流により吸入空気
流量を誤検出するのを防止でき、流量の検出精度を大幅
に向上できるようにした熱式空気流量検出装置を提供す
ることを目的としている。
The present invention has been made in view of the above-mentioned problems of the prior art, and the present invention can prevent erroneous detection of the intake air flow rate due to the air flow in the opposite direction, and can greatly improve the flow rate detection accuracy. It is an object of the present invention to provide a thermal type air flow rate detecting device.

【0019】[0019]

【課題を解決するための手段】請求項1の発明が採用す
る熱式空気流量検出装置は、基端側が吸気管に取付けら
れる流量計本体と、該流量計本体に設けられた絶縁基板
と、該絶縁基板上に設けられ、前記吸気管内を流れる吸
入空気によって冷却される発熱抵抗と、前記絶縁基板上
に位置し、前記流入空気の流れ方向に対して該発熱抵抗
体の前,後に離間して形成され、前記吸入空気の流れ方
向に応じてそれぞれの抵抗値が変化する第1,第2の感
温抵抗体と、前記発熱抵抗体に印加する電流値を制御し
て該発熱抵抗体を発熱させて前記絶縁基板を一定温度に
保持する温度制御手段と、前記第1の感温抵抗体の抵抗
値変化によって第1の流量信号を検出する第1の流量検
出手段と、前記第2の感温抵抗体の抵抗値変化によって
第2の流量信号を検出する第2の流量検出手段と、前記
第1の流量検出手段から出力される第1の流量信号と第
2の流量検出手段から出力される第2の流量信号とを加
算して流量加算信号を出力する加算手段と、前記第1の
流量検出手段から出力される第1の流量信号と第2の流
量検出手段から出力される第2の流量信号とを比較して
流れ方向信号を出力する流れ方向検出手段と、該流れ方
向検出手段から出力される流れ方向信号が順方向の流れ
信号であると検出したときには、前記加算手段から出力
される流量加算信号を流量検出信号として出力し、逆方
向の流れ信号であると検出したときには、前記加算手段
から出力される流量加算信号を反転した信号を流量検出
信号として出力する流量信号出力手段とから構成したこ
とにある。
According to a first aspect of the present invention, there is provided a thermal type air flow rate detecting device, wherein a flow meter main body having a base end side attached to an intake pipe, an insulating substrate provided in the flow meter main body, A heating resistor provided on the insulating substrate and cooled by intake air flowing in the intake pipe, and a heating resistor located on the insulating substrate and separated from the heating resistor in front of and behind the heating air flow direction. And the first and second temperature-sensitive resistors that are formed by changing the respective resistance values according to the flow direction of the intake air, and control the current value applied to the heating resistor to control the heating resistor. Temperature control means for generating heat to maintain the insulating substrate at a constant temperature, first flow rate detection means for detecting a first flow rate signal by a change in resistance value of the first temperature sensitive resistor, and second flow rate detection means. The second flow rate signal is generated by changing the resistance value of the temperature sensitive resistor. The second flow rate detection means to be output, the first flow rate signal output from the first flow rate detection means, and the second flow rate signal output from the second flow rate detection means are added to add the flow rate addition signal. And a first flow rate signal output from the first flow rate detection means and a second flow rate signal output from the second flow rate detection means are compared to output a flow direction signal. When the flow direction detection means and the flow direction signal output from the flow direction detection means are detected to be forward flow signals, the flow rate addition signal output from the addition means is output as a flow rate detection signal, and the reverse flow rate signal is output. When it is detected that the flow signal is a directional flow signal, the flow rate signal output means outputs a signal obtained by inverting the flow rate addition signal output from the addition means as a flow rate detection signal.

【0020】請求項2の発明が採用する熱式空気流量検
出装置は、基端側が吸気管に取付けられる流量計本体
と、該流量計本体に設けられた絶縁基板と、該絶縁基板
上に設けられ、前記吸気管内を流れる吸入空気によって
冷却される発熱抵抗と、前記絶縁基板上に位置し、前記
流入空気の流れ方向に対して該発熱抵抗体の前,後に離
間して形成され、前記吸入空気の流れ方向に応じてそれ
ぞれの抵抗値が変化する第1,第2の感温抵抗体と、前
記発熱抵抗体に印加する電流値を制御して該発熱抵抗体
を発熱させて前記絶縁基板を一定温度に保持する温度制
御手段と、前記第1の感温抵抗体の抵抗値変化によって
第1の流量信号を検出する第1の流量検出手段と、前記
第2の感温抵抗体の抵抗値変化によって第2の流量信号
を検出する第2の流量検出手段と、前記第1の流量検出
手段から出力される第1の流量信号と第2の流量検出手
段から出力される第2の流量信号との差を演算して流量
検出信号を出力する減算手段とから構成したことにあ
る。
In the thermal type air flow rate detecting device adopted by the invention of claim 2, the flowmeter main body whose base end side is attached to the intake pipe, the insulating substrate provided on the flowmeter main body, and the insulating substrate are provided on the insulating substrate. And a heating resistor that is cooled by intake air flowing in the intake pipe, and is formed on the insulating substrate and is formed in front of and behind the heating resistor in the flow direction of the inflowing air. The first and second temperature-sensitive resistors whose resistance values change in accordance with the flow direction of air, and the current value applied to the heating resistors are controlled to cause the heating resistors to generate heat and the insulating substrate. Of the first temperature sensitive resistor, a first flow rate detecting means for detecting a first flow rate signal by a change in the resistance value of the first temperature sensitive resistor, and a resistance of the second temperature sensitive resistor. Second flow for detecting the second flow signal by the change in value Subtraction for calculating a difference between the detection means and the first flow rate signal output from the first flow rate detection means and the second flow rate signal output from the second flow rate detection means to output the flow rate detection signal. It is composed of means.

【0021】請求項3の発明では、前記絶縁基板を、先
端側が自由端となって、前記発熱抵抗体および第1,第
2の感温抵抗体が着膜形成される主基板部と、該主基板
部の基端側に位置して前記流量計本体に取付けられ、前
記発熱抵抗体を流量計本体から離間させるための副基板
部と、該副基板部と主基板部との間に位置し、前記絶縁
基板の幅方向一側から他側に向けて延び、発熱抵抗体か
らの熱が該副基板部に伝わるのを抑えるスリットとから
構成し、前記副基板部には該副基板部を加熱する補助ヒ
ータを設けたことにある。
According to a third aspect of the present invention, the insulating substrate includes a main substrate portion on which a free end is formed on the front end side and the heating resistor and the first and second temperature sensitive resistors are formed into a film, A sub-board portion located on the base end side of the main board portion and attached to the flowmeter main body, for separating the heating resistor from the flowmeter main body, and a position between the sub-board portion and the main board portion. A slit that extends from one side in the width direction of the insulating substrate to the other side and suppresses the heat from the heating resistor from being transferred to the sub-board portion. The purpose is to provide an auxiliary heater for heating.

【0022】[0022]

【作用】請求項1の発明のように、絶縁基板上には、発
熱抵抗体と吸入空気の流れ方向に対して該発熱抵抗体の
前,後に離間して第1,第2の感温抵抗体とを形成して
いる。そして、温度制御手段によって発熱抵抗体に印加
する電流値を制御して前記絶縁基板を一定温度に保持し
ている。
According to the first aspect of the present invention, the first and second temperature-sensitive resistors are provided on the insulating substrate so as to be spaced apart before and after the heating resistor with respect to the flow direction of the intake air. It forms the body. Then, the temperature control means controls the current value applied to the heating resistor to maintain the insulating substrate at a constant temperature.

【0023】この状態で、例えば吸気管内に順方向の吸
入空気の流れが発生したときには、発熱抵抗体の前側に
位置した第1の感温抵抗体の冷却量は大きく、後側に位
置した第2の感温抵抗体は発熱抵抗体からの熱を受けた
空気によって冷却されるため冷却量は小さくなる。これ
により、第1の流量検出手段から出力される第1の流量
信号と第2の流量検出手段から出力される第2の流量信
号の各信号のうち、例えば第1の流量信号が第2の流量
信号よりも大きくなったときには、この各流量信号を加
算手段により流量加算信号として出力すると共に、流れ
方向検出手段によって各信号を比較して順方向の流れを
示す流れ方向信号を出力し、流量信号出力手段によって
流量加算信号を流量検出信号として出力する。
In this state, for example, when a forward flow of intake air occurs in the intake pipe, the cooling amount of the first temperature-sensitive resistor located on the front side of the heating resistor is large and that of the first temperature-sensitive resistor located on the rear side is large. Since the temperature-sensitive resistor 2 is cooled by the air that has received heat from the heat-generating resistor, the cooling amount is small. Accordingly, for example, of the first flow rate signal output from the first flow rate detection means and the second flow rate signal output from the second flow rate detection means, for example, the first flow rate signal is the second flow rate signal. When the flow rate signal becomes larger than the flow rate signal, the flow rate signal is output as a flow rate addition signal by the adding means, and the flow direction detecting means compares the signals to output a flow direction signal indicating a forward flow. The signal output means outputs the flow rate addition signal as a flow rate detection signal.

【0024】一方、吸入空気の流れが逆方向の流れとな
ったときには、各流量検出手段から出力される各流量検
出手段のうち、例えば第2の流量信号が第1の流量信号
よりも大きくなったときには、この各流量信号を加算手
段により流量加算信号として出力すると共に、流れ方向
検出手段によって各信号を比較して逆方向の流れを示す
流れ方向信号を出力し、流量信号出力手段によって流量
加算信号を反転させて流量検出信号として出力する。
On the other hand, when the flow of the intake air is in the opposite direction, for example, the second flow rate signal of each flow rate detecting means output from each flow rate detecting means becomes larger than the first flow rate signal. In this case, the flow rate signals are output as flow rate addition signals by the addition means, the flow direction detection means compares the signals, and a flow direction signal indicating a reverse flow is output, and the flow rate signal output means outputs the flow rate addition signals. The signal is inverted and output as a flow rate detection signal.

【0025】請求項2の発明のように、絶縁基板上に
は、発熱抵抗体と吸入空気の流れ方向に対して該発熱抵
抗体の前,後に離間して第1,第2の感温抵抗体とを形
成している。そして、温度制御手段によって発熱抵抗体
に印加する電流値を制御して前記絶縁基板を一定温度に
保持している。
According to a second aspect of the present invention, the first and second temperature-sensitive resistors are provided on the insulating substrate, spaced apart before and after the heating resistor with respect to the flow direction of the intake air. It forms the body. Then, the temperature control means controls the current value applied to the heating resistor to maintain the insulating substrate at a constant temperature.

【0026】この状態で、例えば吸気管内に順方向の吸
入空気の流れが発生したときには、発熱抵抗体の前側に
位置した第1の感温抵抗体の冷却量は大きく、後側に位
置した第2の感温抵抗体は発熱抵抗体からの熱を受けた
空気によって冷却されるため冷却量は小さくなる。これ
により、第1の流量検出手段から出力される第1の流量
信号と第2の流量検出手段から出力される第2の流量信
号の各信号のうち、例えば第1の流量信号が第2の流量
信号よりも大きくなったときには、減算手段によって第
1の流量信号から第2の流量信号を減算することによ
り、正の信号となった流量検出信号を出力する。
In this state, for example, when a forward flow of intake air is generated in the intake pipe, the cooling amount of the first temperature-sensitive resistor located on the front side of the heating resistor is large and that of the first temperature-sensitive resistor located on the rear side is large. Since the temperature-sensitive resistor 2 is cooled by the air that has received heat from the heat-generating resistor, the cooling amount is small. Accordingly, for example, of the first flow rate signal output from the first flow rate detection means and the second flow rate signal output from the second flow rate detection means, for example, the first flow rate signal is the second flow rate signal. When it becomes larger than the flow rate signal, the subtraction means subtracts the second flow rate signal from the first flow rate signal to output a positive flow rate detection signal.

【0027】一方、吸入空気の流れが逆方向の流れとな
ったときには、各流量検出手段から出力される各流量検
出手段のうち、例えば第2の流量信号が第1の流量信号
よりも大きくなったときには、減算手段によって第1の
流量信号から第2の流量信号を減算することにより、負
の信号となった流量検出信号を出力する。
On the other hand, when the flow of the intake air is in the opposite direction, for example, the second flow rate signal of each flow rate detecting means output from each flow rate detecting means becomes larger than the first flow rate signal. In this case, the subtracting means subtracts the second flow rate signal from the first flow rate signal to output a negative flow rate detection signal.

【0028】請求項3の発明では、単一の絶縁基板上に
発熱抵抗体、第1,第2の感温抵抗体と共に補助ヒータ
を着膜形成でき、部品点数を削減することができる。そ
して、補助ヒータを着膜形成する副基板部と前記発熱抵
抗体および第1,第2の感温抵抗体を着膜形成する主基
板部との間にスリットを形成することにより、例えば発
熱抵抗体で加熱される主基板部から副基板部に熱が逃げ
るのを防止でき、主基板部を早期に温度上昇させること
ができると共に、副基板部を補助ヒータによって早期に
加熱でき、主基板部から流量計本体側に熱が逃げるのを
抑えることができる。
According to the third aspect of the invention, the auxiliary heater can be formed on the single insulating substrate together with the heating resistor, the first and second temperature sensitive resistors, and the number of parts can be reduced. Then, by forming a slit between the sub-substrate part on which the auxiliary heater is formed into a film and the main substrate part on which the heating resistor and the first and second temperature-sensitive resistors are formed into a film, for example, the heat-generating resistor is formed. It is possible to prevent heat from escaping from the main board part heated by the body to the sub board part, and to raise the temperature of the main board part early, and at the same time, the sub board part can be heated early by the auxiliary heater. The heat can be suppressed from escaping from the flowmeter to the main body.

【0029】[0029]

【実施例】以下、本発明の実施例を図1ないし図6に基
づき説明する。なお、実施例では前述した従来技術と同
一の構成要素に同一の符号を付し、その説明を省略する
ものとする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIGS. In the embodiments, the same components as those of the above-described conventional technique are designated by the same reference numerals, and the description thereof will be omitted.

【0030】先ず、図1ないし図4に本発明による第1
の実施例を示す。
First, the first embodiment of the present invention will be described with reference to FIGS.
An example of is shown.

【0031】図中、21は本実施例による熱式空気流量
検出装置、22は該熱式空気流量検出装置21の本体部
を構成する流量計本体を示し、該流量計本体22は従来
技術で述べた流量計本体3とほぼ同様に、抵抗値R1 を
有する基準抵抗23A,23Bが巻回される巻線部24
と、該巻線部24の基端側に位置し、複数の端子ピン
(図示せず)が一体的に設けられた端子部25と、巻線
部24の先端側から吸気管2の径方向に延設された検出
ホルダ26と、後述する回路ケーシング27とから大略
構成されている。
In the figure, 21 is a thermal air flow rate detecting device according to the present embodiment, 22 is a flow meter main body which constitutes the main body of the thermal air flow rate detecting device 21, and the flow meter main body 22 is a conventional technique. Almost the same as the flowmeter body 3 described above, the winding portion 24 around which the reference resistors 23A and 23B having the resistance value R1 are wound.
A terminal portion 25 located at the base end side of the winding portion 24 and integrally provided with a plurality of terminal pins (not shown); and a radial direction of the intake pipe 2 from the tip end side of the winding portion 24. The detection holder 26 is extended and the circuit casing 27, which will be described later, is provided.

【0032】しかし、前記流量計本体22には検出ホル
ダ26の基端側に後述の絶縁基板29を着脱可能に取付
けられるためのスロット(図示せず)が形成され、該検
出ホルダ26は図1中に示す如く吸気管2の中心部に、
絶縁基板29を介して後述の発熱抵抗体31等を位置決
めする構成となっている。なお、検出ホルダ26には従
来技術で述べた保護カバー13と同様の保護カバー(図
示せず)が取付けられるようになっている。
However, a slot (not shown) for detachably mounting an insulating substrate 29, which will be described later, is formed in the flowmeter main body 22 on the base end side of the detection holder 26, and the detection holder 26 is shown in FIG. As shown in the center of the intake pipe 2,
A heating resistor 31, which will be described later, and the like are positioned via the insulating substrate 29. A protective cover (not shown) similar to the protective cover 13 described in the related art is attached to the detection holder 26.

【0033】27は吸気管2の取付穴2Aを閉塞するよ
うに該吸気管2の外周側に設けられた回路ケーシングを
示し、該回路ケーシング27は従来技術で述べた回路ケ
ーシング7とほぼ同様に形成され、吸気管2の取付穴2
Aに嵌合する嵌合部27Aを有しているものの、該回路
ケーシング27は、例えばセラミック材料等からなる絶
縁基板(図示せず)上に後述の流量調整抵抗38および
差動増幅器等を実装した状態で、これらを内蔵するよう
になっている。なお、28A,28Bは前記基準抵抗2
3の巻線が接続されるターミナルである。
Reference numeral 27 denotes a circuit casing provided on the outer peripheral side of the intake pipe 2 so as to close the mounting hole 2A of the intake pipe 2, and the circuit casing 27 is substantially the same as the circuit casing 7 described in the prior art. Formed, mounting hole 2 for intake pipe 2
Although it has a fitting portion 27A that fits into A, the circuit casing 27 has a flow rate adjusting resistor 38, a differential amplifier, etc., which will be described later, mounted on an insulating substrate (not shown) made of, for example, a ceramic material. In this state, these are built in. 28A and 28B are the reference resistors 2
This is a terminal to which three windings are connected.

【0034】29は検出ホルダ26に取付けられる絶縁
基板を示し、該絶縁基板29は、図2に示すように、ガ
ラス,アルミナ,窒化アルミニウム等の絶縁材料によ
り、長さ寸法が15〜20mm前後、幅寸法が3〜7mm前
後となった長方形の平板状に形成されている。また、該
絶縁基板29は、基端側が検出ホルダ26のスロットに
着脱可能に取付けられる固定端となり、先端側が自由端
となっている。
Reference numeral 29 denotes an insulating substrate attached to the detection holder 26. As shown in FIG. 2, the insulating substrate 29 is made of an insulating material such as glass, alumina or aluminum nitride and has a length dimension of about 15 to 20 mm. It is formed in the shape of a rectangular flat plate having a width of about 3 to 7 mm. Further, the insulating substrate 29 has a fixed end removably attached to the slot of the detection holder 26 on the base end side and a free end on the tip end side.

【0035】ここで、前記絶縁基板29は図2に示す如
く、先端側に位置して後述する発熱抵抗体31と第1,
第2の感温抵抗体32,33が着膜形成された主基板部
29Aと、該主基板部29Aの基端側に位置して前記検
出ホルダ26に取付けられ、前記発熱抵抗体31を検出
ホルダ26から離間させると共に、補助ヒータ34が着
膜形成された副基板部29Bとからなり、該副基板部2
9Bと主基板部29Aとの間には、幅方向一側から他側
(吸入空気が流れる矢示A方向)に向けてスリット30
が形成されている。
Here, as shown in FIG. 2, the insulating substrate 29 is located on the front end side and has a heating resistor 31 and first and first heating resistors 31 which will be described later.
The main substrate portion 29A on which the second temperature-sensitive resistors 32 and 33 are formed, and the base substrate portion 29A, which is located on the base end side and is attached to the detection holder 26, detects the heating resistor 31. While being separated from the holder 26, the auxiliary heater 34 includes a sub-substrate portion 29B having a film formed thereon.
The slit 30 is provided between 9B and the main board portion 29A from one side in the width direction toward the other side (the direction of the arrow A where the intake air flows).
Are formed.

【0036】31は絶縁基板29の主基板部29A上に
形成された発熱抵抗を構成する発熱抵抗体を示し、該発
熱抵抗体31はプリント印刷またはスパッタリング等の
手段を用いて主基板部29A上に白金膜を着膜させるこ
とにより、抵抗値RH を有するように形成され、主基板
部29Aの長さ方向中間部に位置して幅方向に延びた中
間抵抗部31Aと、該中間抵抗部31Aの両端側から主
基板部29Aの長さ方向に互いに逆向きに延びた第1,
第2の延長抵抗部31B,31Cとから構成されてい
る。
Reference numeral 31 denotes a heat generating resistor forming a heat generating resistor formed on the main substrate portion 29A of the insulating substrate 29. The heat generating resistor 31 is provided on the main substrate portion 29A by means such as print printing or sputtering. By depositing a platinum film on the intermediate resistance portion 31A, which is formed to have a resistance value RH and extends in the width direction at the middle portion of the main substrate portion 29A in the length direction, and the middle resistance portion 31A. Extending in opposite directions in the longitudinal direction of the main board portion 29A from both ends of the first
It is composed of second extension resistance portions 31B and 31C.

【0037】ここで、前記発熱抵抗体31の中間抵抗部
31Aおよび延長抵抗部31B,31Cは全体としてク
ランク形状をなすことによって、主基板部29A上に発
熱抵抗体31および後述の感温抵抗体32,33をコン
パクトに形成すると共に、発熱抵抗体31の表面積(実
装面積)を可及的に増大させ、例えば吸気管2内を流れ
る吸入空気との接触面積を大きくできるようにしてい
る。
Here, the intermediate resistance portion 31A and the extension resistance portions 31B and 31C of the heating resistor 31 are formed into a crank shape as a whole, so that the heating resistor 31 and a temperature-sensitive resistor described later are provided on the main board portion 29A. 32 and 33 are formed compactly, and the surface area (mounting area) of the heat generating resistor 31 is increased as much as possible so that, for example, the contact area with the intake air flowing through the intake pipe 2 can be increased.

【0038】また、前記発熱抵抗体31は、後述する電
流制御用トランジスタ42によって電流値が制御され、
温度を一定温度(例えば約240℃)に保つように加熱
することにより絶縁基板29も一定温度に保持するよう
になっている。
The current value of the heating resistor 31 is controlled by a current control transistor 42 described later,
The insulating substrate 29 is also kept at a constant temperature by heating so as to keep the temperature at a constant temperature (for example, about 240 ° C.).

【0039】32,33は発熱抵抗体31と共に主基板
部29A上に形成された第1,第2の感温抵抗体を示
し、該第1,第2の感温抵抗体32,33は抵抗値RT
1,RT2をそれぞれ有するように、前記絶縁基板上に白
金等の感温性材料をプリント印刷またはスパッタリング
等の手段で着膜させることによって形成され、例えば吸
気管2内を矢示A方向に流れる吸入空気の流れ方向(主
基板部29Aの幅方向)に対し発熱抵抗体31の前,後
に離間して主基板部29A上に配設されている。
Reference numerals 32 and 33 denote first and second temperature sensitive resistors formed on the main substrate portion 29A together with the heat generating resistor 31, and the first and second temperature sensitive resistors 32 and 33 are resistors. Value RT
1 and RT2, respectively, are formed by depositing a temperature sensitive material such as platinum on the insulating substrate by means such as print printing or sputtering, and flow in the intake pipe 2 in the direction of arrow A, for example. The heating resistor 31 is arranged on the main substrate portion 29A in front of and behind the heating resistor 31 in the flow direction of the intake air (width direction of the main substrate portion 29A).

【0040】ここで、前記第1の感温抵抗体32は、前
記発熱抵抗体31の中間抵抗部31Aと第1の延長抵抗
部31Bとの間に位置し、該延長抵抗部31Bと平行に
延びるように長方形状に形成されている。また、第2の
感温抵抗体33は、中間抵抗部31Aと第2の延長抵抗
部31Cとの間に位置し、該延長抵抗部31Cと平行に
延びるように長方形状に形成されている。そして、感温
抵抗体32,33は主基板部29A上で実質的に均一な
面積をもって形成され、通常時には図3に示すようにバ
ッテリ電圧VB から電流が印加されることにより発熱さ
れ、該感温抵抗体32,33は、流れる空気によって冷
却されることにより、抵抗値が減少して空気の流量を感
度良く検出するようになっている。
Here, the first temperature-sensitive resistor 32 is located between the intermediate resistance portion 31A of the heating resistor 31 and the first extension resistance portion 31B, and is parallel to the extension resistance portion 31B. It is formed in a rectangular shape so as to extend. The second temperature sensitive resistor 33 is located between the intermediate resistance portion 31A and the second extension resistance portion 31C, and is formed in a rectangular shape so as to extend parallel to the extension resistance portion 31C. The temperature sensitive resistors 32 and 33 are formed on the main substrate portion 29A with a substantially uniform area, and are normally heated by applying a current from the battery voltage VB as shown in FIG. The temperature resistors 32 and 33 are cooled by the flowing air, so that the resistance value decreases and the flow rate of the air is detected with high sensitivity.

【0041】さらに、前記発熱抵抗体31,第1の感温
抵抗体32および第2の感温抵抗体33の配置関係は、
吸入空気の順方向の流れ(矢示A方向)に対して上流側
から、第1の感温抵抗体32,発熱抵抗体31,第2の
感温抵抗体33の順に並んでいるから、吸入空気が順方
向の矢示A方向の流れの場合には、第1の感温抵抗体3
2は吸入空気によって直接冷やされ、第2の感温抵抗体
33は発熱抵抗体31からの熱を受けることになる。こ
れにより、第1の感温抵抗体32の抵抗値RT1は流量に
対応して小さくなり、第2の感温抵抗体33の抵抗値R
T2は実質的に変化しない。
Further, the arrangement relationship among the heating resistor 31, the first temperature sensitive resistor 32, and the second temperature sensitive resistor 33 is as follows.
Since the first temperature-sensitive resistor 32, the heat-generating resistor 31, and the second temperature-sensitive resistor 33 are arranged in this order from the upstream side with respect to the forward flow of the intake air (direction indicated by the arrow A), the intake is performed. When the air flows in the forward direction indicated by the arrow A, the first temperature-sensitive resistor 3
2 is directly cooled by the intake air, and the second temperature sensitive resistor 33 receives heat from the heat generating resistor 31. As a result, the resistance value RT1 of the first temperature-sensitive resistor 32 becomes smaller according to the flow rate, and the resistance value R1 of the second temperature-sensitive resistor 33 becomes smaller.
T2 remains virtually unchanged.

【0042】一方、吸気管2内を流れる吸入空気の流れ
が逆方向の矢示B方向となった場合には、第2の感温抵
抗体33が吸入空気によって直接冷やされ、第1の感温
抵抗体32が発熱抵抗体31からの熱を受けることにな
る。これにより、第2の感温抵抗体33の抵抗値RT2は
流量に対応して小さくなり、第1の感温抵抗体32の抵
抗値RT1は実質的に変化しない。
On the other hand, when the flow of the intake air flowing through the intake pipe 2 is in the opposite direction of the arrow B, the second temperature-sensitive resistor 33 is directly cooled by the intake air, and the first sensation is obtained. The temperature resistor 32 receives the heat from the heating resistor 31. As a result, the resistance value RT2 of the second temperature sensitive resistor 33 becomes smaller in accordance with the flow rate, and the resistance value RT1 of the first temperature sensitive resistor 32 does not substantially change.

【0043】この結果、第1の感温抵抗体32の抵抗値
RT1と第2の感温抵抗体33の抵抗値RT2とを比較する
ことにより、吸入空気の流れ方向が順方向であるか、逆
方向であるかを判別することができる。
As a result, by comparing the resistance value RT1 of the first temperature sensitive resistor 32 and the resistance value RT2 of the second temperature sensitive resistor 33, whether the flow direction of the intake air is the forward direction, It is possible to determine whether it is in the opposite direction.

【0044】34は補助ヒータを示し、該補助ヒータ3
4は、前記絶縁基板29の副基板部29B上に位置し
て、前述した発熱抵抗体31、感温抵抗体32,33と
同様にプリント印刷またはスパッタリング等の手段によ
り、白金等の感温性材料を抵抗値RHSとなる膜状に形成
されている。また、該補助ヒータ34は絶縁基板29の
副基板部29Bを加熱することにより、主基板部29A
(発熱抵抗体31)からの熱が副基板部29Bを介して
検出ホルダ26に逃げるのを防止するようになってい
る。さらに、主基板部29Aと副基板部29Bとの間に
はスリット30が形成されているから、補助ヒータ34
からの熱によって第1の感温抵抗体32が加熱されるの
を防止し、検出時における第1,第2の感温抵抗体3
2,33に補助ヒータ34からの熱が加わるのを防止し
ている。一方、補助ヒータ34は、電流制御用トランジ
スタ42のエミッタとアースとの間に抵抗43を介して
接続されているから、該電流制御用トランジスタ42の
電流制御によって印加電流は制御されている。
Reference numeral 34 denotes an auxiliary heater, and the auxiliary heater 3
Reference numeral 4 is located on the sub-board portion 29B of the insulating substrate 29, and like the above-mentioned heating resistor 31, temperature-sensitive resistors 32 and 33, the temperature-sensitivity of platinum or the like is obtained by means such as print printing or sputtering. The material is formed into a film having a resistance value RHS. Further, the auxiliary heater 34 heats the sub-substrate portion 29B of the insulating substrate 29, so that the main substrate portion 29A
The heat from the (heating resistor 31) is prevented from escaping to the detection holder 26 via the sub-board portion 29B. Further, since the slit 30 is formed between the main substrate portion 29A and the sub substrate portion 29B, the auxiliary heater 34
It prevents the first temperature sensitive resistor 32 from being heated by the heat from the first and second temperature sensitive resistors 3 at the time of detection.
The heat from the auxiliary heater 34 is prevented from being applied to 2, 33. On the other hand, since the auxiliary heater 34 is connected between the emitter of the current control transistor 42 and the ground via the resistor 43, the applied current is controlled by the current control of the current control transistor 42.

【0045】35,35,…は絶縁基板29の基端側に
位置して形成された例えば6個の電極を示し、該各電極
35は絶縁基板29の幅方向に所定間隔をもって列設さ
れ、絶縁基板29の基端側を前記検出ホルダ26のスロ
ット内に差込むことにより、該検出ホルダ26側の各タ
ーミナル(図示せず)に接続される。そして、該各電極
35を介して絶縁基板29上に形成された発熱抵抗体3
1、第1,第2の感温抵抗体32,33および補助ヒー
タ34等を回路ケーシング27内に設けられた各電子部
品と接続し、図3に示す流量検出用の処理回路を構成し
ている。
Reference numerals 35, 35, ... Depict, for example, six electrodes formed on the base end side of the insulating substrate 29. The electrodes 35 are arranged in a row in the width direction of the insulating substrate 29 at a predetermined interval. By inserting the base end side of the insulating substrate 29 into the slot of the detection holder 26, it is connected to each terminal (not shown) on the detection holder 26 side. Then, the heating resistor 3 formed on the insulating substrate 29 via the electrodes 35.
The first, the first and the second temperature sensitive resistors 32 and 33, the auxiliary heater 34 and the like are connected to respective electronic components provided in the circuit casing 27 to form a processing circuit for flow rate detection shown in FIG. There is.

【0046】次に、図3は本実施例による流量検出用の
処理回路を示す。
Next, FIG. 3 shows a processing circuit for flow rate detection according to this embodiment.

【0047】図3において、36は発熱抵抗体31に印
加する電流値を制御して該発熱抵抗体31の温度を一定
に維持することにより絶縁基板29の温度を一定温度に
保持する温度制御手段としての電流制御回路を示し、該
電流制御回路36は、発熱抵抗体31、温度補償抵抗3
7および調整抵抗38,39からなるブリッジ回路40
と、該ブリッジ回路40の接続点c,dからの差を出力
する差動増幅回路41と、前記ブリッジ回路40の接続
点a,bに印加される電流値を制御する電流制御用トラ
ンジスタ42とからなり、前記ブリッジ回路40はそれ
ぞれ対向する辺の抵抗値の積が等しくなるように構成さ
れ、発熱抵抗体31と温度補償抵抗37との接続点aは
電流制御用トランジスタ42のエミッタ側と補助ヒータ
34の一端に接続され、調整抵抗38,39との接続点
bはアースと抵抗43を介して補助ヒータ34の他端に
接続されている。
In FIG. 3, reference numeral 36 is a temperature control means for maintaining the temperature of the insulating substrate 29 at a constant temperature by controlling the current value applied to the heating resistor 31 to keep the temperature of the heating resistor 31 constant. The current control circuit 36 includes a heating resistor 31, a temperature compensation resistor 3
Bridge circuit 40 including 7 and adjusting resistors 38 and 39
A differential amplifier circuit 41 that outputs a difference from the connection points c and d of the bridge circuit 40, and a current control transistor 42 that controls a current value applied to the connection points a and b of the bridge circuit 40. The bridge circuit 40 is configured so that the products of the resistance values of the opposite sides are equal, and the connection point a between the heating resistor 31 and the temperature compensating resistor 37 is connected to the emitter side of the current control transistor 42 and the auxiliary side. It is connected to one end of the heater 34, and the connection point b with the adjusting resistors 38 and 39 is connected to the other end of the auxiliary heater 34 via the ground and the resistor 43.

【0048】一方、前記ブリッジ回路40においては、
発熱抵抗体31と調整抵抗38、温度補償抵抗37と調
整抵抗39はそれぞれ直列接続され、それぞれの接続点
c,dは差動増幅回路41の入力端子に接続されてい
る。
On the other hand, in the bridge circuit 40,
The heating resistor 31 and the adjusting resistor 38 are connected in series, and the temperature compensating resistor 37 and the adjusting resistor 39 are connected in series, and their connection points c and d are connected to the input terminal of the differential amplifier circuit 41.

【0049】ここで、前記温度補償抵抗37は、発熱抵
抗体31の近傍に位置して検出ホルダ26に設けられ、
かつ該温度補償抵抗37は吸入空気の流れによる影響を
受けず、吸入空気の温度によってのみ抵抗値RK が変化
するものである。
Here, the temperature compensation resistor 37 is provided in the detection holder 26 in the vicinity of the heating resistor 31.
Moreover, the temperature compensating resistor 37 is not affected by the flow of the intake air, and the resistance value RK changes only depending on the temperature of the intake air.

【0050】このように構成されるブリッジ回路40で
は、該ブリッジ回路40が平衡状態にあるときには、差
動増幅回路41からの出力は零となる。一方、ブリッジ
回路40の平衡が崩れたとき、即ち吸入空気によって絶
縁基板29が冷却され、これに伴って発熱抵抗体31の
温度が低下したときには、該発熱抵抗体31の抵抗値R
H が小さくなっているから、接続点c,dの間には電圧
差が発生して差動増幅回路41から電流制御用トランジ
スタ42のベースに向けて電流制御電圧Va が出力され
る。これにより、電流制御用トランジスタ42はブリッ
ジ回路40に印加する電流を制御して冷やされた発熱抵
抗体31を一定温度にして該ブリッジ回路40を平衡状
態に戻す。このとき、絶縁基板29も一定温度に復帰す
ることができる。
In the bridge circuit 40 thus constructed, the output from the differential amplifier circuit 41 becomes zero when the bridge circuit 40 is in a balanced state. On the other hand, when the balance of the bridge circuit 40 is lost, that is, when the insulating substrate 29 is cooled by the intake air and the temperature of the heating resistor 31 is lowered accordingly, the resistance value R of the heating resistor 31 is reduced.
Since H is small, a voltage difference is generated between the connection points c and d, and the current control voltage Va is output from the differential amplifier circuit 41 toward the base of the current control transistor 42. As a result, the current control transistor 42 controls the current applied to the bridge circuit 40 to bring the cooled heating resistor 31 to a constant temperature and returns the bridge circuit 40 to the equilibrium state. At this time, the insulating substrate 29 can also return to a constant temperature.

【0051】ここで、前記電流制御用トランジスタ42
は、コレクタ側がバッテリ電圧VBに接続され、ベース
側が前記差動増幅回路41の出力側に接続され、エミッ
タ側が前記ブリッジ回路40の接続点aおよび補助ヒー
タ34の一端に接続されている。そして、該電流制御用
トランジスタ42は、前記差動増幅回路41からの出力
(電流制御電圧Va )でベース電流が変化するのに応じ
てエミッタ電流を制御する。これにより、電流制御用ト
ランジスタ42はブリッジ回路40に印加される電流値
を制御して発熱抵抗体31(絶縁基板29)の温度を一
定温度に保つフィードバック制御を行っている。
Here, the current control transistor 42
Has a collector side connected to the battery voltage VB, a base side connected to the output side of the differential amplifier circuit 41, and an emitter side connected to the connection point a of the bridge circuit 40 and one end of the auxiliary heater 34. The current control transistor 42 controls the emitter current in response to the base current changing by the output (current control voltage Va) from the differential amplifier circuit 41. As a result, the current control transistor 42 controls the current value applied to the bridge circuit 40 to perform feedback control for keeping the temperature of the heating resistor 31 (insulating substrate 29) at a constant temperature.

【0052】次に、44は図3中の下側に位置した検出
処理回路を示し、該検出処理回路44は、後述する第1
の流量検出回路45,第2の流量検出回路46,加算回
路47,比較回路48,反転回路49および選択回路5
0とから構成され、該検出処理回路44は、第1,第2
の感温抵抗体32,33の抵抗値RT1,RT2の変化に基
づいてを吸入空気の流れおよびその方向を検出するよう
になっている。
Next, reference numeral 44 denotes a detection processing circuit located on the lower side in FIG. 3, and the detection processing circuit 44 is a first processing described later.
Flow rate detection circuit 45, second flow rate detection circuit 46, addition circuit 47, comparison circuit 48, inversion circuit 49 and selection circuit 5
0, and the detection processing circuit 44 includes a first and a second
The flow and direction of intake air are detected based on changes in resistance values RT1 and RT2 of the temperature sensitive resistors 32 and 33.

【0053】45は第1の流量検出手段としての第1の
流量検出回路を示し、該第1の流量検出回路45は、抵
抗値RT1を有する第1の感温抵抗体32と抵抗値R1 を
有する基準抵抗23Aとを直列に接続することにより構
成され、該流量検出回路45は前記バッテリ電圧VB と
アースとの間に接続され、発熱抵抗体31と基準抵抗2
3Aとの接続点eは後述する加算回路47と比較回路4
8に接続されている。また、該第1の流量検出回路45
は、第1の感温抵抗体32の抵抗値RT1の変化を第1の
流量電圧V1 として出力する。
Reference numeral 45 denotes a first flow rate detecting circuit as a first flow rate detecting means. The first flow rate detecting circuit 45 detects the resistance value R1 from the first temperature-sensitive resistor 32 having a resistance value RT1. The flow rate detection circuit 45 is connected between the battery voltage VB and the ground, and the heating resistor 31 and the reference resistor 2 are connected in series.
The connection point e with 3A is the addition circuit 47 and the comparison circuit 4 which will be described later.
8 is connected. In addition, the first flow rate detection circuit 45
Outputs the change in the resistance value RT1 of the first temperature sensitive resistor 32 as the first flow rate voltage V1.

【0054】46は第2の流量検出手段としての第2の
流量検出回路を示し、該第2の流量検出回路46は、前
記第1の流量検出回路45とほぼ同様に構成され、抵抗
値RT2を有する第2の感温抵抗体33と抵抗値R1 を有
する基準抵抗23Bとを直列に接続することにより構成
され、該流量検出回路46は前記バッテリ電圧VB とア
ースとの間に接続され、感温抵抗体33と基準抵抗23
Aとの接続点eは加算回路47と比較回路48に接続さ
れている。また、該第2の流量検出回路46は、第2の
感温抵抗体33の抵抗値RT2の変化を第2の流量電圧V
2 として出力する。
Reference numeral 46 denotes a second flow rate detecting circuit as a second flow rate detecting means. The second flow rate detecting circuit 46 is constructed in substantially the same manner as the first flow rate detecting circuit 45 and has a resistance value RT2. And a reference resistor 23B having a resistance value R1 are connected in series. The flow rate detecting circuit 46 is connected between the battery voltage VB and the ground. Temperature resistor 33 and reference resistor 23
The connection point e with A is connected to the adder circuit 47 and the comparison circuit 48. In addition, the second flow rate detection circuit 46 changes the resistance value RT2 of the second temperature sensitive resistor 33 to the second flow rate voltage V.
Output as 2.

【0055】47は加算手段としての加算回路を示し、
該加算回路47の入力側には第1の流量検出回路45の
接続点eと第2の流量検出回路46の接続点fと接続さ
れ、出力側には反転回路49と選択回路50が接続され
ている。そして、該加算回路47から出力される流量加
算信号としての流量加算電圧V3 は、下記の数1のよう
になる。
Reference numeral 47 denotes an adding circuit as an adding means,
The input side of the adding circuit 47 is connected to the connection point e of the first flow rate detecting circuit 45 and the connection point f of the second flow rate detecting circuit 46, and the inverting circuit 49 and the selecting circuit 50 are connected to the output side. ing. The flow rate addition voltage V3 as the flow rate addition signal output from the adder circuit 47 is given by the following expression 1.

【0056】[0056]

【数1】V3 =V1 +V2[Equation 1] V3 = V1 + V2

【0057】48は流れ方向検出手段としての比較回路
を示し、該比較回路48の入力側には第1の流量検出回
路45の接続点eと第2の流量検出回路46の接続点f
とが接続され、出力側には選択回路50が接続されてい
る。そして、該比較回路48は第1の流量電圧V1 と第
2の流量電圧V2 とを比較し、V1 >V2 のときには吸
入空気の流れが順方向であるから、図4に示す電圧値V
0 の方向検出電圧Vbを出力し、V1 <V2 のときには
吸入空気の流れが逆方向であるから、電圧値零の方向検
出電圧Vb を選択回路50に出力する。
Reference numeral 48 denotes a comparison circuit as a flow direction detecting means, and a connection point e of the first flow rate detection circuit 45 and a connection point f of the second flow rate detection circuit 46 are provided on the input side of the comparison circuit 48.
And are connected, and the selection circuit 50 is connected to the output side. Then, the comparison circuit 48 compares the first flow rate voltage V1 and the second flow rate voltage V2. When V1> V2, the flow of the intake air is in the forward direction. Therefore, the voltage value V shown in FIG.
The direction detection voltage Vb of 0 is output, and when V1 <V2, the flow of the intake air is in the opposite direction, so the direction detection voltage Vb of zero voltage value is output to the selection circuit 50.

【0058】49は加算回路47と選択回路50との間
に接続された反転回路を示し、該反転回路49は加算回
路47から出力される流量加算電圧V3 を反転させた反
転流量加算電圧V3 ′を選択回路50に出力する。
Reference numeral 49 denotes an inverting circuit connected between the adding circuit 47 and the selecting circuit 50. The inverting circuit 49 inverts the flow rate adding voltage V3 output from the adding circuit 47 and inverts the flow rate adding voltage V3 '. To the selection circuit 50.

【0059】50は反転回路49と共に流量信号出力手
段を構成する選択回路を示し、該選択回路50は比較回
路48を介して出力される方向検出電圧Vb (図4参
照)に基づいて、例えば順方向の場合には加算回路47
からの流量加算電圧V3 を出力信号Vout として出力端
子から図示しないコントロールユニットに出力し、逆方
向の場合には反転回路49からの反転流量加算電圧V3
′を出力信号Vout として出力端子からコントロール
ユニットに出力する。
Reference numeral 50 indicates a selection circuit which constitutes the flow rate signal output means together with the inverting circuit 49. The selection circuit 50 is, for example, forward based on the direction detection voltage Vb (see FIG. 4) output through the comparison circuit 48. In case of direction, adder circuit 47
From the output terminal to the control unit (not shown) as the output signal Vout, and in the case of the reverse direction, the inverted flow rate addition voltage V3 from the inversion circuit 49.
′ Is output from the output terminal to the control unit as the output signal Vout.

【0060】本実施例による熱式空気流量検出装置21
は上述の如き構成を有するもので、次に検出処理回路4
4における吸入空気の流量検出動作について説明する。
Thermal air flow rate detection device 21 according to the present embodiment
Has a configuration as described above. Next, the detection processing circuit 4
The operation of detecting the flow rate of the intake air in No. 4 will be described.

【0061】ここで、吸入空気の流れが、矢示A方向
(順方向)の場合には、絶縁基板29上で上流側に位置
した第1の感温抵抗体32がこの吸入空気の流れによっ
て冷やされ、下流側に位置した第2の感温抵抗体33は
発熱抵抗体31からの熱を受ける。この結果、第1の流
量検出回路45から出力される第1の流量電圧V1 は、
第2の流量検出回路46から出力される第2の流量電圧
V2 よりも大きくなり、比較回路48からは電圧値V0
となる順方向の方向検出電圧Vb を選択回路50に出力
する。
Here, when the flow of the intake air is in the direction of arrow A (forward direction), the first temperature-sensitive resistor 32 located on the upstream side of the insulating substrate 29 is caused by the flow of the intake air. The second temperature-sensitive resistor 33, which is cooled and positioned on the downstream side, receives heat from the heating resistor 31. As a result, the first flow rate voltage V1 output from the first flow rate detection circuit 45 is
It becomes larger than the second flow rate voltage V2 output from the second flow rate detection circuit 46, and the voltage value V0 from the comparison circuit 48.
The direction detection voltage Vb in the forward direction is output to the selection circuit 50.

【0062】また、加算回路47では、入力された流量
電圧V1 ,V2 を加算して流量加算電圧V3 として後段
の選択回路50および反転回路49に出力し、該反転回
路49は反転した反転流量加算電圧V3 ′として選択回
路50に出力する。
The adder circuit 47 adds the input flow rate voltages V1 and V2 and outputs the result as a flow rate addition voltage V3 to the selection circuit 50 and the inverting circuit 49 in the subsequent stage, and the inverting circuit 49 inverts the inverted flow rate addition. The voltage V3 'is output to the selection circuit 50.

【0063】ここで、選択回路50では、比較回路48
からの方向検出電圧Vb に基づいて加算回路47から出
力された流量加算電圧V3 と反転回路49から出力され
た反転流量加算電圧V3 ′との選択を行い、この場合に
は、方向検出電圧Vb が電圧値V0 を有する順方向の流
れを示す信号であるから、流量加算電圧V3 を選択して
出力端子からコントロールユニットに向けて順方向の流
れとなる流量加算電圧V3 を出力信号Vout として出力
する。
Here, in the selection circuit 50, the comparison circuit 48
The flow rate addition voltage V3 output from the adder circuit 47 and the inverted flow rate addition voltage V3 'output from the inversion circuit 49 are selected based on the direction detection voltage Vb from the direction detection voltage Vb. Since the signal has a voltage value V0 and indicates a forward flow, the flow rate addition voltage V3 is selected and the flow rate addition voltage V3, which becomes the forward flow, is output from the output terminal to the control unit as the output signal Vout.

【0064】一方、空気の流れが、矢示B方向(逆方
向)の場合には、絶縁基板29上でこの流れに対して上
流側に位置した第2の感温抵抗体33がこの空気の流れ
によって冷やされ、下流側に位置した第1の感温抵抗体
32は発熱抵抗体31からの熱を受ける。この結果、第
2の流量検出回路46から出力される第2の流量電圧V
2 は第1の流量検出回路45から出力される第1の流量
電圧V1 よりも大きくなり、比較回路48からは電圧値
零となる逆方向の方向検出電圧Vb を選択回路50に出
力する。
On the other hand, when the air flow is in the direction of arrow B (reverse direction), the second temperature-sensitive resistor 33 located on the insulating substrate 29 on the upstream side with respect to this flow of the air. The first temperature-sensitive resistor 32, which is cooled by the flow and is located on the downstream side, receives heat from the heating resistor 31. As a result, the second flow rate voltage V output from the second flow rate detection circuit 46.
2 becomes larger than the first flow rate voltage V1 output from the first flow rate detection circuit 45, and the comparison circuit 48 outputs the reverse direction detection voltage Vb having a voltage value of zero to the selection circuit 50.

【0065】また、加算回路47では流量加算電圧V3
を選択回路50および反転回路49に出力し、該反転回
路49では反転した反転流量加算電圧V3 ′を選択回路
50に出力する。
Further, in the adding circuit 47, the flow rate adding voltage V3
To the selecting circuit 50 and the inverting circuit 49, and the inverting circuit 49 outputs the inverted inverting flow rate addition voltage V3 'to the selecting circuit 50.

【0066】さらに、選択回路50では、比較回路48
からの方向検出電圧Vb に基づいて加算回路47から出
力された流量加算電圧V3 と反転回路49から出力され
た反転流量加算電圧V3 ′との選択を行い、この場合に
は、方向検出電圧Vb が電圧値零を有する逆方向の流れ
を示す信号であるから、反転流量加算電圧V3 ′を選択
して出力端子からコントロールユニットに向けて逆方向
の流れとなる流量加算電圧V3 を出力信号Vout として
出力する。
Further, in the selection circuit 50, the comparison circuit 48
The flow rate addition voltage V3 output from the adder circuit 47 and the inverted flow rate addition voltage V3 'output from the inversion circuit 49 are selected based on the direction detection voltage Vb from the direction detection voltage Vb. Since it is a signal indicating a reverse flow having a voltage value of zero, the reverse flow summing voltage V3 'is selected and the flow summing voltage V3, which becomes a reverse flow from the output terminal to the control unit, is output as the output signal Vout. To do.

【0067】かくして、コントロールユニットでは、こ
の出力信号Vout に基づいて正確な吸入空気の流量およ
び流れ方向を検出することができ、正確な空燃比制御を
行い、エンジン性能を向上できる。
Thus, the control unit can accurately detect the flow rate and flow direction of the intake air based on the output signal Vout, perform accurate air-fuel ratio control, and improve engine performance.

【0068】次に、絶縁基板29の温度を一定温度に保
持するための電流制御回路36について説明する。
Next, the current control circuit 36 for keeping the temperature of the insulating substrate 29 at a constant temperature will be described.

【0069】吸入空気によって発熱抵抗体31(絶縁基
板29)が冷却されたときには、接続点c,d間に差が
発生し、この差が差動増幅回路41では電流制御電圧V
a として検出される。そして、該差動増幅回路41から
出力される電流制御電圧Vaによって、電流制御用トラ
ンジスタ42のエミッタ電流を制御して、発熱抵抗体3
1に印加される電流を増加させて発熱抵抗体31(絶縁
基板29)を一定温度に保持することができる。
When the heating resistor 31 (insulating substrate 29) is cooled by the intake air, a difference occurs between the connection points c and d, and this difference is generated in the differential amplifier circuit 41 by the current control voltage V.
Detected as a. Then, the emitter current of the current control transistor 42 is controlled by the current control voltage Va output from the differential amplifier circuit 41 to generate the heating resistor 3
The heating resistor 31 (insulating substrate 29) can be maintained at a constant temperature by increasing the current applied to the heating resistor 31.

【0070】この結果、絶縁基板29の温度を一定温度
に常に設定しているから、感温抵抗体32,33におけ
る流量検出を正確に行うことができ、吸入空気流量の検
出精度をより高精度に行うことができる。
As a result, since the temperature of the insulating substrate 29 is constantly set to a constant temperature, the flow rate detection in the temperature sensitive resistors 32 and 33 can be accurately performed, and the intake air flow rate can be detected with higher accuracy. Can be done.

【0071】また、電流制御回路36は、流量および流
れ方向を検出する検出処理回路44とは独立して設けら
れているから、自動車のエンジン始動時等のように発熱
抵抗体31が一定温度まで上昇していない場合において
も、第1,第2の感温抵抗体32,33は発熱抵抗体3
1によって同時に温められるから、絶縁基板29が一定
温度になる前であっても大きな誤差が発生するのを防止
することができる。さらに、発熱抵抗体31の抵抗値変
化を利用して流量を検出する熱式空気流量検出装置の場
合に比べて、本発明による熱式空気流量検出装置21は
ヒートアップ時間を著しく短くすることができ、エンジ
ン始動時におけるA/F制御の誤制御を確実に防止する
ことができる。
Further, since the current control circuit 36 is provided independently of the detection processing circuit 44 for detecting the flow rate and the flow direction, the heating resistor 31 has a constant temperature up to a certain temperature such as when the engine of the automobile is started. Even when the temperature has not risen, the first and second temperature-sensitive resistors 32 and 33 are the same as the heating resistor 3.
Since it is heated simultaneously by 1, it is possible to prevent a large error from occurring even before the insulating substrate 29 reaches a constant temperature. Further, the heat type air flow rate detection device 21 according to the present invention can significantly shorten the heat-up time as compared with the case of the thermal type air flow rate detection device that detects the flow rate by utilizing the resistance value change of the heating resistor 31. Therefore, it is possible to reliably prevent erroneous control of the A / F control when the engine is started.

【0072】かくして、本実施例による熱式空気流量検
出装置21においては、絶縁基板29上に、発熱抵抗体
31を形成すると共に、該発熱抵抗体31の前,後に第
1,第2の感温抵抗体32,33を形成するようにした
から、部品点数の削減を図ると共に、前記第1,第2の
感温抵抗体32,33によって空気の流れ方向および流
量を検出することができる。
Thus, in the thermal type air flow rate detecting device 21 according to the present embodiment, the heating resistor 31 is formed on the insulating substrate 29, and the first and second sensations are provided before and after the heating resistor 31. Since the temperature resistors 32 and 33 are formed, the number of parts can be reduced, and the first and second temperature sensitive resistors 32 and 33 can detect the air flow direction and flow rate.

【0073】また、検出処理回路44においては、第1
の流量検出回路45では第1の感温抵抗体32の流量に
応じた抵抗値RT1の変化を第1の流量電圧V1 として検
出し、第2の流量検出回路46では第2の感温抵抗体3
3の流量に応じた抵抗値RT2の変化を第2の流量電圧V
2 として検出する。さらに、加算回路47では前記流量
電圧V1 ,V2 を加算して流量加算電圧V3 として選択
回路50および反転回路49に出力し、該反転回路49
では入力された流量加算電圧V3 を反転流量加算電圧V
3 ′として選択回路50に出力する。一方、比較回路4
8では前記第1,第2の流量電圧V1 ,V2 の大きさを
比較して順方向または逆方向の方向検出電圧Vb を選択
回路50に出力する。そして、選択回路50において
は、方向検出電圧Vb に基づいて吸入空気の流れが正方
向のときには加算回路47からの流量加算電圧3 を選択
して出力端子から出力信号Vout としてコントロールユ
ニットに出力する。一方、吸入空気の流れが逆方向のと
きには反転回路49からの反転流量加算電圧V3 ′を出
力信号Vout としてコントロールユニットに出力するこ
とができる。
In the detection processing circuit 44, the first
The flow rate detection circuit 45 detects the change in the resistance value RT1 according to the flow rate of the first temperature sensitive resistor 32 as the first flow rate voltage V1, and the second flow rate detection circuit 46 detects the second temperature sensitive resistor. Three
The change of the resistance value RT2 according to the flow rate of 3 is changed to the second flow rate voltage V
Detect as 2. Further, the adder circuit 47 adds the flow rate voltages V1 and V2 and outputs the result as a flow rate added voltage V3 to the selection circuit 50 and the inversion circuit 49, and the inversion circuit 49.
Then, input the flow rate addition voltage V3 to the inverted flow rate addition voltage V
It is output to the selection circuit 50 as 3 '. On the other hand, the comparison circuit 4
In step 8, the magnitudes of the first and second flow rate voltages V1 and V2 are compared, and the forward or reverse direction detection voltage Vb is output to the selection circuit 50. Then, in the selection circuit 50, when the flow of the intake air is in the positive direction based on the direction detection voltage Vb, the flow rate addition voltage 3 from the addition circuit 47 is selected and output from the output terminal as the output signal Vout to the control unit. On the other hand, when the flow of the intake air is in the reverse direction, the reverse flow rate addition voltage V3 'from the reverse circuit 49 can be output to the control unit as the output signal Vout.

【0074】このように、従来技術のように、逆方向の
流れであっても正の流量として検出してしまうのを防止
でき、吸入空気の流量および流れ方向を正確に検出する
ことができる。
As described above, it is possible to prevent the flow rate in the reverse direction from being detected as a positive flow rate as in the prior art, and it is possible to accurately detect the flow rate and the flow direction of the intake air.

【0075】また、絶縁基板29の温度を一定温度にす
る電流制御回路36においては、発熱抵抗体31を含む
ブリッジ回路40,差動増幅回路41および電流制御用
トランジスタ42によって電流制御回路36を構成した
から、絶縁基板29の温度が低下すると、発熱抵抗体3
1も低下し、この低下分を温度補償抵抗37との差とし
て差動増幅回路41から電流制御電圧Va として出力
し、該電流制御電圧Vaに応じて電流制御用トランジス
タ42でブリッジ回路40に印加される電流値を調整す
るようにでき、絶縁基板(発熱抵抗体31)を常に一定
温度に保持することができる。そして、前述した第1,
第2の流量検出回路45,46で検出される流量をより
正確に検出することができる。
Further, in the current control circuit 36 for keeping the temperature of the insulating substrate 29 constant, the current control circuit 36 is constituted by the bridge circuit 40 including the heating resistor 31, the differential amplifier circuit 41 and the current control transistor 42. Therefore, when the temperature of the insulating substrate 29 decreases, the heating resistor 3
1 also decreases, and this decrease is output as a current control voltage Va from the differential amplifier circuit 41 as a difference with the temperature compensation resistor 37, and is applied to the bridge circuit 40 by the current control transistor 42 according to the current control voltage Va. The current value to be applied can be adjusted, and the insulating substrate (heating resistor 31) can always be maintained at a constant temperature. And the above-mentioned first,
The flow rate detected by the second flow rate detection circuits 45 and 46 can be detected more accurately.

【0076】さらに、前記電流制御回路36は、自動車
のエンジン始動時等のように発熱抵抗体31が一定温度
に到達していない場合であっても、第1,第2の感温抵
抗体32,33では検出を行っているが、絶縁基板29
上の発熱抵抗体31,感温抵抗体32,33はほぼ同時
に温められるから、絶縁基板29が一定温度になる前で
あっても第1,第2の感温抵抗体32,33で検出され
る流量電圧V1 ,V2に大きな誤差が発生するのを防止
することができる。これにより、本実施例による熱式空
気流量検出装置21では正確な流量検出を開始するまで
のヒートアップ時間を短くすることができる。
Further, the current control circuit 36 includes the first and second temperature sensitive resistors 32 even when the heat generating resistor 31 has not reached a certain temperature such as when the engine of the automobile is started. , 33, the detection is performed, but the insulating substrate 29
Since the upper heating resistor 31 and the temperature-sensitive resistors 32 and 33 are heated almost at the same time, they are detected by the first and second temperature-sensitive resistors 32 and 33 even before the insulating substrate 29 reaches a constant temperature. It is possible to prevent a large error from occurring in the flow rate voltages V1 and V2. As a result, the thermal air flow rate detection device 21 according to the present embodiment can shorten the heat-up time until the start of accurate flow rate detection.

【0077】さらにまた、補助ヒータ34を絶縁基板2
9の副基板部29Bに形成し、該補助ヒータ34によっ
て絶縁基板29の副基板部29Bを加熱するようにした
から、発熱抵抗体31が絶縁基板29を加熱するのを補
助することができる。これにより、該副基板部29Bを
介して主基板部29Aの熱が流量計本体22に逃げるの
を防止でき、絶縁基板29の温度変化を低減することが
でき、流量および流れ方向の検出感度を向上させること
ができる。
Furthermore, the auxiliary heater 34 is attached to the insulating substrate 2
It is formed on the sub-board portion 29B of No. 9 and the sub-heater portion 29B of the insulating substrate 29 is heated by the auxiliary heater 34. Therefore, it is possible to assist the heating resistor 31 to heat the insulating substrate 29. As a result, the heat of the main substrate 29A can be prevented from escaping to the flowmeter main body 22 via the sub-substrate 29B, the temperature change of the insulating substrate 29 can be reduced, and the detection sensitivity of the flow rate and the flow direction can be reduced. Can be improved.

【0078】また、絶縁基板29の主基板部29Aと副
基板部29Bとの間にはスリット30を形成し、かつ該
スリット30は補助ヒータ34の熱が第1の感温抵抗体
32に影響しないように形成しているから、該補助ヒー
タ34の熱影響が第1の感温抵抗体32に及ぶのを効果
的に防止でき、吸入空気の流量を第1,第2の流量検出
回路45,46によって正確に検出することができる。
Further, a slit 30 is formed between the main substrate portion 29A and the sub-substrate portion 29B of the insulating substrate 29, and the slit 30 affects the heat of the auxiliary heater 34 on the first temperature sensitive resistor 32. Since it is formed so as not to affect the thermal influence of the auxiliary heater 34 on the first temperature-sensitive resistor 32, it is possible to effectively prevent the flow rate of the intake air from changing to the first and second flow rate detecting circuits 45. , 46 can be accurately detected.

【0079】次に、図5および図6に本発明による第2
の実施例を示すに、本実施例の特徴は、単一の絶縁基板
上に発熱抵抗体、第1,第2の感温抵抗体、補助ヒータ
および温度補償抵抗を着膜形成すると共に、吸入空気の
流量および流れ方向の検出回路に減算回路を用いたこと
にある。なお、前述した第1の実施例と同一の構成要素
に同一の符号を付し、その説明を省略するものとする。
Next, FIG. 5 and FIG. 6 show a second embodiment of the present invention.
This embodiment is characterized in that the heating resistor, the first and second temperature sensitive resistors, the auxiliary heater and the temperature compensating resistor are formed on the single insulating substrate as a film, and suction is performed. This is because a subtraction circuit was used as a detection circuit for detecting the flow rate and the flow direction of air. The same components as those in the first embodiment described above are designated by the same reference numerals, and the description thereof will be omitted.

【0080】図中、51は本実施例による絶縁基板を示
し、該絶縁基板51は、ガラス,アルミナ,窒化アルミ
ニウム等の絶縁材料によって長方形の平板状に形成さ
れ、基端側が検出ホルダ26に取付けられる固定端とな
り、先端側が自由端となった第1,第2の基板部51
A,51Bとからなり、該第1,第2の基板部51A,
51Bの間には先端側から基端側に向けて延びる第1の
スリット52が形成されている。なお、前記第2の基板
部51Bは吸入空気の順方向(矢示A方向)の流れに対
して第1の基板部51Aよりも上流側に位置し、第2の
基板部51B上には後述の温度補償抵抗体58が形成さ
れている。
In the figure, reference numeral 51 denotes an insulating substrate according to the present embodiment. The insulating substrate 51 is made of an insulating material such as glass, alumina, aluminum nitride or the like into a rectangular flat plate shape, and the base end side is attached to the detection holder 26. The first and second substrate parts 51 having fixed ends and free ends on the tip side.
A and 51B, the first and second substrate portions 51A,
A first slit 52 extending from the front end side toward the base end side is formed between 51B. The second substrate portion 51B is located upstream of the first substrate portion 51A with respect to the flow of intake air in the forward direction (arrow A direction), and will be described later on the second substrate portion 51B. The temperature compensation resistor 58 is formed.

【0081】また、前記第1の基板部51Aは、先端側
が自由端側となって長方形状をなす主基板部51A1
と、該主基板部51A1 の基端側に位置して前記検出ホ
ルダ26に取付けられる副基板部51A2 とからなり、
該副基板部51A2 と主基板部51A1 との間には、幅
方向一側から他側(矢示A方向)に向けて第1のスリッ
ト52と連通する第2のスリット53が形成されてい
る。なお、前記第1のスリット52と第2のスリット5
3とは図5に示すように必ずしも連通しなくてもよい。
The first board portion 51A has a rectangular main board portion 51A1 with the free end side at the tip side.
And a sub-board portion 51A2 which is located on the base end side of the main board portion 51A1 and is attached to the detection holder 26,
A second slit 53 is formed between the sub-substrate portion 51A2 and the main substrate portion 51A1 so as to communicate with the first slit 52 from one side in the width direction toward the other side (direction of arrow A). . In addition, the first slit 52 and the second slit 5
It is not always necessary to communicate with 3 as shown in FIG.

【0082】54は発熱抵抗体を示し、該発熱抵抗体5
4は抵抗値RH を有するように、前記絶縁基板51の主
基板部51A1 上に白金等の感温性材料をプリント印刷
またはスパッタリング等の手段によって着膜形成され、
第1の実施例による発熱抵抗体31と同様に、中間抵抗
部54Aと、該中間抵抗部54Aの両端側から前記絶縁
基板51の長さ方向に互いに逆向きに延びた第1,第2
の延長抵抗部54B,54Cとからなり、前述した発熱
抵抗体31と同様に、第1の実施例で述べた電流制御用
トランジスタ42によって電流値を制御することによ
り、一定温度(例えば約240℃)をもって発熱するよ
うになっている。
Reference numeral 54 denotes a heating resistor, which is a heating resistor 5.
4 has a temperature sensitive material such as platinum deposited on the main substrate portion 51A1 of the insulating substrate 51 by means such as print printing or sputtering so as to have a resistance value RH;
Similar to the heating resistor 31 according to the first embodiment, the intermediate resistor portion 54A and the first and second portions extending in opposite directions in the length direction of the insulating substrate 51 from both end sides of the intermediate resistor portion 54A.
In the same manner as the heating resistor 31 described above, by controlling the current value by the current control transistor 42 described in the first embodiment, a constant temperature (for example, about 240 ° C.) is formed. ) With heat.

【0083】55,56は第1,第2の感温抵抗体を示
し、該第1,第2の感温抵抗体55,56は抵抗値RT
1,RT2をそれぞれ有するように、前記絶縁基板51の
主基板部51A1 上に白金等の感温性材料をプリント印
刷またはスパッタリング等の手段によって着膜形成され
ている。また、該第1の感温抵抗体55は、前記発熱抵
抗体54の第1の延長抵抗部54Bと中間抵抗部54A
との間に位置して、該延長抵抗部54Bと平行となるよ
うに形成され、前記第2の感温抵抗体56は、前記発熱
抵抗体54の第2の延長抵抗部54Cと中間抵抗部54
Aとの間に位置して、該第2の延長抵抗部54Cと平行
となるように形成されている。さらに、前記発熱抵抗体
54に対し、第1の感温抵抗体55は吸入空気の順方向
の流れ(矢示A方向)に対して上流側に位置し、第2の
感温抵抗体56は下流側に位置するようになっている。
Reference numerals 55 and 56 denote first and second temperature sensitive resistors, and the first and second temperature sensitive resistors 55 and 56 have resistance values RT.
A temperature sensitive material such as platinum is deposited on the main substrate portion 51A1 of the insulating substrate 51 by means such as print printing or sputtering so as to have 1 and RT2 respectively. The first temperature-sensitive resistor 55 includes a first extension resistor portion 54B and an intermediate resistor portion 54A of the heating resistor 54.
Is formed so as to be parallel to the extension resistance portion 54B, and the second temperature-sensitive resistor 56 includes the second extension resistance portion 54C of the heating resistor 54 and an intermediate resistance portion. 54
It is located between A and A, and is formed so as to be parallel to the second extension resistance portion 54C. Further, with respect to the heating resistor 54, the first temperature-sensitive resistor 55 is located on the upstream side with respect to the forward flow of the intake air (the direction of arrow A), and the second temperature-sensitive resistor 56 is It is located on the downstream side.

【0084】57は補助ヒータを示し、該補助ヒータ5
7は、前記絶縁基板51の副基板部51A2 上に位置し
て、前述した発熱抵抗体54、第1,第2の感温抵抗体
55,56と同様に白金等の感温性材料をプリント印刷
またはスパッタリング等の手段で抵抗値RHSとなる膜状
に形成している。また、該補助ヒータ57は絶縁基板5
1の副基板部51A2 を加熱することにより、主基板部
51A1 (発熱抵抗体54)からの熱が副基板部51A
2 を介して検出ホルダ26に逃げるのを防止している。
さらに、主基板部51A1 と副基板部51A2 との間に
はスリット53を形成しているから、補助ヒータ57か
らの熱によって第1の感温抵抗体55が加熱されるのを
防止している。
Reference numeral 57 denotes an auxiliary heater, which is the auxiliary heater 5.
7 is located on the sub-board portion 51A2 of the insulating substrate 51 and is printed with a temperature-sensitive material such as platinum like the heating resistor 54 and the first and second temperature-sensitive resistors 55 and 56 described above. It is formed into a film having a resistance value RHS by means such as printing or sputtering. Further, the auxiliary heater 57 is the insulating substrate 5
By heating the first sub-board portion 51A2, the heat from the main board portion 51A1 (heating resistor 54) is transferred to the sub-board portion 51A.
2 is prevented from escaping to the detection holder 26.
Further, since the slit 53 is formed between the main board portion 51A1 and the sub-board portion 51A2, the first temperature-sensitive resistor 55 is prevented from being heated by the heat from the auxiliary heater 57. .

【0085】58は温度補償抵抗としての温度補償抵抗
体を示し、該温度補償抵抗体58は前記第2の基板部5
1B上に形成され、プリント印刷またはスパッタリング
等の手段を用いて白金膜を着膜させることにより形成さ
れている。そして、該温度補償抵抗体58は発熱抵抗体
54よりも大きい抵抗値RK を有し、吸入空気の流れに
よる影響は受けず、温度変化のみを検出するようになっ
ている。
Reference numeral 58 represents a temperature compensating resistor as a temperature compensating resistor, and the temperature compensating resistor 58 is the second substrate portion 5.
1B, and is formed by depositing a platinum film using a means such as print printing or sputtering. The temperature compensating resistor 58 has a resistance value RK larger than that of the heat generating resistor 54, and is not affected by the flow of intake air, and detects only the temperature change.

【0086】59,59,…は絶縁基板51の基端側に
位置して形成された例えば7個の電極を示し、該各電極
59は絶縁基板51の幅方向に所定間隔をもって列設さ
れ、絶縁基板51の基端側を前記検出ホルダ26のスロ
ット内に差込むことにより、該検出ホルダ26側の各タ
ーミナル(図示せず)に接続される。
Denote 59, 59, ..., For example, seven electrodes formed at the base end side of the insulating substrate 51. The electrodes 59 are arranged in a row in the width direction of the insulating substrate 51 at a predetermined interval. By inserting the base end side of the insulating substrate 51 into the slot of the detection holder 26, it is connected to each terminal (not shown) on the detection holder 26 side.

【0087】このように、第2の実施例における絶縁基
板51を前述した第1の実施例による流量計本体22に
取付けることにより、前述した第1の実施例による流量
検出用の処理回路とほぼ同様の図6に示すような、電流
制御回路36と本実施例による検出処理回路60を構成
している。
As described above, by mounting the insulating substrate 51 in the second embodiment on the flowmeter main body 22 according to the above-described first embodiment, the processing circuit for detecting the flow rate according to the above-described first embodiment can be substantially constructed. Similarly, a current control circuit 36 and a detection processing circuit 60 according to the present embodiment are configured as shown in FIG.

【0088】ここで、前記電流制御回路36は前記第1
の実施例で述べた如くであるため、その動作説明は省略
する。
Here, the current control circuit 36 is connected to the first
Since it is as described in the embodiment, the description of the operation is omitted.

【0089】60は本実施例による検出処理回路を示
し、該検出処理回路60は、第1の流量検出回路45,
第2の流量検出回路46および後述する差動増幅回路6
1とから構成されている。
Reference numeral 60 represents a detection processing circuit according to the present embodiment. The detection processing circuit 60 includes the first flow rate detection circuit 45,
The second flow rate detection circuit 46 and the differential amplifier circuit 6 described later.
1 and 1.

【0090】ここで、61は減算手段としての差動増幅
回路を示し、該差動増幅回路61の入力側には、第1,
第2の流量検出回路45,46の接続点e,fが接続さ
れ、出力側にはコントロールユニット(図示せず)が接
続されている。そして、該差動増幅回路61では、下記
の数2のような演算を行い、出力信号Vout を出力する
ようになっている。
Here, reference numeral 61 denotes a differential amplifier circuit as a subtracting means, and the input side of the differential amplifier circuit 61 has the first and first terminals.
The connection points e and f of the second flow rate detection circuits 45 and 46 are connected, and a control unit (not shown) is connected to the output side. Then, the differential amplifier circuit 61 is configured to perform an operation such as the following Expression 2 and output an output signal Vout.

【0091】[0091]

【数2】Vout =(V1 −V2 )×k 但し、k:定数[Formula 2] Vout = (V1−V2) × k where k is a constant

【0092】このように、前記差動増幅回路61で第
1,第2の流量電圧V1,V2 の差を演算することによ
り、出力信号Vout は吸入空気の流量および流れ方向を
含んだ信号として出力することができる。
In this way, by calculating the difference between the first and second flow rate voltages V1 and V2 in the differential amplifier circuit 61, the output signal Vout is output as a signal including the flow rate and the flow direction of the intake air. can do.

【0093】このように構成される本実施例の熱式流量
検出装置においても、前記第1の実施例と同様に、吸入
空気の流量および流れ方向を検出することができると共
に、絶縁基板29の温度を一定温度に保持する電流制御
回路36と検出処理回路60とを別個に設けることによ
り、自動車のエンジン始動時における正確な流量検出を
開始するまでのヒートアップ時間を短くできる等の効果
を奏する。
Also in the thermal type flow rate detecting device of the present embodiment constructed as described above, the flow rate and the flow direction of the intake air can be detected and the insulating substrate 29 of the insulating substrate 29 can be detected similarly to the first embodiment. By separately providing the current control circuit 36 for holding the temperature at a constant temperature and the detection processing circuit 60, it is possible to shorten the heat-up time until the accurate flow rate detection is started when the engine of the automobile is started. .

【0094】なお、前記各実施例では、絶縁基板29に
着膜形成した発熱抵抗体31と第1,第2の感温抵抗体
32,33を図2のように形成したが、本発明はこれに
限らず、図7に示す変形例のように、絶縁基板71の先
端側から基端側に向けて延びるスリット72,73を形
成して、該スリット72,73により絶縁基板71を第
1,第2,第3の基板部71A,71B,71Cに分
け、該第1,第2,第3の基板部71A,71B,71
Cにそれぞれ発熱抵抗体74,第1の感温抵抗体75,
第2の感温抵抗体76を着膜形成するようにしてもよ
い。また、この場合、第1の基板部71Aは他の基板部
71B,71Cよりも比較的大きな表面積を有すること
が望ましい。さらにこの変形例の場合には、スリット7
2,73によって抵抗体74,75,76が区切られて
いるから、発熱抵抗体74の熱が絶縁基板71を介して
感温抵抗体75,76に影響するのを低減することがで
きる。さらにまた、2点鎖線でしめすような温度補償抵
抗37を一体形成してもよい。
In each of the above embodiments, the heating resistor 31 and the first and second temperature sensitive resistors 32 and 33 formed on the insulating substrate 29 are formed as shown in FIG. Not limited to this, as in the modified example shown in FIG. 7, slits 72 and 73 extending from the tip side to the base end side of the insulating substrate 71 are formed, and the insulating substrate 71 is moved to the first side by the slits 72 and 73. , The second and third board portions 71A, 71B, 71C, and the first, second and third board portions 71A, 71B, 71
The heating resistor 74, the first temperature-sensitive resistor 75, and
The second temperature sensitive resistor 76 may be formed as a film. In this case, it is desirable that the first board portion 71A has a relatively large surface area as compared with the other board portions 71B and 71C. Further, in the case of this modification, the slit 7
Since the resistors 74, 75, and 76 are divided by 2, 73, it is possible to reduce the influence of the heat of the heating resistor 74 on the temperature-sensitive resistors 75 and 76 via the insulating substrate 71. Furthermore, the temperature compensating resistor 37 as indicated by the chain double-dashed line may be integrally formed.

【0095】また、前記実施例では、第1の感温抵抗体
32(55)を吸入空気の流れ方向に対して上流側に、
第2の感温抵抗体33(56)を下流側に設けるように
したが、本発明はこれに限らず、第1の感温抵抗体32
(55)を下流側に、第2の感温抵抗体33(56)を
上流側に位置させてもよく、この場合、比較回路48か
らの方向検出電圧Vb を反転させて選択回路50に出力
すればよい。
Further, in the above embodiment, the first temperature sensitive resistor 32 (55) is provided on the upstream side with respect to the flow direction of the intake air.
Although the second temperature sensitive resistor 33 (56) is provided on the downstream side, the present invention is not limited to this, and the first temperature sensitive resistor 32 is provided.
(55) may be positioned on the downstream side and the second temperature sensitive resistor 33 (56) may be positioned on the upstream side. In this case, the direction detection voltage Vb from the comparison circuit 48 is inverted and output to the selection circuit 50. do it.

【0096】さらに、前記各実施例では、流量計本体2
2の巻線部24に巻回した基準抵抗23を吸気管2内に
突出させて設けるものとして述べたが、本発明はこれに
限らず、例えば吸気管2の外周に設ける回路ケーシング
27内に基準抵抗23を流量調整抵抗38等と共に配設
する構成としてもよい。
Further, in each of the above embodiments, the flowmeter main body 2
Although it has been described that the reference resistance 23 wound around the second winding portion 24 is provided so as to project into the intake pipe 2, the present invention is not limited to this. For example, the reference resistance 23 is provided inside the circuit casing 27 provided on the outer periphery of the intake pipe 2. The reference resistor 23 may be arranged together with the flow rate adjusting resistor 38 and the like.

【0097】さらに、前記各実施例では、補助ヒータ3
4,57を設けるものとして述べたが、本発明は補助ヒ
ータ34,57のないものであっても使用するができる
ことは勿論である。
Further, in each of the above embodiments, the auxiliary heater 3
Although it has been described that the auxiliary heaters 34 and 57 are provided, the present invention can be used without the auxiliary heaters 34 and 57.

【0098】[0098]

【発明の効果】請求項1の発明のように、絶縁基板上に
は、発熱抵抗体と吸入空気の流れ方向に対して該発熱抵
抗体の前,後に離間して第1,第2の感温抵抗体とを形
成し、温度制御手段によって発熱抵抗体に印加する電流
値を制御して前記絶縁基板を一定温度に保持しておく構
成により、例えば吸気管内に順方向の吸入空気の流れが
発生したときには、発熱抵抗体の前側に位置した第1の
感温抵抗体の冷却量は大きく、後側に位置した第2の感
温抵抗体は発熱抵抗体からの熱を受けた空気によって冷
却されるため冷却量は小さくなる。これにより、第1の
流量検出手段から出力される第1の流量信号と第2の流
量検出手段から出力される第2の流量信号の各信号のう
ち、例えば第1の流量信号が第2の流量信号よりも大き
くなったときには、この各流量信号を加算手段により流
量加算信号として出力すると共に、流れ方向検出手段に
よって各信号を比較して順方向の流れを示す流れ方向信
号を出力し、流量信号出力手段によって流量加算信号を
流量検出信号として流れ方向と流量を出力することがで
きる。
According to the invention of claim 1, on the insulating substrate, the first and second sensing elements are spaced apart in front of and behind the heating resistor with respect to the flow direction of the intake air. A temperature resistor is formed, and the current value applied to the heating resistor is controlled by the temperature control means to keep the insulating substrate at a constant temperature. When it occurs, the cooling amount of the first temperature-sensitive resistor located on the front side of the heating resistor is large, and the second temperature-sensitive resistor located on the rear side is cooled by the air receiving heat from the heating resistor. Therefore, the cooling amount becomes small. Accordingly, for example, of the first flow rate signal output from the first flow rate detection means and the second flow rate signal output from the second flow rate detection means, for example, the first flow rate signal is the second flow rate signal. When the flow rate signal becomes larger than the flow rate signal, the flow rate signal is output as a flow rate addition signal by the adding means, and the flow direction detecting means compares the signals to output a flow direction signal indicating a forward flow. The signal output means can output the flow direction and the flow rate by using the flow rate addition signal as the flow rate detection signal.

【0099】一方、吸入空気の流れが逆方向の流れとな
ったときには、各流量検出手段から出力される各流量検
出手段のうち、例えば第2の流量信号が第1の流量信号
よりも大きくなったときには、この各流量信号を加算手
段により流量加算信号として出力すると共に、流れ方向
検出手段によって各信号を比較して逆方向の流れを示す
流れ方向信号を出力し、流量信号出力手段によって流量
加算信号を反転させて流量検出信号として流れ方向と流
量を出力することができる。従って、コントロールユニ
ットでは、この流量加算信号に基づいて正確な空燃比制
御を行い、エンジン性能を向上することができる。
On the other hand, when the flow of the intake air is in the opposite direction, for example, the second flow rate signal among the flow rate detecting means output from each flow rate detecting means becomes larger than the first flow rate signal. In this case, the flow rate signals are output as flow rate addition signals by the addition means, the flow direction detection means compares the signals, and a flow direction signal indicating a reverse flow is output, and the flow rate signal output means outputs the flow rate addition signals. It is possible to invert the signal and output the flow direction and the flow rate as a flow rate detection signal. Therefore, the control unit can accurately perform the air-fuel ratio control based on the flow rate addition signal and improve the engine performance.

【0100】請求項2の発明のように、絶縁基板上に
は、発熱抵抗体と吸入空気の流れ方向に対して該発熱抵
抗体の前,後に離間して第1,第2の感温抵抗体とを形
成し、温度制御手段によって発熱抵抗体に印加する電流
値を制御して前記絶縁基板を一定温度にしておく構成と
することにより、例えば吸気管内に順方向の吸入空気の
流れが発生したときには、発熱抵抗体の前側に位置した
第1の感温抵抗体の冷却量は大きく、後側に位置した第
2の感温抵抗体は発熱抵抗体からの熱を受けた空気によ
って冷却されるため冷却量は小さくなる。これにより、
第1の流量検出手段から出力される第1の流量信号と第
2の流量検出手段から出力される第2の流量信号の各信
号のうち、例えば第1の流量信号が第2の流量信号より
も大きくなったときには、減算手段によって第1の流量
信号から第2の流量信号を減算することにより、正の信
号となった流量検出信号として流れ方向と流量を出力す
ることができる。
According to the second aspect of the present invention, the first and second temperature-sensitive resistors are provided on the insulating substrate, spaced apart before and after the heating resistor with respect to the flow direction of the intake air. By forming a body and controlling the current value applied to the heating resistor by the temperature control means to keep the insulating substrate at a constant temperature, for example, a forward flow of intake air occurs in the intake pipe. In this case, the cooling amount of the first temperature-sensitive resistor located on the front side of the heating resistor is large, and the second temperature-sensitive resistor located on the rear side is cooled by the air receiving heat from the heating resistor. Therefore, the cooling amount becomes small. This allows
Of the respective signals of the first flow rate signal output from the first flow rate detection means and the second flow rate signal output from the second flow rate detection means, for example, the first flow rate signal is greater than the second flow rate signal. When becomes larger, the subtraction means subtracts the second flow rate signal from the first flow rate signal to output the flow direction and the flow rate as a positive flow rate detection signal.

【0101】一方、吸入空気の流れが逆方向の流れとな
ったときには、各流量検出手段から出力される各流量検
出手段のうち、例えば第2の流量信号が第1の流量信号
よりも大きくなったときには、減算手段によって第1の
流量信号から第2の流量信号を減算することにより、負
の信号となった流量検出信号として流れ方向と流量を出
力することができる。
On the other hand, when the flow of the intake air is in the opposite direction, for example, the second flow rate signal of each flow rate detecting means output from each flow rate detecting means becomes larger than the first flow rate signal. In this case, by subtracting the second flow rate signal from the first flow rate signal by the subtracting means, the flow direction and the flow rate can be output as the negative flow rate detection signal.

【0102】請求項3の発明では、単一の絶縁基板上に
発熱抵抗体、第1,第2の感温抵抗体と共に補助ヒータ
を着膜形成でき、部品点数を削減することができる。そ
して、補助ヒータを着膜形成する副基板部と前記発熱抵
抗体および第1,第2の感温抵抗体を着膜形成する主基
板部との間にスリットを形成することにより、例えば発
熱抵抗体で加熱される主基板部から副基板部に熱が逃げ
るのを防止でき、主基板部を早期に温度上昇させること
ができると共に、副基板部を補助ヒータによって早期に
加熱でき、主基板部から流量計本体側に熱が逃げるのを
抑えることができる。そして、エンジン始動時における
ヒートアップ性能を向上でき、エンジンの始動時におけ
る流量検出精度および応答性を高めることができる。
According to the third aspect of the invention, the auxiliary heater can be formed on the single insulating substrate together with the heating resistor, the first and second temperature sensitive resistors, and the number of parts can be reduced. Then, by forming a slit between the sub-substrate part on which the auxiliary heater is formed into a film and the main substrate part on which the heating resistor and the first and second temperature-sensitive resistors are formed into a film, for example, the heat-generating resistor is formed. It is possible to prevent heat from escaping from the main board part heated by the body to the sub board part, and to raise the temperature of the main board part early, and at the same time, the sub board part can be heated early by the auxiliary heater. The heat can be suppressed from escaping from the flowmeter to the main body. Then, the heat-up performance at the engine start can be improved, and the flow rate detection accuracy and responsiveness at the engine start can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例による熱式空気流量検出装置を吸
気管に取付けた状態を示す縦断面図である。
FIG. 1 is a vertical cross-sectional view showing a state in which a thermal air flow rate detection device according to a first embodiment is attached to an intake pipe.

【図2】絶縁基板上に形成された発熱抵抗体、第1,第
2の感温抵抗体および補助ヒータを示す平面図である。
FIG. 2 is a plan view showing a heating resistor, first and second temperature-sensitive resistors and an auxiliary heater formed on an insulating substrate.

【図3】第1の実施例による熱式空気流量検出装置の回
路構成を示す回路図である。
FIG. 3 is a circuit diagram showing a circuit configuration of a thermal type air flow rate detecting device according to a first embodiment.

【図4】吸入空気の流速と方向検出電圧Vb との関係を
示す特性線図である。
FIG. 4 is a characteristic diagram showing a relationship between a flow velocity of intake air and a direction detection voltage Vb.

【図5】第2の実施例による絶縁基板上に形成された発
熱抵抗体、第1,第2の感温抵抗体、補助ヒータおよび
温度補償抵抗を示す平面図である。
FIG. 5 is a plan view showing a heating resistor, first and second temperature sensitive resistors, an auxiliary heater and a temperature compensation resistor formed on an insulating substrate according to a second embodiment.

【図6】第2の実施例による熱式空気流量検出装置の回
路構成を示す回路図である。
FIG. 6 is a circuit diagram showing a circuit configuration of a thermal type air flow rate detecting device according to a second embodiment.

【図7】変形例による絶縁基板上に形成された発熱抵抗
体および第1,第2の感温抵抗体を示す平面図である。
FIG. 7 is a plan view showing a heating resistor and first and second temperature-sensitive resistors formed on an insulating substrate according to a modification.

【図8】従来技術による熱式空気流量検出装置を吸気管
に取付けた状態を示す縦断面図である。
FIG. 8 is a vertical cross-sectional view showing a state in which a thermal air flow rate detecting device according to a conventional technique is attached to an intake pipe.

【図9】従来技術による流量計本体および発熱抵抗等を
示す斜視図である。
FIG. 9 is a perspective view showing a flowmeter main body, a heat generation resistance and the like according to a conventional technique.

【符号の説明】[Explanation of symbols]

21 熱式空気流量検出装置 22 流量計本体 23A,23B 基準抵抗 29,51,71 絶縁基板 29A,51A1 主基板部 29B,51A2 副基板部 30,52,53 スリット 31,54,74 発熱抵抗体 32,55,75 第1の感温抵抗体 33,56,76 第2の感温抵抗体 34,57 補助ヒータ 36 電流制御回路(温度制御手段) 40 ブリッジ回路 41 差動増幅回路 42 電流制御用トランジスタ 44,60 検出処理回路 45 第1の流量検出回路(第1の流量検出手段) 46 第2の流量検出回路(第2の流量検出手段) 47 加算回路(加算手段) 48 比較回路 49 反転回路 50 選択回路(流量信号出力手段) 61 差動増幅回路(減算手段) 21 Thermal Air Flow Rate Detection Device 22 Flowmeter Main Body 23A, 23B Reference Resistance 29, 51, 71 Insulating Substrate 29A, 51A1 Main Substrate 29B, 51A2 Sub Substrate 30, 52, 53 Slit 31, 54, 74 Heating Resistor 32 , 55, 75 First temperature sensitive resistor 33, 56, 76 Second temperature sensitive resistor 34, 57 Auxiliary heater 36 Current control circuit (temperature control means) 40 Bridge circuit 41 Differential amplifier circuit 42 Current control transistor 44, 60 Detection processing circuit 45 First flow rate detection circuit (first flow rate detection means) 46 Second flow rate detection circuit (second flow rate detection means) 47 Addition circuit (addition means) 48 Comparison circuit 49 Inversion circuit 50 Selection circuit (flow rate signal output means) 61 Differential amplifier circuit (subtraction means)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基端側が吸気管に取付けられる流量計本
体と、該流量計本体に設けられた絶縁基板と、該絶縁基
板上に設けられ、前記吸気管内を流れる吸入空気によっ
て冷却される発熱抵抗と、前記絶縁基板上に位置し、前
記流入空気の流れ方向に対して該発熱抵抗体の前,後に
離間して形成され、前記吸入空気の流れ方向に応じてそ
れぞれの抵抗値が変化する第1,第2の感温抵抗体と、
前記発熱抵抗体に印加する電流値を制御して該発熱抵抗
体を発熱させて前記絶縁基板を一定温度に保持する温度
制御手段と、前記第1の感温抵抗体の抵抗値変化によっ
て第1の流量信号を検出する第1の流量検出手段と、前
記第2の感温抵抗体の抵抗値変化によって第2の流量信
号を検出する第2の流量検出手段と、前記第1の流量検
出手段から出力される第1の流量信号と第2の流量検出
手段から出力される第2の流量信号とを加算して流量加
算信号を出力する加算手段と、前記第1の流量検出手段
から出力される第1の流量信号と第2の流量検出手段か
ら出力される第2の流量信号とを比較して流れ方向信号
を出力する流れ方向検出手段と、該流れ方向検出手段か
ら出力される流れ方向信号が順方向の流れ信号であると
検出したときには、前記加算手段から出力される流量加
算信号を流量検出信号として出力し、逆方向の流れ信号
であると検出したときには、前記加算手段から出力され
る流量加算信号を反転した信号を流量検出信号として出
力する流量信号出力手段とから構成してなる熱式空気流
量検出装置。
1. A flowmeter main body having a base end side attached to an intake pipe, an insulating substrate provided on the flowmeter main body, and heat generated by being cooled by intake air flowing through the intake pipe provided on the insulating substrate. A resistor and a resistor located on the insulating substrate and spaced apart from the heating resistor in the flow direction of the inflowing air. The resistance values of the resistors change according to the flow direction of the intake air. First and second temperature sensitive resistors,
A temperature control means for controlling a current value applied to the heat generating resistor to heat the heat generating resistor to keep the insulating substrate at a constant temperature; and a first temperature varying means for changing the resistance value of the first temperature sensitive resistor. Flow rate signal detecting means for detecting the flow rate signal of the second temperature sensing element, second flow rate detecting means for detecting the second flow rate signal based on a change in the resistance value of the second temperature sensitive resistor, and the first flow rate detecting means. Output from the first flow rate detection means, and addition means for adding a first flow rate signal output from the second flow rate detection means and a second flow rate signal output from the second flow rate detection means to output a flow rate addition signal. Flow direction detecting means for comparing the first flow rate signal and the second flow rate signal output from the second flow rate detecting means to output a flow direction signal, and a flow direction output from the flow direction detecting means When we detect that the signal is a forward flow signal The flow rate addition signal output from the adding means is output as a flow rate detection signal, and when it is detected as a flow signal in the opposite direction, a signal obtained by inverting the flow rate addition signal output from the adding means is output as a flow rate detection signal. And a thermal air flow rate detection device comprising:
【請求項2】 基端側が吸気管に取付けられる流量計本
体と、該流量計本体に設けられた絶縁基板と、該絶縁基
板上に設けられ、前記吸気管内を流れる吸入空気によっ
て冷却される発熱抵抗と、前記絶縁基板上に位置し、前
記流入空気の流れ方向に対して該発熱抵抗体の前,後に
離間して形成され、前記吸入空気の流れ方向に応じてそ
れぞれの抵抗値が変化する第1,第2の感温抵抗体と、
前記発熱抵抗体に印加する電流値を制御して該発熱抵抗
体を発熱させて前記絶縁基板を一定温度に保持する温度
制御手段と、前記第1の感温抵抗体の抵抗値変化によっ
て第1の流量信号を検出する第1の流量検出手段と、前
記第2の感温抵抗体の抵抗値変化によって第2の流量信
号を検出する第2の流量検出手段と、前記第1の流量検
出手段から出力される第1の流量信号と第2の流量検出
手段から出力される第2の流量信号との差を演算して流
量検出信号を出力する減算手段とから構成してなる熱式
空気流量検出装置。
2. A flowmeter main body whose base side is attached to an intake pipe, an insulating substrate provided on the flowmeter main body, and heat generated by being cooled by intake air flowing through the intake pipe provided on the insulating substrate. A resistor and a resistor located on the insulating substrate and spaced apart from the heating resistor in the flow direction of the inflowing air. The resistance values of the resistors change according to the flow direction of the intake air. First and second temperature sensitive resistors,
A temperature control means for controlling a current value applied to the heat generating resistor to heat the heat generating resistor to keep the insulating substrate at a constant temperature; and a first temperature varying means for changing the resistance value of the first temperature sensitive resistor. Flow rate signal detecting means for detecting the flow rate signal of the second temperature sensing element, second flow rate detecting means for detecting the second flow rate signal based on a change in the resistance value of the second temperature sensitive resistor, and the first flow rate detecting means. From the first flow rate signal output from the second flow rate detecting means and the second flow rate signal output from the second flow rate detecting means, and the subtracting means outputting the flow rate detecting signal. Detection device.
【請求項3】 前記絶縁基板は、先端側が自由端となっ
て、前記発熱抵抗体および第1,第2の感温抵抗体が着
膜形成される主基板部と、該主基板部の基端側に位置し
て前記流量計本体に取付けられ、前記発熱抵抗体を流量
計本体から離間させるための副基板部と、該副基板部と
主基板部との間に位置し、前記絶縁基板の幅方向一側か
ら他側に向けて延び、発熱抵抗体からの熱が該副基板部
に伝わるのを抑えるスリットとから構成し、前記副基板
部には該副基板部を加熱する補助ヒータを設けてなる請
求項1または2記載の熱式空気流量検出装置。
3. The insulating substrate has a main substrate portion on which a front end side is a free end and the heating resistor and the first and second temperature-sensitive resistors are formed into a film, and a base of the main substrate portion. A sub-board portion located at an end side and attached to the flowmeter main body, for separating the heating resistor from the flowmeter main body, and located between the sub-board portion and the main board portion. An auxiliary heater that extends from one side in the width direction to the other side and that suppresses the heat from the heating resistor from being transferred to the sub-board section, and the sub-board section heats the sub-board section. The thermal air flow rate detecting device according to claim 1 or 2, further comprising:
JP20930894A 1993-11-18 1994-08-10 Thermal air flow detector Expired - Fee Related JP3174222B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP20930894A JP3174222B2 (en) 1994-08-10 1994-08-10 Thermal air flow detector
US08/454,180 US5635635A (en) 1993-11-18 1994-11-18 Method and apparatus for detecting the intake air quantity of an engine
PCT/JP1994/001958 WO1995014215A1 (en) 1993-11-18 1994-11-18 Method and device for detecting suction air flow rate for an engine
DE4498938T DE4498938T1 (en) 1993-11-18 1994-11-18 Method and device for detecting the amount of intake air of an engine
DE4498938A DE4498938C2 (en) 1993-11-18 1994-11-18 Device for detecting the amount of intake air of an engine
KR1019950011576A KR100236437B1 (en) 1994-08-10 1995-05-11 Method and device for detecting suction air flow rate for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20930894A JP3174222B2 (en) 1994-08-10 1994-08-10 Thermal air flow detector

Publications (2)

Publication Number Publication Date
JPH0854270A true JPH0854270A (en) 1996-02-27
JP3174222B2 JP3174222B2 (en) 2001-06-11

Family

ID=16570811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20930894A Expired - Fee Related JP3174222B2 (en) 1993-11-18 1994-08-10 Thermal air flow detector

Country Status (2)

Country Link
JP (1) JP3174222B2 (en)
KR (1) KR100236437B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109982735A (en) * 2016-10-11 2019-07-05 菲舍尔和佩克尔保健有限公司 Method for detecting the connection error in humidification system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100610106B1 (en) * 2004-08-11 2006-08-10 현대자동차주식회사 method for decision of fuel injecting quantity in engine
CN106574733B (en) * 2014-08-09 2019-11-01 博格华纳公司 Pressure safety valve tunes feature

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109982735A (en) * 2016-10-11 2019-07-05 菲舍尔和佩克尔保健有限公司 Method for detecting the connection error in humidification system
CN109982735B (en) * 2016-10-11 2023-10-20 菲舍尔和佩克尔保健有限公司 Method for detecting connection errors in a humidification system

Also Published As

Publication number Publication date
KR100236437B1 (en) 1999-12-15
KR960008017A (en) 1996-03-22
JP3174222B2 (en) 2001-06-11

Similar Documents

Publication Publication Date Title
JP3133608B2 (en) Thermal air flow detector
JP4177183B2 (en) Thermal air flow meter
JP4608843B2 (en) Flow measuring device
WO1995014215A1 (en) Method and device for detecting suction air flow rate for an engine
JP3658170B2 (en) Flow sensor
JPH0854270A (en) Thermal type air flow rate detector
JP3184401B2 (en) Thermal air flow detector
JP3174234B2 (en) Thermal air flow detector
JP3095322B2 (en) Thermal air flow detector
JPH0829228A (en) Thermal air flow rate detection device
JPH07333027A (en) Thermal air flowmeter
JP3133609B2 (en) Thermal air flow detector
JP3184402B2 (en) Thermal air flow detector
JP3668921B2 (en) Flow detection element
JP2004340936A (en) Flow sensor
JPH0843162A (en) Thermal air flow rate detector
JPH08105779A (en) Thermal-type air flow-rate detector
JPH07239258A (en) Thermal air flow rate detector
JPH0843160A (en) Thermal air flow rate detector
JP3133617B2 (en) Thermal air flow detector
KR19990067365A (en) Device for measuring the flow rate of a fluid
JPH0552625A (en) Thermal type air flowmeter and engine control device
JPH04147016A (en) Thermal-type flow sensor
JP3663267B2 (en) Thermal air flow meter
JP2616150B2 (en) Thermal air flow meter

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090330

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090330

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees