JPH07333027A - Thermal air flowmeter - Google Patents

Thermal air flowmeter

Info

Publication number
JPH07333027A
JPH07333027A JP6150433A JP15043394A JPH07333027A JP H07333027 A JPH07333027 A JP H07333027A JP 6150433 A JP6150433 A JP 6150433A JP 15043394 A JP15043394 A JP 15043394A JP H07333027 A JPH07333027 A JP H07333027A
Authority
JP
Japan
Prior art keywords
flow rate
flow
resistor
heating resistor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6150433A
Other languages
Japanese (ja)
Other versions
JP2944890B2 (en
Inventor
Koji Nakazawa
弘次 中沢
Hiroshi Aoi
寛 青井
Masao Tsukada
正夫 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP6150433A priority Critical patent/JP2944890B2/en
Publication of JPH07333027A publication Critical patent/JPH07333027A/en
Application granted granted Critical
Publication of JP2944890B2 publication Critical patent/JP2944890B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To improve the sensitivity by measuring the direction of flowing and the flow rate of sucked air accurately to prevent erroneous detection caused by changes in flow in the normal and opposite directions. CONSTITUTION:A bridge circuit 34 is constituted of a heating resistor 30, a temperature compensating resistor 35 and resistor 36 and 23 and a change in resistance value of the heating resistor 30 when cooled is outputted to an inverting circuit 44 as flow rate detection voltage Va based on the flow rate of sucked air. On the other hand, second thermosensitive resistors 31 and 32 are provided before and after the heating resistor 30 to form a bridge circuit 39 being combined with resistors 40 and 41 and changes in resistance values of the resistors 31 and 32 are outputted to the inverting circuit 44 through a sample holding circuit 43 as the direction of flow detection voltage Vb based on the flow rate of the sucked air from a comparator circuit 42. Then, the flow rate detection voltage Va is inverted by the inverting circuit 44 when the flow is opposite in direction to obtain an output voltage V0 indicating the direction of flow and the flow rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば自動車用エンジ
ン等の吸入空気流量を検出するのに好適に用いられる熱
式空気流量検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal type air flow rate detecting device which is preferably used for detecting an intake air flow rate of an automobile engine or the like.

【0002】[0002]

【従来の技術】一般に、自動車用エンジン等では、エン
ジン本体の燃焼室内で燃料と吸入空気との混合気を燃焼
させ、その燃焼圧からエンジンの回転出力を取出すよう
にしており、燃料の噴射量等を演算する上で吸入空気流
量を検出することが重要なファクターとなっている。
2. Description of the Related Art Generally, in an engine for an automobile or the like, a mixture of fuel and intake air is burned in a combustion chamber of an engine body, and a rotational output of the engine is taken out from the combustion pressure. Detecting the intake air flow rate is an important factor in calculating the above.

【0003】そこで、図7ないし図9に従来技術の熱式
空気流量検出装置を示す。
Therefore, FIGS. 7 to 9 show a conventional thermal air flow rate detecting device.

【0004】図において、1は吸気管2の途中に設けら
れた熱式空気流量検出装置を示し、該熱式空気流量検出
装置1は、エンジン本体の燃焼室(図示せず)に向けて
矢示A方向に流通する吸入空気の流量を検出すべく、吸
気管2の途中に取付穴2Aを介して配設されている。
In the figure, reference numeral 1 denotes a thermal type air flow rate detecting device provided in the middle of an intake pipe 2. The thermal type air flow rate detecting device 1 is directed toward a combustion chamber (not shown) of an engine body. In order to detect the flow rate of the intake air flowing in the direction A shown, the intake pipe 2 is provided with a mounting hole 2A in the middle thereof.

【0005】3は熱式空気流量検出装置1の本体部を構
成する流量計本体を示し、該流量計本体3はインサート
モールド等の手段により図8に示すように成形され、巻
線状をなす後述の基準抵抗14を巻回すべく段付き円柱
状に形成された巻線部4と、該巻線部4の基端側に位置
して略円板状に形成され、後述の端子ピン8A〜8Dが
一体的に設けられた端子部5と、巻線部4の先端側から
吸気管2の径方向に延設され、吸気管2の中心部で後述
の発熱抵抗9および温度補償抵抗11を位置決めする検
出ホルダ6と、吸気管2の外側に位置して端子部5が接
続された後述の回路ケーシング7とから大略構成されて
いる。
Reference numeral 3 denotes a flow meter main body which constitutes the main body of the thermal type air flow rate detecting device 1. The flow meter main body 3 is formed by means such as insert molding as shown in FIG. A winding portion 4 formed in a stepped columnar shape for winding a reference resistor 14 described below, and a substantially disk-shaped portion located on the base end side of the winding portion 4 and having terminal pins 8A to 8D is integrally provided, and is extended in the radial direction of the intake pipe 2 from the tip end side of the winding part 4, and a heating resistor 9 and a temperature compensating resistor 11 to be described later are provided at the center of the intake pipe 2. A detection holder 6 for positioning and a circuit casing 7 to be described later, which is located outside the intake pipe 2 and to which a terminal portion 5 is connected, are roughly configured.

【0006】7は吸気管2の取付穴2Aを閉塞するよう
に該吸気管2の外周側に設けられた回路ケーシングを示
し、該回路ケーシング7は絶縁性の樹脂材料等によって
形成され、その底部側には吸気管2の取付穴2Aに嵌合
する嵌合部7Aが一体的に設けられている。そして、該
回路ケーシング7は、例えばセラミック材料等からなる
絶縁基板上に流量調整抵抗および差動増幅器(いずれも
図示せず)等を実装した状態で、これらを内蔵するよう
になっている。
Reference numeral 7 denotes a circuit casing provided on the outer peripheral side of the intake pipe 2 so as to close the mounting hole 2A of the intake pipe 2, and the circuit casing 7 is made of an insulating resin material or the like and has a bottom portion. A fitting portion 7A that fits into the mounting hole 2A of the intake pipe 2 is integrally provided on the side. The circuit casing 7 incorporates a flow rate adjusting resistor, a differential amplifier (both not shown), and the like mounted on an insulating substrate made of, for example, a ceramic material.

【0007】8A,8B,8C,8Dは流量計本体3の
端子部5から軸方向に突出した4本の端子ピン(全体と
して各端子ピン8という)を示し、該各端子ピン8は流
量計本体3の巻線部4および検出ホルダ6内に埋設され
た例えば4本の端子板(図示せず)に一体化して設けら
れ、回路ケーシング7のコネクタ部(図示せず)に着脱
可能に接続されるものである。
Reference numerals 8A, 8B, 8C, and 8D denote four terminal pins (collectively referred to as terminal pins 8) axially protruding from the terminal portion 5 of the flowmeter body 3, and each of the terminal pins 8 is a flowmeter. It is provided integrally with, for example, four terminal plates (not shown) embedded in the winding portion 4 of the main body 3 and the detection holder 6, and is detachably connected to the connector portion (not shown) of the circuit casing 7. It is what is done.

【0008】9は流量計本体3の検出ホルダ6にターミ
ナル10A,10Bを介して設けられたホットフィルム
型の発熱抵抗を示し、該発熱抵抗9は温度変化に敏感に
反応して抵抗値が変化する白金等の感温性材料からな
り、例えば酸化アルミニウム(以下、「アルミナ」とい
う)等のセラミック材料からなる絶縁性の筒体に白金線
を巻回したり、白金膜を蒸着したりして形成される小径
の発熱抵抗素子によって構成されている。そして、該発
熱抵抗9はバッテリ(図示せず)からの通電により、例
えば240℃前,後の温度をもって発熱した状態とな
り、吸気管2内を矢示A方向に流れる吸入空気によって
冷却されるときには、この吸入空気の流量に応じて抵抗
値が変化し流量の検出信号を出力させるものである。
Reference numeral 9 denotes a hot film type heating resistor provided on the detection holder 6 of the flowmeter main body 3 via terminals 10A and 10B. The heating resistor 9 is sensitive to temperature changes and its resistance value changes. Formed by winding a platinum wire or depositing a platinum film on an insulating cylinder made of a temperature-sensitive material such as platinum and made of a ceramic material such as aluminum oxide (hereinafter referred to as "alumina"). It is composed of a small-diameter heating resistor element. When the heating resistor 9 is energized by a battery (not shown), the heating resistor 9 is heated at a temperature of, for example, 240 ° C. before and after it is cooled by the intake air flowing in the intake pipe 2 in the direction of arrow A. The resistance value changes according to the flow rate of the intake air, and a detection signal of the flow rate is output.

【0009】11は発熱抵抗9の上流側に位置して流量
計本体3の検出ホルダ6に設けられた温度補償抵抗を示
し、該温度補償抵抗11は例えばアルミナ等のセラミッ
ク材料からなる絶縁基板上にスパッタリング等の手段を
用いて白金膜を着膜形成することにより形成され、白金
膜の両端は前記検出ホルダ6に立設されたターミナル1
2A,12B間に接続されている。
Reference numeral 11 denotes a temperature compensating resistor provided on the upstream side of the heat generating resistor 9 and provided in the detection holder 6 of the flowmeter main body 3. The temperature compensating resistor 11 is on an insulating substrate made of a ceramic material such as alumina. It is formed by depositing a platinum film on the substrate using a means such as sputtering, and both ends of the platinum film are provided on the detection holder 6 in a standing manner on the terminal 1.
It is connected between 2A and 12B.

【0010】13は流量計本体3の検出ホルダ6上に装
着される保護カバーを示し、該保護カバー13は検出ホ
ルダ6上に発熱抵抗9および温度補償抵抗11を実装し
た後に、図8中に矢印で示す如く検出ホルダ6に被着さ
れ、発熱抵抗9および温度補償抵抗11を保護すると共
に、吸入空気の流通を許すようになっている。なお、図
7中では発熱抵抗9および温度補償抵抗11を明示すべ
く、保護カバー13を検出ホルダ6から取外した状態で
示している。
Reference numeral 13 denotes a protective cover which is mounted on the detection holder 6 of the flowmeter main body 3. The protective cover 13 has a heating resistor 9 and a temperature compensating resistor 11 mounted on the detection holder 6, and is shown in FIG. As shown by the arrow, it is attached to the detection holder 6 to protect the heat generating resistance 9 and the temperature compensating resistance 11 and allow the intake air to flow. Note that in FIG. 7, in order to clearly show the heating resistor 9 and the temperature compensating resistor 11, the protective cover 13 is shown in a state of being removed from the detection holder 6.

【0011】さらに、14は流量計本体3の巻線部4に
巻回された巻線抵抗からなる基準抵抗を示し、該基準抵
抗14はその両端が、巻線部4に立設されたターミナル
15A,15Bに接続され、前記発熱抵抗9に直列接続
されている。ここで、前記各端子ピン8のうち、端子ピ
ン8Aはターミナル15Aに前記端子板を介して接続さ
れ、端子ピン8Bは他の端子板を介してターミナル15
B,10Aに接続されている。また、端子ピン8Cは別
の端子板を介してターミナル10B,12Bに接続さ
れ、端子ピン8Dはターミナル12Aにさらに別の端子
板を介して接続されている。
Reference numeral 14 denotes a reference resistance consisting of a winding resistance wound around the winding portion 4 of the flowmeter main body 3, and the reference resistance 14 has terminals at both ends thereof standing on the winding portion 4. 15A and 15B, which are connected in series with the heating resistor 9. Here, among the terminal pins 8, the terminal pin 8A is connected to the terminal 15A via the terminal plate, and the terminal pin 8B is connected to the terminal 15A via another terminal plate.
B, 10A. The terminal pin 8C is connected to the terminals 10B and 12B via another terminal plate, and the terminal pin 8D is connected to the terminal 12A via another terminal plate.

【0012】このように構成される従来技術の熱式空気
流量検出装置1は、自動車用エンジン等の吸入空気流量
を検出するときに、流量計本体3の端子部5を各端子ピ
ン8を介して回路ケーシング7のコネクタ部に接続した
状態で、流量計本体3の検出ホルダ6等を吸気管2内に
取付穴2Aを介して挿入し、該取付け穴2Aに吸気管2
の外周側から回路ケーシング7を取付けることによっ
て、検出ホルダ6に設けた発熱抵抗9および温度補償抵
抗11を吸気管2の中心部に配設する。
In the conventional thermal air flow rate detecting device 1 thus constructed, when detecting the intake air flow rate of an automobile engine or the like, the terminal portion 5 of the flow meter main body 3 is inserted through the terminal pins 8. The detection holder 6 of the flowmeter body 3 is inserted into the intake pipe 2 via the mounting hole 2A in a state where the intake pipe 2 is connected to the connector portion of the circuit casing 7.
By mounting the circuit casing 7 from the outer peripheral side, the heat generating resistor 9 and the temperature compensating resistor 11 provided in the detection holder 6 are arranged in the center of the intake pipe 2.

【0013】この場合、発熱抵抗9を基準抵抗14に直
列接続すると共に、温度補償抵抗11を回路ケーシング
7内の流量調整抵抗に直列接続することによって、これ
らの発熱抵抗9、基準抵抗14、温度補償抵抗11およ
び流量調整抵抗からブリッジ回路を構成し、これらに外
部から通電を行うことにより発熱抵抗9を240℃前,
後の温度をもって発熱させる。
In this case, the heating resistor 9 and the reference resistor 14 are connected in series, and the temperature compensating resistor 11 is connected in series to the flow rate adjusting resistor in the circuit casing 7. A bridge circuit is composed of the compensating resistor 11 and the flow rate adjusting resistor, and the heat generating resistor 9 is supplied 240 ° C. before by energizing these to the outside.
Heat at a later temperature.

【0014】そして、この状態で吸気管2内をエンジン
本体の燃焼室に向けて矢示A方向に吸入空気が流通する
ときには、この吸入空気の流れにより発熱抵抗9が冷却
されて該発熱抵抗9の抵抗値が変化するから、該発熱抵
抗9に直列接続された基準抵抗14の両端電圧に基づい
て吸入空気の流量に対応した検出信号を出力電圧の変化
として検出し、この出力電圧の変化を図示しないコント
ロールユニットに出力する。さらに、コントロールユニ
ットではこの出力電圧に基づいて燃料の噴射量等の演算
を行っている。
In this state, when intake air flows through the intake pipe 2 toward the combustion chamber of the engine body in the direction of arrow A, the flow of the intake air cools the heat generating resistor 9 and the heat generating resistor 9 is cooled. Of the reference resistor 14 connected in series with the heating resistor 9, a detection signal corresponding to the flow rate of the intake air is detected as a change in the output voltage, and the change in the output voltage is detected. Output to a control unit (not shown). Further, the control unit calculates the fuel injection amount and the like based on this output voltage.

【0015】[0015]

【発明が解決しようとする課題】ところで、上述した従
来技術では、吸気管2内を流れる吸入空気の流れで発熱
抵抗9が冷却されるのを利用して、該発熱抵抗9の抵抗
値変化に基づき吸入空気流量を検出する構成であるか
ら、該発熱抵抗9は図7中の矢示A方向(順方向)に流
れる吸入空気流によって冷却されると共に、矢示B方向
(逆方向)に流れる空気流によっても冷却されてしま
い、この逆方向の空気流により吸入空気流量を誤検出す
るという問題がある。
By the way, in the above-mentioned prior art, the fact that the heating resistor 9 is cooled by the flow of the intake air flowing through the intake pipe 2 is utilized to change the resistance value of the heating resistor 9. Since the intake air flow rate is detected based on this, the heat generating resistor 9 is cooled by the intake air flow flowing in the direction A (forward direction) shown in FIG. 7 and flows in the direction B (reverse direction) shown in FIG. There is a problem in that the air flow is also cooled and the intake air flow rate is erroneously detected by the air flow in the opposite direction.

【0016】即ち、多気筒のシリンダを備えたエンジン
本体では、各シリンダ内でそれぞれピストンが往復動す
るに応じて各吸気弁(図示せず)が開弁する毎に、吸入
空気が各シリンダ内に向けて矢示A方向(順方向)に吸
込まれるから、吸気管2内を流れる空気の流速は各吸気
弁の開,閉弁に応じて図9に例示する如く増減を繰返し
脈動するようになる。
That is, in an engine body having a multi-cylinder cylinder, intake air is introduced into each cylinder each time an intake valve (not shown) is opened as the piston reciprocates in each cylinder. Since it is sucked in the direction A (forward direction) indicated by the arrow, the flow velocity of the air flowing in the intake pipe 2 repeatedly pulsates as shown in FIG. 9 according to the opening and closing of each intake valve. become.

【0017】特に、エンジンの回転数が低速域から中速
域等に達して吸,排気量が増大してくると、吸気弁と排
気弁(図示せず)とがオーバラップし、排気の一部が吸
気弁の開弁に伴って吸気管2内に吹返すことがあるた
め、このときに吸気管2内では図9に示す時間t1 ,t
2 間のように流速が負(マイナス)となって、矢示B方
向(逆方向)に流れる空気流が発生し、吸入空気流量を
誤検出するという問題が生じる。
In particular, when the engine speed reaches from a low speed region to a medium speed region and the like, and the intake and exhaust amounts increase, the intake valve and the exhaust valve (not shown) overlap each other and the exhaust gas Since the part may blow back into the intake pipe 2 when the intake valve is opened, the time t1, t shown in FIG.
The flow velocity becomes negative (minus) like between 2 and an air flow that flows in the direction of arrow B (reverse direction) is generated, which causes a problem that the intake air flow rate is erroneously detected.

【0018】本発明は上述した従来技術の問題に鑑みな
されたもので、本発明は逆方向の空気流により吸入空気
流量を誤検出するのを防止でき、流量の検出精度を大幅
に向上できると共に、検出信号を流量に対して線形にし
た熱式空気流量検出装置を提供することを目的としてい
る。
The present invention has been made in view of the above-mentioned problems of the prior art. The present invention can prevent erroneous detection of the intake air flow rate due to the air flow in the opposite direction, and can greatly improve the flow rate detection accuracy. An object of the present invention is to provide a thermal type air flow rate detection device in which a detection signal is linear with respect to a flow rate.

【0019】[0019]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、基端側が吸気管に取付けられた流量計本
体と、前記吸気管内に位置して該流量計本体に設けら
れ、前記吸気管内を流れる吸入空気によって冷却される
発熱抵抗とを備えてなる熱式空気流量検出装置に適用さ
れる。
In order to solve the above problems, the present invention provides a flowmeter main body having a base end side attached to an intake pipe, and a flowmeter main body located inside the intake pipe, The present invention is applied to a thermal air flow rate detecting device including a heat generation resistance cooled by intake air flowing in the intake pipe.

【0020】そして、請求項1の発明が採用する特徴
は、前記発熱抵抗を含んでブリッジ回路を形成し、該ブ
リッジ回路を形成する前記発熱抵抗の抵抗値の変化を流
量に対応した流量検出信号として出力する流量検出手段
と、前記発熱抵抗の前,後に離間して設けられ、前記吸
入空気の流れ方向に対して抵抗値が変化する第1,第2
の感温抵抗と、該第1,第2の感温抵抗の抵抗値変化に
より吸入空気の流れ方向に対応した流れ方向検出信号と
して検出する流れ方向検出手段と、該流れ方向検出手段
からの流れ方向検出信号に基づいて前記流量検出手段か
ら出力される流量検出信号をサンプルホールド信号とす
るサンプルホールド手段と、該サンプルホールド手段か
らのサンプルホールド信号に基づいて吸入空気の流れが
逆方向のときにのみ、前記流量検出手段から出力される
流量検出信号を反転させる信号反転手段とを設けたこと
にある。
A feature of the invention of claim 1 is that a bridge circuit is formed by including the heating resistor, and a change in the resistance value of the heating resistor forming the bridge circuit corresponds to a flow rate detection signal. And the flow rate detecting means for outputting as the heat generating resistor, and the first and second resistors which are provided before and after the heat generating resistor and whose resistance value changes in the flow direction of the intake air.
And a flow direction detection means for detecting as a flow direction detection signal corresponding to the flow direction of the intake air based on the resistance values of the first and second temperature resistances, and the flow from the flow direction detection means. When the flow rate of the intake air is in the opposite direction based on the sample hold signal from the sample hold means, the sample hold means uses the flow rate detection signal output from the flow rate detection means as the sample hold signal based on the direction detection signal. Only, the signal inverting means for inverting the flow rate detection signal output from the flow rate detecting means is provided.

【0021】また、請求項2の発明では、前記発熱抵抗
は、前記流量計本体に取付けられた絶縁基板上に着膜形
成され、かつ該絶縁基板の少なくとも長さ方向に膜状に
延びる発熱抵抗体として構成し、前記第1,第2の感温
抵抗は、前記絶縁基板上の吸入空気の流れ方向に対し該
発熱抵抗体の前,後にそれぞれ離間して着膜形成された
第1,第2の感温抵抗体として構成したことにある。
Further, in the invention of claim 2, the heating resistor is formed on the insulating substrate attached to the flowmeter main body, and the heating resistor extends in a film shape at least in the length direction of the insulating substrate. The first and second temperature-sensitive resistors are formed as a film and are separated from each other in front of and behind the heat-generating resistor in the flow direction of the intake air on the insulating substrate. It is configured as a temperature sensitive resistor of No.2.

【0022】[0022]

【作用】上記構成により、請求項1の発明では、流量検
出手段は、発熱抵抗を含んでブリッジ回路を形成し、該
ブリッジ回路中の発熱抵抗の抵抗値変化に基づいて流量
に対応した流量検出信号を取出し、流れ方向検出手段
は、前記第1,第2の感温抵抗の抵抗値変化から吸入空
気の流れ方向を流れ方向検出信号として出力する。ま
た、サンプルホールド手段では、該流れ方向検出手段か
らの流れ方向検出信号に基づいて前記流量検出手段から
出力される流量検出信号をサンプルホールド信号として
出力し、信号反転手段では該サンプルホールド手段から
のサンプルホールド信号に基づいて前記流量検出手段か
ら出力される流量検出信号を反転させることにより、該
信号反転手段からの信号は吸入空気流量の流量と流れ方
向を示した信号とすることができる。
With the above structure, in the first aspect of the invention, the flow rate detecting means forms the bridge circuit including the heat generating resistance, and the flow rate detecting means corresponds to the flow rate based on the change in the resistance value of the heat generating resistance in the bridge circuit. The signal is taken out, and the flow direction detecting means outputs the flow direction of the intake air as a flow direction detection signal from the change in the resistance value of the first and second temperature-sensitive resistors. The sample hold means outputs the flow rate detection signal output from the flow rate detection means as a sample hold signal based on the flow direction detection signal from the flow direction detection means, and the signal inversion means outputs the flow rate detection signal from the sample hold means. By inverting the flow rate detection signal output from the flow rate detecting means based on the sample hold signal, the signal from the signal inverting means can be a signal indicating the flow rate and the flow direction of the intake air flow rate.

【0023】また、請求項2の発明では、吸入空気の流
れ方向に対し、発熱抵抗体の前,後に離間して絶縁基板
上に形成した第1,第2の感温抵抗体が、前記吸入空気
の流れ方向に応じてそれぞれ抵抗値が変化するから、第
1の感温抵抗体が第2の感温抵抗体よりも抵抗値が小さ
いときには、例えば空気の流れ方向を順方向として検出
でき、第2の感温抵抗体が第1の感温抵抗体よりも抵抗
値が小さいときには、空気の流れを逆方向として検出で
きる。さらに、単一の絶縁基板上に発熱抵抗体、第1,
第2の感温抵抗体を着膜形成しているから、部品点数を
削減することができる。
Further, in the second aspect of the invention, the first and second temperature sensitive resistors formed on the insulating substrate are separated from each other before and after the heat generating resistor with respect to the flow direction of the intake air. Since the resistance value changes depending on the flow direction of air, when the resistance value of the first temperature-sensitive resistor is smaller than that of the second temperature-sensitive resistor, for example, the air flow direction can be detected as the forward direction, When the resistance value of the second temperature-sensitive resistor is smaller than that of the first temperature-sensitive resistor, the air flow can be detected in the opposite direction. In addition, a heating resistor,
Since the second temperature-sensitive resistor is film-formed, the number of parts can be reduced.

【0024】[0024]

【実施例】以下、本発明の実施例を図1ないし図6に基
づき説明する。なお、実施例では前述した従来技術と同
一の構成要素に同一の符号を付し、その説明を省略する
ものとする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIGS. In the embodiments, the same components as those of the above-described conventional technique are designated by the same reference numerals, and the description thereof will be omitted.

【0025】図中、21は本実施例による熱式空気流量
検出装置、22は該熱式空気流量検出装置21の本体部
を構成する流量計本体を示し、該流量計本体22は従来
技術で述べた流量計本体3とほぼ同様に、抵抗値R1 を
有する一の基準抵抗23が巻回される巻線部24と、該
巻線部24の基端側に位置し、複数の端子ピン(図示せ
ず)が一体的に設けられた端子部25と、巻線部24の
先端側から吸気管2の径方向に延設された検出ホルダ2
6と、後述する回路ケーシング27とから大略構成され
ている。
In the figure, 21 is a thermal air flow rate detecting device according to this embodiment, 22 is a flow meter main body which constitutes the main body of the thermal air flow rate detecting device 21, and the flow meter main body 22 is a conventional technique. Similar to the flowmeter body 3 described above, a winding portion 24 around which one reference resistance 23 having a resistance value R1 is wound, and a plurality of terminal pins (located at the base end side of the winding portion 24) (Not shown) integrally provided, and the detection holder 2 extending in the radial direction of the intake pipe 2 from the tip side of the winding portion 24.
6 and a circuit casing 27 which will be described later.

【0026】しかし、前記流量計本体22には検出ホル
ダ26の基端側に後述の絶縁基板29を着脱可能に取付
けられるためのスロット(図示せず)が形成され、該検
出ホルダ26は図1中に示す如く吸気管2の中心部に、
絶縁基板29を介して後述の発熱抵抗体30等を位置決
めする構成となっている。なお、検出ホルダ26には従
来技術で述べた保護カバー13と同様の保護カバー(図
示せず)が取付けられるようになっている。
However, a slot (not shown) for detachably mounting an insulating substrate 29, which will be described later, is formed on the base end side of the detection holder 26 in the flowmeter main body 22, and the detection holder 26 is shown in FIG. As shown in the center of the intake pipe 2,
A heating resistor 30, which will be described later, and the like are positioned via the insulating substrate 29. A protective cover (not shown) similar to the protective cover 13 described in the related art is attached to the detection holder 26.

【0027】27は吸気管2の取付穴2Aを閉塞するよ
うに該吸気管2の外周側に設けられた回路ケーシングを
示し、該回路ケーシング27は従来技術で述べた回路ケ
ーシング7とほぼ同様に形成され、吸気管2の取付穴2
Aに嵌合する嵌合部27Aを有しているものの、該回路
ケーシング27は、例えばセラミック材料等からなる絶
縁基板(図示せず)上に後述の流量調整抵抗36および
差動増幅回路37等を実装した状態で、これらを内蔵す
るようになっている。なお、28A,28Bは前記基準
抵抗23の巻線が接続されるターミナルである。
Reference numeral 27 denotes a circuit casing provided on the outer peripheral side of the intake pipe 2 so as to close the mounting hole 2A of the intake pipe 2, and the circuit casing 27 is substantially the same as the circuit casing 7 described in the prior art. Formed, mounting hole 2 for intake pipe 2
Although it has a fitting portion 27A that fits into A, the circuit casing 27 has a flow rate adjusting resistor 36, a differential amplifier circuit 37, etc. described later on an insulating substrate (not shown) made of, for example, a ceramic material. It is designed to be built with these installed. 28A and 28B are terminals to which the winding of the reference resistor 23 is connected.

【0028】29は検出ホルダ26に取付けられる絶縁
基板を示し、該絶縁基板29は、図2に示すように、ガ
ラス,アルミナ,窒化アルミニウム等の絶縁材料によ
り、長さ寸法が15〜20mm前後、幅寸法が3〜7mm前
後となった長方形の平板状に形成されている。また、該
絶縁基板29は、基端側が検出ホルダ26のスロットに
着脱可能に取付けられる固定端となり、先端側が自由端
となっている。
Reference numeral 29 denotes an insulating substrate attached to the detection holder 26. As shown in FIG. 2, the insulating substrate 29 is made of an insulating material such as glass, alumina or aluminum nitride and has a length dimension of about 15 to 20 mm. It is formed in the shape of a rectangular flat plate having a width of about 3 to 7 mm. Further, the insulating substrate 29 has a fixed end removably attached to the slot of the detection holder 26 on the base end side and a free end on the tip end side.

【0029】30は絶縁基板29に形成された発熱抵抗
を構成する発熱抵抗体を示し、該発熱抵抗体30はプリ
ント印刷またはスパッタリング等の手段を用いて白金膜
を着膜させることにより、抵抗値RH を有するように形
成されている。また、該発熱抵抗体30は図2に示す如
く、絶縁基板29の長さ方向中間部に位置して幅方向に
延びた中間抵抗部30Aと、該中間部30Aの両端側か
ら長さ方向に互いに逆向きに延びた第1,第2の延長抵
抗部30B,30Cとから構成されている。
Reference numeral 30 denotes a heating resistor forming a heating resistor formed on the insulating substrate 29. The heating resistor 30 has a resistance value obtained by depositing a platinum film by means of printing or sputtering. Formed to have RH. Further, as shown in FIG. 2, the heating resistor 30 is located at an intermediate portion in the lengthwise direction of the insulating substrate 29 and has an intermediate resistance portion 30A extending in the width direction, and from both ends of the intermediate portion 30A in the lengthwise direction. It is composed of first and second extension resistance portions 30B and 30C extending in opposite directions.

【0030】ここで、前記発熱抵抗体30は中間抵抗部
30Aおよび延長抵抗部30B,30Cは全体としてク
ランク形状をなすことによって、絶縁基板29上に発熱
抵抗体30と第1,第2の感温抵抗体31,32をコン
パクトに形成すると共に、発熱抵抗体30の表面積(実
装面積)を可及的に増大させ、例えば吸気管2内を流れ
る吸入空気との接触面積を大きくできるようにしてい
る。
Here, the heating resistor 30 has the intermediate resistance portion 30A and the extension resistance portions 30B and 30C having a crank shape as a whole, so that the heating resistor 30 and the first and second senses are formed on the insulating substrate 29. The temperature resistors 31 and 32 are made compact, and the surface area (mounting area) of the heating resistor 30 is increased as much as possible so that, for example, the contact area with the intake air flowing through the intake pipe 2 can be increased. There is.

【0031】また、前記発熱抵抗体30は、後述する電
流制御用トランジスタ38によって電流値が制御され、
温度を一定温度(例えば約240℃)に保つように加熱
されている。
The current value of the heating resistor 30 is controlled by a current control transistor 38 described later,
It is heated so that the temperature is kept constant (for example, about 240 ° C.).

【0032】31,32は絶縁基板29上に白金等の感
温性材料をプリント印刷またはスパッタリング等の手段
で着膜させることによって形成された第1,第2の感温
抵抗体を示し、該第1の感温抵抗体31は上流側に位置
して抵抗値RT1を有するように着膜形成され、第2の感
温抵抗体32は下流側に位置して抵抗値RT2を有するよ
うに着膜形成されている。
Reference numerals 31 and 32 denote first and second temperature sensitive resistors formed by depositing a temperature sensitive material such as platinum on the insulating substrate 29 by means such as print printing or sputtering. The first temperature-sensitive resistor 31 is formed on the upstream side so as to have a resistance value RT1, and the second temperature-sensitive resistor 32 is positioned on the downstream side so as to have a resistance value RT2. A film is formed.

【0033】ここで、前記第1の感温抵抗体31は、前
記発熱抵抗体30の中間抵抗部30Aと第1の延長抵抗
部30Bとの間に位置し、該延長抵抗部30Bと平行に
延びるように長方形状に形成されている。また、第2の
感温抵抗体32は、中間抵抗部30Aと第2の延長抵抗
部30Cとの間に位置し、該延長抵抗部30Cと平行に
延びるように長方形状に形成されている。そして、感温
抵抗体31,32は絶縁基板29上で実質的に均一な面
積をもって形成され、通常時には図3に示すようにサブ
電源VS から電流が印加され、発熱抵抗体30よりも低
い温度で発熱しているから、該感温抵抗体31,32
は、流れる空気によって効果的に冷却され、抵抗値の減
少として空気の流れ方向を感度良く検出することができ
る。
Here, the first temperature-sensitive resistor 31 is located between the intermediate resistance portion 30A of the heat-generating resistor 30 and the first extension resistance portion 30B, and is parallel to the extension resistance portion 30B. It is formed in a rectangular shape so as to extend. Further, the second temperature-sensitive resistor 32 is located between the intermediate resistance portion 30A and the second extension resistance portion 30C, and is formed in a rectangular shape so as to extend parallel to the extension resistance portion 30C. The temperature sensitive resistors 31 and 32 are formed with a substantially uniform area on the insulating substrate 29, and a current is normally applied from the sub power source VS as shown in FIG. Since the heat is generated in the temperature sensitive resistor 31, 32
Are effectively cooled by the flowing air, and the flow direction of the air can be detected with high sensitivity as a decrease in the resistance value.

【0034】さらに、前記第1の感温抵抗体31は吸入
空気の順方向の流れ(矢示A方向)に対して上流側に位
置し、第2の感温抵抗体32は下流側に位置し、かつ感
温抵抗体31,32の間には発熱抵抗体30が位置して
いる。これにより、吸入空気が順方向の矢示A方向の流
れの場合には、第1の感温抵抗体31が冷やされ、第2
の感温抵抗体32が発熱抵抗体30からの熱を受けるこ
とによって、第1の感温抵抗体31の抵抗値RT1は小さ
くなり、第2の感温抵抗体32の抵抗値RT2は実質的に
変化しない。
Further, the first temperature-sensitive resistor 31 is located upstream with respect to the forward flow of the intake air (the direction of arrow A), and the second temperature-sensitive resistor 32 is located downstream. In addition, the heating resistor 30 is located between the temperature sensitive resistors 31 and 32. As a result, when the intake air flows in the forward direction indicated by the arrow A, the first temperature-sensitive resistor 31 is cooled and the second temperature-sensitive resistor 31 is cooled.
The resistance value RT1 of the first temperature-sensitive resistor 31 is reduced and the resistance value RT2 of the second temperature-sensitive resistor 32 is substantially reduced by receiving the heat from the heat-generating resistor 30. Does not change to

【0035】一方、吸気管2内を流れる吸入空気の流れ
が逆方向の矢示B方向となった場合には、第2の感温抵
抗体32が冷やされ、第1の感温抵抗体31が発熱抵抗
体30からの熱を受けることによって、第2の感温抵抗
体32の抵抗値RT2は小さくなり、第1の感温抵抗体3
1の抵抗値RT1は実質的に変化しない。この結果、第1
の感温抵抗体31の抵抗値RT1と第2の感温抵抗体32
の抵抗値RT2とを比較することにより、吸入空気の流れ
方向が順方向であるか、逆方向であるかを判別するよう
になっている。
On the other hand, when the flow of the intake air flowing through the intake pipe 2 is in the opposite direction of the arrow B, the second temperature sensitive resistor 32 is cooled and the first temperature sensitive resistor 31. By receiving heat from the heat-generating resistor 30, the resistance value RT2 of the second temperature-sensitive resistor 32 becomes small and the first temperature-sensitive resistor 3
The resistance value RT1 of 1 does not substantially change. As a result, the first
Resistance value RT1 of the temperature sensitive resistor 31 and the second temperature sensitive resistor 32 of
By comparing with the resistance value RT2 of the above, it is determined whether the flow direction of the intake air is the forward direction or the reverse direction.

【0036】33,33,…は絶縁基板29の基端側に
位置して形成された例えば5個の電極を示し、該各電極
33は絶縁基板29の幅方向に所定間隔をもって列設さ
れ、絶縁基板29の基端側を前記検出ホルダ26のスロ
ット内に差込むことにより、該検出ホルダ26側の各タ
ーミナル(図示せず)に接続される。そして、該各電極
33を介して絶縁基板29上に形成された発熱抵抗体3
0、第1,第2の感温抵抗体31,32等を回路ケーシ
ング27内に設けられた各電子部品と接続し、図3に示
す流量検出用の処理回路を構成している。
Reference numerals 33, 33, ... Denote, for example, five electrodes formed on the base end side of the insulating substrate 29. The electrodes 33 are arranged in a row in the width direction of the insulating substrate 29 at a predetermined interval. By inserting the base end side of the insulating substrate 29 into the slot of the detection holder 26, it is connected to each terminal (not shown) on the detection holder 26 side. Then, the heating resistor 3 formed on the insulating substrate 29 via the respective electrodes 33.
0, the first and second temperature sensitive resistors 31, 32, etc. are connected to respective electronic parts provided in the circuit casing 27 to form a processing circuit for flow rate detection shown in FIG.

【0037】次に、図3は本実施例による流量検出用の
処理回路を示す。
Next, FIG. 3 shows a processing circuit for flow rate detection according to this embodiment.

【0038】図3において、34は後述する差動増幅回
路37と共に流量検出手段を構成する一方のブリッジ回
路を示し、該ブリッジ回路34は、発熱抵抗体30、温
度補償抵抗35、一の基準抵抗23および抵抗値R2 を
有する流量調整抵抗36からなり、それぞれ対向する辺
の抵抗値の積が等しくなるブリッジとして構成され、発
熱抵抗体30と温度補償抵抗35との接続点aは電流制
御用トランジスタ38のエミッタ側に接続され、基準抵
抗23と流量調整抵抗36との接続点bはアースに接続
されている。
In FIG. 3, reference numeral 34 designates one bridge circuit which constitutes a flow rate detecting means together with a differential amplifier circuit 37 which will be described later. The bridge circuit 34 includes a heating resistor 30, a temperature compensating resistor 35 and one reference resistor. 23 and a flow rate adjusting resistor 36 having a resistance value R2, which are configured as a bridge in which the products of the resistance values of the opposite sides are equal, and the connection point a between the heating resistor 30 and the temperature compensation resistor 35 is a current control transistor. 38 is connected to the emitter side, and a connection point b between the reference resistor 23 and the flow rate adjusting resistor 36 is connected to the ground.

【0039】また、前記ブリッジ回路34は、発熱抵抗
体30と基準抵抗23、温度補償抵抗35と流量調整抵
抗36はそれぞれ直列接続され、それぞれの接続点c,
dは差動増幅回路37の入力端子に接続され、また接続
点cは後述するサンプルホールド回路43と反転回路4
4に接続されている。そして、差動増幅回路35から出
力される信号は、ブリッジ回路34の印加電流を制御す
る電流制御用トランジスタ38の電流制御電圧となり、
ブリッジ回路34の接続点cからの出力は、基準抵抗2
3の両端電圧となり、この電圧は発熱抵抗体30が流量
によって冷却される度合いを示す流量検出信号としての
流量検出電圧Va となる。
In the bridge circuit 34, the heating resistor 30, the reference resistor 23, the temperature compensating resistor 35, and the flow rate adjusting resistor 36 are connected in series, respectively.
d is connected to the input terminal of the differential amplifier circuit 37, and the connection point c is a sample hold circuit 43 and an inverting circuit 4 which will be described later.
4 is connected. The signal output from the differential amplifier circuit 35 becomes the current control voltage of the current control transistor 38 that controls the applied current to the bridge circuit 34,
The output from the connection point c of the bridge circuit 34 is the reference resistance 2
3 becomes the voltage across both ends of the voltage, and this voltage becomes the flow rate detection voltage Va as a flow rate detection signal indicating the degree to which the heating resistor 30 is cooled by the flow rate.

【0040】ここで、前記温度補償抵抗35は、発熱抵
抗体30の近傍に位置して検出ホルダ26に設けられ、
かつ該温度補償抵抗35は吸入空気の流れによる影響を
受けず、吸入空気の温度によってのみ抵抗値RK が変化
するものである。
Here, the temperature compensating resistor 35 is provided in the detection holder 26 in the vicinity of the heating resistor 30.
Moreover, the temperature compensating resistor 35 is not affected by the flow of the intake air, and the resistance value RK changes only depending on the temperature of the intake air.

【0041】このように構成されるブリッジ回路34で
は、該ブリッジ回路34が平衡状態にあるときには、差
動増幅回路37からの電流制御電圧は零となると共に、
接続点cからは平衡状態にあるときの基準抵抗23の両
端電圧(流量検出電圧Va )がサンプルホールド回路4
3と反転回路44に出力される。一方、ブリッジ回路3
4の平衡が崩れたとき、即ち吸入空気によって発熱抵抗
体30が冷却されたときには、該発熱抵抗体30の抵抗
値RH が小さくなっているから、差動増幅回路37から
は電流制御用トランジスタ38のベースに電流制御電圧
が出力される。これにより、電流制御用トランジスタ3
8はブリッジ回路34に印加する電流を制御して冷やさ
れた発熱抵抗体30を一定温度にして該ブリッジ回路3
4を平衡状態に戻す。このとき、ブリッジ回路34の接
続点cから出力される増加した電流値は、基準抵抗23
の両端電圧として検出され、流量検出電圧Va としてサ
ンプルホールド回路43と反転回路44に出力される。
In the bridge circuit 34 thus constructed, when the bridge circuit 34 is in a balanced state, the current control voltage from the differential amplifier circuit 37 becomes zero and
From the connection point c, the voltage across the reference resistor 23 (flow detection voltage Va) in the equilibrium state is the sample hold circuit 4
3 and the inverting circuit 44. On the other hand, bridge circuit 3
4 is out of balance, that is, when the heating resistor 30 is cooled by the intake air, the resistance value RH of the heating resistor 30 becomes small. The current control voltage is output to the base of. As a result, the current control transistor 3
Reference numeral 8 controls the current applied to the bridge circuit 34 to keep the cooled heating resistor 30 at a constant temperature.
Return 4 to equilibrium. At this time, the increased current value output from the connection point c of the bridge circuit 34 is
Is detected as a voltage across both ends of the signal and is output to the sample hold circuit 43 and the inverting circuit 44 as a flow rate detection voltage Va.

【0042】ここで、図4の1段目に示すように、吸入
空気の流量Qが正,逆方向に変動すると、2段目に示す
流量検出信号としての流量検出電圧Va は流量Qが逆方
向の流れになっときに再び正方向の流れとなり、流量検
出電圧Va は流量Qは検出できるものの、流れ方向の検
出はできないものである。なお、吸入空気の流れが正方
向から逆方向に、逆方向から正方向に変わるときに流量
検出電圧Va が折返す点を折返し電圧値Va0とする。
Here, as shown in the first stage of FIG. 4, when the flow rate Q of the intake air fluctuates in the positive and reverse directions, the flow rate detection voltage Va as the flow rate detection signal shown in the second stage has the reverse flow rate Q. When the flow becomes the directional flow, the flow again becomes the positive direction, and the flow rate detection voltage Va can detect the flow rate Q, but cannot detect the flow direction. The point at which the flow rate detection voltage Va turns back when the flow of the intake air changes from the forward direction to the reverse direction and from the reverse direction to the forward direction is referred to as a folding voltage value Va0.

【0043】38は電流制御用トランジスタを示し、該
電流制御用トランジスタ38は、コレクタ側がバッテリ
電圧VB に接続され、ベース側が前記差動増幅回路37
の出力側に接続され、エミッタ側が前記ブリッジ回路3
4の接続点aに接続されている。そして、該電流制御用
トランジスタ38は、前記差動増幅回路37からの電流
制御電圧でベース電流を変化させてエミッタ電流を制御
する。これにより、電流制御用トランジスタ38はブリ
ッジ回路34に印加される電流値を制御し、発熱抵抗体
30の温度を一定温度に保つフィードバック制御を行っ
ている。
Reference numeral 38 denotes a current controlling transistor. The current controlling transistor 38 has a collector side connected to the battery voltage VB and a base side connected to the differential amplifier circuit 37.
Connected to the output side of the bridge circuit 3 on the emitter side.
4 is connected to the connection point a. The current control transistor 38 controls the emitter current by changing the base current with the current control voltage from the differential amplifier circuit 37. As a result, the current control transistor 38 controls the value of the current applied to the bridge circuit 34, and performs feedback control to keep the temperature of the heating resistor 30 at a constant temperature.

【0044】次に、39は後述する比較回路42と共に
流れ方向検出手段を構成する他方のブリッジ回路を示
し、該ブリッジ回路39は、第1,第2の感温抵抗体3
1,32と他の基準抵抗40,41からなり、それぞれ
対応する辺の抵抗値が等しくなるブリッジとして構成さ
れ、第1,第2の感温抵抗体31,32の接続点eはサ
ブ電源VS (例えば、3V)に接続され、基準抵抗4
0,41の接続点fはアースに接続されている。
Next, 39 shows the other bridge circuit which constitutes the flow direction detecting means together with the comparison circuit 42 which will be described later. The bridge circuit 39 is the first and second temperature sensitive resistors 3.
1 and 32 and other reference resistors 40 and 41, each of which is configured as a bridge whose corresponding sides have the same resistance value, and the connection point e of the first and second temperature sensitive resistors 31 and 32 is a sub power supply VS. (For example, 3V), the reference resistance 4
The connection point f of 0 and 41 is connected to the ground.

【0045】また、前記ブリッジ回路39は、第1の感
温抵抗体31と基準抵抗40、第2の感温抵抗体32と
基準抵抗41はそれぞれ直列接続され、その接続点g,
hは比較回路42の入力端子に接続され、該比較回路4
2の出力端子はサンプルホールド回路43を介して反転
回路44に接続されている。このため、当該ブリッジ回
路39が平衡状態にあるときには、吸入空気の流量Qが
零であるから、感温抵抗体31,32の抵抗値には差が
なく、比較回路42を介して出力される流れ方向検出信
号としての流れ方向検出電圧Vb は電圧値零となる。一
方、ブリッジ回路39の平衡が崩れたとき、即ち吸入空
気の流れによってどちらか一方の感温抵抗体31,32
の抵抗値が変化した場合には、接続点g−hからは抵抗
値の差(RT1−RT2)が電圧として比較回路42に入力
され、この抵抗値の差に基づいて吸入空気の流れ方向を
示す信号(以下、「流れ方向検出電圧Vb 」という)を
サンプルホールド回路43に出力する。
In the bridge circuit 39, the first temperature sensitive resistor 31 and the reference resistor 40 are connected in series, and the second temperature sensitive resistor 32 and the reference resistor 41 are connected in series.
h is connected to the input terminal of the comparison circuit 42, and the comparison circuit 4
The output terminal of 2 is connected to the inverting circuit 44 through the sample hold circuit 43. Therefore, when the bridge circuit 39 is in the equilibrium state, since the flow rate Q of the intake air is zero, there is no difference in the resistance values of the temperature sensitive resistors 31 and 32, and the temperature sensitive resistors 31 and 32 are output via the comparison circuit 42. The flow direction detection voltage Vb as the flow direction detection signal has a voltage value of zero. On the other hand, when the balance of the bridge circuit 39 is lost, that is, due to the flow of the intake air, either one of the temperature sensitive resistors 31, 32 is
When the resistance value of No. 2 changes, the difference in resistance value (RT1−RT2) is input as a voltage from the connection point gh to the comparison circuit 42, and the flow direction of the intake air is changed based on the difference in resistance value. The signal shown below (hereinafter referred to as “flow direction detection voltage Vb”) is output to the sample hold circuit 43.

【0046】ここで、図4の3段目に吸入空気の流量Q
に対する流れ方向検出電圧Vb の関係を示す。吸入空気
の流れ方向がA方向(順方向)のときには、前記比較回
路42からは所定電圧値Vb0となる流れ方向検出電圧V
b を出力し、空気の流れ方向がA方向からB方向(逆方
向)に変わったときには、比較回路42からは電圧値零
となる流れ方向検出電圧Vb を出力する。
Here, in the third stage of FIG. 4, the intake air flow rate Q
The relationship of the flow direction detection voltage Vb with respect to is shown. When the flow direction of the intake air is the A direction (forward direction), the comparison circuit 42 outputs the flow direction detection voltage V having a predetermined voltage value Vb0.
b is output, and when the air flow direction changes from the A direction to the B direction (reverse direction), the comparison circuit 42 outputs the flow direction detection voltage Vb having a voltage value of zero.

【0047】43は比較回路42の出力側に接続された
サンプルホールド手段としてのサンプルホールド回路を
示し、該サンプルホールド回路43は、ブリッジ回路3
4から出力される流量検出電圧Va を比較回路42から
出力される流れ方向検出電圧Vb に基づいて波形変形す
るもので、図4の4段目に示すサンプルホールド電圧V
c のように、流れ方向検出電圧Vb が所定電圧値Vb0の
ときには、流量検出電圧Va をそのまま出力し、流れ方
向検出電圧Vb が電圧値零のときには流量検出電圧Va
を折返し電圧値Va0でホールドして、この値を出力す
る。
Reference numeral 43 denotes a sample and hold circuit as sample and hold means connected to the output side of the comparison circuit 42. The sample and hold circuit 43 is a bridge circuit 3
4 for waveform-modifying the flow rate detection voltage Va output from the comparator circuit 42 based on the flow direction detection voltage Vb output from the comparison circuit 42. The sample hold voltage V shown in the fourth stage of FIG.
When the flow direction detection voltage Vb has a predetermined voltage value Vb0 as in c, the flow rate detection voltage Va is output as it is, and when the flow direction detection voltage Vb has a voltage value zero, the flow rate detection voltage Va.
Is held at the return voltage value Va0, and this value is output.

【0048】44は信号反転手段としての反転回路を示
し、該反転回路44はオペアンプ45と、該オペアンプ
45の反転端子とブリッジ回路34の接続点cとの間に
接続された入力抵抗46と、前記オペアンプ45の反転
端子と出力端子との間に接続された帰還抵抗47とから
構成され、前記オペアンプ45の非反転端子にはサンプ
ルホールド回路43の出力側が接続され、前記各抵抗4
6,47は同じ抵抗値となっている。そして、該反転回
路44はブリッジ回路34から出力される流量検出電圧
Va をサンプルホールド回路43から出力されるサンプ
ルホールド電圧Vc に基づいて波形変形するものであ
る。
Reference numeral 44 denotes an inverting circuit as a signal inverting means. The inverting circuit 44 has an operational amplifier 45 and an input resistor 46 connected between the inverting terminal of the operational amplifier 45 and the connection point c of the bridge circuit 34. It is composed of a feedback resistor 47 connected between the inverting terminal and the output terminal of the operational amplifier 45. The output side of the sample hold circuit 43 is connected to the non-inverting terminal of the operational amplifier 45, and each of the resistors 4 is connected.
6, 47 have the same resistance value. The inversion circuit 44 transforms the flow rate detection voltage Va output from the bridge circuit 34 based on the sample hold voltage Vc output from the sample hold circuit 43.

【0049】即ち、図4の5段目に示すように、吸入空
気の流れが正方向のときには、流量検出電圧Va とサン
プルホールド電圧Vc は同じ波形となるから、流量検出
電圧Va をそのまま出力電圧V0 として出力する。一
方、吸入空気の流れが逆方向のときには増幅率を−1と
して作動するから、サンプルホールド電圧Vc が折返し
電圧値Va0でホールドされている間は、出力電圧V0 は
流量検出電圧Va を折返し電圧値Va0に対して反転した
波形として出力する。これにより、吸入空気の流量Qお
よび流れ方向に対応した出力電圧V0 としてコントロー
ルユニット(図示せず)に出力する。
That is, as shown in the fifth stage of FIG. 4, when the flow of intake air is in the positive direction, the flow rate detection voltage Va and the sample hold voltage Vc have the same waveform, so the flow rate detection voltage Va is directly output voltage. Output as V0. On the other hand, since the amplification factor is -1 when the flow of the intake air is in the opposite direction, the output voltage V0 changes the flow rate detection voltage Va to the return voltage value while the sample hold voltage Vc is held at the return voltage value Va0. Output as a waveform inverted with respect to Va0. As a result, the output voltage V0 corresponding to the flow rate Q and the flow direction of the intake air is output to the control unit (not shown).

【0050】本実施例による熱式空気流量検出装置21
は上述の如き構成を有するもので、次に吸入空気の流量
検出動作について説明する。
Thermal air flow rate detection device 21 according to the present embodiment
Has a configuration as described above. Next, the operation for detecting the flow rate of the intake air will be described.

【0051】ここで、吸入空気の流れが、矢示A方向
(順方向)の場合には、絶縁基板29上の上流側に位置
した第1の感温抵抗体31がこの空気の流れによって冷
やされ、下流側に位置した第2の感温抵抗体32は発熱
抵抗体30からの熱を受ける。この結果、ブリッジ回路
39では平衡が崩れ、比較回路42からは正(所定電圧
値Vb0)となる流れ方向検出電圧Vb が出力される。
Here, when the flow of the intake air is in the direction of arrow A (forward direction), the first temperature-sensitive resistor 31 located on the upstream side of the insulating substrate 29 is cooled by this flow of air. The second temperature-sensitive resistor 32 located on the downstream side receives heat from the heat-generating resistor 30. As a result, the bridge circuit 39 loses balance, and the comparator circuit 42 outputs the positive flow direction detection voltage Vb (predetermined voltage value Vb0).

【0052】また、ブリッジ回路34では、吸入空気の
流れによって発熱抵抗体30が冷却され、この冷却によ
って発熱抵抗体30の抵抗値RH が減少するが、差動増
幅回路37と電流制御用トランジスタ38により該発熱
抵抗体30を一定温度にするために、当該ブリッジ回路
34に印加される電流値を増加させ、この増加した電流
値を基準抵抗23でその両端電圧として検出する。この
結果、該ブリッジ回路34からは正となる流量検出電圧
Va が反転回路44に向けて出力される。
In the bridge circuit 34, the heating resistor 30 is cooled by the flow of the intake air, and the resistance value RH of the heating resistor 30 is reduced by this cooling, but the differential amplifier circuit 37 and the current control transistor 38 are used. In order to keep the heating resistor 30 at a constant temperature, the current value applied to the bridge circuit 34 is increased, and the increased current value is detected by the reference resistor 23 as the voltage across it. As a result, the positive flow rate detection voltage Va is output from the bridge circuit 34 to the inverting circuit 44.

【0053】さらに、サンプルホールド回路43では、
比較回路42から出力された流量検出電圧Va を流れ方
向検出電圧Vb に基づいて波形変形し、流れ方向検出電
圧Vb が所定電圧値Vb0となっているから、流量検出電
圧Va をサンプルホールド電圧Vc として出力する。
Further, in the sample hold circuit 43,
The flow rate detection voltage Va output from the comparison circuit 42 is waveform-shaped based on the flow direction detection voltage Vb, and the flow direction detection voltage Vb has a predetermined voltage value Vb0. Therefore, the flow rate detection voltage Va is set as the sample hold voltage Vc. Output.

【0054】そして、反転回路44では、流量検出電圧
Va をサンプルホールド電圧Vc に基づいて波形変形
し、流量検出電圧Va とサンプルホールド電圧Vc とは
差がないから、流量検出電圧Va を流量Qの流量および
正の流れ方向に対応した出力電圧V0 としてコントロー
ルユニット(図示せず)に出力する。
In the inverting circuit 44, the flow rate detection voltage Va is waveform-transformed based on the sample hold voltage Vc, and there is no difference between the flow rate detection voltage Va and the sample hold voltage Vc. The output voltage V0 corresponding to the flow rate and the positive flow direction is output to a control unit (not shown).

【0055】一方、空気の流れが矢示B方向(逆方向)
の場合には、絶縁基板29の上の下流側に位置した第2
の感温抵抗体32がこの空気の流れによって冷やされ、
上流側に位置した第1の感温抵抗体31は発熱抵抗体3
0からの熱を受ける。この結果、ブリッジ回路39の平
衡は崩れ、比較回路42からは電圧値零となる逆方向の
流れ検出電圧Vb が出力される。
On the other hand, the air flow is in the direction of arrow B (reverse direction).
In the case of, the second located on the downstream side of the insulating substrate 29
The temperature-sensitive resistor 32 of is cooled by this air flow,
The first temperature-sensitive resistor 31 located on the upstream side is the heating resistor 3
Receive heat from 0. As a result, the balance of the bridge circuit 39 is lost, and the comparison circuit 42 outputs the reverse flow detection voltage Vb having a voltage value of zero.

【0056】また、ブリッジ回路34では、逆方向の吸
入空気の流れによって発熱抵抗体30は冷却され、この
冷却により正の流量検出電圧Va が反転回路44に向け
て出力される。
In the bridge circuit 34, the heating resistor 30 is cooled by the flow of the intake air in the reverse direction, and the positive flow rate detection voltage Va is output to the inverting circuit 44 by this cooling.

【0057】さらに、サンプルホールド回路43では、
比較回路42から出力された流量検出電圧Va を流れ方
向検出電圧Vb に基づいて波形変形し、流れ方向検出電
圧Vb が電圧値零であるから、流量検出電圧Va の折返
し電圧値Va0をサンプルホールド電圧Vc として出力す
る。
Further, in the sample hold circuit 43,
The flow rate detection voltage Va output from the comparison circuit 42 is waveform-transformed based on the flow direction detection voltage Vb, and since the flow direction detection voltage Vb has a voltage value of zero, the return voltage value Va0 of the flow rate detection voltage Va is a sample hold voltage. Output as Vc.

【0058】そして、反転回路44では、流量検出電圧
Va をサンプルホールド電圧Vc に基づいて波形変形
し、サンプルホールド電圧Vc は折返し電圧値Va0とな
っているから、流量検出電圧Va を折返し電圧値Va0に
対して反転させ、出力電圧V0として出力する。
In the inverting circuit 44, the flow rate detection voltage Va is waveform-transformed based on the sample hold voltage Vc, and the sample hold voltage Vc has a folding voltage value Va0. Therefore, the flow rate detection voltage Va is folded voltage value Va0. And output as the output voltage V0.

【0059】この結果、反転回路44から出力される出
力電圧V0 は、流量Qの流れ方向が正,逆方向に変動し
た場合でも、図4の5段目に示すように、流量と流れ方
向を正確に連続的に検出することができる。
As a result, the output voltage V0 output from the inverting circuit 44 changes the flow rate and the flow direction as shown in the fifth stage of FIG. 4 even when the flow direction of the flow rate Q fluctuates in the forward and reverse directions. It can be detected accurately and continuously.

【0060】かくして、本実施例による熱式空気流量検
出装置21においては、絶縁基板29上に、発熱抵抗体
30を形成すると共に、該発熱抵抗体30の前,後に位
置して第1,第2の感温抵抗体31,32を形成するよ
うにしたから、部品点数の削減を図ると共に、前記第
1,第2の感温抵抗体31,32によって空気の流れ方
向を検出することができ、発熱抵抗体30の抵抗値の変
化から吸入空気の流量を検出することができる。
Thus, in the thermal type air flow rate detecting device 21 according to the present embodiment, the heating resistor 30 is formed on the insulating substrate 29, and the first and first heaters are located in front of and behind the heating resistor 30, respectively. Since the two temperature sensitive resistors 31 and 32 are formed, the number of parts can be reduced, and the air flow direction can be detected by the first and second temperature sensitive resistors 31 and 32. The flow rate of the intake air can be detected from the change in the resistance value of the heating resistor 30.

【0061】また、一方のブリッジ回路34の発熱抵抗
体30の流量Qによる抵抗値変化を流量検出電圧Va と
して反転回路44に出力すると共に、他方のブリッジ回
路39の第1,第2の感温抵抗体31,32の流量Qに
よる抵抗値変化を比較回路42を介して流れ方向に対し
て正,負となる流れ方向検出電圧Vb として出力する。
また、サンプルホールド回路43では、流れ方向検出電
圧Vb に基づいて流量検出電圧Va を波形変形し、正方
向の流れのときには流量検出電圧Va をそのまま出力
し、逆方向の流れのときには流量検出電圧Va の折返し
電圧値Va0をサンプルホールド電圧Vc として反転回路
44に出力する。そして、該反転回路44では、流量検
出電圧Va をサンプルホールド電圧Vc に基づいて波形
変形し、正方向の流れのときには流量検出電圧Va をそ
のまま出力電圧V0 として出力し、逆方向の流れのとき
には流量検出電圧Va を折返し電圧値Va0で反転させた
電圧として出力させることができる。これにより、反転
回路44から出力される出力電圧V0 を、流量Qの流れ
方向と流量を示した電圧とするがことができ、吸入空気
の流量Qを連続的に高精度に検出することができる。
Further, the resistance value change due to the flow rate Q of the heating resistor 30 of one bridge circuit 34 is output to the inverting circuit 44 as the flow rate detection voltage Va, and the first and second temperature sensing of the other bridge circuit 39 is performed. A change in resistance value due to the flow rate Q of the resistors 31 and 32 is output as a flow direction detection voltage Vb that is positive or negative with respect to the flow direction via the comparison circuit 42.
Further, in the sample hold circuit 43, the flow rate detection voltage Va is waveform-transformed based on the flow direction detection voltage Vb, the flow rate detection voltage Va is output as it is in the case of the forward direction flow, and the flow rate detection voltage Va in the case of the reverse direction flow. The return voltage value Va0 is output to the inverting circuit 44 as the sample hold voltage Vc. Then, in the inverting circuit 44, the flow rate detection voltage Va is waveform-transformed based on the sample hold voltage Vc, the flow rate detection voltage Va is output as it is as the output voltage V0 when the flow is in the forward direction, and the flow rate is flowed when it is in the reverse direction. It is possible to output the detected voltage Va as a voltage inverted at the folding voltage value Va0. As a result, the output voltage V0 output from the inverting circuit 44 can be set to a voltage indicating the flow direction and flow rate of the flow rate Q, and the flow rate Q of the intake air can be continuously and accurately detected. .

【0062】さらに、前記第1,第2の感温抵抗体3
1,32をサブ電源VS によって発熱させているから、
空気の流れによる冷却作用で感温抵抗体31,32の抵
抗値RT1,RT2を敏感に変化させることができ、空気の
流れ方向の検出を感度良く行うことができる。
Further, the first and second temperature sensitive resistors 3
Since the sub power supplies VS generate heat for 1, 32,
The resistance values RT1 and RT2 of the temperature sensitive resistors 31 and 32 can be sensitively changed by the cooling action of the air flow, and the air flow direction can be detected with high sensitivity.

【0063】この結果、コントロールユニットでは平均
化した流量Qに基づいて空燃比制御、点火時期制御、噴
射量制御等を行うことにより、正確なエンジン制御を可
能とする。
As a result, the control unit enables accurate engine control by performing air-fuel ratio control, ignition timing control, injection amount control, etc. based on the averaged flow rate Q.

【0064】なお、前記実施例では、温度補償抵抗35
を検出ホルダ26の近傍に設けるものとして述べたが、
本発明はこれに限らず、図5の第1の変形例に示すよう
に、絶縁基板29′に先端側から基端側に向けてスリッ
トSを形成して第1の基板部29A′と第2の基板部2
9B′とに分け、該第1の基板部29A′には発熱抵抗
体30、第1,第2の感温抵抗体31,32を着膜形成
し、第2の基板部29B′には温度補償抵抗35を膜状
に形成したものである。これにより、絶縁基板29′に
発熱抵抗体30、第1,第2の感温抵抗体31,32お
よび温度補償抵抗35を着膜形成でき、部品点数を大幅
に削減することができる。
In the above embodiment, the temperature compensation resistor 35
Although it has been described that it is provided near the detection holder 26,
The present invention is not limited to this, and as shown in the first modified example of FIG. 5, a slit S is formed in the insulating substrate 29 ′ from the front end side toward the base end side to form the first substrate portion 29A ′ and the first substrate portion 29A ′. Board part 2
9B ', a heating resistor 30, first and second temperature sensitive resistors 31 and 32 are formed on the first substrate portion 29A', and a temperature is formed on the second substrate portion 29B '. The compensation resistor 35 is formed in a film shape. As a result, the heat generating resistor 30, the first and second temperature sensitive resistors 31 and 32, and the temperature compensating resistor 35 can be formed as a film on the insulating substrate 29 ', and the number of parts can be significantly reduced.

【0065】また、前記実施例では、絶縁基板29に着
膜形成した発熱抵抗体30と第1,第2の感温抵抗体3
1,32を図2のように形成したが、本発明はこれに限
らず、図6に示す第2の変形例のように、絶縁基板51
の先端側から基端側に向けて延びるスリット52,53
を形成して、該スリット52,53により絶縁基板51
を第1,第2,第3の基板部51A,51B,51Cに
分け、該第1,第2,第3の基板部51A,51B,5
1Cにそれぞれ発熱抵抗体54,第1の感温抵抗体5
5,第2の感温抵抗体56を着膜形成するようにしても
よい。またこの場合、第1の基板部51Aは他の基板部
51B,51Cよりも比較的大きな表面積を有すること
が望ましい。さらにこの変形例の場合には、スリット5
2,53によって抵抗体54,55,56が区切られて
いるから、発熱抵抗体54の熱が絶縁基板51を介して
抵抗体55,56に影響するのを低減することができ
る。さらにまた、2点鎖線のように温度補償抵抗35を
一体形成してもよい。
In the above embodiment, the heating resistor 30 and the first and second temperature sensitive resistors 3 formed on the insulating substrate 29 are formed.
Although 1, 32 are formed as shown in FIG. 2, the present invention is not limited to this, and the insulating substrate 51 may be formed as in the second modification shown in FIG.
52, 53 extending from the distal end side to the proximal end side of the
And the insulating substrate 51 is formed by the slits 52 and 53.
Is divided into first, second and third substrate parts 51A, 51B and 51C, and the first, second and third substrate parts 51A, 51B and 5C are separated.
1C has a heating resistor 54 and a first temperature-sensitive resistor 5 respectively.
5, the second temperature sensitive resistor 56 may be formed as a film. Further, in this case, it is desirable that the first substrate portion 51A has a relatively large surface area as compared with the other substrate portions 51B and 51C. Further, in the case of this modification, the slit 5
Since the resistors 54, 55, 56 are separated by 2, 53, it is possible to reduce the influence of the heat of the heating resistor 54 on the resistors 55, 56 via the insulating substrate 51. Furthermore, the temperature compensating resistor 35 may be integrally formed as indicated by a chain double-dashed line.

【0066】さらに、前記実施例では、流量計本体22
の巻線部24に巻回した一の基準抵抗23を吸気管2内
に突出して設けるものとして述べたが、本発明はこれに
限らず、例えば吸気管2の外周に設ける回路ケーシング
27内に基準抵抗23を流量調整抵抗36等と共に配設
する構成としてもよい。
Further, in the above embodiment, the flowmeter main body 22
Although the one reference resistor 23 wound around the winding part 24 of the above is provided so as to project into the intake pipe 2, the present invention is not limited to this, and for example, inside the circuit casing 27 provided on the outer periphery of the intake pipe 2. The reference resistor 23 may be arranged together with the flow rate adjusting resistor 36 and the like.

【0067】さらにまた、前記実施例では、流量検出手
段を構成するブリッジ回路34を、発熱抵抗体30、温
度補償抵抗35、一の基準抵抗23および流量調整抵抗
36とから形成したが、本発明はこれに限らず、温度補
償抵抗35、流量調整抵抗36に代えて固定抵抗を用い
てブリッジ回路34を形成してもよい。
Furthermore, in the above embodiment, the bridge circuit 34 constituting the flow rate detecting means is formed of the heating resistor 30, the temperature compensating resistor 35, the one reference resistor 23 and the flow rate adjusting resistor 36. However, the bridge circuit 34 may be formed by using a fixed resistance instead of the temperature compensation resistance 35 and the flow rate adjustment resistance 36.

【0068】[0068]

【発明の効果】以上詳述した如く、請求項1の発明で
は、流量検出手段を、発熱抵抗を含んでブリッジ回路を
形成し、該ブリッジ回路中の発熱抵抗の抵抗値変化を流
量検出信号として取出し、流れ方向検出手段を、第1,
第2の感温抵抗、基準抵抗からブリッジ回路として構成
し、該ブリッジ回路の平衡が第1,第2の感温抵抗の抵
抗値変化で崩れることにより吸入空気の流量に対応した
流れ方向検出信号を出力する。また、サンプルホールド
手段は流れ方向検出信号に基づいて流量検出信号を波形
変形してサンプルホールド信号とし、信号反転手段で
は、サンプルホールド信号に基づいて吸入空気の流れが
逆方向のときにのみ流量検出信号を反転させることによ
り、信号反転手段からの信号によって吸入空気の流れ方
向と流量とを検出することができる。
As described above in detail, in the invention of claim 1, the flow rate detecting means forms a bridge circuit including a heating resistor, and a change in resistance value of the heating resistor in the bridge circuit is used as a flow rate detection signal. The take-out and flow direction detecting means are
A flow direction detection signal corresponding to the flow rate of the intake air when the bridge circuit is composed of the second temperature-sensitive resistor and the reference resistor, and the balance of the bridge circuit is disrupted by the change in the resistance value of the first and second temperature-sensitive resistors. Is output. Further, the sample-hold means waveform-modifies the flow rate detection signal based on the flow direction detection signal into a sample hold signal, and the signal inversion means detects the flow rate only when the flow of the intake air is in the reverse direction based on the sample hold signal. By inverting the signal, the flow direction and flow rate of the intake air can be detected by the signal from the signal inverting means.

【0069】この結果、出力電圧が流量の正,逆方向の
変動による誤検出を防止し、高精度に吸入空気流量を検
出することができ、空燃比制御等を効果的に行うことが
できる。
As a result, erroneous detection due to fluctuations in the output voltage in the forward and reverse directions can be prevented, the intake air flow rate can be detected with high accuracy, and air-fuel ratio control and the like can be effectively performed.

【0070】また、請求項2の発明では、吸入空気の流
れ方向に対し、発熱抵抗体の前,後に離間して絶縁基板
上に形成した第1,第2の感温抵抗体が、前記吸入空気
の流れ方向に応じてそれぞれ抵抗値が変化するから、第
1の感温抵抗体が第2の感温抵抗体よりも抵抗値が小さ
いときには、例えば空気の流れ方向を順方向として検出
でき、第2の感温抵抗体が第1の感温抵抗体よりも抵抗
値が小さいときには、空気の流れを逆方向として検出で
き、発熱抵抗体および第1,第2の感温抵抗体の抵抗値
を空気流によって敏感に変化させ、流れ方向を正確に検
出することができる。さらに、単一の絶縁基板上に発熱
抵抗体、第1,第2の感温抵抗体を着膜形成しているか
ら、部品点数を削減することができる。
Further, in the invention of claim 2, the first and second temperature-sensitive resistors formed on the insulating substrate are separated from each other in front of and behind the heating resistor with respect to the flow direction of the intake air. Since the resistance value changes depending on the flow direction of air, when the resistance value of the first temperature-sensitive resistor is smaller than that of the second temperature-sensitive resistor, for example, the air flow direction can be detected as the forward direction, When the resistance value of the second temperature-sensitive resistor is smaller than that of the first temperature-sensitive resistor, the air flow can be detected in the opposite direction, and the resistance values of the heating resistor and the first and second temperature-sensitive resistors can be detected. Can be sensitively changed by the air flow, and the flow direction can be accurately detected. Furthermore, since the heating resistor and the first and second temperature sensitive resistors are formed on the single insulating substrate, the number of parts can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例による熱式空気流量検出装置を吸気管に
取付けた状態を示す縦断面図である。
FIG. 1 is a vertical sectional view showing a state in which a thermal air flow rate detecting device according to an embodiment is attached to an intake pipe.

【図2】絶縁基板上に形成された発熱抵抗体および第
1,第2の感温抵抗体を示す平面図である。
FIG. 2 is a plan view showing a heating resistor and first and second temperature-sensitive resistors formed on an insulating substrate.

【図3】実施例による熱式空気流量検出装置の回路構成
を示す回路図である。
FIG. 3 is a circuit diagram showing a circuit configuration of a thermal type air flow rate detecting device according to an embodiment.

【図4】実施例による流量Qに対する各回路からの電圧
を示す特性図である。
FIG. 4 is a characteristic diagram showing the voltage from each circuit with respect to the flow rate Q according to the embodiment.

【図5】第1の変形例による絶縁基板上に形成された発
熱抵抗体、第1,第2の感温抵抗体および温度補償抵抗
を示す平面図である。
FIG. 5 is a plan view showing a heating resistor, first and second temperature sensitive resistors, and a temperature compensation resistor formed on an insulating substrate according to a first modification.

【図6】第2の変形例による絶縁基板上に形成された発
熱抵抗体および第1,第2の感温抵抗体を示す平面図で
ある。
FIG. 6 is a plan view showing a heating resistor and first and second temperature-sensitive resistors formed on an insulating substrate according to a second modification.

【図7】従来技術による熱式空気流量検出装置を吸気管
に取付けた状態を示す縦断面図である。
FIG. 7 is a vertical cross-sectional view showing a state in which a thermal air flow rate detecting device according to a conventional technique is attached to an intake pipe.

【図8】従来技術による流量計本体および発熱抵抗等を
示す斜視図である。
FIG. 8 is a perspective view showing a flowmeter main body, a heat generation resistance and the like according to a conventional technique.

【図9】吸入空気の流速の変動を示す特性線図である。FIG. 9 is a characteristic diagram showing fluctuations in the flow velocity of intake air.

【符号の説明】[Explanation of symbols]

21 熱式空気流量検出装置 22 流量計本体 23 基準抵抗 29,29′,51 絶縁基板 30,54 発熱抵抗体 31,55 第1の感温抵抗体 32,56 第2の感温抵抗体 34 ブリッジ回路(流量検出手段) 35 温度補償抵抗 36 流量調整抵抗 37 差動増幅回路 39 ブリッジ回路(流れ方向検出手段) 42 比較回路 43 サンプルホールド回路(サンプルホールド手段) 44 反転回路(信号反転手段) 21 Thermal Air Flow Rate Detection Device 22 Flowmeter Main Body 23 Reference Resistance 29, 29 ', 51 Insulating Substrate 30, 54 Heating Resistor 31, 55 First Temperature Sensitive Resistor 32, 56 Second Temperature Sensitive Resistor 34 Bridge Circuit (flow rate detection means) 35 Temperature compensation resistance 36 Flow rate adjustment resistance 37 Differential amplification circuit 39 Bridge circuit (flow direction detection means) 42 Comparison circuit 43 Sample hold circuit (sample hold means) 44 Inversion circuit (signal inversion means)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基端側が吸気管に取付けられ流量計本体
と、前記吸気管内に位置して該流量計本体に設けられ、
前記吸気管内を流れる吸入空気によって冷却される発熱
抵抗とを備えてなる熱式空気流量検出装置において、前
記発熱抵抗を含んでブリッジ回路を形成し、該ブリッジ
回路を形成する前記発熱抵抗の抵抗値の変化を流量に対
応した流量検出信号として出力する流量検出手段と、前
記発熱抵抗の前,後に離間して設けられ、前記吸入空気
の流れ方向に対して抵抗値が変化する第1,第2の感温
抵抗と、該第1,第2の感温抵抗の抵抗値変化により吸
入空気の流れ方向に対応した流れ方向検出信号として検
出する流れ方向検出手段と、該流れ方向検出手段からの
流れ方向検出信号に基づいて前記流量検出手段から出力
される流量検出信号をサンプルホールド信号に波形変形
するサンプルホールド手段と、該サンプルホールド手段
からのサンプルホールド信号に基づいて吸入空気の流れ
が逆方向のときにのみ、前記流量検出手段から出力され
る流量検出信号を反転させる信号反転手段とを設けたこ
とを特徴とする熱式空気流量検出装置。
1. A flowmeter main body having a proximal end attached to an intake pipe, and a flowmeter main body located inside the intake pipe,
In a thermal type air flow rate detecting device comprising a heating resistor cooled by intake air flowing in the intake pipe, a bridge circuit is formed including the heating resistor, and a resistance value of the heating resistor forming the bridge circuit. Flow rate detecting means for outputting the change in the above as a flow rate detection signal corresponding to the flow rate, and the first and second resistance values which are provided in front of and behind the heat generating resistance and whose resistance value changes in the flow direction of the intake air. And a flow direction detection means for detecting as a flow direction detection signal corresponding to the flow direction of the intake air based on the resistance values of the first and second temperature resistances, and the flow from the flow direction detection means. Sample hold means for waveform-modifying the flow rate detection signal output from the flow rate detection means into a sample hold signal based on the direction detection signal; and a sample holder from the sample hold means. Only when the flow of intake air based on a field signal of the reverse, the flow signal to invert the flow rate detection signal outputted from the detection means reversing means and the thermal air flow detecting device, characterized in that the provided.
【請求項2】 前記発熱抵抗は、前記流量計本体に取付
けられた絶縁基板上に着膜形成され、かつ該絶縁基板の
少なくとも長さ方向に膜状に延びる発熱抵抗体として構
成し、前記第1,第2の感温抵抗は、前記絶縁基板上の
吸入空気の流れ方向に対し該発熱抵抗体の前,後にそれ
ぞれ離間して着膜形成された第1,第2の感温抵抗体と
して構成してなる請求項1記載の熱式空気流量検出装
置。
2. The heating resistor is formed as a film on an insulating substrate attached to the flowmeter body, and is formed as a heating resistor extending in a film shape at least in a length direction of the insulating substrate. The first and second temperature-sensitive resistors are formed as film-formed first and second temperature-sensitive resistors separated from each other in front of and behind the heating resistor in the flow direction of the intake air on the insulating substrate. The thermal air flow rate detection device according to claim 1, which is configured.
JP6150433A 1994-06-08 1994-06-08 Thermal air flow detector Expired - Fee Related JP2944890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6150433A JP2944890B2 (en) 1994-06-08 1994-06-08 Thermal air flow detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6150433A JP2944890B2 (en) 1994-06-08 1994-06-08 Thermal air flow detector

Publications (2)

Publication Number Publication Date
JPH07333027A true JPH07333027A (en) 1995-12-22
JP2944890B2 JP2944890B2 (en) 1999-09-06

Family

ID=15496826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6150433A Expired - Fee Related JP2944890B2 (en) 1994-06-08 1994-06-08 Thermal air flow detector

Country Status (1)

Country Link
JP (1) JP2944890B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109959801A (en) * 2017-12-22 2019-07-02 上海卓思智能科技股份有限公司 NTC detection circuit and wind speed measuring sensor for wind speed measurement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047385A1 (en) * 2016-09-08 2018-03-15 株式会社村田製作所 Wind-speed measurement device and wind-volume measurement device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109959801A (en) * 2017-12-22 2019-07-02 上海卓思智能科技股份有限公司 NTC detection circuit and wind speed measuring sensor for wind speed measurement
CN109959801B (en) * 2017-12-22 2023-09-19 上海卓思智能科技股份有限公司 NTC detection circuit for wind speed detection and wind speed measurement sensor

Also Published As

Publication number Publication date
JP2944890B2 (en) 1999-09-06

Similar Documents

Publication Publication Date Title
KR100488213B1 (en) Thermal Air Flow Meter
JP3133608B2 (en) Thermal air flow detector
US4587843A (en) Thermocouple-type gas-flow measuring apparatus
WO1995014215A1 (en) Method and device for detecting suction air flow rate for an engine
JP2682348B2 (en) Air flow meter and air flow detection method
JP3658170B2 (en) Flow sensor
EP0172440B1 (en) Hot-wire flow rate measuring apparatus
US7251995B2 (en) Fluid flow sensor
US6508117B1 (en) Thermally balanced mass air flow sensor
JPH07333027A (en) Thermal air flowmeter
JP3184401B2 (en) Thermal air flow detector
JP3174222B2 (en) Thermal air flow detector
JP3095322B2 (en) Thermal air flow detector
JP3174234B2 (en) Thermal air flow detector
JP3184402B2 (en) Thermal air flow detector
JPH07333025A (en) Thermal air flowmeter
JP3133617B2 (en) Thermal air flow detector
JPH0829228A (en) Thermal air flow rate detection device
JPH0843162A (en) Thermal air flow rate detector
JPH08105779A (en) Thermal-type air flow-rate detector
JPH07239258A (en) Thermal air flow rate detector
JP2004340936A (en) Flow sensor
JPH0843160A (en) Thermal air flow rate detector
JPH0143883B2 (en)
JP3663267B2 (en) Thermal air flow meter

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees