JPH0853779A - Production of hot-dip zinc-aluminum plated steel wire - Google Patents
Production of hot-dip zinc-aluminum plated steel wireInfo
- Publication number
- JPH0853779A JPH0853779A JP6189643A JP18964394A JPH0853779A JP H0853779 A JPH0853779 A JP H0853779A JP 6189643 A JP6189643 A JP 6189643A JP 18964394 A JP18964394 A JP 18964394A JP H0853779 A JPH0853779 A JP H0853779A
- Authority
- JP
- Japan
- Prior art keywords
- steel wire
- plating
- wire
- strength
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 65
- 239000010959 steel Substances 0.000 title claims abstract description 65
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 229910000611 Zinc aluminium Inorganic materials 0.000 title 1
- HXFVOUUOTHJFPX-UHFFFAOYSA-N alumane;zinc Chemical compound [AlH3].[Zn] HXFVOUUOTHJFPX-UHFFFAOYSA-N 0.000 title 1
- 238000007747 plating Methods 0.000 claims abstract description 63
- 238000005491 wire drawing Methods 0.000 claims abstract description 27
- 229910007570 Zn-Al Inorganic materials 0.000 claims abstract description 24
- 230000009467 reduction Effects 0.000 claims abstract description 9
- 229910000677 High-carbon steel Inorganic materials 0.000 claims abstract description 7
- 238000001816 cooling Methods 0.000 claims description 2
- 238000005260 corrosion Methods 0.000 abstract description 21
- 230000007797 corrosion Effects 0.000 abstract description 21
- 239000011248 coating agent Substances 0.000 abstract description 8
- 238000000576 coating method Methods 0.000 abstract description 8
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- 238000005246 galvanizing Methods 0.000 abstract description 3
- 230000001105 regulatory effect Effects 0.000 abstract 3
- 238000000034 method Methods 0.000 description 24
- 230000000694 effects Effects 0.000 description 16
- 230000001965 increasing effect Effects 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical group C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- 229910000639 Spring steel Inorganic materials 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/023—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
- C23C28/025—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/024—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/14—Removing excess of molten coatings; Controlling or regulating the coating thickness
- C23C2/16—Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
- C23C2/18—Removing excess of molten coatings from elongated material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/021—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/023—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Coating With Molten Metal (AREA)
- Heat Treatment Of Steel (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、耐食性に優れた高強度
溶融Zn−Alめっき鋼線の製造方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-strength hot-dip Zn-Al plated steel wire having excellent corrosion resistance.
【0002】[0002]
【従来の技術】耐食性が要求されるACSR用鋼線、P
C鋼線や吊橋用ケーブル等の高強度線材を製造する場
合、ある程度の線径を有する高炭素鋼線材にパテンティ
ング処理を行い、さらに所定の線径まで伸線加工して、
その後耐食性を付与するための溶融Znめっきが施され
るのが一般的である。しかしながらこの方法では、伸線
加工後に400℃以上の高温での溶融めっき処理を行う
ため、せっかく伸線加工によって向上した線材の強度
が、再び低下してしまうという問題があった。また伸線
の度合いを増大させて強度を高めれば高めるほど、めっ
き処理による強度低下が大きくなるため、結局この方法
ではめっき鋼線の高強度化が困難であった。2. Description of the Related Art Steel wire for ACSR, P, which requires corrosion resistance
When manufacturing high-strength wire rods such as C steel wires and cables for suspension bridges, high carbon steel wire rods having a certain wire diameter are subjected to patenting treatment, and further drawn to a predetermined wire diameter,
After that, it is general to carry out hot dip Zn plating for imparting corrosion resistance. However, in this method, since the hot-dip galvanizing treatment is performed at a high temperature of 400 ° C. or higher after the wire drawing, there is a problem that the strength of the wire rod improved by the wire drawing is reduced again. Further, the higher the degree of wire drawing and the higher the strength, the greater the decrease in strength due to the plating treatment. Therefore, it was difficult to increase the strength of the plated steel wire by this method.
【0003】そこで、高炭素鋼線材のC含有量を増加さ
せて強度向上を図ることが、安価で効果も大きいことか
ら、工業的に望ましい方法として検討されている。しか
し、C含有量が0.9%以上の過共析領域では、パテン
ティング時にオーステナイト粒界に沿って脆い初析セメ
ンタイトがネットワーク状に生成するため、伸線加工時
に初析セメンタイトの割れを起点とする断線が発生し、
伸線加工性が劣化するという問題が新たに生じた。Therefore, increasing the C content of the high carbon steel wire rod to improve the strength has been studied as an industrially desirable method because it is inexpensive and has a great effect. However, in the hyper-eutectoid region where the C content is 0.9% or more, brittle pro-eutectoid cementite forms along the austenite grain boundaries during patenting in the form of a network. Disconnection occurs,
A new problem has arisen that wire drawability deteriorates.
【0004】一方、Siは、パテンティング処理後の鋼
線強度を高め伸線後の鋼線強度も向上させる効果と、鋼
線の焼入性を向上させて初析セメンタイトの析出を押さ
える効果を持つ元素である。また、これらの効果だけで
なく、めっき処理による強度低下を抑制する効果も有し
ており溶融めっき鋼線の高強度化には非常に有効な元素
であるが、過剰な添加が鋼線の靭延性を低下させること
も知られている。On the other hand, Si has the effect of increasing the strength of the steel wire after patenting and improving the strength of the steel wire after drawing, and the effect of improving the hardenability of the steel wire and suppressing the precipitation of pro-eutectoid cementite. It is an element that has. In addition to these effects, it also has the effect of suppressing the strength reduction due to plating treatment, and it is a very effective element for increasing the strength of hot dip plated steel wire, but excessive addition causes toughness of the steel wire. It is also known to reduce ductility.
【0005】そこで、Siを有する高炭素鋼線材に、溶
融めっきした後、加工や熱を加えることによって、高強
度高靭性を有する鋼線を得ようとする提案がいくつかな
されている。例えば、特開平4−246125号では溶
融Zn−Alめっきを施した後に矯正加工およびブルー
イング処理を施す方法が開示されている。また、特開平
4−236756号、特開平4−236742号には、
溶融Zn−Alめっきを施した後に伸線加工および加熱
処理を施す方法が開示されている。Therefore, several proposals have been made to obtain a steel wire having high strength and high toughness by subjecting a high carbon steel wire material containing Si to hot-dip plating, and then applying working and heat. For example, Japanese Patent Application Laid-Open No. 4-246125 discloses a method of performing a straightening process and a bluing process after performing a hot dip Zn-Al plating. In addition, Japanese Patent Laid-Open Nos. 4-236756 and 4-236742 disclose that
A method of performing wire drawing and heat treatment after performing hot dip Zn-Al plating is disclosed.
【0006】しかしながら、上記方法の様に溶融めっき
後に伸線を行うと、鋼線の単位表面積当たりのめっき付
着量が減少することになるため、めっき被膜によって耐
食性を高めているこれらの鋼線にとっては不利であり、
耐食性が低下するという問題があった。However, if the wire drawing is performed after the hot dip coating as in the above method, the amount of coating adhered per unit surface area of the steel wire will decrease, and therefore, for those steel wires whose corrosion resistance is increased by the plating film. Is a disadvantage,
There is a problem that the corrosion resistance is reduced.
【0007】[0007]
【発明が解決しようとする課題】そこで本発明では、耐
食性に優れたZn−Alめっきを充分量付着させた鋼線
であり、しかも高強度かつ高靭性な鋼線を簡単に製造す
る方法の提供を目的とする。Therefore, the present invention provides a method for easily producing a steel wire having a sufficient amount of Zn-Al plating excellent in corrosion resistance and having high strength and high toughness. With the goal.
【0008】[0008]
【課題を解決するための手段】上記課題を解決した本発
明の溶融Zn−Alめっき鋼線の製造方法は、 C:0.6〜1.2% Si:0.5〜2.0% を含有する高炭素鋼線に、まず溶融Znめっきを施し、
次いで室温まで冷却した後に15%を超える減面率で伸
線加工を行い、さらに2〜12重量%のAlを含有する
430℃以下の溶融Zn−Alめっき浴中でめっきを施
すところに要旨を有する。The method for producing a hot-dip Zn-Al plated steel wire of the present invention, which has solved the above-mentioned problems, comprises: C: 0.6-1.2% Si: 0.5-2.0% First, hot-dip Zn plating is applied to the contained high carbon steel wire,
Then, after cooling to room temperature, wire drawing is performed at a surface reduction rate of more than 15%, and further plating is performed in a molten Zn-Al plating bath containing 430C or less containing 2 to 12% by weight of Al. Have.
【0009】[0009]
【作用】溶融Zn−Alめっきでは、ZnとAlのみか
らなるめっき浴組成の場合、めっき付着量が不足すると
いう問題があり、このためZnめっき浴を通過させた後
にZn−Alめっき浴を通過させる2浴法が一般的であ
る。これは、Zn−Alの1浴中では、Fe−Zn合金
層が成長しないために生じる現象である。そこで、フラ
ックス組成を工夫したり、めっき浴へ微量元素を添加す
ることにより、合金層を発達させ、1浴によって所定の
めっき付着量が得られるZn−Alめっき方法が紹介さ
れている。In the hot-dip Zn-Al plating, there is a problem that the coating amount of the plating is insufficient in the case of a plating bath composition consisting only of Zn and Al. Therefore, after passing the Zn plating bath, the Zn-Al plating bath is passed. The two-bath method is commonly used. This is a phenomenon that occurs because the Fe-Zn alloy layer does not grow in one Zn-Al bath. Therefore, a Zn-Al plating method has been introduced in which the alloy layer is developed by devising the flux composition or adding a trace element to the plating bath to obtain a predetermined plating adhesion amount in one bath.
【0010】本発明では、上記2浴法を逆に利用して、
第1浴である純Znめっき槽を鋼線が通過した後に伸線
を行って高強度化を図り、その後に第2浴であるZn−
Alめっき槽を通過させることにより、充分なめっき量
が付着して耐食性に優れており、しかも高強度な溶融Z
n−Alめっき鋼線を製造することに成功したものであ
る。以下、本発明について説明する。In the present invention, the above two-bath method is used in reverse,
After the steel wire has passed through the pure Zn plating bath, which is the first bath, wire drawing is performed to increase the strength, and then the second bath, Zn-
By passing through an Al plating tank, a sufficient amount of plating is attached and corrosion resistance is excellent, and high strength molten Z
It succeeded in producing an n-Al plated steel wire. The present invention will be described below.
【0011】まず、本発明の鋼線はCが0.6〜1.2
%含まれている必要がある。Cは、鋼線の強度を上げる
ために有効な元素であり、経済的でもある。C含有量が
0.6%より少ないと、鋼線の強度向上効果を発揮する
には不充分である。しかし、C量が1.2%を超えると
鋼線の延性の低下が顕著となる。First, the steel wire of the present invention has a C content of 0.6 to 1.2.
% Must be included. C is an element effective for increasing the strength of the steel wire and is economical. If the C content is less than 0.6%, it is insufficient to exert the strength improving effect of the steel wire. However, if the C content exceeds 1.2%, the ductility of the steel wire will be significantly reduced.
【0012】一方、Siは0.5〜2.0%含まれるこ
とが重要である。Siは脱酸剤として働く上、フェライ
トに固溶して、固溶体の強度を顕著に高める効果があ
る。さらに、フェライト中のSiは、伸線後に行われる
溶融めっき時の強度低下を低減させる効果がある。これ
らの効果は鋼線中にSiが含まれていれば認められる
が、より顕著に発現するのはSiが0.5%以上のとき
である。しかし、Siを過剰に添加すると、伸線後の鋼
線の延性が低下するので、Si量の上限は2.0%とす
る。On the other hand, it is important that Si is contained at 0.5 to 2.0%. Si acts as a deoxidizing agent and also has the effect of forming a solid solution with ferrite to remarkably increase the strength of the solid solution. Further, Si in the ferrite has an effect of reducing the strength reduction during hot dipping performed after wire drawing. These effects are recognized when the steel wire contains Si, but the more remarkable effect is when Si is 0.5% or more. However, if Si is added excessively, the ductility of the steel wire after wire drawing is reduced, so the upper limit of the Si content is made 2.0%.
【0013】本発明に用いられる鋼線は上記CとSiが
必須成分であるが、Mnが含まれていてもよい。Mnは
脱酸剤としての効果と、鋼線の焼入性を向上させて鋼線
の断面内の組織の均一性を高める効果を有する。しか
し、Mnを過剰に添加するとMnの偏析部にマルテンサ
イト、ベイナイト等の過冷組織が生成して伸線加工性が
低下するため、好ましい含有量の上限は1.0%であ
る。The steel wire used in the present invention contains the above-mentioned C and Si as essential components, but may contain Mn. Mn has an effect as a deoxidizer and an effect of improving the hardenability of the steel wire and enhancing the uniformity of the structure in the cross section of the steel wire. However, if Mn is excessively added, a supercooled structure such as martensite or bainite is generated in the segregated portion of Mn to deteriorate the wire drawing workability. Therefore, the preferable upper limit of the content is 1.0%.
【0014】また、パーライトのラメラ間隔を鋼線強度
と伸線加工性を向上させるCrや、伸線材の靭性を高め
る効果を有するNi等を添加してもよい。Cr,Niの
好ましい添加量は0.05〜1.0%である。Further, the lamellar spacing of pearlite may be added with Cr which improves the strength of the steel wire and the workability of the wire drawing, or Ni which has the effect of increasing the toughness of the wire drawing material. The preferable addition amount of Cr and Ni is 0.05 to 1.0%.
【0015】本発明法は、上記指定成分を含み、残部が
Feおよび不可避不純物である高炭素鋼からなる線材に
適用するための製造方法である。本発明法を適用する前
の鋼線の線径は特に限定されない。第1浴めっき後の伸
線加工時の減面率と、最終目的とするめっき鋼線の線径
および強度によって適宜決定すれば良く、通常1〜10
mm程度である。The method of the present invention is a manufacturing method for applying to a wire comprising the above-specified components and the balance being Fe and high carbon steel inevitable impurities. The wire diameter of the steel wire before applying the method of the present invention is not particularly limited. It may be appropriately determined according to the area reduction rate at the time of wire drawing after the first bath plating, and the diameter and strength of the plated steel wire to be the final purpose, and usually 1 to 10
It is about mm.
【0016】本発明法は、まず上記鋼線に1浴目の純Z
n溶融めっき処理を施すことが必須条件である。めっき
条件については特に限定なく、溶融したZn浴に鋼線を
通過させる一般的なめっき方法で構わない。なお、好ま
しいめっき温度は430〜480℃、めっき付着量は2
00g/m2 以上である。In the method of the present invention, first, pure Z of the first bath is applied to the steel wire.
It is an essential condition to carry out n hot dip plating. The plating conditions are not particularly limited, and a general plating method of passing a steel wire through a molten Zn bath may be used. In addition, the preferable plating temperature is 430 to 480 ° C., and the coating weight is 2
It is 00 g / m 2 or more.
【0017】1浴目の純Znめっき後には、伸線加工を
行う。この伸線加工は、1浴目のめっきによって強度が
低下した鋼線を高強度化させるためと、最終目標の線径
に調整するために行われる。高強度化するには、15%
を超える減面率で伸線加工するのが望ましい。従って、
減面率の下限を15%とした。After the first bath of pure Zn plating, wire drawing is performed. This wire drawing is carried out in order to increase the strength of the steel wire whose strength has been reduced by the plating in the first bath and to adjust the wire diameter to the final target. 15% for higher strength
It is desirable to carry out wire drawing with a surface reduction rate of more than. Therefore,
The lower limit of the area reduction rate was set to 15%.
【0018】上記伸線加工後は、2次めっきである溶融
Zn−Al合金めっき処理が行われる。Zn−Al合金
めっきの耐食性はAl濃度に依存し、Al濃度が高いほ
ど良好な耐食性を示す。従って本発明法では、Zn−A
l浴中のAl濃度が2重量%以上である必要がある。2
重量%より少ないと、充分な耐食性向上効果を得ること
はできない。しかし、Al濃度が12重量%を超える
と、添加効果が飽和する。また、Alの増大に伴って合
金めっき浴の融点が上昇してめっき温度が高くなるた
め、鋼線強度が低下してしまう問題や、Al酸化物等の
ドロスがめっき浴中に発生して、不良めっきになりやす
いため、Al含有量の上限は12%としなければならな
い。また、めっき時の鋼線の温度上昇による強度低下を
抑制するためにはめっき温度が低温の方が好ましく、こ
の点からめっき浴温度を430℃以下に設定することが
必要である。なお、好ましい付着量は150g/m2 以
上である。After the above wire drawing, a hot dip Zn-Al alloy plating process, which is a secondary plating, is performed. The corrosion resistance of Zn-Al alloy plating depends on the Al concentration, and the higher the Al concentration, the better the corrosion resistance. Therefore, in the method of the present invention, Zn-A
The Al concentration in the 1-bath must be 2% by weight or more. Two
If the amount is less than wt%, a sufficient effect of improving corrosion resistance cannot be obtained. However, when the Al concentration exceeds 12% by weight, the effect of addition is saturated. Further, as the Al content increases, the melting point of the alloy plating bath rises and the plating temperature rises, so that the problem of reduced steel wire strength and dross such as Al oxides occurring in the plating bath, The upper limit of the Al content must be 12% because it is likely to cause defective plating. Further, in order to suppress the strength decrease due to the temperature rise of the steel wire during plating, it is preferable that the plating temperature is low, and from this point, it is necessary to set the plating bath temperature to 430 ° C or lower. The preferable adhesion amount is 150 g / m 2 or more.
【0019】[0019]
【実施例】以下実施例によって本発明をさらに詳述する
が、下記実施例は本発明を制限するものではなく、前・
後記の趣旨を逸脱しない範囲で変更実施することは全て
本発明の技術範囲に包含される。The present invention will be described in more detail with reference to the following examples, but the following examples do not limit the present invention.
All modifications and implementations that do not depart from the spirit of the description below are included in the technical scope of the present invention.
【0020】表1には、実施例で使用した鋼の化学成分
をそれぞれ重量%で示した。表1における鋼Aは本発明
の規定範囲内のC量、Si量を含有したもので、鋼B、
CはSi量が、鋼D、EはC量が規定範囲から外れてい
るものである。Table 1 shows the chemical compositions of the steels used in the examples in% by weight. Steel A in Table 1 contains C amount and Si amount within the specified range of the present invention.
C has a Si content and steels D and E have a C content outside the specified range.
【0021】表1に示した5種の鋼1〜Eを、まず線径
11mmへ熱間圧延し、その線径のまま鉛パテンティン
グ処理(加熱温度950℃、鉛浴温度:550℃)およ
び酸酸洗・潤滑処理を行った後、実験No. 1〜3は4.
9mmφに、実験No. 10は5.2mmφに、実験No.
4〜9、11〜13については6.0mmφに伸線加工
を施した。その後、表2に示した様なめっきおよび伸線
加工を行い、最終的に5mmφのめっき鋼線を製造し
た。表2には、めっき鋼線の製造工程と得られた鋼線の
特性を示した。なお、めっき鋼線の耐食性は、塩水噴霧
試験での赤錆発生時間を基準に評価し、赤錆発生までの
時間が300時間未満を×、300〜600時間を△、
600時間を超えるものを○とした。The five types of steels 1 to E shown in Table 1 were first hot-rolled to a wire diameter of 11 mm and subjected to lead patenting treatment (heating temperature 950 ° C., lead bath temperature: 550 ° C.) without changing the wire diameter. After performing pickling and lubrication, Experiment Nos. 1 to 3 were 4.
Experiment No. 10 was set to 9 mmφ and Experiment No. 10 was set to 5.2 mmφ.
Regarding 4 to 9 and 11 to 13, wire drawing was performed to 6.0 mmφ. Then, plating and wire drawing as shown in Table 2 were performed to finally manufacture a plated steel wire of 5 mmφ. Table 2 shows the manufacturing process of the plated steel wire and the characteristics of the obtained steel wire. The corrosion resistance of the plated steel wire is evaluated based on the red rust occurrence time in the salt spray test, and the time until the occurrence of red rust is less than 300 hours x, and 300 to 600 hours is Δ,
The ones that exceeded 600 hours were rated as ◯.
【0022】[0022]
【表1】 [Table 1]
【0023】[0023]
【表2】 [Table 2]
【0024】表2から次のことがわかった。実験No. 1
〜4は本発明の製造方法の従来技術にあたる製法によっ
て得ためっき鋼線である。No. 1は従来のZnめっきの
みの処理であり、引張強さが従来並で、耐食性の向上も
認められない。No. 2は、従来の1浴法によるZn−A
lのみのめっき処理であり、めっき浴温度が低いために
引張強さは向上しているが、めっき付着量が極端に低下
しており、その結果、耐食性が劣っている。No. 3は、
従来の2浴法によるZn−Alめっき処理によるめっき
鋼線であり、めっき付着量は充分で耐食性も向上してい
るが、高強度化は達成できていない。No. 4は従来のア
フタードロー材(めっき後に伸線を行う)であり、高強
度化は図れているが、めっき付着量が少ないため耐食性
が悪く、伸びが極端に悪い。The following was found from Table 2. Experiment No. 1
4 to 4 are plated steel wires obtained by the manufacturing method corresponding to the prior art of the manufacturing method of the present invention. No. 1 is a conventional Zn plating only treatment, the tensile strength is the same as the conventional one, and no improvement in corrosion resistance is observed. No. 2 is Zn-A produced by the conventional one-bath method.
Since the plating treatment is performed only with 1 and the plating bath temperature is low, the tensile strength is improved, but the coating adhesion amount is extremely reduced, and as a result, the corrosion resistance is poor. No. 3 is
It is a plated steel wire obtained by the Zn-Al plating treatment by the conventional two-bath method, and although the amount of the deposited coating is sufficient and the corrosion resistance is improved, the high strength cannot be achieved. No. 4 is a conventional after-draw material (wire is drawn after plating), and although it is intended to have high strength, it has poor corrosion resistance and extremely poor elongation due to the small amount of plating adhesion.
【0025】実験No. 5は、本発明の製造方法を示す例
であり、めっき付着量、引張強度、伸び、耐食性の全て
に優れためっき鋼線が得られていることがわかった。実
験No. 6〜9は本発明法を用いて、CやSi量の異なる
鋼からめっき鋼線を製造した結果である。No. 6はSi
含有量が少ない鋼Bを用いたため、高温めっき時の強度
低下によって伸線による高強度化の効果が低減してお
り、No. 7では、Si含有量が上限を超える鋼Cを用い
たため延性が低く、6mmφへ伸線する間に断線が多発
し、結果的に純Znめっきを始めとするいずれの工程も
行えなかった。一方No. 8は、C含有量が下限値より少
ない鋼Dを用いたため、強度が低く、No. 9は、C含有
量が上限値を超える鋼Dを用いたため延性が低く、6m
mφへの伸線中に断線が多発し、めっきを行うことはで
きなかった。Experiment No. 5 is an example showing the production method of the present invention, and it was found that a plated steel wire excellent in coating weight, tensile strength, elongation and corrosion resistance was obtained. Experiment Nos. 6 to 9 are the results of producing plated steel wires from steels having different amounts of C and Si using the method of the present invention. No. 6 is Si
Since Steel B with a low content is used, the effect of increasing strength by wire drawing is reduced due to the decrease in strength during high temperature plating. In No. 7, since Steel C with an Si content exceeding the upper limit is used, ductility is reduced. It was low, and many wire breakages occurred during wire drawing to 6 mmφ, and as a result, no steps including pure Zn plating could be performed. On the other hand, No. 8 used steel D having a C content lower than the lower limit value, and thus had low strength. No. 9 used steel D having a C content higher than the upper limit value, and had low ductility.
It was not possible to perform plating because many wire breakages occurred during wire drawing to mφ.
【0026】実験No. 10〜13は本発明法を適用すべ
き鋼Aを用いながら、製造方法を変化させた例である。
No. 10では伸線減面率が10%と低めであるため、得
られためっき鋼線は強度が低い。No. 11は、2浴目の
Zn−Alめっき時の温度が460℃と高めに設定され
ている為、高強度化が達成できていない。また、No.1
2は、2浴目のZn−Alめっき浴中のAl含有量が本
発明規定範囲より少ないため、得られる鋼線の機械的性
質は満足しているが、耐食性が向上しておらず、逆にN
o. 13は、Al含有量が多過ぎてめっき浴温度を高め
なければならず、結果的に、強度が低下してしまってい
る。Experiment Nos. 10 to 13 are examples in which the manufacturing method was changed while using the steel A to which the method of the present invention is applied.
In No. 10, the area reduction ratio of wire drawing is as low as 10%, so the strength of the obtained plated steel wire is low. In No. 11, since the temperature at the time of Zn-Al plating in the second bath is set to a high value of 460 ° C, high strength cannot be achieved. Also, No. 1
In No. 2, since the Al content in the Zn-Al plating bath of the second bath is less than the range specified by the present invention, the mechanical properties of the obtained steel wire are satisfied, but the corrosion resistance is not improved, and To N
In No. 13, the Al content was too high and the plating bath temperature had to be increased, resulting in a decrease in strength.
【0027】上記実験結果から、強度、伸び、耐食性の
いずれの特性にも優れためっき鋼線を得るためには、本
発明製造方法で規定した全ての条件を採用する必要があ
ることが明らかである。From the above experimental results, it is clear that in order to obtain a plated steel wire excellent in all properties of strength, elongation and corrosion resistance, it is necessary to adopt all the conditions specified in the manufacturing method of the present invention. is there.
【0028】[0028]
【発明の効果】本発明は以上のように構成されており、
2浴法による溶融Zn−Alめっきの第1浴である純Z
nめっき槽を鋼線が通過した後に伸線加工を行い、鋼線
の高強度化を図り、その後、第2浴であるZn−Alめ
っき槽を通過させることにより、充分な耐食性を有する
と共に、強度にも優れたZn−Alめっき鋼線を得るこ
とが可能となった。本発明法は、PC鋼線、亜鉛メッキ
鋼線、バネ用鋼線、吊り橋用ケーブル、ACSR(送電
線ケーブルの補強用素線)用めっき鋼線等の耐食性と高
強度化が必要な用途に最適なめっき鋼線の製造方法であ
る。The present invention is configured as described above,
Pure Z which is the first bath of hot dip Zn-Al plating by the two-bath method
After the steel wire has passed through the n-plating tank, wire drawing is performed to increase the strength of the steel wire, and then, by passing through the Zn-Al plating tank that is the second bath, sufficient corrosion resistance is obtained, and It has become possible to obtain a Zn-Al plated steel wire having excellent strength. INDUSTRIAL APPLICABILITY The method of the present invention is suitable for applications requiring corrosion resistance and high strength such as PC steel wire, galvanized steel wire, spring steel wire, suspension bridge cable, and plated steel wire for ACSR (strengthening wire of transmission line cable). This is the most suitable method for producing plated steel wire.
フロントページの続き (72)発明者 落合 憲二 兵庫県神戸市灘区灘浜東町2番地 株式会 社神戸製鋼所神戸製鉄所内 (72)発明者 山田 雅夫 尼崎市中浜町10番地1 神鋼鋼線工業株式 会社内 (72)発明者 山岡 幸男 尼崎市中浜町10番地1 神鋼鋼線工業株式 会社内 (72)発明者 児玉 勝 尼崎市中浜町10番地1 神鋼鋼線工業株式 会社内Front page continued (72) Inventor Kenji Ochiai 2 Nadahamahigashi-cho, Nada-ku, Kobe-shi, Hyogo Stock Company Kobe Steel Works Kobe Steel Works (72) Inventor Masao Yamada 10 Nakahamacho, Amagasaki-shi Shinko Steel Wire Industrial Co., Ltd. (72) Inventor Yukio Yamaoka 10-1 Nakahama-cho, Amagasaki-shi Shinko Steel Wire Industrial Co., Ltd.
Claims (1)
次いで室温まで冷却した後に15%を超える減面率で伸
線加工を行い、さらに2〜12重量%のAlを含有する
430℃以下の溶融Zn−Alめっき浴中でめっきを施
すことを特徴とする溶融Zn−Alめっき鋼線の製造方
法。1. A high carbon steel wire containing C: 0.6 to 1.2% (weight%, the same applies hereinafter) Si: 0.5 to 2.0% is first subjected to hot dip Zn plating,
Next, after cooling to room temperature, wire drawing is performed with a surface reduction rate of more than 15%, and further plating is performed in a molten Zn-Al plating bath containing 430C or less containing 2 to 12% by weight of Al. A method for producing a hot dip Zn-Al plated steel wire.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18964394A JP3330233B2 (en) | 1994-08-11 | 1994-08-11 | Manufacturing method of hot-dip Zn-Al plated steel wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18964394A JP3330233B2 (en) | 1994-08-11 | 1994-08-11 | Manufacturing method of hot-dip Zn-Al plated steel wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0853779A true JPH0853779A (en) | 1996-02-27 |
JP3330233B2 JP3330233B2 (en) | 2002-09-30 |
Family
ID=16244750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18964394A Expired - Fee Related JP3330233B2 (en) | 1994-08-11 | 1994-08-11 | Manufacturing method of hot-dip Zn-Al plated steel wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3330233B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002317388A (en) * | 2001-04-19 | 2002-10-31 | Nippon Steel Corp | Plated strand steel wire having high corrosion resistance and method for producing the same |
WO2010150537A1 (en) | 2009-06-25 | 2010-12-29 | 新日本製鐵株式会社 | HIGH-STRENGTH Zn-Al-PLATED STEEL WIRE FOR BRIDGES WHICH HAS EXCELLENT CORROSION RESISTANCE AND FATIGUE PROPERTIES, AND PROCESS FOR PRODUCTION THEREOF |
JP2022539130A (en) * | 2019-06-26 | 2022-09-07 | ポスコ | Plated steel wire and its manufacturing method |
-
1994
- 1994-08-11 JP JP18964394A patent/JP3330233B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002317388A (en) * | 2001-04-19 | 2002-10-31 | Nippon Steel Corp | Plated strand steel wire having high corrosion resistance and method for producing the same |
WO2010150537A1 (en) | 2009-06-25 | 2010-12-29 | 新日本製鐵株式会社 | HIGH-STRENGTH Zn-Al-PLATED STEEL WIRE FOR BRIDGES WHICH HAS EXCELLENT CORROSION RESISTANCE AND FATIGUE PROPERTIES, AND PROCESS FOR PRODUCTION THEREOF |
US9243315B2 (en) | 2009-06-25 | 2016-01-26 | Nippon Steel & Sumitomo Metal Corporation | High-strength Zn—Al coated steel wire for bridges with excellent corrosion resistance and fatigue properties and method for manufacturing the same |
JP2022539130A (en) * | 2019-06-26 | 2022-09-07 | ポスコ | Plated steel wire and its manufacturing method |
US11834747B2 (en) | 2019-06-26 | 2023-12-05 | Posco Co., Ltd | Plated steel wire and manufacturing method for the same |
Also Published As
Publication number | Publication date |
---|---|
JP3330233B2 (en) | 2002-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11970752B2 (en) | Steel sheet | |
KR100849974B1 (en) | High strength hot-dip galvanized or galvannealed steel sheet having improved plating adhesion and press formability and process for producing the same | |
US7824509B2 (en) | High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation, and a method of producing the same | |
JPWO2010150537A1 (en) | High-strength Zn-Al plated steel wire for bridges with excellent corrosion resistance and fatigue characteristics and method for producing the same | |
CN101125473B (en) | Hot-dip galvanized thin steel sheet, thin steel sheet processed by hot-dip galvanized layer, and a method of producing the same | |
JP2738209B2 (en) | High strength and high ductility hot-dip galvanized steel sheet with excellent plating adhesion | |
JPH0853737A (en) | High strength and high toughness hot-dip plated steel wire and its production | |
JP3631710B2 (en) | Si-containing high-strength hot-dip galvanized steel sheet with excellent corrosion resistance and ductility and method for producing the same | |
JP3153618B2 (en) | Manufacturing method of hypereutectoid steel wire | |
JP4150277B2 (en) | High strength galvannealed steel sheet excellent in press formability and method for producing the same | |
JP3330233B2 (en) | Manufacturing method of hot-dip Zn-Al plated steel wire | |
JPH0853743A (en) | Production of high strength and high toughness hot-dip plated steel wire | |
JP2742440B2 (en) | High strength and high ductility steel wire | |
JP3370368B2 (en) | Manufacturing method of high strength steel wire for suspended structure | |
JP2500947B2 (en) | Manufacturing method of high strength steel wire for suspension structure | |
JP3971034B2 (en) | Hot rolled wire rod for high carbon steel wire with excellent longitudinal crack resistance and wire drawing | |
JP3036393B2 (en) | High strength and high toughness hot-dip galvanized steel wire and method for producing the same | |
JPH075992B2 (en) | High-strength steel wire manufacturing method | |
JP3298686B2 (en) | Method for producing high-strength galvanized steel wire for ACSR with excellent corrosion resistance | |
JP3875958B2 (en) | High strength and high ductility hot dip galvanized steel sheet with excellent workability and manufacturing method thereof | |
JPH04236742A (en) | Manufacture of high strength galvanized steel wire for acsr excellent in corrosion resistance | |
JP3520109B2 (en) | High strength galvanized steel wire and method of manufacturing the same | |
JP3439106B2 (en) | Wire rod for hot-dip galvanized steel wire with excellent vertical cracking resistance | |
JP3142922B2 (en) | Manufacturing method of hot-rolled high-strength hot-dip galvanized steel sheet with low yield ratio and excellent pitting corrosion resistance | |
JP3125645B2 (en) | Wire rod for hot-dip galvanized steel wire with excellent vertical cracking resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020618 |
|
LAPS | Cancellation because of no payment of annual fees |