JPH0853500A - 融合タンパク質および該タンパク質をコードする遺伝子 - Google Patents
融合タンパク質および該タンパク質をコードする遺伝子Info
- Publication number
- JPH0853500A JPH0853500A JP6209368A JP20936894A JPH0853500A JP H0853500 A JPH0853500 A JP H0853500A JP 6209368 A JP6209368 A JP 6209368A JP 20936894 A JP20936894 A JP 20936894A JP H0853500 A JPH0853500 A JP H0853500A
- Authority
- JP
- Japan
- Prior art keywords
- ala
- glu
- lys
- leu
- aaa
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
Abstract
(57)【要約】
【目的】 ヒト血清アルブミンタンパク質の立体構造を
破壊することなく、しかも生理活性を十分に発揮し得る
生理活性を有する融合タンパク質を遺伝子工学的に作製
し、提供する。 【構成】 ヒト血清アルブミンのポリペプチド鎖の少な
くとも1つ以上の所望の位置に、望ましくは、アミノ末
端、カルボキシル末端、第1〜2ドメイン間あるいは第
2〜3ドメイン間に、生理活性を有するペプチドを導入
した融合タンパク質およびこれをコードする遺伝子、並
びに、該遺伝子を用いて上記融合タンパク質を遺伝子組
換え手法によって製造する方法。
破壊することなく、しかも生理活性を十分に発揮し得る
生理活性を有する融合タンパク質を遺伝子工学的に作製
し、提供する。 【構成】 ヒト血清アルブミンのポリペプチド鎖の少な
くとも1つ以上の所望の位置に、望ましくは、アミノ末
端、カルボキシル末端、第1〜2ドメイン間あるいは第
2〜3ドメイン間に、生理活性を有するペプチドを導入
した融合タンパク質およびこれをコードする遺伝子、並
びに、該遺伝子を用いて上記融合タンパク質を遺伝子組
換え手法によって製造する方法。
Description
【0001】
【産業上の利用分野】本発明は、生理活性、特には癌転
移阻害活性を有する融合タンパク質およびこれをコード
する遺伝子、該遺伝子を含有する組換えベクター、該組
換えベクターによって形質転換された宿主細胞の形質転
換体並びに該形質転換体を用いる融合タンパク質の製造
方法に関する。
移阻害活性を有する融合タンパク質およびこれをコード
する遺伝子、該遺伝子を含有する組換えベクター、該組
換えベクターによって形質転換された宿主細胞の形質転
換体並びに該形質転換体を用いる融合タンパク質の製造
方法に関する。
【0002】
【従来の技術】癌の治療には主として外科的療法、放射
線療法および化学療法が行われているが、癌の再発や転
移の防止という点ではいまだ満足すべき治療効果が挙げ
られていない。
線療法および化学療法が行われているが、癌の再発や転
移の防止という点ではいまだ満足すべき治療効果が挙げ
られていない。
【0003】現在用いられている多くの制癌剤は、核酸
あるいはタンパク質の生合成系を阻害し、癌細胞を死に
至らしめるものである。しかしながらこれらの制癌剤で
は、癌細胞と正常細胞との区別が困難なため、その効果
には、特に副作用の面で大きな問題が内在している。ま
たこれらの制癌剤は原発巣を縮小させることによって治
療するものであるが、癌の治療で常に問題になるのは癌
細胞が原発巣から離れ、他の臓器に転移し、そこで増殖
し致命的な結果を招くことである。したがって癌の根本
的治療のためには、癌細胞の増殖抑制とともに、転移に
対して有効な抑制効果を示す制癌剤の開発が望まれてい
る。
あるいはタンパク質の生合成系を阻害し、癌細胞を死に
至らしめるものである。しかしながらこれらの制癌剤で
は、癌細胞と正常細胞との区別が困難なため、その効果
には、特に副作用の面で大きな問題が内在している。ま
たこれらの制癌剤は原発巣を縮小させることによって治
療するものであるが、癌の治療で常に問題になるのは癌
細胞が原発巣から離れ、他の臓器に転移し、そこで増殖
し致命的な結果を招くことである。したがって癌の根本
的治療のためには、癌細胞の増殖抑制とともに、転移に
対して有効な抑制効果を示す制癌剤の開発が望まれてい
る。
【0004】癌転移の機構の解明には多くの研究がなさ
れ、転移の抑制に関する物質の検索も広く行なわれてき
た。癌細胞は原発巣から遊離した後、血管中に侵入す
る。そして血管壁に接着後、血管内皮細胞層の下に潜り
込み細胞外基質を破壊し、標的臓器の実質中に浸潤侵入
する。このような各ステップを経て癌細胞は他の臓器に
転移すると考えられている(L.A. Liotta et al.: Lab.
Invest., 49, 636-649(1983))。よって癌転移阻害剤
開発のためには、上記の各ステップのいずれかを抑制す
るものが開発されればよいと考えられる。例えば、癌細
胞が細胞外基質と接着するのを阻害するもの(例えば、
N.J. Humphries et al.: Science, 223, 467-470 (198
6) )、中皮細胞層や血管内皮細胞層などの下層への浸
潤を阻害する物質(例えば、A. Isoai et al.: Jpn. J.
Cancer Res., 81, 909-914 (1990))、細胞外基質の分
解を阻害する物質(例えば、R.M. Schultz et al.: Can
cer Res., 48, 5539-5545 (1988))等が挙げられる。
れ、転移の抑制に関する物質の検索も広く行なわれてき
た。癌細胞は原発巣から遊離した後、血管中に侵入す
る。そして血管壁に接着後、血管内皮細胞層の下に潜り
込み細胞外基質を破壊し、標的臓器の実質中に浸潤侵入
する。このような各ステップを経て癌細胞は他の臓器に
転移すると考えられている(L.A. Liotta et al.: Lab.
Invest., 49, 636-649(1983))。よって癌転移阻害剤
開発のためには、上記の各ステップのいずれかを抑制す
るものが開発されればよいと考えられる。例えば、癌細
胞が細胞外基質と接着するのを阻害するもの(例えば、
N.J. Humphries et al.: Science, 223, 467-470 (198
6) )、中皮細胞層や血管内皮細胞層などの下層への浸
潤を阻害する物質(例えば、A. Isoai et al.: Jpn. J.
Cancer Res., 81, 909-914 (1990))、細胞外基質の分
解を阻害する物質(例えば、R.M. Schultz et al.: Can
cer Res., 48, 5539-5545 (1988))等が挙げられる。
【0005】本発明者らは従前に、癌転移阻害活性を有
するペプチドと生体高分子との複合体を化学的結合法に
より作製している。すなわち、配列表の配列番号1のア
ミノ酸で表される癌阻害活性を有するペプチド(特開平
3−34993号公報、A. Isoai et al.: Jpn. J. Can
cer Res., 81, 909-914 (1990) および A. Isoai eta
l.: Cancer Res., 52, 1422-1426 (1992) )と、血清ア
ルブミンなどの生体高分子とを水溶性カルボジイミドで
結合させた形態において、優れた癌細胞浸潤阻害活性並
びに癌転移抑制活性をもつということを確認している
(特開平4−254000号、同4−300899号、
同4−300900号公報および Biochem. Biophys. R
es. Commun., 192, 7ー14 (1993) )。
するペプチドと生体高分子との複合体を化学的結合法に
より作製している。すなわち、配列表の配列番号1のア
ミノ酸で表される癌阻害活性を有するペプチド(特開平
3−34993号公報、A. Isoai et al.: Jpn. J. Can
cer Res., 81, 909-914 (1990) および A. Isoai eta
l.: Cancer Res., 52, 1422-1426 (1992) )と、血清ア
ルブミンなどの生体高分子とを水溶性カルボジイミドで
結合させた形態において、優れた癌細胞浸潤阻害活性並
びに癌転移抑制活性をもつということを確認している
(特開平4−254000号、同4−300899号、
同4−300900号公報および Biochem. Biophys. R
es. Commun., 192, 7ー14 (1993) )。
【0006】このように有用な癌転移阻害活性を有する
複合体(融合タンパク質)は、通常化学的タンパク質結
合法によって作製される。しかしながらその方法はステ
ップ数が多く、また不純物である不完全合成産物の分離
を行なわなければならない。通常これらの方法は煩雑で
あり、また効率よく大量生産することが難しく、特に6
09アミノ酸残基を有する該融合タンパク質では、従来
の化学的タンパク質−ペプチド結合法によることは、コ
スト的にも設備的にも必ずしも満足できるものではなか
った。
複合体(融合タンパク質)は、通常化学的タンパク質結
合法によって作製される。しかしながらその方法はステ
ップ数が多く、また不純物である不完全合成産物の分離
を行なわなければならない。通常これらの方法は煩雑で
あり、また効率よく大量生産することが難しく、特に6
09アミノ酸残基を有する該融合タンパク質では、従来
の化学的タンパク質−ペプチド結合法によることは、コ
スト的にも設備的にも必ずしも満足できるものではなか
った。
【0007】
【発明が解決しようとする課題】本発明はかかる事情に
鑑みてなされたもので、生理活性を有するペプチド、と
りわけ配列番号1のアミノ酸配列で表されるペプチド
(癌転移阻害ペプチド)と血清アルブミン等の生体高分
子との複合体(癌転移阻害融合タンパク質)を、従来の
化学的タンパク質−ペプチド結合法に代えて、遺伝子組
換え技術を用いて、より効率的な遺伝子発現並びに癌転
移阻害融合タンパク質の生産をなし得るための技術を提
供することにある。
鑑みてなされたもので、生理活性を有するペプチド、と
りわけ配列番号1のアミノ酸配列で表されるペプチド
(癌転移阻害ペプチド)と血清アルブミン等の生体高分
子との複合体(癌転移阻害融合タンパク質)を、従来の
化学的タンパク質−ペプチド結合法に代えて、遺伝子組
換え技術を用いて、より効率的な遺伝子発現並びに癌転
移阻害融合タンパク質の生産をなし得るための技術を提
供することにある。
【0008】
【課題を解決するための手段】本発明者らは上記課題を
解決するために鋭意研究を重ね、遺伝子組換え技術を用
いて生理活性を有する融合タンパク質を生産する新規な
系を創出し、該融合タンパク質を生産することに成功し
た。具体的には、生理活性を有する融合タンパク質をコ
ードする遺伝子を設計、作製し、すでに確立されている
異種タンパク質生産用のベクターに該遺伝子を組み込
み、得られた組換えベクターを宿主細胞に導入し、形質
転換体を作製することにより、生理活性を有する融合タ
ンパク質の生産を達成し得るというものである。
解決するために鋭意研究を重ね、遺伝子組換え技術を用
いて生理活性を有する融合タンパク質を生産する新規な
系を創出し、該融合タンパク質を生産することに成功し
た。具体的には、生理活性を有する融合タンパク質をコ
ードする遺伝子を設計、作製し、すでに確立されている
異種タンパク質生産用のベクターに該遺伝子を組み込
み、得られた組換えベクターを宿主細胞に導入し、形質
転換体を作製することにより、生理活性を有する融合タ
ンパク質の生産を達成し得るというものである。
【0009】すなわち本発明によれば、ヒト血清アルブ
ミンのポリペプチド鎖の少なくとも1つ以上の所望の位
置に生理活性を有するペプチドを導入してなる融合タン
パク質が提供される。
ミンのポリペプチド鎖の少なくとも1つ以上の所望の位
置に生理活性を有するペプチドを導入してなる融合タン
パク質が提供される。
【0010】ここで、上記生理活性を有するペプチドの
導入位置は、ヒト血清アルブミンのポリペプチド鎖のア
ミノ末端、カルボキシル末端、第1〜2ドメイン間ある
いは第2〜3ドメイン間のうちのいずれか1箇所若しく
はこれらの任意の組み合わせの位置であるのが好まし
い。
導入位置は、ヒト血清アルブミンのポリペプチド鎖のア
ミノ末端、カルボキシル末端、第1〜2ドメイン間ある
いは第2〜3ドメイン間のうちのいずれか1箇所若しく
はこれらの任意の組み合わせの位置であるのが好まし
い。
【0011】また本発明によれば、上記融合タンパク質
をコードする遺伝子が提供される。また本発明によれ
ば、上記遺伝子を含有する組換えベクターが提供され
る。
をコードする遺伝子が提供される。また本発明によれ
ば、上記遺伝子を含有する組換えベクターが提供され
る。
【0012】また本発明によれば、上記組換えベクター
で宿主細胞を形質転換してなる、融合タンパク質を産生
し得る形質転換体が提供される。
で宿主細胞を形質転換してなる、融合タンパク質を産生
し得る形質転換体が提供される。
【0013】さらに本発明によれば、上記形質転換体を
培養し、培養物中に産生された融合タンパク質を単離
し、所望により精製することからなる該融合タンパク質
の製造方法が提供される。
培養し、培養物中に産生された融合タンパク質を単離
し、所望により精製することからなる該融合タンパク質
の製造方法が提供される。
【0014】以下、本発明について詳述する。なお「生
理活性を有するペプチド」については、便宜上、癌転移
阻害活性を有するペプチド(癌転移阻害ペプチド)で代
表させて説明する。
理活性を有するペプチド」については、便宜上、癌転移
阻害活性を有するペプチド(癌転移阻害ペプチド)で代
表させて説明する。
【0015】上述したように、配列番号1のアミノ酸配
列で表されるペプチド(癌転移阻害ペプチド)と血清ア
ルブミン等の生体高分子との結合体(複合体)が優れた
癌転移阻害活性をもつということが本発明者らによりす
でに確認されている。しかしながら、上記複合体は化学
的タンパク質結合法により作製されたものであり、また
上記癌転移阻害ペプチドと血清アルブミンとの両者の結
合関係は、水溶性カルボジイミドで結合された状態であ
るということ以外、明確でない。
列で表されるペプチド(癌転移阻害ペプチド)と血清ア
ルブミン等の生体高分子との結合体(複合体)が優れた
癌転移阻害活性をもつということが本発明者らによりす
でに確認されている。しかしながら、上記複合体は化学
的タンパク質結合法により作製されたものであり、また
上記癌転移阻害ペプチドと血清アルブミンとの両者の結
合関係は、水溶性カルボジイミドで結合された状態であ
るということ以外、明確でない。
【0016】本発明者らは、ヒト血清アルブミンタンパ
ク質のポリペプチド鎖の所定の位置に癌転移阻害ペプチ
ドを導入することによって、ヒト血清アルブミンのタン
パク質立体構造を破壊することなくしかも癌転移阻害活
性を十分に発揮し得る癌転移阻害融合タンパク質を遺伝
子工学的に作製することに成功した。
ク質のポリペプチド鎖の所定の位置に癌転移阻害ペプチ
ドを導入することによって、ヒト血清アルブミンのタン
パク質立体構造を破壊することなくしかも癌転移阻害活
性を十分に発揮し得る癌転移阻害融合タンパク質を遺伝
子工学的に作製することに成功した。
【0017】具体的には、まずヒト血清アルブミンをコ
ードする遺伝子と、癌転移阻害ペプチドをコードする遺
伝子をそれぞれ作製し、前者のポリペプチド鎖の所定の
位置に後者を導入し結合させて、癌転移阻害融合タンパ
ク質をコードする遺伝子を作製する。
ードする遺伝子と、癌転移阻害ペプチドをコードする遺
伝子をそれぞれ作製し、前者のポリペプチド鎖の所定の
位置に後者を導入し結合させて、癌転移阻害融合タンパ
ク質をコードする遺伝子を作製する。
【0018】ヒト血清アルブミンをコードする遺伝子
は、好ましくは癌転移阻害ペプチド遺伝子を導入するの
に適するように改変したものが用いるのがよい。この改
変ヒト血清アルブミン遺伝子の作製のために用いる天然
のヒト血清アルブミン遺伝子は、例えば、ヒト肝臓cD
NAライブラリーよりプラスミドpILMALB5(国
立予防衛生研究所遺伝子バンク)の制限酵素PvuII
−HindIII断片をプローブとしてクローニングす
ること等により得ることができる。なお、ヒト血清アル
ブミン遺伝子には、そのアミノ酸配列が互いに若干異な
っているという多型が報告されており、上記の方法でク
ローニングしたヒト血清アルブミン遺伝子もその範疇に
入るものである。本発明における「ヒト血清アルブミ
ン」とは、これらすべての多型のものを含み得る。
は、好ましくは癌転移阻害ペプチド遺伝子を導入するの
に適するように改変したものが用いるのがよい。この改
変ヒト血清アルブミン遺伝子の作製のために用いる天然
のヒト血清アルブミン遺伝子は、例えば、ヒト肝臓cD
NAライブラリーよりプラスミドpILMALB5(国
立予防衛生研究所遺伝子バンク)の制限酵素PvuII
−HindIII断片をプローブとしてクローニングす
ること等により得ることができる。なお、ヒト血清アル
ブミン遺伝子には、そのアミノ酸配列が互いに若干異な
っているという多型が報告されており、上記の方法でク
ローニングしたヒト血清アルブミン遺伝子もその範疇に
入るものである。本発明における「ヒト血清アルブミ
ン」とは、これらすべての多型のものを含み得る。
【0019】改変の対象部位である癌転移阻害ペプチド
遺伝子導入部位は、ヒト血清アルブミンのポリペプチド
鎖中の任意の位置に設定することが可能であるが、活性
を十分に発揮させ得ることを考慮すると、タンパク質の
表面に位置しており、かつ立体構造を破壊することのな
い位置であることが好ましい。例えば、アミノ末端(N
末端)あるいはカルボキシル末端(C末端)など、ヒト
血清アルブミンの立体構造の形成に影響を及ぼさないと
考えられる位置が望ましい。また、ヒト血清アルブミン
の立体構造はX線結晶解析よって詳細に検討されており
(Xiao, M,H.,and Carter, D.C. Nature, 358:209-215,
1992 )、3個あるドメインの間、すなわち第1〜2ド
メイン間あるいは第2〜3ドメイン間も、導入部位の候
補となり得る。導入する癌転移阻害ペプチドの個数は、
必要に応じて、単一の位置、ないしは複数の位置に、単
数あるいは複数個導入し得る。
遺伝子導入部位は、ヒト血清アルブミンのポリペプチド
鎖中の任意の位置に設定することが可能であるが、活性
を十分に発揮させ得ることを考慮すると、タンパク質の
表面に位置しており、かつ立体構造を破壊することのな
い位置であることが好ましい。例えば、アミノ末端(N
末端)あるいはカルボキシル末端(C末端)など、ヒト
血清アルブミンの立体構造の形成に影響を及ぼさないと
考えられる位置が望ましい。また、ヒト血清アルブミン
の立体構造はX線結晶解析よって詳細に検討されており
(Xiao, M,H.,and Carter, D.C. Nature, 358:209-215,
1992 )、3個あるドメインの間、すなわち第1〜2ド
メイン間あるいは第2〜3ドメイン間も、導入部位の候
補となり得る。導入する癌転移阻害ペプチドの個数は、
必要に応じて、単一の位置、ないしは複数の位置に、単
数あるいは複数個導入し得る。
【0020】ヒト血清アルブミン遺伝子の改変は、例え
ば上記癌転移阻害ペプチド遺伝子導入位置に、制限酵素
切断部位を導入することなどによって行われる。導入す
る制限酵素切断部位は、既知の制限酵素によって認識さ
れるものであればよい。望ましくは、ヒト血清アルブミ
ン中にほとんど存在しない切断部位であり、かつ切断酵
素が容易に入手できるものが望ましい。また、当然天然
のアミノ酸配列を一切変更しないことと同時に、塩基配
列もできるだけ変更しないことが望ましい。以上の点を
鑑みて、アミノ末端およびカルボキシル末端に制限酵素
AflIII切断部位を、第1〜2ドメイン間に制限酵
素HindIII切断部位を、第2〜3ドメイン間に制
限酵素EcoRI切断部位をそれぞれ導入するのが最も
好ましい。なお、制限酵素切断部位導入法としては、当
業分野で常用されているPCR法等が好適に用いられ
る。
ば上記癌転移阻害ペプチド遺伝子導入位置に、制限酵素
切断部位を導入することなどによって行われる。導入す
る制限酵素切断部位は、既知の制限酵素によって認識さ
れるものであればよい。望ましくは、ヒト血清アルブミ
ン中にほとんど存在しない切断部位であり、かつ切断酵
素が容易に入手できるものが望ましい。また、当然天然
のアミノ酸配列を一切変更しないことと同時に、塩基配
列もできるだけ変更しないことが望ましい。以上の点を
鑑みて、アミノ末端およびカルボキシル末端に制限酵素
AflIII切断部位を、第1〜2ドメイン間に制限酵
素HindIII切断部位を、第2〜3ドメイン間に制
限酵素EcoRI切断部位をそれぞれ導入するのが最も
好ましい。なお、制限酵素切断部位導入法としては、当
業分野で常用されているPCR法等が好適に用いられ
る。
【0021】そして、癌転移阻害ペプチド遺伝子の導入
の際には、上記制限酵素切断部位を各制限酵素にて切断
し、ここに同様に制限酵素で消化して末端調節を行った
癌転移阻害ペプチド遺伝子を組み込むことによって、癌
転移阻害融合タンパク質をコードする遺伝子を作製す
る。
の際には、上記制限酵素切断部位を各制限酵素にて切断
し、ここに同様に制限酵素で消化して末端調節を行った
癌転移阻害ペプチド遺伝子を組み込むことによって、癌
転移阻害融合タンパク質をコードする遺伝子を作製す
る。
【0022】なお、上記の癌転移阻害ペプチド遺伝子の
塩基配列は、配列番号1のアミノ酸配列で表されるペプ
チドをコードするものであり、理論的には幾通りもの数
多くの配列が考えられ得るが、望ましくは遺伝子組換え
に用いる宿主細胞のコドン使用頻度に合わせたものがよ
く、最も多頻度で使用されるコドンを用いて設計するの
がよい。
塩基配列は、配列番号1のアミノ酸配列で表されるペプ
チドをコードするものであり、理論的には幾通りもの数
多くの配列が考えられ得るが、望ましくは遺伝子組換え
に用いる宿主細胞のコドン使用頻度に合わせたものがよ
く、最も多頻度で使用されるコドンを用いて設計するの
がよい。
【0023】ここで、用いる宿主細胞としては特に限定
されるものではないが、望ましくは培養方法が容易で、
低コストで培養できる微生物がよく、例えば大腸菌(Es
cherichia coli)、各種酵母類、枯草菌、糸状菌等、当
業分野で常用されている宿主細胞等が挙げられる。原核
生物を宿主細胞として用いる形質転換方法では必ずしも
全てのポリペプチドに対して有効ではなく、真核生物由
来のタンパク質の複雑な翻訳後修飾あるいは天然体と同
じ立体構造を再現することは必ずしも容易ではない。ま
た特有のエンドトキシンが存在する場合は、最終製品の
夾雑物になる可能性があり、好ましくない。このため好
ましくは、エンドトキシンを含まず、培養方法も確立し
ており、従来より醗酵並びに食品工業で用いられてお
り、人体に関する安全性も確立されている各種酵母類が
よい。このなかでも特に、遺伝学的並びに分子生物学的
に動物細胞に近い性質をもつとされ、より天然体に近い
遺伝子産物が得られることが期待される分裂酵母シゾサ
ッカロミセス・ポンベ(Schizosaccharomyces pombe )
が最も好ましい。このシゾサッカロミセス・ポンベの菌
株としては、例えば寄託番号ATCC38399(leu-
32h-)やATCC38436(ura4-294h-)等としてア
メリカン・タイプ・カルチャー・コレクション(ATC
C)に寄託されているものが挙げられ、入手可能であ
る。
されるものではないが、望ましくは培養方法が容易で、
低コストで培養できる微生物がよく、例えば大腸菌(Es
cherichia coli)、各種酵母類、枯草菌、糸状菌等、当
業分野で常用されている宿主細胞等が挙げられる。原核
生物を宿主細胞として用いる形質転換方法では必ずしも
全てのポリペプチドに対して有効ではなく、真核生物由
来のタンパク質の複雑な翻訳後修飾あるいは天然体と同
じ立体構造を再現することは必ずしも容易ではない。ま
た特有のエンドトキシンが存在する場合は、最終製品の
夾雑物になる可能性があり、好ましくない。このため好
ましくは、エンドトキシンを含まず、培養方法も確立し
ており、従来より醗酵並びに食品工業で用いられてお
り、人体に関する安全性も確立されている各種酵母類が
よい。このなかでも特に、遺伝学的並びに分子生物学的
に動物細胞に近い性質をもつとされ、より天然体に近い
遺伝子産物が得られることが期待される分裂酵母シゾサ
ッカロミセス・ポンベ(Schizosaccharomyces pombe )
が最も好ましい。このシゾサッカロミセス・ポンベの菌
株としては、例えば寄託番号ATCC38399(leu-
32h-)やATCC38436(ura4-294h-)等としてア
メリカン・タイプ・カルチャー・コレクション(ATC
C)に寄託されているものが挙げられ、入手可能であ
る。
【0024】したがって本発明においては、配列番号1
で表される癌転移阻害ペプチドをコードする遺伝子は、
シゾサッカロミセズ・ポンベでの高発現に至適なコドン
を用いて設計し、合成したものであるのが好ましい。シ
ゾサッカロミセス・ポンベの最適コドン使用頻度は、例
えば A. Nasim et al.: Molecular Biology of theFis
sion Yeast, p.263, Academic Press (1983) 等から知
ることができる。本発明者らは種々研究を重ねた結果、
配列番号25の塩基配列で表される遺伝子が最も好適で
あるとの結論を得、設計、合成した(ただし、配列番号
25の塩基配列は、翻訳開始シグナル(ATG)および
翻訳終了シグナル(TAA)を付加している)。なお、
遺伝子の作製(合成)は、トリエステル法(Nuc. Acid.
Res. 10, p.6553,(1982) )やホスホアミダイト法(Te
trahedron Letters 22, p.1859,(1981) )などの種々の
方法がすでに開発されており、いずれの方法を用いても
よい。またDNA合成機器(DNAシンセサイザー)等
が市販されているので、それらを用いてもよい。
で表される癌転移阻害ペプチドをコードする遺伝子は、
シゾサッカロミセズ・ポンベでの高発現に至適なコドン
を用いて設計し、合成したものであるのが好ましい。シ
ゾサッカロミセス・ポンベの最適コドン使用頻度は、例
えば A. Nasim et al.: Molecular Biology of theFis
sion Yeast, p.263, Academic Press (1983) 等から知
ることができる。本発明者らは種々研究を重ねた結果、
配列番号25の塩基配列で表される遺伝子が最も好適で
あるとの結論を得、設計、合成した(ただし、配列番号
25の塩基配列は、翻訳開始シグナル(ATG)および
翻訳終了シグナル(TAA)を付加している)。なお、
遺伝子の作製(合成)は、トリエステル法(Nuc. Acid.
Res. 10, p.6553,(1982) )やホスホアミダイト法(Te
trahedron Letters 22, p.1859,(1981) )などの種々の
方法がすでに開発されており、いずれの方法を用いても
よい。またDNA合成機器(DNAシンセサイザー)等
が市販されているので、それらを用いてもよい。
【0025】次に、上記のようにして作製した新規の癌
転移阻害融合タンパク質遺伝子をベクターに組み込んで
組換えベクターを作製する。用いるベクターは特に限定
されるものではないが、宿主細胞内で自律的に複製可能
であって、癌転移阻害融合タンパク質合成遺伝子を組み
込み得る挿入部位をもち、さらにこの組み込んだ合成遺
伝子を宿主細胞内で発現せしめることを可能とする領域
を有する必要がある。このようなベクターとして、例え
ば本発明者らがすでに創出に成功しているシゾサッカロ
ミセズ・ポンベを宿主とする外来遺伝子発現ベクターp
TL2M(特願平5−249310号明細書)等を有利
に用いることができ、これらのベクターに上記合成遺伝
子を容易に組み込み得る。
転移阻害融合タンパク質遺伝子をベクターに組み込んで
組換えベクターを作製する。用いるベクターは特に限定
されるものではないが、宿主細胞内で自律的に複製可能
であって、癌転移阻害融合タンパク質合成遺伝子を組み
込み得る挿入部位をもち、さらにこの組み込んだ合成遺
伝子を宿主細胞内で発現せしめることを可能とする領域
を有する必要がある。このようなベクターとして、例え
ば本発明者らがすでに創出に成功しているシゾサッカロ
ミセズ・ポンベを宿主とする外来遺伝子発現ベクターp
TL2M(特願平5−249310号明細書)等を有利
に用いることができ、これらのベクターに上記合成遺伝
子を容易に組み込み得る。
【0026】次いで上記組換えベクターを宿主細胞内に
導入し、形質転換体を得る。組換えベクターの宿主細胞
内への導入法は、従来慣用的に用いられている方法によ
り行うことができ、コンピテント細胞法、プロトプラス
ト法、リン酸カルシウム共沈法、エレクトロポレーショ
ン法、マイクロインジェクション法、リポソーム融合
法、パーティクル・ガン法等、種々のものが挙げられる
が、用いる宿主に応じてそれぞれ任意の方法を取り得
る。シゾサッカロミセス・ポンベを宿主とする場合は、
例えば酢酸リチウム法(K. Okazaki et al., Nucleic A
cids Res., 18, 6485-6489(1990))等によって効率よく
形質転換体を得ることができる。
導入し、形質転換体を得る。組換えベクターの宿主細胞
内への導入法は、従来慣用的に用いられている方法によ
り行うことができ、コンピテント細胞法、プロトプラス
ト法、リン酸カルシウム共沈法、エレクトロポレーショ
ン法、マイクロインジェクション法、リポソーム融合
法、パーティクル・ガン法等、種々のものが挙げられる
が、用いる宿主に応じてそれぞれ任意の方法を取り得
る。シゾサッカロミセス・ポンベを宿主とする場合は、
例えば酢酸リチウム法(K. Okazaki et al., Nucleic A
cids Res., 18, 6485-6489(1990))等によって効率よく
形質転換体を得ることができる。
【0027】このようにして得られた形質転換体を培養
することにより、培養物中に癌転移阻害融合タンパク質
が産生される。これを公知の方法で単離し、場合により
精製することにより、目的とする癌転移阻害融合タンパ
ク質が得られる。
することにより、培養物中に癌転移阻害融合タンパク質
が産生される。これを公知の方法で単離し、場合により
精製することにより、目的とする癌転移阻害融合タンパ
ク質が得られる。
【0028】形質転換体を培養するための培地は公知で
あり、YPD培地などの栄養培地(M. D. Rose et al.,
"Methods In Yeast Genetics", Cold Spring Harbor L
abolatory Press(1990)r)や、MB培地などの最少培地
(K. Okazaki et al., Nucleic Acids Res., 18, 6485-
6489(1990))等を用いることができる。形質転換体の培
養は、通常16〜42℃、好ましくは25〜37℃で、
8〜168時間、好ましくは24〜72時間行う。振盪
培養と静置培養のいずれも可能であるが、必要に応じて
攪拌や通気を加えてもよい。
あり、YPD培地などの栄養培地(M. D. Rose et al.,
"Methods In Yeast Genetics", Cold Spring Harbor L
abolatory Press(1990)r)や、MB培地などの最少培地
(K. Okazaki et al., Nucleic Acids Res., 18, 6485-
6489(1990))等を用いることができる。形質転換体の培
養は、通常16〜42℃、好ましくは25〜37℃で、
8〜168時間、好ましくは24〜72時間行う。振盪
培養と静置培養のいずれも可能であるが、必要に応じて
攪拌や通気を加えてもよい。
【0029】培養物中に産生した融合タンパク質の単離
・精製法としては、公知の塩析または溶媒沈殿法等の溶
解度の差を利用する方法、透析、限外濾過またはゲル電
気泳動法等の分子量の差を利用する方法、イオン交換ク
ロマトグラフィー等の荷電の差を利用する方法、アフィ
ニティークロマトグラフィー等の特異的親和性を利用す
る方法、逆相高速液体フロマトグラフィー等の疎水性の
差を利用する方法、等電点電気泳動法等の等電点の差を
利用する方法等が挙げられる。
・精製法としては、公知の塩析または溶媒沈殿法等の溶
解度の差を利用する方法、透析、限外濾過またはゲル電
気泳動法等の分子量の差を利用する方法、イオン交換ク
ロマトグラフィー等の荷電の差を利用する方法、アフィ
ニティークロマトグラフィー等の特異的親和性を利用す
る方法、逆相高速液体フロマトグラフィー等の疎水性の
差を利用する方法、等電点電気泳動法等の等電点の差を
利用する方法等が挙げられる。
【0030】単離・精製した融合タンパク質の確認方法
としては、公知のウエスタンブロッティング法や活性測
定法等が挙げられる。また、精製された融合タンパク質
は、アミノ酸分析、アミノ末端分析、一次構造解析など
によりその構造を明らかにすることができる。
としては、公知のウエスタンブロッティング法や活性測
定法等が挙げられる。また、精製された融合タンパク質
は、アミノ酸分析、アミノ末端分析、一次構造解析など
によりその構造を明らかにすることができる。
【0031】なお、本明細書中、配列表の配列番号2の
アミノ酸配列で表される融合タンパク質は、ヒト血清ア
ルブミンのポリペプチド鎖のN末端に配列番号1の癌転
移阻害ペプチドを導入したものであり;配列番号4のア
ミノ酸配列で表される融合タンパク質は、ヒト血清アル
ブミンのポリペプチド鎖の第1〜2ドメイン間に配列番
号1の癌転移阻害ペプチドを導入したものであり;配列
番号6のアミノ酸配列で表される融合タンパク質は、ヒ
ト血清アルブミンのポリペプチド鎖の第2〜3ドメイン
間に配列番号1の癌転移阻害ペプチドを導入したもので
あり;配列番号8のアミノ酸配列で表される融合タンパ
ク質は、ヒト血清アルブミンのポリペプチド鎖のカルボ
キシル末端に配列番号1の癌転移阻害ペプチドを導入し
たものである。配列番号3、5、7および9の塩基配列
は、それぞれ、配列番号2、4、6および8の各アミノ
酸配列で表される癌転移阻害融合タンパク質をコードす
る遺伝子である。
アミノ酸配列で表される融合タンパク質は、ヒト血清ア
ルブミンのポリペプチド鎖のN末端に配列番号1の癌転
移阻害ペプチドを導入したものであり;配列番号4のア
ミノ酸配列で表される融合タンパク質は、ヒト血清アル
ブミンのポリペプチド鎖の第1〜2ドメイン間に配列番
号1の癌転移阻害ペプチドを導入したものであり;配列
番号6のアミノ酸配列で表される融合タンパク質は、ヒ
ト血清アルブミンのポリペプチド鎖の第2〜3ドメイン
間に配列番号1の癌転移阻害ペプチドを導入したもので
あり;配列番号8のアミノ酸配列で表される融合タンパ
ク質は、ヒト血清アルブミンのポリペプチド鎖のカルボ
キシル末端に配列番号1の癌転移阻害ペプチドを導入し
たものである。配列番号3、5、7および9の塩基配列
は、それぞれ、配列番号2、4、6および8の各アミノ
酸配列で表される癌転移阻害融合タンパク質をコードす
る遺伝子である。
【0032】
【実施例】以下の実施例により本発明をより具体的に説
明する。ただし、本発明はこれらの実施例によりその技
術範囲が限定されるものではない。また実施例中の各操
作については、特に記載したもの以外は、当業分野で常
用されている方法(例えばJ. Sambrook et al.: Molecu
lar Cloning. A Laboratory Manual. 2nd ed. Cold Spr
ing Harbor Laboratory Press, Cold Spring Harbor, N
ew York, USA, 1989.)に従った。
明する。ただし、本発明はこれらの実施例によりその技
術範囲が限定されるものではない。また実施例中の各操
作については、特に記載したもの以外は、当業分野で常
用されている方法(例えばJ. Sambrook et al.: Molecu
lar Cloning. A Laboratory Manual. 2nd ed. Cold Spr
ing Harbor Laboratory Press, Cold Spring Harbor, N
ew York, USA, 1989.)に従った。
【0033】[実施例1]癌転移阻害ペプチドをコード
する配列番号25の塩基配列で表される遺伝子の作製 配列番号1のアミノ酸配列をもとに、シゾサッカロミセ
ス・ポンベのコドン使用頻度(Nasim, A. et al: Molec
ular Biology of the Fission Yeast, Academic Press,
1989, p263.)に合せて、配列番号10および11の塩
基配列で表される2本の一本鎖オリゴDNAを、DNA
自動合成装置(Applied Biosystems)を用いて合成し
た。なお、配列番号10の塩基配列は、5’末端に制限
酵素BamHIへの挿入部位と開始コドンATGを、
3’末端に終始コドンTAAと制限酵素HindIII
への挿入部位を導入した遺伝子のセンス鎖であり、配列
番号11の塩基配列はそのアンチセンス鎖である。脱保
護、精製後、これら2本を70℃でアニーリングした。
する配列番号25の塩基配列で表される遺伝子の作製 配列番号1のアミノ酸配列をもとに、シゾサッカロミセ
ス・ポンベのコドン使用頻度(Nasim, A. et al: Molec
ular Biology of the Fission Yeast, Academic Press,
1989, p263.)に合せて、配列番号10および11の塩
基配列で表される2本の一本鎖オリゴDNAを、DNA
自動合成装置(Applied Biosystems)を用いて合成し
た。なお、配列番号10の塩基配列は、5’末端に制限
酵素BamHIへの挿入部位と開始コドンATGを、
3’末端に終始コドンTAAと制限酵素HindIII
への挿入部位を導入した遺伝子のセンス鎖であり、配列
番号11の塩基配列はそのアンチセンス鎖である。脱保
護、精製後、これら2本を70℃でアニーリングした。
【0034】一方、これとは別にプラスミドpUC19
(宝酒造(株)製)を、制限酵素BamHI(宝酒造
(株)製)およびHindIII(宝酒造(株)製)で
二重消化し、フェノール抽出、エタノール沈澱による精
製の後、アガロースゲル電気泳動し、約2600塩基対
に相当するバンドを切出し、DNA−PREP(旭硝子
(株)製)を用いたガラスビーズ法で精製した。
(宝酒造(株)製)を、制限酵素BamHI(宝酒造
(株)製)およびHindIII(宝酒造(株)製)で
二重消化し、フェノール抽出、エタノール沈澱による精
製の後、アガロースゲル電気泳動し、約2600塩基対
に相当するバンドを切出し、DNA−PREP(旭硝子
(株)製)を用いたガラスビーズ法で精製した。
【0035】これら両者の断片を、DNAライゲーショ
ンキット(宝酒造(株)製)を用いてライゲーションし
た。これを大腸菌JM109株(宝酒造(株)製)に導
入して形質転換した後、アンピシリン耐性を持ち、かつ
X-gal プレート上で白コロニーを提示するポジティブ
クローンをスクリーニングし、目的のプラスミドすなわ
ち制限酵素BamHIおよびHindIII二重消化時
に約70塩基対の切断断片を示すpI2Aを得た。アル
カリ−SDS法に従ってpI2Aを大量調製し、制限酵
素地図の作製および塩基配列決定によって、配列番号2
5の塩基配列を持ったプラスミドであることを確認し
た。
ンキット(宝酒造(株)製)を用いてライゲーションし
た。これを大腸菌JM109株(宝酒造(株)製)に導
入して形質転換した後、アンピシリン耐性を持ち、かつ
X-gal プレート上で白コロニーを提示するポジティブ
クローンをスクリーニングし、目的のプラスミドすなわ
ち制限酵素BamHIおよびHindIII二重消化時
に約70塩基対の切断断片を示すpI2Aを得た。アル
カリ−SDS法に従ってpI2Aを大量調製し、制限酵
素地図の作製および塩基配列決定によって、配列番号2
5の塩基配列を持ったプラスミドであることを確認し
た。
【0036】[実施例2]配列番号3の癌転移阻害融合
タンパク質遺伝子を含む発現ベクターpTL2BmI−
1000の作製 ヒト肝臓cDNAライブラリーよりpUC19上にクロ
ーニングしたヒト血清アルブミンcDNAを鋳型とし
て、配列番号12および13の塩基配列で表されるプラ
イマーを用いてPCR増幅を行ない、次いで制限酵素N
coI(宝酒造(株)製)およびHindIIIによっ
て末端調節(部分消化)を行なった。フェノール抽出、
エタノール沈澱による精製の後、アガロースゲル電気泳
動し、約1800塩基対に相当するバンドを切出し、D
NA−PREPを用いたガラスビーズ法で精製し、挿入
断片とした。
タンパク質遺伝子を含む発現ベクターpTL2BmI−
1000の作製 ヒト肝臓cDNAライブラリーよりpUC19上にクロ
ーニングしたヒト血清アルブミンcDNAを鋳型とし
て、配列番号12および13の塩基配列で表されるプラ
イマーを用いてPCR増幅を行ない、次いで制限酵素N
coI(宝酒造(株)製)およびHindIIIによっ
て末端調節(部分消化)を行なった。フェノール抽出、
エタノール沈澱による精製の後、アガロースゲル電気泳
動し、約1800塩基対に相当するバンドを切出し、D
NA−PREPを用いたガラスビーズ法で精製し、挿入
断片とした。
【0037】さらにこれとは別に、シゾサッカロミセス
・ポンベ発現ベクターpTL2Mを用意した。このベク
ターpTL2Mは、本願発明者らがすでに構築したもの
である(特願平5−249310号明細書)。以下にそ
の作製方法を述べる。
・ポンベ発現ベクターpTL2Mを用意した。このベク
ターpTL2Mは、本願発明者らがすでに構築したもの
である(特願平5−249310号明細書)。以下にそ
の作製方法を述べる。
【0038】[ベクターpRL2Mの作製]まず、公知
の方法で調製されたpcD4CATをBamHIで切断
し、CAT遺伝子を除去後ライゲーションし、pcD4
を作製した。pcD4をBamHIで部分切断し、平滑
末端化した後ライゲーションしてpcD4Bを作製した
(特開平5−15380号公報)。
の方法で調製されたpcD4CATをBamHIで切断
し、CAT遺伝子を除去後ライゲーションし、pcD4
を作製した。pcD4をBamHIで部分切断し、平滑
末端化した後ライゲーションしてpcD4Bを作製した
(特開平5−15380号公報)。
【0039】このプラスミドpcD4Bを制限酵素Sa
cIで消化後、末端をT4DNAポリメラーゼで平滑化
し、さらに制限酵素BamHIで消化した後、フェノー
ル抽出およびエタノール沈殿によって精製した。さらに
アガロースゲル電気泳動後、ガラスビーズ法によって約
4500塩基対に相当するDNAを精製した。
cIで消化後、末端をT4DNAポリメラーゼで平滑化
し、さらに制限酵素BamHIで消化した後、フェノー
ル抽出およびエタノール沈殿によって精製した。さらに
アガロースゲル電気泳動後、ガラスビーズ法によって約
4500塩基対に相当するDNAを精製した。
【0040】一方、これとは別に、ヒト線維芽細胞由来
の岡山−バーグcDNAライブラリー(pcDベクタ
ー)を公知の方法により調製した。さらに、既に知られ
ているヒトリポコルチンIの遺伝子配列(Nature, 320,
77,(1986))のうち、タンパク質のN末端側アミノ酸配
列をコードする50塩基の遺伝子配列をDNAプローブ
として上述のライブラリーからリポコルチンIの遺伝子
をコロニーハイブリダイゼーション法により取得し、塩
基配列を決定することにより、リポコルチンIタンパク
質全長をコードするものであることを確認した。取得し
たクローンをpcDlipoIと名づけた。(特開平5
−15380号公報)。そしてこのヒトリポコルチンI
遺伝子(cDNA)を含むベクターpcDlipoIを
制限酵素XmnIおよびBamHIで消化した後、フェ
ノール抽出およびエタノール沈殿によって精製した。さ
らにアガロースゲル電気泳動後、ガラスビーズ法によっ
て約1300塩基対に相当するDNAを精製した。
の岡山−バーグcDNAライブラリー(pcDベクタ
ー)を公知の方法により調製した。さらに、既に知られ
ているヒトリポコルチンIの遺伝子配列(Nature, 320,
77,(1986))のうち、タンパク質のN末端側アミノ酸配
列をコードする50塩基の遺伝子配列をDNAプローブ
として上述のライブラリーからリポコルチンIの遺伝子
をコロニーハイブリダイゼーション法により取得し、塩
基配列を決定することにより、リポコルチンIタンパク
質全長をコードするものであることを確認した。取得し
たクローンをpcDlipoIと名づけた。(特開平5
−15380号公報)。そしてこのヒトリポコルチンI
遺伝子(cDNA)を含むベクターpcDlipoIを
制限酵素XmnIおよびBamHIで消化した後、フェ
ノール抽出およびエタノール沈殿によって精製した。さ
らにアガロースゲル電気泳動後、ガラスビーズ法によっ
て約1300塩基対に相当するDNAを精製した。
【0041】両DNAをライゲーションした後、これを
大腸菌DH5株(東洋紡(株)製)に導入して形質転換
した。得られた形質転換体よりベクターを調製し、目的
とするベクターpRL2L(図5)を持った形質転換体
をスクリーニングした。部分塩基配列の確認および制限
酵素地図の作製から目的のベクターであることを確認し
た。
大腸菌DH5株(東洋紡(株)製)に導入して形質転換
した。得られた形質転換体よりベクターを調製し、目的
とするベクターpRL2L(図5)を持った形質転換体
をスクリーニングした。部分塩基配列の確認および制限
酵素地図の作製から目的のベクターであることを確認し
た。
【0042】このリポコルチンI発現ベクターpRL2
Lを制限酵素EcoRIおよびHindIIIで消化
し、フェノール抽出、エタノール沈殿の後、アガロース
ゲル電気泳動により約5000塩基対に相当するバンド
を切り出し、ガラスビーズ法で精製した。これとは別
に、公知のプラスミドpUC19を制限酵素EcoRI
およびHindIIIで消化し、フェノール抽出、エタ
ノール沈殿の後、ポリアクリルアミドゲル電気泳動によ
り約60塩基対に相当するバンドを切り出し、ゲルから
抽出精製した。
Lを制限酵素EcoRIおよびHindIIIで消化
し、フェノール抽出、エタノール沈殿の後、アガロース
ゲル電気泳動により約5000塩基対に相当するバンド
を切り出し、ガラスビーズ法で精製した。これとは別
に、公知のプラスミドpUC19を制限酵素EcoRI
およびHindIIIで消化し、フェノール抽出、エタ
ノール沈殿の後、ポリアクリルアミドゲル電気泳動によ
り約60塩基対に相当するバンドを切り出し、ゲルから
抽出精製した。
【0043】これら両者の断片をライゲーションの後、
大腸菌DH5株を形質転換して目的とするベクターpR
L2M(図6)をスクリーニングした。部分塩基配列の
確認および制限酵素地図の作製から目的のベクターであ
ることを確認した。
大腸菌DH5株を形質転換して目的とするベクターpR
L2M(図6)をスクリーニングした。部分塩基配列の
確認および制限酵素地図の作製から目的のベクターであ
ることを確認した。
【0044】[ベクターpTL2Mの作製]上記pRL
2Mを鋳型とし、オリゴデオキシリボヌクレオチド 5'-
TTGACTAGTTATTAATAGTA-3' およびオリゴデオキシリボヌ
クレオチド 5'-CTAGAATTCACATGTTTGAAAAAGTGTCTTTATC-
3' を合成プライマーとして、Taqポリメラーゼを用
いたPCRによって目的断片を増幅した。制限酵素Sp
eIおよびEcoRIで末端調節し、フェノール抽出、
エタノール沈殿の後、アガロースゲル電気泳動により約
600塩基対に相当するバンドを切り出し、ガラスビー
ズ法で精製した。
2Mを鋳型とし、オリゴデオキシリボヌクレオチド 5'-
TTGACTAGTTATTAATAGTA-3' およびオリゴデオキシリボヌ
クレオチド 5'-CTAGAATTCACATGTTTGAAAAAGTGTCTTTATC-
3' を合成プライマーとして、Taqポリメラーゼを用
いたPCRによって目的断片を増幅した。制限酵素Sp
eIおよびEcoRIで末端調節し、フェノール抽出、
エタノール沈殿の後、アガロースゲル電気泳動により約
600塩基対に相当するバンドを切り出し、ガラスビー
ズ法で精製した。
【0045】一方、これとは別に、pRL2Mを制限酵
素SpeIおよびEcoRIで消化し、フェノール抽
出、エタノール沈殿の後、アガロースゲル電気泳動によ
り約4500塩基対に相当するバンドを切り出し、ガラ
スビーズ法で精製した。これら両者の断片をライゲーシ
ョンの後、大腸菌DH5株を形質転換して目的とするベ
クターpTL2M(図7)をスクリーニングした。部分
塩基配列の確認および制限酵素地図の作製から目的のベ
クターであることを確認した。
素SpeIおよびEcoRIで消化し、フェノール抽
出、エタノール沈殿の後、アガロースゲル電気泳動によ
り約4500塩基対に相当するバンドを切り出し、ガラ
スビーズ法で精製した。これら両者の断片をライゲーシ
ョンの後、大腸菌DH5株を形質転換して目的とするベ
クターpTL2M(図7)をスクリーニングした。部分
塩基配列の確認および制限酵素地図の作製から目的のベ
クターであることを確認した。
【0046】このようにして作製したpTL2Mを制限
酵素AflIIIおよびHindIIIで二重消化し、
約5000塩基対に相当するバンドを切出した。
酵素AflIIIおよびHindIIIで二重消化し、
約5000塩基対に相当するバンドを切出した。
【0047】そして上記挿入断片とこの発現ベクターp
TL2Mの上記制限酵素による二重消化物との計2本
を、DNAライゲーションキットを用いてライゲーショ
ンした。これを大腸菌DH5株(東洋紡(株)製)に導
入して形質転換した後、目的のプラスミドpTL2Bm
aを得た。アルカリ−SDS法に従ってpTL2Bma
を大量調製し、制限酵素地図の作製および塩基配列決定
によって、目的の配列を持ったプラスミドであることを
確認した。
TL2Mの上記制限酵素による二重消化物との計2本
を、DNAライゲーションキットを用いてライゲーショ
ンした。これを大腸菌DH5株(東洋紡(株)製)に導
入して形質転換した後、目的のプラスミドpTL2Bm
aを得た。アルカリ−SDS法に従ってpTL2Bma
を大量調製し、制限酵素地図の作製および塩基配列決定
によって、目的の配列を持ったプラスミドであることを
確認した。
【0048】さらに実施例1で作製したpI2Aを鋳型
として、配列番号19および20の塩基配列で表される
プライマーを用いてPCR増幅を行ない、制限酵素Nc
oIおよびAflIIIによって末端調節を行なった。
フェノール抽出、エタノール沈澱による精製の後、アク
リルアミドゲル電気泳動により約70塩基対に相当する
バンドを切出し、ゲルから溶出して遺伝子断片とした。
として、配列番号19および20の塩基配列で表される
プライマーを用いてPCR増幅を行ない、制限酵素Nc
oIおよびAflIIIによって末端調節を行なった。
フェノール抽出、エタノール沈澱による精製の後、アク
リルアミドゲル電気泳動により約70塩基対に相当する
バンドを切出し、ゲルから溶出して遺伝子断片とした。
【0049】この遺伝子断片と上記pTL2Bmaの制
限酵素NcoI消化物(部分消化後、約7000塩基対
に相当するバンドをDNA−PREPを用いて精製)と
の計2本を、DNAライゲーションキットを用いてライ
ゲーションした。これを大腸菌DH5株に導入して形質
転換した後、目的のプラスミドpTL2BmI−100
0を得た。アルカリ−SDS法に従ってpTL2BmI
−1000を大量調製し、制限酵素地図の作製および塩
基配列決定によって、配列番号3の塩基配列を持ったプ
ラスミドであることを確認した。
限酵素NcoI消化物(部分消化後、約7000塩基対
に相当するバンドをDNA−PREPを用いて精製)と
の計2本を、DNAライゲーションキットを用いてライ
ゲーションした。これを大腸菌DH5株に導入して形質
転換した後、目的のプラスミドpTL2BmI−100
0を得た。アルカリ−SDS法に従ってpTL2BmI
−1000を大量調製し、制限酵素地図の作製および塩
基配列決定によって、配列番号3の塩基配列を持ったプ
ラスミドであることを確認した。
【0050】[実施例3]配列番号5の癌転移阻害融合
タンパク質遺伝子を含む発現ベクターpTL2BmI−
0100の作製 ヒト肝臓cDNAライブラリーよりpUC19上にクロ
ーニングしたヒト血清アルブミンcDNAを鋳型とし
て、配列番号12および14の塩基配列で表されるプラ
イマーを用いてPCR増幅を行ない、次いで制限酵素N
coIおよびHindIIIによって末端調節を行なっ
た。フェノール抽出、エタノール沈澱による精製の後、
アガロースゲル電気泳動し、約550塩基対に相当する
バンドを切出し、DNA−PREPを用いたガラスビー
ズ法で精製し、挿入断片1とした。
タンパク質遺伝子を含む発現ベクターpTL2BmI−
0100の作製 ヒト肝臓cDNAライブラリーよりpUC19上にクロ
ーニングしたヒト血清アルブミンcDNAを鋳型とし
て、配列番号12および14の塩基配列で表されるプラ
イマーを用いてPCR増幅を行ない、次いで制限酵素N
coIおよびHindIIIによって末端調節を行なっ
た。フェノール抽出、エタノール沈澱による精製の後、
アガロースゲル電気泳動し、約550塩基対に相当する
バンドを切出し、DNA−PREPを用いたガラスビー
ズ法で精製し、挿入断片1とした。
【0051】一方、これとは別に、同じcDNAを鋳型
として、配列番号15および13の塩基配列で表される
プライマーを用いてPCR増幅を行ない、次いで制限酵
素HindIIIによって末端調節を行なった。フェノ
ール抽出、エタノール沈澱による精製の後、アガロース
ゲル電気泳動し、約1350塩基対に相当するバンドを
切出し、DNA−PREPを用いたガラスビーズ法で精
製し、挿入断片2とした。
として、配列番号15および13の塩基配列で表される
プライマーを用いてPCR増幅を行ない、次いで制限酵
素HindIIIによって末端調節を行なった。フェノ
ール抽出、エタノール沈澱による精製の後、アガロース
ゲル電気泳動し、約1350塩基対に相当するバンドを
切出し、DNA−PREPを用いたガラスビーズ法で精
製し、挿入断片2とした。
【0052】さらにこれとは別に、実施例2の場合と同
様にして作製したシゾサッカロミセズ・ポンベ発現ベク
ターpTL2Mを用意し、このベクターpTL2Mを制
限酵素AflIIIおよびHindIIIで二重消化
し、約5000塩基対に相当するバンドを切出した。
様にして作製したシゾサッカロミセズ・ポンベ発現ベク
ターpTL2Mを用意し、このベクターpTL2Mを制
限酵素AflIIIおよびHindIIIで二重消化
し、約5000塩基対に相当するバンドを切出した。
【0053】そして上記挿入断片2本とこの発現ベクタ
ーpTL2Mの上記制限酵素による二重消化物との計3
本を、DNAライゲーションキットを用いてライゲーシ
ョンした。これを大腸菌DH5株に導入して形質転換し
た後、目的のプラスミドpTL2Bmbを得た。アルカ
リ−SDS法に従ってpTL2Bmbを大量調製し、制
限酵素地図の作製および塩基配列決定によって、目的の
塩基配列を持ったプラスミドであることを確認した。
ーpTL2Mの上記制限酵素による二重消化物との計3
本を、DNAライゲーションキットを用いてライゲーシ
ョンした。これを大腸菌DH5株に導入して形質転換し
た後、目的のプラスミドpTL2Bmbを得た。アルカ
リ−SDS法に従ってpTL2Bmbを大量調製し、制
限酵素地図の作製および塩基配列決定によって、目的の
塩基配列を持ったプラスミドであることを確認した。
【0054】さらに実施例1で作製したpI2Aを鋳型
として、配列番号21および22の塩基配列で表される
プライマーを用いてPCR増幅を行ない、制限酵素Hi
ndIIIによって末端調節を行なった。フェノール抽
出、エタノール沈澱による精製の後、アクリルアミドゲ
ル電気泳動により約70塩基対に相当するバンドを切出
し、ゲルから溶出して遺伝子断片とした。
として、配列番号21および22の塩基配列で表される
プライマーを用いてPCR増幅を行ない、制限酵素Hi
ndIIIによって末端調節を行なった。フェノール抽
出、エタノール沈澱による精製の後、アクリルアミドゲ
ル電気泳動により約70塩基対に相当するバンドを切出
し、ゲルから溶出して遺伝子断片とした。
【0055】この遺伝子断片と上記pTL2Bmbの制
限酵素HindIII消化物(部分消化後、約7000
塩基対に相当するバンドをDNA−PREPを用いて精
製)との計2本を、DNAライゲーションキットを用い
てライゲーションした。これを大腸菌DH5株に導入し
て形質転換した後、目的のプラスミドpTL2BmI−
0100を得た。アルカリ−SDS法に従ってpTL2
BmI−0100を大量調製し、制限酵素地図の作製お
よび塩基配列決定によって、配列番号5の塩基配列を持
ったプラスミドであることを確認した。
限酵素HindIII消化物(部分消化後、約7000
塩基対に相当するバンドをDNA−PREPを用いて精
製)との計2本を、DNAライゲーションキットを用い
てライゲーションした。これを大腸菌DH5株に導入し
て形質転換した後、目的のプラスミドpTL2BmI−
0100を得た。アルカリ−SDS法に従ってpTL2
BmI−0100を大量調製し、制限酵素地図の作製お
よび塩基配列決定によって、配列番号5の塩基配列を持
ったプラスミドであることを確認した。
【0056】[実施例4]配列番号7の癌転移阻害融合
タンパク質遺伝子を含む発現ベクターpTL2BmI−
0010の作製 ヒト肝臓cDNAライブラリーよりpUC19上にクロ
ーニングしたヒト血清アルブミンcDNAを鋳型とし
て、配列番号12および16の塩基配列で表されるプラ
イマーを用いてPCR増幅を行ない、次いで制限酵素N
coIおよびEcoRI(宝酒造(株)製)によって末
端調節を行なった。フェノール抽出、エタノール沈澱に
よる精製の後、アガロースゲル電気泳動し、約1100
塩基対に相当するバンドを切出し、DNA−PREPを
用いたガラスビーズ法で精製し、挿入断片1とした。
タンパク質遺伝子を含む発現ベクターpTL2BmI−
0010の作製 ヒト肝臓cDNAライブラリーよりpUC19上にクロ
ーニングしたヒト血清アルブミンcDNAを鋳型とし
て、配列番号12および16の塩基配列で表されるプラ
イマーを用いてPCR増幅を行ない、次いで制限酵素N
coIおよびEcoRI(宝酒造(株)製)によって末
端調節を行なった。フェノール抽出、エタノール沈澱に
よる精製の後、アガロースゲル電気泳動し、約1100
塩基対に相当するバンドを切出し、DNA−PREPを
用いたガラスビーズ法で精製し、挿入断片1とした。
【0057】一方、これとは別に、同じcDNAを鋳型
として、配列番号17および13の塩基配列で表される
プライマーを用いてPCR増幅を行ない、次いで制限酵
素EcoRIおよびHindIIIによって末端調節を
行なった。フェノール抽出、エタノール沈澱による精製
の後、アガロースゲル電気泳動し、約700塩基対に相
当するバンドを切出し、DNA−PREPを用いたガラ
スビーズ法で精製し、挿入断片2とした。
として、配列番号17および13の塩基配列で表される
プライマーを用いてPCR増幅を行ない、次いで制限酵
素EcoRIおよびHindIIIによって末端調節を
行なった。フェノール抽出、エタノール沈澱による精製
の後、アガロースゲル電気泳動し、約700塩基対に相
当するバンドを切出し、DNA−PREPを用いたガラ
スビーズ法で精製し、挿入断片2とした。
【0058】さらにこれとは別に、実施例2の場合と同
様にして作製したシゾサッカロミセズ・ポンベ発現ベク
ターpTL2Mを用意し、このベクターpTL2Mを制
限酵素AflIIIおよびHindIIIで二重消化
し、約5000塩基対に相当するバンドを切出した。
様にして作製したシゾサッカロミセズ・ポンベ発現ベク
ターpTL2Mを用意し、このベクターpTL2Mを制
限酵素AflIIIおよびHindIIIで二重消化
し、約5000塩基対に相当するバンドを切出した。
【0059】そして上記挿入断片2本とこの発現ベクタ
ーpTL2Mの上記制限酵素による二重消化物との計3
本を、DNAライゲーションキットを用いてライゲーシ
ョンした。これを大腸菌DH5株に導入して形質転換し
た後、目的のプラスミドpTL2Bmcを得た。アルカ
リ−SDS法に従ってpTL2Bmbを大量調製し、制
限酵素地図の作製および塩基配列決定によって、目的の
塩基配列を持ったプラスミドであることを確認した。
ーpTL2Mの上記制限酵素による二重消化物との計3
本を、DNAライゲーションキットを用いてライゲーシ
ョンした。これを大腸菌DH5株に導入して形質転換し
た後、目的のプラスミドpTL2Bmcを得た。アルカ
リ−SDS法に従ってpTL2Bmbを大量調製し、制
限酵素地図の作製および塩基配列決定によって、目的の
塩基配列を持ったプラスミドであることを確認した。
【0060】さらに実施例1で作製したpI2Aを鋳型
として、配列番号23および24の塩基配列で表される
プライマーを用いてPCR増幅を行ない、制限酵素Ec
oRIによって末端調節を行なった。フェノール抽出、
エタノール沈澱による精製の後、アクリルアミドゲル電
気泳動により約70塩基対に相当するバンドを切出し、
ゲルから溶出して遺伝子断片とした。
として、配列番号23および24の塩基配列で表される
プライマーを用いてPCR増幅を行ない、制限酵素Ec
oRIによって末端調節を行なった。フェノール抽出、
エタノール沈澱による精製の後、アクリルアミドゲル電
気泳動により約70塩基対に相当するバンドを切出し、
ゲルから溶出して遺伝子断片とした。
【0061】この遺伝子断片と上記pTL2Bmcの制
限酵素EcoRI消化物との計2本を、DNAライゲー
ションキットを用いてライゲーションした。これを大腸
菌DH5株に導入して形質転換した後、目的のプラスミ
ドpTL2BmI−0010を得た。アルカリ−SDS
法に従ってpTL2BmI−0010を大量調製し、制
限酵素地図の作製および塩基配列決定によって、配列番
号7の塩基配列を持ったプラスミドであることを確認し
た。
限酵素EcoRI消化物との計2本を、DNAライゲー
ションキットを用いてライゲーションした。これを大腸
菌DH5株に導入して形質転換した後、目的のプラスミ
ドpTL2BmI−0010を得た。アルカリ−SDS
法に従ってpTL2BmI−0010を大量調製し、制
限酵素地図の作製および塩基配列決定によって、配列番
号7の塩基配列を持ったプラスミドであることを確認し
た。
【0062】[実施例5]配列番号9の癌転移阻害融合
タンパク質遺伝子を含む発現ベクターpTL2BmI−
0001の作製 ヒト肝臓cDNAライブラリーよりpUC19上にクロ
ーニングしたヒト血清アルブミンcDNAを鋳型とし
て、配列番号12および18の塩基配列で表されるプラ
イマーを用いてPCR増幅を行ない、次いで制限酵素N
coIおよびAflIIIによって末端調節を行なっ
た。フェノール抽出、エタノール沈澱による精製の後、
アガロースゲル電気泳動し、約1800塩基対に相当す
るバンドを切出し、DNA−PREPを用いたガラスビ
ーズ法で精製し、挿入断片とした。
タンパク質遺伝子を含む発現ベクターpTL2BmI−
0001の作製 ヒト肝臓cDNAライブラリーよりpUC19上にクロ
ーニングしたヒト血清アルブミンcDNAを鋳型とし
て、配列番号12および18の塩基配列で表されるプラ
イマーを用いてPCR増幅を行ない、次いで制限酵素N
coIおよびAflIIIによって末端調節を行なっ
た。フェノール抽出、エタノール沈澱による精製の後、
アガロースゲル電気泳動し、約1800塩基対に相当す
るバンドを切出し、DNA−PREPを用いたガラスビ
ーズ法で精製し、挿入断片とした。
【0063】一方、これとは別に、実施例2の場合と同
様にして作製したシゾサッカロミセズ・ポンベ発現ベク
ターpTL2Mを用意し、このベクターpTL2Mを制
限酵素AflIIIおよびHindIIIで二重消化
し、約5000塩基対に相当するバンドを切出した。
様にして作製したシゾサッカロミセズ・ポンベ発現ベク
ターpTL2Mを用意し、このベクターpTL2Mを制
限酵素AflIIIおよびHindIIIで二重消化
し、約5000塩基対に相当するバンドを切出した。
【0064】そして上記挿入断片とこの発現ベクターp
TL2Mの上記制限酵素による二重消化物との計2本
を、DNAライゲーションキットを用いてライゲーショ
ンした。これを大腸菌DH5株に導入して形質転換した
後、目的のプラスミドpTL2Bmdを得た。アルカリ
−SDS法に従ってpTL2Bmdを大量調製し、制限
酵素地図の作製および塩基配列決定によって、目的の塩
基配列を持ったプラスミドであることを確認した。
TL2Mの上記制限酵素による二重消化物との計2本
を、DNAライゲーションキットを用いてライゲーショ
ンした。これを大腸菌DH5株に導入して形質転換した
後、目的のプラスミドpTL2Bmdを得た。アルカリ
−SDS法に従ってpTL2Bmdを大量調製し、制限
酵素地図の作製および塩基配列決定によって、目的の塩
基配列を持ったプラスミドであることを確認した。
【0065】さらに実施例1で作製したpI2Aを制限
酵素NcoIおよびHindIIIの二重消化によって
末端調節を行ない、フェノール抽出、エタノール沈澱に
よる精製の後、アクリルアミドゲル電気泳動により約7
0塩基対に相当するバンドを切出し、ゲルから溶出して
遺伝子断片とした。
酵素NcoIおよびHindIIIの二重消化によって
末端調節を行ない、フェノール抽出、エタノール沈澱に
よる精製の後、アクリルアミドゲル電気泳動により約7
0塩基対に相当するバンドを切出し、ゲルから溶出して
遺伝子断片とした。
【0066】この遺伝子断片と上記pTL2Bmbの制
限酵素AflIII消化物(部分消化後、約7000塩
基対に相当するバンドをDNA−PREPを用いて精
製)との計2本を、DNAライゲーションキットを用い
てライゲーションした。これを大腸菌DH5株に導入し
て形質転換した後、目的のプラスミドpTL2BmI−
0001を得た。アルカリ−SDS法に従ってpTL2
BmI−0001を大量調製し、制限酵素地図の作製お
よび塩基配列決定によって、配列番号9の塩基配列を持
ったプラスミドであることを確認した。
限酵素AflIII消化物(部分消化後、約7000塩
基対に相当するバンドをDNA−PREPを用いて精
製)との計2本を、DNAライゲーションキットを用い
てライゲーションした。これを大腸菌DH5株に導入し
て形質転換した後、目的のプラスミドpTL2BmI−
0001を得た。アルカリ−SDS法に従ってpTL2
BmI−0001を大量調製し、制限酵素地図の作製お
よび塩基配列決定によって、配列番号9の塩基配列を持
ったプラスミドであることを確認した。
【0067】ここで作製したpTL2BmI−0001
を、以下単にpTL2BmIと記載する。
を、以下単にpTL2BmIと記載する。
【0068】[実施例6]発現ベクターpTL2BmI
を用いたシゾサッカロミセス・ポンベの形質転換 シゾサッカロミセス・ポンベのロイシン要求性株、h-
leu1−32(ATCC38399)をロイシン含有
最少培地MB−leuで107 細胞数/mlになるまで
生育させた。遠心集菌、水による洗菌後109 細胞数/
mlになるように100mM酢酸リチウム(pH5.
0)に懸濁し、30℃で60分間インキュベートした。
その後、上記懸濁液100μlに、制限酵素PstIで
消化したpAL7(K. Okazaki et al.: Nucl. Acids R
es. 18, 6485-6489 (1990))1μgおよび2μgの発現
ベクターpTL2BmIを10μlのTEバッファーに
溶かした溶液を加え、50%PEG4000を290μ
l加えてよく混合した後、30℃で60分間、43℃で
15分間、室温で10分間の順にインキュベートした。
次いで遠心分離によりPEG4000を除去した後、1
mlの培養液1/2YEL−Leuに懸濁した。
を用いたシゾサッカロミセス・ポンベの形質転換 シゾサッカロミセス・ポンベのロイシン要求性株、h-
leu1−32(ATCC38399)をロイシン含有
最少培地MB−leuで107 細胞数/mlになるまで
生育させた。遠心集菌、水による洗菌後109 細胞数/
mlになるように100mM酢酸リチウム(pH5.
0)に懸濁し、30℃で60分間インキュベートした。
その後、上記懸濁液100μlに、制限酵素PstIで
消化したpAL7(K. Okazaki et al.: Nucl. Acids R
es. 18, 6485-6489 (1990))1μgおよび2μgの発現
ベクターpTL2BmIを10μlのTEバッファーに
溶かした溶液を加え、50%PEG4000を290μ
l加えてよく混合した後、30℃で60分間、43℃で
15分間、室温で10分間の順にインキュベートした。
次いで遠心分離によりPEG4000を除去した後、1
mlの培養液1/2YEL−Leuに懸濁した。
【0069】この懸濁液から100μlを分取し、さら
に900μlの培養液1/2YEL−Leuで希釈し
て、32℃30分間インキュベートした後、300μl
を最少寒天培地MMAにスプレッドした。32℃で3日
間インキュベートし、得られた形質転換体をG418を
25μg/ml含むYEA培地に移し、さらに32℃で
5日間培養し、得られたクローンを目的とする各形質転
換体とした。
に900μlの培養液1/2YEL−Leuで希釈し
て、32℃30分間インキュベートした後、300μl
を最少寒天培地MMAにスプレッドした。32℃で3日
間インキュベートし、得られた形質転換体をG418を
25μg/ml含むYEA培地に移し、さらに32℃で
5日間培養し、得られたクローンを目的とする各形質転
換体とした。
【0070】一方、これとは別に、癌転移阻害ペプチド
遺伝子を持たないプラスミドpTL2M(既述)および
pTL2Bm(特願平5−249310号明細書)につ
いても、同じ方法で形質転換体を作製し、ネガティブコ
ントロールとした。なお、プラスミドpTL2Bmは以
下のようにして作製した。
遺伝子を持たないプラスミドpTL2M(既述)および
pTL2Bm(特願平5−249310号明細書)につ
いても、同じ方法で形質転換体を作製し、ネガティブコ
ントロールとした。なお、プラスミドpTL2Bmは以
下のようにして作製した。
【0071】[プラスミドpTL2Bmの作製]国立予
防衛生研究所遺伝子バンクより供与を受けた、ヒト血清
アルブミンcDNAを含むベクターpILMALB5を
鋳型とし、オリゴデオキシリボヌクレオチド 5'-AGACCA
TGGATGCACACACAAGAGTGAGGT-3' およびオリゴデオキシリ
ボヌクレオチド 5'-CAGGAAACAGCTATGACCAT-3' を合成プ
ライマーとして、Taqポリメラーゼを用いたPCRに
よって目的断片を増幅した。制限酵素NcoIおよびH
indIIIで末端調節し、フェノール抽出、エタノー
ル沈殿の後、アガロースゲル電気泳動により約1800
塩基対に相当するバンドを切り出し、ガラスビーズ法で
精製した。
防衛生研究所遺伝子バンクより供与を受けた、ヒト血清
アルブミンcDNAを含むベクターpILMALB5を
鋳型とし、オリゴデオキシリボヌクレオチド 5'-AGACCA
TGGATGCACACACAAGAGTGAGGT-3' およびオリゴデオキシリ
ボヌクレオチド 5'-CAGGAAACAGCTATGACCAT-3' を合成プ
ライマーとして、Taqポリメラーゼを用いたPCRに
よって目的断片を増幅した。制限酵素NcoIおよびH
indIIIで末端調節し、フェノール抽出、エタノー
ル沈殿の後、アガロースゲル電気泳動により約1800
塩基対に相当するバンドを切り出し、ガラスビーズ法で
精製した。
【0072】これとは別に、pTL2Mを制限酵素Af
lIIIおよびHindIIIで消化し、フェノール抽
出、エタノール沈殿の後、アガロースゲル電気泳動によ
り約5000塩基対に相当するバンドを切り出し、ガラ
スビーズ法で精製した。
lIIIおよびHindIIIで消化し、フェノール抽
出、エタノール沈殿の後、アガロースゲル電気泳動によ
り約5000塩基対に相当するバンドを切り出し、ガラ
スビーズ法で精製した。
【0073】これら両者の断片をライゲーションの後、
大腸菌DH5株を形質転換して目的とするベクターpT
L2Bm(図8)をスクリーニングした。部分塩基配列
の確認および制限酵素地図の作製から目的のベクターで
あることを確認した。
大腸菌DH5株を形質転換して目的とするベクターpT
L2Bm(図8)をスクリーニングした。部分塩基配列
の確認および制限酵素地図の作製から目的のベクターで
あることを確認した。
【0074】[実施例7]形質転換体の培養および無細
胞抽出液の調製 抗生物質G418(GIBCO BRL )を200μg/mlの
濃度で含む50mlのYPD培地[(2%グルコース
(和光純薬(株)製)、1%バクトイーストエキス(Di
fco )、2%バクトペプトン(Difco )]に、実施例6
で作製した形質転換体を植菌し、32℃で5日間培養し
た。その培養液から108 個の菌体を集菌し、洗菌後、
50mMトリス塩酸緩衝液(pH7.5) で懸濁し、超
音波破砕を行った。終濃度が1%になるように10%S
DS溶液を加え、80℃で15分間加熱した。遠心分離
によって無細胞抽出液(上清)を得た。
胞抽出液の調製 抗生物質G418(GIBCO BRL )を200μg/mlの
濃度で含む50mlのYPD培地[(2%グルコース
(和光純薬(株)製)、1%バクトイーストエキス(Di
fco )、2%バクトペプトン(Difco )]に、実施例6
で作製した形質転換体を植菌し、32℃で5日間培養し
た。その培養液から108 個の菌体を集菌し、洗菌後、
50mMトリス塩酸緩衝液(pH7.5) で懸濁し、超
音波破砕を行った。終濃度が1%になるように10%S
DS溶液を加え、80℃で15分間加熱した。遠心分離
によって無細胞抽出液(上清)を得た。
【0075】これとは別に、癌転移阻害融合タンパク質
遺伝子を持たない上記pTL2MおよびpTL2Bmを
導入した形質転換体についても、同様の方法で無細胞抽
出液を作製し、ネガティブコントロールとした。
遺伝子を持たない上記pTL2MおよびpTL2Bmを
導入した形質転換体についても、同様の方法で無細胞抽
出液を作製し、ネガティブコントロールとした。
【0076】[実施例8]SDS−ポリアクリルアミド
ゲル電気泳動による癌転移阻害融合タンパク質の発現解
析 SDS−PAGEによって、実施例7で作製した各形質
転換体由来の無細胞抽出液について発現解析を行なっ
た。結果を図2に示す。同図から明らかなように、pT
L2BmIによる形質転換体では、コントロールである
pTL2Bmによる形質転換体に比較して、分子量6
9,000のバンド(同図中、*で示す)が、癌転移阻
害融合タンパク質を産生していることによって分子量7
1,000の位置(同図中、**で示す)に移動してい
ることが検出できた。デンシトメータによって測定した
ところ、癌転移阻害融合タンパク質の産生量は、全菌体
タンパク質の30%程度であった。
ゲル電気泳動による癌転移阻害融合タンパク質の発現解
析 SDS−PAGEによって、実施例7で作製した各形質
転換体由来の無細胞抽出液について発現解析を行なっ
た。結果を図2に示す。同図から明らかなように、pT
L2BmIによる形質転換体では、コントロールである
pTL2Bmによる形質転換体に比較して、分子量6
9,000のバンド(同図中、*で示す)が、癌転移阻
害融合タンパク質を産生していることによって分子量7
1,000の位置(同図中、**で示す)に移動してい
ることが検出できた。デンシトメータによって測定した
ところ、癌転移阻害融合タンパク質の産生量は、全菌体
タンパク質の30%程度であった。
【0077】[実施例9]ウエスタンブロッティングに
よる癌転移阻害融合タンパク質の確認 実施例7で作製した各形質転換体由来の無細胞抽出液に
ついて実施例8と同様にしてSDS−PAGEを行なっ
た。得られたゲルをPVDF膜(Bio-Rad )に転写し、
癌転移阻害ペプチドに特異的な抗体(A. Isoai et al.:
Biochem. Biophys. Res. Commun. 192, 7-14 (1993))
を用いてウエスタンブロッティングを行い、ECL(ア
マシャム(株)製)によって検出した。結果を図3に示
す。同図から明らかなように、該融合タンパク質を含む
配列に相当する分子量71, 000附近の位置に唯一の
明瞭なバンドが得られたことから、該融合タンパク質に
特異的なアミノ酸配列が含まれている融合タンパク質が
産生していることが確認された。
よる癌転移阻害融合タンパク質の確認 実施例7で作製した各形質転換体由来の無細胞抽出液に
ついて実施例8と同様にしてSDS−PAGEを行なっ
た。得られたゲルをPVDF膜(Bio-Rad )に転写し、
癌転移阻害ペプチドに特異的な抗体(A. Isoai et al.:
Biochem. Biophys. Res. Commun. 192, 7-14 (1993))
を用いてウエスタンブロッティングを行い、ECL(ア
マシャム(株)製)によって検出した。結果を図3に示
す。同図から明らかなように、該融合タンパク質を含む
配列に相当する分子量71, 000附近の位置に唯一の
明瞭なバンドが得られたことから、該融合タンパク質に
特異的なアミノ酸配列が含まれている融合タンパク質が
産生していることが確認された。
【0078】[実施例10]癌転移阻害融合タンパク質
の精製 pTL2BmIにより形質転換された形質転換体を、G
418を25μg/mlの濃度で含む50mlのYPD
培地で32℃、1日間前培養した後、G418を200
μg/ml含む1リットルのYPD培地に1×108 /
mlの割合で植菌してさらに4日間培養した。集菌後の
菌体の4倍量の50mMトリス塩酸緩衝液(pH7.
5)[12μMのAPMSF(和光純薬(株)製)、2
5μMロイペプチン(和光純薬(株)製)、2mMのE
DTAを含む]に懸濁し等量のガラスビーズ(ビードビ
ーター)を用いて0℃で破砕した。12,000rpm
で20分間遠心分離した沈澱を同じ緩衝液で洗浄した
後、6Mグアニジン塩酸と10mMのジチオスレイトー
ルを含んだ50mMトリス塩酸緩衝液(pH7.5)に
て50℃1時間で可溶化した後、12,000rpm 、2
0分間遠心分離した上清を0.1MNaCl、1mME
DTA、2mM還元型グルタチオン、0.2mM酸化型
グルタチオンを含んだ50mMトリス塩酸緩衝液(pH
7.5)で100倍(v/v)に4℃で徐々に希釈し
た。1晩4℃で放置後、限外濾過膜(アミコン)にて濃
縮しスーパーロース12カラムにてゲル濾過し、各画分
についてSDS−PAGEにて解析し分子量71,00
0の位置に唯一のバンドが見られた画分を集め精製癌転
移阻害融合タンパク質とした。
の精製 pTL2BmIにより形質転換された形質転換体を、G
418を25μg/mlの濃度で含む50mlのYPD
培地で32℃、1日間前培養した後、G418を200
μg/ml含む1リットルのYPD培地に1×108 /
mlの割合で植菌してさらに4日間培養した。集菌後の
菌体の4倍量の50mMトリス塩酸緩衝液(pH7.
5)[12μMのAPMSF(和光純薬(株)製)、2
5μMロイペプチン(和光純薬(株)製)、2mMのE
DTAを含む]に懸濁し等量のガラスビーズ(ビードビ
ーター)を用いて0℃で破砕した。12,000rpm
で20分間遠心分離した沈澱を同じ緩衝液で洗浄した
後、6Mグアニジン塩酸と10mMのジチオスレイトー
ルを含んだ50mMトリス塩酸緩衝液(pH7.5)に
て50℃1時間で可溶化した後、12,000rpm 、2
0分間遠心分離した上清を0.1MNaCl、1mME
DTA、2mM還元型グルタチオン、0.2mM酸化型
グルタチオンを含んだ50mMトリス塩酸緩衝液(pH
7.5)で100倍(v/v)に4℃で徐々に希釈し
た。1晩4℃で放置後、限外濾過膜(アミコン)にて濃
縮しスーパーロース12カラムにてゲル濾過し、各画分
についてSDS−PAGEにて解析し分子量71,00
0の位置に唯一のバンドが見られた画分を集め精製癌転
移阻害融合タンパク質とした。
【0079】[実施例11]精製癌転移阻害融合タンパ
ク質の癌細胞浸潤阻害活性の測定 実施例10で精製した癌転移阻害融合タンパク質につい
て、癌細胞の浸潤抑制効果を調べた。評価方法は Albin
i らの方法(Albini et al.: Cancer Res. 47,3239-324
5 (1987) )に従って行った。8μmのポアサイズを持
つポリカーボネートフィルターを用い、上層と下層に分
けられたケモタキセル(クラボウ(株)製)のフィルタ
ー上面に10μgのマトリゲル(コラボレーティブ
(株)製)を塗布し、室温で一晩乾燥させた。使用直前
に培養液で膨潤させ、24穴のカルチャープレートにセ
ットした。癌細胞はB16メラノーマ由来の高転移性ク
ローンB16FE7を使用した。
ク質の癌細胞浸潤阻害活性の測定 実施例10で精製した癌転移阻害融合タンパク質につい
て、癌細胞の浸潤抑制効果を調べた。評価方法は Albin
i らの方法(Albini et al.: Cancer Res. 47,3239-324
5 (1987) )に従って行った。8μmのポアサイズを持
つポリカーボネートフィルターを用い、上層と下層に分
けられたケモタキセル(クラボウ(株)製)のフィルタ
ー上面に10μgのマトリゲル(コラボレーティブ
(株)製)を塗布し、室温で一晩乾燥させた。使用直前
に培養液で膨潤させ、24穴のカルチャープレートにセ
ットした。癌細胞はB16メラノーマ由来の高転移性ク
ローンB16FE7を使用した。
【0080】細胞を1.85kBq/mlの[125 I]
IUdR(アマシャム(株)製)存在下で2日間培養し
た。使用直前にトリプシン溶液で細胞を回収した後、
0.1%の牛血清アルブミンを含む培養液に懸濁し細胞
数と、取り込まれた[125 I]IUdRの放射能を計測
した。ケモタキセルの下層には20μg/mlのヒトフ
ィブロネクチンを入れ、上層には5×104 個の細胞を
種々の濃度の癌転移阻害融合タンパク質と共に入れ、炭
酸ガスインキュベータ中で20時間培養した。
IUdR(アマシャム(株)製)存在下で2日間培養し
た。使用直前にトリプシン溶液で細胞を回収した後、
0.1%の牛血清アルブミンを含む培養液に懸濁し細胞
数と、取り込まれた[125 I]IUdRの放射能を計測
した。ケモタキセルの下層には20μg/mlのヒトフ
ィブロネクチンを入れ、上層には5×104 個の細胞を
種々の濃度の癌転移阻害融合タンパク質と共に入れ、炭
酸ガスインキュベータ中で20時間培養した。
【0081】培養終了後、フィルターの上面に残ってい
る細胞を綿棒でかきとり、フィルターをティッシュソル
ビライザー(アマシャム(株)製)で下面に移動した細
胞と共に溶解した後、放射能を計測した。結果を図4に
示す。同図から明らかなように、本癌転移阻害融合タン
パク質により、癌細胞の浸潤が有意に阻害されることが
示された。
る細胞を綿棒でかきとり、フィルターをティッシュソル
ビライザー(アマシャム(株)製)で下面に移動した細
胞と共に溶解した後、放射能を計測した。結果を図4に
示す。同図から明らかなように、本癌転移阻害融合タン
パク質により、癌細胞の浸潤が有意に阻害されることが
示された。
【0082】なお、上記の実施例においては、ヒト血清
アルブミンのC末端に癌転移阻害ペプチドを結合させた
融合タンパク質を遺伝子工学的に産生せしめ、その生理
活性等の確認を行っているが、ヒト血清アルブミンのN
末端、第1〜2ドメイン間、第2〜3ドメイン間に癌転
移阻害ペプチドを結合させた場合においても、上記と同
様な効果が得られると考えられる。
アルブミンのC末端に癌転移阻害ペプチドを結合させた
融合タンパク質を遺伝子工学的に産生せしめ、その生理
活性等の確認を行っているが、ヒト血清アルブミンのN
末端、第1〜2ドメイン間、第2〜3ドメイン間に癌転
移阻害ペプチドを結合させた場合においても、上記と同
様な効果が得られると考えられる。
【0083】
【発明の効果】以上詳述したように本発明によれば、こ
れまで化学的合成方法および結合方法を組合わせてのみ
作製可能であった癌転移阻害融合タンパク質を組換えD
NA技術を用いることによって初めて直接的に、しかも
高効率に生産することができるという効果が奏される。
れまで化学的合成方法および結合方法を組合わせてのみ
作製可能であった癌転移阻害融合タンパク質を組換えD
NA技術を用いることによって初めて直接的に、しかも
高効率に生産することができるという効果が奏される。
【0084】したがって、本発明における形質転換体を
用いた大量培養により、目的とする癌転移阻害融合タン
パク質の高い生産性が得られ、工業スケールでの生産に
使用することが十分可能である。すなわち医薬品として
の癌転移阻害融合タンパク質を安定的に供給することが
可能になったといえる。
用いた大量培養により、目的とする癌転移阻害融合タン
パク質の高い生産性が得られ、工業スケールでの生産に
使用することが十分可能である。すなわち医薬品として
の癌転移阻害融合タンパク質を安定的に供給することが
可能になったといえる。
【0085】
配列番号:1 配列の長さ:21 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド 配列 Ala Glu Asp Gly Asp Ala Lys Thr Asp Gln Ala Glu Lys Ala Glu Gly 1 5 10 15 Ala Gly Asp Ala Lys 20 21 配列番号:2 配列の長さ:608 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 配列 Met Ala Glu Asp Gly Asp Ala Lys Thr Asp Gln Ala Glu Lys Ala Glu 1 5 10 15 Gly Ala Gly Asp Ser Lys Ala Asp Ala His Lys Ser Glu Val Ala His 20 25 30 Arg Phe Lys Asp Leu Gly Glu Glu Asn Phe Lys Ala Leu Val Leu Ile 35 40 45 Ala Phe Ala Gln Tyr Leu Gln Gln Cys Pro Phe Glu Asp His Val Lys 50 55 60 Leu Val Asn Glu Val Thr Glu Phe Ala Lys Thr Cys Val Ala Asp Glu 65 70 75 80 Ser Ala Glu Asn Cys Asp Lys Ser Leu His Thr Leu Phe Gly Asp Lys 85 90 95 Leu Cys Thr Val Ala Thr Leu Arg Glu Thr Tyr Gly Glu Met Ala Asp 100 105 110 Cys Cys Ala Lys Gln Glu Pro Glu Arg Asn Glu Cys Phe Leu Gln His 115 120 125 Lys Asp Asp Asn Pro Asn Leu Pro Arg Leu Val Arg Pro Glu Val Asp 130 135 140 Val Met Cys Thr Ala Phe His Asp Asn Glu Glu Thr Phe Leu Lys Lys 145 150 155 160 Tyr Leu Tyr Glu Ile Ala Arg Arg His Pro Tyr Phe Tyr Ala Pro Glu 165 170 175 Leu Leu Phe Phe Ala Lys Arg Tyr Lys Ala Ala Phe Thr Glu Cys Cys 180 185 190 Gln Ala Ala Asp Lys Ala Ala Cys Leu Leu Pro Lys Leu Asp Glu Leu 195 200 205 Arg Asp Glu Gly Lys Ala Ser Ser Ala Lys Gln Arg Leu Lys Cys Ala 210 215 220 Ser Leu Gln Lys Phe Gly Glu Arg Ala Phe Lys Ala Trp Ala Val Ala 225 230 235 240 Arg Leu Ser Gln Arg Phe Pro Lys Ala Glu Phe Ala Glu Val Ser Lys 245 250 255 Leu Val Thr Asp Leu Thr Lys Val His Thr Glu Cys Cys His Gly Asp 260 265 270 Leu Leu Glu Cys Ala Asp Asp Arg Ala Asp Leu Ala Lys Tyr Ile Cys 275 280 285 Glu Asn Gln Asp Ser Ile Ser Ser Lys Leu Lys Glu Cys Cys Glu Lys 290 295 300 Pro Leu Leu Glu Lys Ser His Cys Ile Ala Glu Val Glu Asn Asp Glu 305 310 315 320 Met Pro Ala Asp Leu Pro Ser Leu Ala Ala Asp Phe Val Glu Ser Lys 325 330 335 Asp Val Cys Lys Asn Tyr Ala Glu Ala Lys Asp Val Phe Leu Gly Met 340 345 350 Phe Leu Tyr Glu Tyr Ala Arg Arg His Pro Asp Tyr Ser Val Val Leu 355 360 365 Leu Leu Arg Leu Ala Lys Thr Tyr Glu Thr Thr Leu Glu Lys Cys Cys 370 375 380 Ala Ala Ala Asp Pro His Glu Cys Tyr Ala Lys Val Phe Asp Glu Phe 385 390 395 400 Lys Pro Leu Val Glu Glu Pro Gln Asn Leu Ile Lys Gln Asn Cys Glu 405 410 415 Leu Phe Lys Gln Leu Gly Glu Tyr Lys Phe Gln Asn Ala Leu Leu Val 420 425 430 Arg Tyr Thr Lys Lys Val Pro Gln Val Ser Thr Pro Thr Leu Val Glu 435 440 445 Val Ser Arg Asn Leu Gly Lys Val Gly Ser Lys Cys Cys Lys His Pro 450 455 460 Glu Ala Lys Arg Met Pro Cys Ala Glu Asp Tyr Leu Ser Val Val Leu 465 470 475 480 Asn Gln Leu Cys Val Leu His Glu Lys Thr Pro Val Ser Asp Arg Val 485 490 495 Thr Lys Cys Cys Thr Glu Ser Leu Val Asn Arg Arg Pro Cys Phe Ser 500 505 510 Ala Leu Glu Val Asp Glu Thr Tyr Val Pro Lys Glu Phe Asn Ala Glu 515 520 525 Thr Phe Thr Phe His Ala Asp Ile Cys Thr Leu Ser Glu Lys Glu Arg 530 535 540 Gln Ile Lys Lys Gln Thr Ala Leu Val Glu Leu Val Lys His Lys Pro 545 550 555 560 Lys Ala Thr Lys Glu Gln Leu Lys Ala Val Met Asp Asp Phe Ala Ala 565 570 575 Phe Val Glu Lys Cys Cys Lys Ala Asp Asp Lys Glu Thr Cys Phe Ala 580 585 590 Glu Glu Gly Lys Lys Leu Val Ala Ala Ser Gln Ala Ala Leu Gly Leu 595 600 605 608 配列番号:3 配列の長さ:1830 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 配列の特徴: 特徴を表す記号:CDS 存在位置:1..1830 特徴を決定した方法:E 配列 ATG GCC GAG GAC GGT GAC GCC AAG ACC GAC CAA GCT GAG AAG GCT GAG 48 GGT GCC GGT GAC GCC AAG GCC ATG GAT GCA CAC AAG AGT GAG GTT GCT 96 CAT CGG TTT AAA GAT TTG GGA GAA GAA AAT TTC AAA GCC TTG GTG TTG 144 ATT GCC TTT GCT CAG TAT CTT CAG CAG TGT CCA TTT GAA GAT CAT GTA 192 AAA TTA GTG AAT GAA GTA ACT GAA TTT GCA AAA ACA TGT GTA GCT GAT 240 GAG TCA GCT GAA AAT TGT GAC AAA TCA CTT CAT ACC CTT TTT GGA GAC 288 AAA TTA TGC ACA GTT GCA ACT CTT CGT GAA ACC TAT GGT GAA ATG GCT 336 GAC TGC TGT GCA AAA CAA GAA CCT GAG AGA AAT GAA TGC TTC TTG CAA 384 CAC AAA GAT GAC AAC CCA AAC CTC CCC CGA TTG GTG AGA CCA GAG GTT 432 GAT GTG ATG TGC ACT GCT TTT CAT GAC AAT GAA GAG ACA TTT TTG AAA 480 AAA TAC TTA TAT GAA ATT GCC AGA AGA CAT CCT TAC TTT TAT GCC CCG 528 GAA CTC CTT TTC TTT GCT AAA AGG TAT AAA GCT GCT TTT ACA GAA TGT 576 TGC CAA GCT GCT GAT AAA GCT GCC TGC CTG TTG CCA AAG CTC GAT GAA 624 CTT CGG GAT GAA GGG AAG GCT TCG TCT GCC AAA CAG AGA CTC AAA TGT 672 GCC AGT CTC CAA AAA TTT GGA GAA AGA GCT TTC AAA GCA TGG GCA GTG 720 GCT CGC CTG AGC CAG AGA TTT CCC AAA GCT GAG TTT GCA GAA GTT TCC 768 AAG TTA GTG ACA GAT CTT ACC AAA GTC CAC ACG GAA TGC TGC CAT GGA 816 GAT CTG CTT GAA TGT GCT GAT GAC AGG GCG GAC CTT GCC AAG TAT ATC 864 TGT GAA AAT CAG GAT TCG ATC TCC AGT AAA CTG AAG GAA TGC TGT GAA 912 AAA CCT CTG TTG GAA AAA TCC CAC TGC ATT GCC GAA GTG GAA AAT GAT 960 GAG ATG CCT GCT GAC TTG CCT TCA TTA GCT GCT GAT TTT GTT GAA AGT 1008 AAG GAT GTT TGC AAA AAC TAT GCT GAG GCA AAG GAT GTC TTC CTG GGC 1056 ATG TTT TTG TAT GAA TAT GCA AGA AGG CAT CCT GAT TAC TCT GTC GTG 1104 CTG CTG CTG AGA CTT GCC AAG ACA TAT GAA ACC ACT CTA GAG AAG TGC 1152 TGT GCC GCT GCA GAT CCT CAT GAA TGC TAT GCC AAA GTG TTC GAT GAA 1200 TTT AAA CCT CTT GTG GAA GAG CCT CAG AAT TTA ATC AAA CAA AAC TGT 1248 GAG CTT TTT AAG CAG CTT GGA GAG TAC AAA TTC CAG AAT GCG CTA TTA 1296 GTT CGT TAC ACC AAG AAA GTA CCC CAA GTG TCA ACT CCA ACT CTT GTA 1344 GAG GTC TCA AGA AAC CTA GGA AAA GTG GGC AGC AAA TGT TGT AAA CAT 1392 CCT GAA GCA AAA AGA ATG CCC TGT GCA GAA GAC TAT CTA TCC GTG GTC 1440 CTG AAC CAG TTA TGT GTG TTG CAT GAG AAA ACG CCA GTA AGT GAC AGA 1488 GTC ACA AAA TGC TGC ACA GAG TCC TTG GTG AAC AGG CGA CCA TGC TTT 1536 TCA GCT CTG GAA GTC GAT GAA ACA TAC GTT CCC AAA GAG TTT AAT GCT 1584 GAA ACA TTC ACC TTC CAT GCA GAT ATA TGC ACA CTT TCT GAG AAG GAG 1632 AGA CAA ATC AAG AAA CAA ACT GCA CTT GTT GAG CTC GTG AAA CAC AAG 1680 CCC AAG GCA ACA AAA GAG CAA CTG AAA GCT GTT ATG GAT GAT TTC GCA 1728 GCT TTT GTA GAG AAG TGC TGC AAG GCT GAC GAT AAG GAG ACC TGC TTT 1776 GCC GAG GAG GGT AAA AAA CTT GTT GCT GCA AGT CAA GCT GCC TTA GGC 1824 TTA TAA 1830 配列番号:4 配列の長さ:631 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 配列 Met Asp Ala His Lys Ser Glu Val Ala His Arg Phe Lys Asp Leu Gly 1 5 10 15 Glu Glu Asn Phe Lys Ala Leu Val Leu Ile Ala Phe Ala Gln Tyr Leu 20 25 30 Gln Gln Cys Pro Phe Glu Asp His Val Lys Leu Val Asn Glu Val Thr 35 40 45 Glu Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Glu Asn Cys Asp 50 55 60 Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Thr Val Ala Thr 65 70 75 80 Leu Arg Glu Thr Tyr Gly Glu Met Ala Asp Cys Cys Ala Lys Gln Glu 85 90 95 Pro Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Asn 100 105 110 Leu Pro Arg Leu Val Arg Pro Glu Val Asp Val Met Cys Thr Ala Phe 115 120 125 His Asp Asn Glu Glu Thr Phe Leu Lys Lys Tyr Leu Tyr Glu Ile Ala 130 135 140 Arg Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Phe Phe Ala Lys 145 150 155 160 Arg Tyr Lys Ala Ala Phe Thr Glu Cys Cys Gln Ala Ala Asp Lys Ala 165 170 175 Ala Cys Leu Leu Pro Lys Leu Ala Glu Asp Gly Asp Ala Lys Thr Asp 180 185 190 Gln Ala Glu Lys Ala Glu Gly Ala Gly Asp Ala Lys Leu Asp Glu Leu 195 200 205 Arg Asp Glu Gly Lys Ala Ser Ser Ala Lys Gln Arg Leu Lys Cys Ala 210 215 220 Ser Leu Gln Lys Phe Gly Glu Arg Ala Phe Lys Ala Trp Ala Val Ala 225 230 235 240 Arg Leu Ser Gln Arg Phe Pro Lys Ala Glu Phe Ala Glu Val Ser Lys 245 250 255 Leu Val Thr Asp Leu Thr Lys Val His Thr Glu Cys Cys His Gly Asp 260 265 270 Leu Leu Glu Cys Ala Asp Asp Arg Ala Asp Leu Ala Lys Tyr Ile Cys 275 280 285 Glu Asn Gln Asp Ser Ile Ser Ser Lys Leu Lys Glu Cys Cys Glu Lys 290 295 300 Pro Leu Leu Glu Lys Ser His Cys Ile Ala Glu Val Glu Asn Asp Glu 305 310 315 320 Met Pro Ala Asp Leu Pro Ser Leu Ala Ala Asp Phe Val Glu Ser Lys 325 330 335 Asp Val Cys Lys Asn Tyr Ala Glu Ala Lys Asp Val Phe Leu Gly Met 340 345 350 Phe Leu Tyr Glu Tyr Ala Arg Arg His Pro Asp Tyr Ser Val Val Leu 355 360 365 Leu Leu Arg Leu Ala Lys Thr Tyr Glu Thr Thr Leu Glu Lys Cys Cys 370 375 380 Ala Ala Ala Asp Pro His Glu Cys Tyr Ala Lys Val Phe Asp Glu Phe 385 390 395 400 Lys Pro Leu Val Glu Glu Pro Gln Asn Leu Ile Lys Gln Asn Cys Glu 405 410 415 Leu Phe Lys Gln Leu Gly Glu Tyr Lys Phe Gln Asn Ala Leu Leu Val 420 425 430 Arg Tyr Thr Lys Lys Val Pro Gln Val Ser Thr Pro Thr Leu Val Glu 435 440 445 Val Ser Arg Asn Leu Gly Lys Val Gly Ser Lys Cys Cys Lys His Pro 450 455 460 Glu Ala Lys Arg Met Pro Cys Ala Glu Asp Tyr Leu Ser Val Val Leu 465 470 475 480 Asn Gln Leu Cys Val Leu His Glu Lys Thr Pro Val Ser Asp Arg Val 485 490 495 Thr Lys Cys Cys Thr Glu Ser Leu Val Asn Arg Arg Pro Cys Phe Ser 500 505 510 Ala Leu Glu Val Asp Glu Thr Tyr Val Pro Lys Glu Phe Asn Ala Glu 515 520 525 Thr Phe Thr Phe His Ala Asp Ile Cys Thr Leu Ser Glu Lys Glu Arg 530 535 540 Gln Ile Lys Lys Gln Thr Ala Leu Val Glu Leu Val Lys His Lys Pro 545 550 555 560 Lys Ala Thr Lys Glu Gln Leu Lys Ala Val Met Asp Asp Phe Ala Ala 565 570 575 Phe Val Glu Lys Cys Cys Lys Ala Asp Asp Lys Glu Thr Cys Phe Ala 580 585 590 Glu Glu Gly Lys Lys Leu Val Ala Ala Ser Gln Ala Ala Leu Gly Leu 595 600 605 Tyr Met Ala Glu Asp Gly Asp Ala Lys Thr Asp Gln Ala Glu Lys Ala 610 615 620 Glu Gly Ala Gly Asp Ala Lys 625 630 631 配列番号:5 配列の長さ:1827 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 配列の特徴 特徴を表す記号:CDS 存在位置:1..1827 特徴を決定した方法:E 配列 ATG GAT GCA CAC AAG AGT GAG GTT GCT CAT CGG TTT AAA GAT TTG GGA 48 GAA GAA AAT TTC AAA GCC TTG GTG TTG ATT GCC TTT GCT CAG TAT CTT 96 CAG CAG TGT CCA TTT GAA GAT CAT GTA AAA TTA GTG AAT GAA GTA ACT 144 GAA TTT GCA AAA ACA TGT GTA GCT GAT GAG TCA GCT GAA AAT TGT GAC 192 AAA TCA CTT CAT ACC CTT TTT GGA GAC AAA TTA TGC ACA GTT GCA ACT 240 CTT CGT GAA ACC TAT GGT GAA ATG GCT GAC TGC TGT GCA AAA CAA GAA 288 CCT GAG AGA AAT GAA TGC TTC TTG CAA CAC AAA GAT GAC AAC CCA AAC 336 CTC CCC CGA TTG GTG AGA CCA GAG GTT GAT GTG ATG TGC ACT GCT TTT 384 CAT GAC AAT GAA GAG ACA TTT TTG AAA AAA TAC TTA TAT GAA ATT GCC 432 AGA AGA CAT CCT TAC TTT TAT GCC CCG GAA CTC CTT TTC TTT GCT AAA 480 AGG TAT AAA GCT GCT TTT ACA GAA TGT TGC CAA GCT GCT GAT AAA GCT 528 GCC TGC CTG TTG CCA AAG CTT GCC GAG GAC GGT GAC GCC AAG ACC GAC 576 CAA GCT GAG AAG GCT GAG GGT GCC GGT GAC GCC AAG CTT GAT GAA CTT 624 CGG GAT GAA GGG AAG GCT TCG TCT GCC AAA CAG AGA CTC AAA TGT GCC 672 AGT CTC CAA AAA TTT GGA GAA AGA GCT TTC AAA GCA TGG GCA GTG GCT 720 CGC CTG AGC CAG AGA TTT CCC AAA GCT GAG TTT GCA GAA GTT TCC AAG 768 TTA GTG ACA GAT CTT ACC AAA GTC CAC ACG GAA TGC TGC CAT GGA GAT 816 CTG CTT GAA TGT GCT GAT GAC AGG GCG GAC CTT GCC AAG TAT ATC TGT 864 GAA AAT CAG GAT TCG ATC TCC AGT AAA CTG AAG GAA TGC TGT GAA AAA 912 CCT CTG TTG GAA AAA TCC CAC TGC ATT GCC GAA GTG GAA AAT GAT GAG 960 ATG CCT GCT GAC TTG CCT TCA TTA GCT GCT GAT TTT GTT GAA AGT AAG 1008 GAT GTT TGC AAA AAC TAT GCT GAG GCA AAG GAT GTC TTC CTG GGC ATG 1056 TTT TTG TAT GAA TAT GCA AGA AGG CAT CCT GAT TAC TCT GTC GTG CTG 1104 CTG CTG AGA CTT GCC AAG ACA TAT GAA ACC ACT CTA GAG AAG TGC TGT 1152 GCC GCT GCA GAT CCT CAT GAA TGC TAT GCC AAA GTG TTC GAT GAA TTT 1200 AAA CCT CTT GTG GAA GAG CCT CAG AAT TTA ATC AAA CAA AAC TGT GAG 1248 CTT TTT AAG CAG CTT GGA GAG TAC AAA TTC CAG AAT GCG CTA TTA GTT 1296 CGT TAC ACC AAG AAA GTA CCC CAA GTG TCA ACT CCA ACT CTT GTA GAG 1344 GTC TCA AGA AAC CTA GGA AAA GTG GGC AGC AAA TGT TGT AAA CAT CCT 1392 GAA GCA AAA AGA ATG CCC TGT GCA GAA GAC TAT CTA TCC GTG GTC CTG 1440 AAC CAG TTA TGT GTG TTG CAT GAG AAA ACG CCA GTA AGT GAC AGA GTC 1488 ACA AAA TGC TGC ACA GAG TCC TTG GTG AAC AGG CGA CCA TGC TTT TCA 1536 GCT CTG GAA GTC GAT GAA ACA TAC GTT CCC AAA GAG TTT AAT GCT GAA 1584 ACA TTC ACC TTC CAT GCA GAT ATA TGC ACA CTT TCT GAG AAG GAG AGA 1632 CAA ATC AAG AAA CAA ACT GCA CTT GTT GAG CTC GTG AAA CAC AAG CCC 1680 AAG GCA ACA AAA GAG CAA CTG AAA GCT GTT ATG GAT GAT TTC GCA GCT 1728 TTT GTA GAG AAG TGC TGC AAG GCT GAC GAT AAG GAG ACC TGC TTT GCC 1776 GAG GAG GGT AAA AAA CTT GTT GCT GCA AGT CAA GCT GCC TTA GGC TTA 1824 TAA 1827 配列番号:6 配列の長さ:632 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 配列 Met Asp Ala His Lys Ser Glu Val Ala His Arg Phe Lys Asp Leu Gly 1 5 10 15 Glu Glu Asn Phe Lys Ala Leu Val Leu Ile Ala Phe Ala Gln Tyr Leu 20 25 30 Gln Gln Cys Pro Phe Glu Asp His Val Lys Leu Val Asn Glu Val Thr 35 40 45 Glu Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Glu Asn Cys Asp 50 55 60 Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Thr Val Ala Thr 65 70 75 80 Leu Arg Glu Thr Tyr Gly Glu Met Ala Asp Cys Cys Ala Lys Gln Glu 85 90 95 Pro Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Asn 100 105 110 Leu Pro Arg Leu Val Arg Pro Glu Val Asp Val Met Cys Thr Ala Phe 115 120 125 His Asp Asn Glu Glu Thr Phe Leu Lys Lys Tyr Leu Tyr Glu Ile Ala 130 135 140 Arg Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Phe Phe Ala Lys 145 150 155 160 Arg Tyr Lys Ala Ala Phe Thr Glu Cys Cys Gln Ala Ala Asp Lys Ala 165 170 175 Ala Cys Leu Leu Pro Lys Leu Asp Glu Leu Arg Asp Glu Gly Lys Ala 180 185 190 Ser Ser Ala Lys Gln Arg Leu Lys Cys Ala Ser Leu Gln Lys Phe Gly 195 200 205 Glu Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Arg Phe 210 215 220 Pro Lys Ala Glu Phe Ala Glu Val Ser Lys Leu Val Thr Asp Leu Thr 225 230 235 240 Lys Val His Thr Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp 245 250 255 Asp Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ile 260 265 270 Ser Ser Lys Leu Lys Glu Cys Cys Glu Lys Pro Leu Leu Glu Lys Ser 275 280 285 His Cys Ile Ala Glu Val Glu Asn Asp Glu Met Pro Ala Asp Leu Pro 290 295 300 Ser Leu Ala Ala Asp Phe Val Glu Ser Lys Asp Val Cys Lys Asn Tyr 305 310 315 320 Ala Glu Ala Lys Asp Val Phe Leu Gly Met Phe Leu Tyr Glu Tyr Ala 325 330 335 Arg Arg His Pro Asp Tyr Ser Val Val Leu Leu Leu Arg Leu Ala Lys 340 345 350 Thr Tyr Glu Thr Thr Leu Glu Lys Cys Cys Ala Ala Ala Asp Pro His 355 360 365 Glu Cys Tyr Ala Lys Val Phe Asp Glu Phe Ala Glu Asp Gly Asp Ala 370 375 380 Lys Thr Asp Gln Ala Glu Lys Ala Glu Gly Ala Gly Asp Ala Lys Glu 385 390 395 400 Phe Lys Pro Leu Val Glu Glu Pro Gln Asn Leu Ile Lys Gln Asn Cys 405 410 415 Glu Leu Phe Lys Gln Leu Gly Glu Tyr Lys Phe Gln Asn Ala Leu Leu 420 425 430 Val Arg Tyr Thr Lys Lys Val Pro Gln Val Ser Thr Pro Thr Leu Val 435 440 445 Glu Val Ser Arg Asn Leu Gly Lys Val Gly Ser Lys Cys Cys Lys His 450 455 460 Pro Glu Ala Lys Arg Met Pro Cys Ala Glu Asp Tyr Leu Ser Val Val 465 470 475 480 Leu Asn Gln Leu Cys Val Leu His Glu Lys Thr Pro Val Ser Asp Arg 485 490 495 Val Thr Lys Cys Cys Thr Glu Ser Leu Val Asn Arg Arg Pro Cys Phe 500 505 510 Ser Ala Leu Glu Val Asp Glu Thr Tyr Val Pro Lys Glu Phe Asn Ala 515 520 525 Glu Thr Phe Thr Phe His Ala Asp Ile Cys Thr Leu Ser Glu Lys Glu 530 535 540 Arg Gln Ile Lys Lys Gln Thr Ala Leu Val Glu Leu Val Lys His Lys 545 550 555 560 Pro Lys Ala Thr Lys Glu Gln Leu Lys Ala Val Met Asp Asp Phe Ala 565 570 575 Ala Phe Val Glu Lys Cys Cys Lys Ala Asp Asp Lys Glu Thr Cys Phe 580 585 590 Ala Glu Glu Gly Lys Lys Leu Val Ala Ala Ser Gln Ala Ala Leu Gly 595 600 605 Leu Tyr Met Ala Glu Asp Gly Asp Ala Lys Thr Asp Gln Ala Glu Lys 610 615 620 Ala Glu Gly Ala Gly Asp Ala Lys 625 630 632 配列番号:7 配列の長さ:1830 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 配列の特徴 特徴を表す記号:CDS 存在位置:1..1830 特徴を決定した方法:E 配列 ATG GAT GCA CAC AAG AGT GAG GTT GCT CAT CGG TTT AAA GAT TTG GGA 48 GAA GAA AAT TTC AAA GCC TTG GTG TTG ATT GCC TTT GCT CAG TAT CTT 96 CAG CAG TGT CCA TTT GAA GAT CAT GTA AAA TTA GTG AAT GAA GTA ACT 144 GAA TTT GCA AAA ACA TGT GTA GCT GAT GAG TCA GCT GAA AAT TGT GAC 192 AAA TCA CTT CAT ACC CTT TTT GGA GAC AAA TTA TGC ACA GTT GCA ACT 240 CTT CGT GAA ACC TAT GGT GAA ATG GCT GAC TGC TGT GCA AAA CAA GAA 288 CCT GAG AGA AAT GAA TGC TTC TTG CAA CAC AAA GAT GAC AAC CCA AAC 336 CTC CCC CGA TTG GTG AGA CCA GAG GTT GAT GTG ATG TGC ACT GCT TTT 384 CAT GAC AAT GAA GAG ACA TTT TTG AAA AAA TAC TTA TAT GAA ATT GCC 432 AGA AGA CAT CCT TAC TTT TAT GCC CCG GAA CTC CTT TTC TTT GCT AAA 480 AGG TAT AAA GCT GCT TTT ACA GAA TGT TGC CAA GCT GCT GAT AAA GCT 528 GCC TGC CTG TTG CCA AAG CTC GAT GAA CTT CGG GAT GAA GGG AAG GCT 576 TCG TCT GCC AAA CAG AGA CTC AAA TGT GCC AGT CTC CAA AAA TTT GGA 624 GAA AGA GCT TTC AAA GCA TGG GCA GTG GCT CGC CTG AGC CAG AGA TTT 672 CCC AAA GCT GAG TTT GCA GAA GTT TCC AAG TTA GTG ACA GAT CTT ACC 720 AAA GTC CAC ACG GAA TGC TGC CAT GGA GAT CTG CTT GAA TGT GCT GAT 768 GAC AGG GCG GAC CTT GCC AAG TAT ATC TGT GAA AAT CAG GAT TCG ATC 816 TCC AGT AAA CTG AAG GAA TGC TGT GAA AAA CCT CTG TTG GAA AAA TCC 864 CAC TGC ATT GCC GAA GTG GAA AAT GAT GAG ATG CCT GCT GAC TTG CCT 912 TCA TTA GCT GCT GAT TTT GTT GAA AGT AAG GAT GTT TGC AAA AAC TAT 960 GCT GAG GCA AAG GAT GTC TTC CTG GGC ATG TTT TTG TAT GAA TAT GCA 1008 AGA AGG CAT CCT GAT TAC TCT GTC GTG CTG CTG CTG AGA CTT GCC AAG 1056 ACA TAT GAA ACC ACT CTA GAG AAG TGC TGT GCC GCT GCA GAT CCT CAT 1104 GAA TGC TAT GCC AAA GTG TTC GAT GAA TTC GCC GAG GAC GGT GAC GCC 1152 AAG ACC GAC CAA GCT GAG AAG GCT GAG GGT GCC GGT GAC GCC AAG GAA 1200 TTC AAA CCT CTT GTG GAA GAG CCT CAG AAT TTA ATC AAA CAA AAC TGT 1248 GAG CTT TTT AAG CAG CTT GGA GAG TAC AAA TTC CAG AAT GCG CTA TTA 1296 GTT CGT TAC ACC AAG AAA GTA CCC CAA GTG TCA ACT CCA ACT CTT GTA 1344 GAG GTC TCA AGA AAC CTA GGA AAA GTG GGC AGC AAA TGT TGT AAA CAT 1392 CCT GAA GCA AAA AGA ATG CCC TGT GCA GAA GAC TAT CTA TCC GTG GTC 1440 CTG AAC CAG TTA TGT GTG TTG CAT GAG AAA ACG CCA GTA AGT GAC AGA 1488 GTC ACA AAA TGC TGC ACA GAG TCC TTG GTG AAC AGG CGA CCA TGC TTT 1536 TCA GCT CTG GAA GTC GAT GAA ACA TAC GTT CCC AAA GAG TTT AAT GCT 1584 GAA ACA TTC ACC TTC CAT GCA GAT ATA TGC ACA CTT TCT GAG AAG GAG 1632 AGA CAA ATC AAG AAA CAA ACT GCA CTT GTT GAG CTC GTGA AAC AC AAG 1680 CCC AAG GCA ACA AAA GAG CAA CTG AAA GCT GTT ATG GAT GAT TTC GCA 1728 GCT TTT GTA GAG AAG TGC TGC AAG GCT GAC GAT AAG GAG ACC TGC TTT 1776 GCC GAG GAG GGT AAA AAA CTT GTT GCT GCA AGT CAA GCT GCC TTA GGC 1824 TTA TAA 1830 配列番号:8 配列の長さ:609 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 配列 Met Asp Ala His Lys Ser Glu Val Ala His Arg Phe Lys Asp Leu Gly 1 5 10 15 Glu Glu Asn Phe Lys Ala Leu Val Leu Ile Ala Phe Ala Gln Tyr Leu 20 25 30 Gln Gln Cys Pro Phe Glu Asp His Val Lys Leu Val Asn Glu Val Thr 35 40 45 Glu Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Glu Asn Cys Asp 50 55 60 Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Thr Val Ala Thr 65 70 75 80 Leu Arg Glu Thr Tyr Gly Glu Met Ala Asp Cys Cys Ala Lys Gln Glu 85 90 95 Pro Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Asn 100 105 110 Leu Pro Arg Leu Val Arg Pro Glu Val Asp Val Met Cys Thr Ala Phe 115 120 125 His Asp Asn Glu Glu Thr Phe Leu Lys Lys Tyr Leu Tyr Glu Ile Ala 130 135 140 Arg Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Phe Phe Ala Lys 145 150 155 160 Arg Tyr Lys Ala Ala Phe Thr Glu Cys Cys Gln Ala Ala Asp Lys Ala 165 170 175 Ala Cys Leu Leu Pro Lys Leu Asp Glu Leu Arg Asp Glu Gly Lys Ala 180 185 190 Ser Ser Ala Lys Gln Arg Leu Lys Cys Ala Ser Leu Gln Lys Phe Gly 195 200 205 Glu Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Arg Phe 210 215 220 Pro Lys Ala Glu Phe Ala Glu Val Ser Lys Leu Val Thr Asp Leu Thr 225 230 235 240 Lys Val His Thr Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp 245 250 255 Asp Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ile 260 265 270 Ser Ser Lys Leu Lys Glu Cys Cys Glu Lys Pro Leu Leu Glu Lys Ser 275 280 285 His Cys Ile Ala Glu Val Glu Asn Asp Glu Met Pro Ala Asp Leu Pro 290 295 300 Ser Leu Ala Ala Asp Phe Val Glu Ser Lys Asp Val Cys Lys Asn Tyr 305 310 315 320 Ala Glu Ala Lys Asp Val Phe Leu Gly Met Phe Leu Tyr Glu Tyr Ala 325 330 335 Arg Arg His Pro Asp Tyr Ser Val Val Leu Leu Leu Arg Leu Ala Lys 340 345 350 Thr Tyr Glu Thr Thr Leu Glu Lys Cys Cys Ala Ala Ala Asp Pro His 355 360 365 Glu Cys Tyr Ala Lys Val Phe Asp Glu Phe Lys Pro Leu Val Glu Glu 370 375 380 Pro Gln Asn Leu Ile Lys Gln Asn Cys Glu Leu Phe Lys Gln Leu Gly 385 390 395 400 Glu Tyr Lys Phe Gln Asn Ala Leu Leu Val Arg Tyr Thr Lys Lys Val 405 410 415 Pro Gln Val Ser Thr Pro Thr Leu Val Glu Val Ser Arg Asn Leu Gly 420 425 430 Lys Val Gly Ser Lys Cys Cys Lys His Pro Glu Ala Lys Arg Met Pro Cys Ala Glu Asp Tyr Leu Ser Val Val Leu Asn Gln Leu Cys Val Leu 450 455 460 His Glu Lys Thr Pro Val Ser Asp Arg Val Thr Lys Cys Cys Thr Glu 465 470 475 480 Ser Leu Val Asn Arg Arg Pro Cys Phe Ser Ala Leu Glu Val Asp Glu 485 490 495 Thr Tyr Val Pro Lys Glu Phe Asn Ala Glu Thr Phe Thr Phe His Ala 500 505 510 Asp Ile Cys Thr Leu Ser Glu Lys Glu Arg Gln Ile Lys Lys Gln Thr 515 520 525 Ala Leu Val Glu Leu Val Lys His Lys Pro Lys Ala Thr Lys Glu Gln 530 535 540 Leu Lys Ala Val Met Asp Asp Phe Ala Ala Phe Val Glu Lys Cys Cys 545 550 555 560 Lys Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu Gly Lys Lys Leu 565 570 575 Val Ala Ala Ser Gln Ala Ala Leu Gly Leu Tyr Met Ala Glu Asp Gly 580 585 590 Asp Ala Lys Thr Asp Gln Ala Glu Lys Ala Glu Gly Ala Gly Asp Ala 595 600 605 Lys 609 配列番号:9 配列の長さ:1830 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 配列の特徴 特徴を表す記号:CDS 存在位置:1..1830 特徴を決定した方法:E 配列 ATG GAT GCA CAC AAG AGT GAG GTT GCT CAT CGG TTT AAA GAT TTG GGA 48 GAA GAA AAT TTC AAA GCC TTG GTG TTG ATT GCC TTT GCT CAG TAT CTT 96 CAG CAG TGT CCA TTT GAA GAT CAT GTA AAA TTA GTG AAT GAA GTA ACT 144 GAA TTT GCA AAA ACA TGT GTA GCT GAT GAG TCA GCT GAA AAT TGT GAC 192 AAA TCA CTT CAT ACC CTT TTT GGA GAC AAA TTA TGC ACA GTT GCA ACT 240 CTT CGT GAA ACC TAT GGT GAA ATG GCT GAC TGC TGT GCA AAA CAA GAA 288 CCT GAG AGA AAT GAA TGC TTC TTG CAA CAC AAA GAT GAC AAC CCA AAC 336 CTC CCC CGA TTG GTG AGA CCA GAG GTT GAT GTG ATG TGC ACT GCT TTT 384 CAT GAC AAT GAA GAG ACA TTT TTG AAA AAA TAC TTA TAT GAA ATT GCC 432 AGA AGA CAT CCT TAC TTT TAT GCC CCG GAA CTC CTT TTC TTT GCT AAA 480 AGG TAT AAA GCT GCT TTT ACA GAA TGT TGC CAA GCT GCT GAT AAA GCT 528 GCC TGC CTG TTG CCA AAG CTC GAT GAA CTT CGG GAT GAA GGG AAG GCT 576 TCG TCT GCC AAA CAG AGA CTC AAA TGT GCC AGT CTC CAA AAA TTT GGA 624 GAA AGA GCT TTC AAA GCA TGG GCA GTG GCT CGC CTG AGC CAG AGA TTT 672 CCC AAA GCT GAG TTT GCA GAA GTT TCC AAG TTA GTG ACA GAT CTT ACC 720 AAA GTC CAC ACG GAA TGC TGC CAT GGA GAT CTG CTT GAA TGT GCT GAT 768 GAC AGG GCG GAC CTT GCC AAG TAT ATC TGT GAA AAT CAG GAT TCG ATC 816 TCC AGT AAA CTG AAG GAA TGC TGT GAA AAA CCT CTG TTG GAA AAA TCC 864 CAC TGC ATT GCC GAA GTG GAA AAT GAT GAG ATG CCT GCT GAC TTG CCT 912 TCA TTA GCT GCT GAT TTT GTT GAA AGT AAG GAT GTT TGC AAA AAC TAT 960 GCT GAG GCA AAG GAT GTC TTC CTG GGC ATG TTT TTG TAT GAA TAT GCA 1008 AGA AGG CAT CCT GAT TAC TCT GTC GTG CTG CTG CTG AGA CTT GCC AAG 1056 ACA TAT GAA ACC ACT CTA GAG AAG TGC TGT GCC GCT GCA GAT CCT CAT 1104 GAA TGC TAT GCC AAA GTG TTC GAT GAA TTT AAA CCT CTT GTG GAA GAG 1152 CCT CAG AAT TTA ATC AAA CAA AAC TGT GAG CTT TTT AAG CAG CTT GGA 1200 GAG TAC AAA TTC CAG AAT GCG CTA TTA GTT CGT TAC ACC AAG AAA GTA 1248 CCC CAA GTG TCA ACT CCA ACT CTT GTA GAG GTC TCA AGA AAC CTA GGA 1296 AAA GTG GGC AGC AAA TGT TGT AAA CAT CCT GAA GCA AAA AGA ATG CCC 1344 TGT GCA GAA GAC TAT CTA TCC GTG GTC CTG AAC CAG TTA TGT GTG TTG 1392 CAT GAG AAA ACG CCA GTA AGT GAC AGA GTC ACA AAA TGC TGC ACA GAG 1440 TCC TTG GTG AAC AGG CGA CCA TGC TTT TCA GCT CTG GAA GTC GAT GAA 1488 ACA TAC GTT CCC AAA GAG TTT AAT GCT GAA ACA TTC ACC TTC CAT GCA 1536 GAT ATA TGC ACA CTT TCT GAG AAG GAG AGA CAA ATC AAG AAA CAA ACT 1584 GCA CTT GTT GAG CTT GTG AAA CAC AAG CCC AAG GCA ACA AAA GAG CAA 1632 CTG AAA GCT GTT ATG GAT GAT TTC GCA GCT TTT GTA GAG AAG TGC TGC 1680 AAG GCT GAC GAT AAG GAG ACC TGC TTT GCC GAG GAG GGT AAA AAA CTT 1728 GTT GCT GCA AGT CAA GCT GCC TTA GGC TTA TAC ATG GCC GAG GAC GGT 1776 GAC GCC AAG ACC GAC CAA GCT GAG AAG GCT GAG GGT GCC GGT GAC GCC 1824 AAG TAA 1830 配列番号:10 配列の長さ:73 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 GATCC ATG GCC GAG GAC GGT GAC GCC AAG ACC GAC CAA GCT GAG AAG GCT 50 GAG GGT GCC GGT GAC GCC AAG TA 73 配列番号:11 配列の長さ:73 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA アンチセンス:Yes 配列 AGCTTA CTT GGC GTC ACC GGC ACC CTC AGC CTT CTC AGC TTG GTC GGT CTT 51 GGC GTC ACC GTC CTC GGC CAT G 73 配列番号:12 配列の長さ:28 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 AGACCATGGA TGCACACAAG AGTGAGGT 28 配列番号:13 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 AATAAGCTTT TGATCTTCAT 20 配列番号:14 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 AGCAAGCTTT GGCAACAGGC 20 配列番号:15 配列の長さ:29 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 AGCAAGCTTG ATGAACTTCG GGATGAAGG 29 配列番号:16 配列の長さ:24 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 AGCGAATTCA TCGAACACTT TGGC 24 配列番号:17 配列の長さ:29 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列 AGCGAATTCA AACCTCTTGT GGAAGAGCC 29 配列番号:18 配列の長さ:40 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 AAGAAGCTTG AATTCACATG TATAAGCCTA AGGCAGCTTG 40 配列番号:19 配列の長さ:25 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 AGCCCATGGC CGAGGACGGT GACGC 25 配列番号:20 配列の長さ:29 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 AGCCCATGGC TTGGCGACAC CGGCACCCT 29 配列番号:21 配列の長さ:29 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 AGCAAGCTTG CCGAGGACGG TGACGCCAA 29 配列番号:22 配列の長さ:26 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 AGCAAGCTTG GCGACACCGG CACCCT 26 配列番号:23 配列の長さ:29 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 AGCGAATTCG CCGAGGACGG TGACGCCAA 29 配列番号:24 配列の長さ:29 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 AGCGAATTCC TTGGCGACAC CGGCACCCT 29 配列番号:25 配列の長さ:71 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 CC ATG GCC GAG GAC GGT GAC GCC AAG ACC GAC CAA GCT GAG AAG GCT GAG 50 GGT GCC GGT GAC GCC AAG TAA 71
【図1】発現ベクターpTL2BmIの構成図である。
【図2】SDS−PAGE観察図である。
【図3】ウエスタンブロット観察図である。
【図4】癌細胞浸潤阻害活性測定結果を示すグラフであ
る。
る。
【図5】発現ベクターpRL2Lの構成図である。
【図6】発現ベクターpRL2Mの構成図である。
【図7】発現ベクターpTL2Mの構成図である。
【図8】発現ベクターpTL2Bmの構成図である。
フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 //(C12N 1/19 C12R 1:645) (C12P 21/02 C12R 1:645) (72)発明者 塚本 洋子 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 (72)発明者 礒合 敦 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 (72)発明者 熊谷 博道 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内
Claims (20)
- 【請求項1】 ヒト血清アルブミンのポリペプチド鎖の
少なくとも1つ以上の所望の位置に生理活性を有するペ
プチドを導入してなる融合タンパク質。 - 【請求項2】 生理活性を有するペプチドの導入位置
が、ヒト血清アルブミンのポリペプチド鎖のアミノ末
端、カルボキシル末端、第1〜2ドメイン間あるいは第
2〜3ドメイン間のうちのいずれか1箇所若しくはこれ
らの任意の組み合わせの位置である、請求項1に記載の
融合タンパク質。 - 【請求項3】 生理活性を有するペプチドが配列番号1
のアミノ酸配列で表される、請求項1または2に記載の
融合タンパク質。 - 【請求項4】 請求項1〜3のいずれかに記載の融合タ
ンパク質をコードする遺伝子。 - 【請求項5】 生理活性を有するペプチドの導入位置が
ヒト血清アルブミンのポリペプチド鎖のアミノ末端であ
る、配列番号2のアミノ酸配列で表される、請求項1〜
3のいずれかに記載の融合タンパク質。 - 【請求項6】 配列番号3の塩基配列で表される、請求
項5に記載の融合タンパク質をコードする遺伝子。 - 【請求項7】 生理活性を有するペプチドの導入位置が
ヒト血清アルブミンのポリペプチド鎖の第1〜2ドメイ
ン間である、配列番号4のアミノ酸配列で表される、請
求項1〜3のいずれかに記載の融合タンパク質。 - 【請求項8】 配列番号5の塩基配列で表される、請求
項7に記載の融合タンパク質をコードする遺伝子。 - 【請求項9】 生理活性を有するペプチドの導入位置が
ヒト血清アルブミンのポリペプチド鎖の第2〜3ドメイ
ン間である、配列番号6のアミノ酸配列で表される、請
求項1〜3のいずれかに記載の融合タンパク質。 - 【請求項10】 配列番号7の塩基配列で表される、請
求項9に記載の融合タンパク質をコードする遺伝子。 - 【請求項11】 生理活性を有するペプチドの導入位置
がヒト血清アルブミンのポリペプチド鎖のカルボキシル
末端である、配列番号8のアミノ酸配列で表される、請
求項1〜3のいずれかに記載の融合タンパク質。 - 【請求項12】 配列番号9の塩基配列で表される、請
求項11に記載の融合タンパク質をコードする遺伝子。 - 【請求項13】 請求項6、8、10および12のいず
れかに記載の遺伝子を含有する組換えベクター。 - 【請求項14】 前記組換えベクターがプラスミドpT
L2BmI−1000である、請求項13に記載の組換
えベクター。 - 【請求項15】 前記ベクターがプラスミドpTL2B
mI−0100である、請求項13に記載の組換えベク
ター。 - 【請求項16】 前記ベクターがプラスミドpTL2B
mI−0010である、請求項13に記載の組換えベク
ター。 - 【請求項17】 前記ベクターがプラスミドpTL2B
mI−0001である、請求項13に記載の組換えベク
ター。 - 【請求項18】 請求項13〜17のいずれかに記載の
組換えベクターで宿主細胞を形質転換してなる、融合タ
ンパク質を産生し得る形質転換体。 - 【請求項19】 宿主細胞が分裂酵母シゾサッカロミセ
ス・ポンベ(Schizosaccharomyces pombe )である、請
求項18に記載の形質転換体。 - 【請求項20】 請求項18または19に記載の形質転
換体を培養し、培養物中に産生された融合タンパク質を
単離し、所望により精製することからなる該融合タンパ
ク質の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6209368A JPH0853500A (ja) | 1994-08-11 | 1994-08-11 | 融合タンパク質および該タンパク質をコードする遺伝子 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6209368A JPH0853500A (ja) | 1994-08-11 | 1994-08-11 | 融合タンパク質および該タンパク質をコードする遺伝子 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0853500A true JPH0853500A (ja) | 1996-02-27 |
Family
ID=16571783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6209368A Pending JPH0853500A (ja) | 1994-08-11 | 1994-08-11 | 融合タンパク質および該タンパク質をコードする遺伝子 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0853500A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8993517B2 (en) | 2001-12-21 | 2015-03-31 | Human Genome Sciences, Inc. | Albumin fusion proteins |
-
1994
- 1994-08-11 JP JP6209368A patent/JPH0853500A/ja active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8993517B2 (en) | 2001-12-21 | 2015-03-31 | Human Genome Sciences, Inc. | Albumin fusion proteins |
US9221896B2 (en) | 2001-12-21 | 2015-12-29 | Human Genome Sciences, Inc. | Albumin fusion proteins |
US9296809B2 (en) | 2001-12-21 | 2016-03-29 | Human Genome Sciences, Inc. | Albumin fusion proteins |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5470719A (en) | Modified OmpA signal sequence for enhanced secretion of polypeptides | |
JP2882775B2 (ja) | ヒトーグリア由来神経突起因子 | |
JP3730256B2 (ja) | 分泌シグナル遺伝子およびそれを有する発現ベクター | |
KR0159107B1 (ko) | 우레이트 산화효소 활성 단백질, 이 단백질을 암호화하는 재조합 유전자, 발현 벡터, 미생물 및 형질전환세포 | |
DE69021462T2 (de) | Peptidyl prolyl-cis, trans-Isomerase. | |
Goodman et al. | Molecular cloning and expression of a cDNA encoding human electron transfer flavoprotein‐ubiquinone oxidoreductase | |
US5659016A (en) | RPDL protein and DNA encoding the same | |
WO1990004604A1 (en) | Yeast heat shock protein 60 and analogs | |
JP3181660B2 (ja) | ビリルビンオキシダーゼの製造法 | |
US6337388B1 (en) | Aspergillus fumigatus auxotrophs, auxotrophic markers and polynucleotides encoding same | |
JPH088870B2 (ja) | メタロプロテイナ−ゼ阻害剤の配列をもつ組換ベクタ−系及びメタロプロテイナ−ゼ阻害剤製造のための組換dna | |
JPH0853500A (ja) | 融合タンパク質および該タンパク質をコードする遺伝子 | |
JP3364972B2 (ja) | 魚由来トランスグルタミナーゼ遺伝子 | |
JPH0851982A (ja) | ヒト血清アルブミンをコードする改変された遺伝子 | |
JPH05501651A (ja) | P.クリソゲナムから得られるオキシドリダクターゼ酵素系、それをコードする遺伝子のセットと、抗生物質を増産するためのオキシドリダクターゼ酵素系あるいはそれをコードする遺伝子の使用 | |
US5817478A (en) | Multicloning vector, expression vector and production of foreign proteins by using the expression vector | |
JP3350533B2 (ja) | Dna含有プラスミド | |
JPH0851980A (ja) | 合成遺伝子およびこれを用いた癌転移阻害活性を有するペプチドの製造方法 | |
JPH0851981A (ja) | 癌転移阻害活性を有する新規なタンパク質および該タンパク質をコードする遺伝子 | |
US5045471A (en) | Cloned DNA for P450scc and expression thereof | |
JP2878341B2 (ja) | 人工機能性ポリペプチド | |
JP4252299B2 (ja) | 新規ジスルフィド酸化還元酵素、および、該酵素を用いたタンパク質の活性化方法 | |
JP3687105B2 (ja) | インターロイキン−6変異体 | |
JPH10215867A (ja) | タンパク質誘導体、該タンパク質をコードする遺伝子および該タンパク質の製造法 | |
RU2373281C2 (ru) | Способ продукции рекомбинантной стафилокиназы при регулировании уровня кислорода |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041228 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050428 |