JPH0852360A - Catalyst for decomposition of volatile organic chlorine compound - Google Patents
Catalyst for decomposition of volatile organic chlorine compoundInfo
- Publication number
- JPH0852360A JPH0852360A JP6186217A JP18621794A JPH0852360A JP H0852360 A JPH0852360 A JP H0852360A JP 6186217 A JP6186217 A JP 6186217A JP 18621794 A JP18621794 A JP 18621794A JP H0852360 A JPH0852360 A JP H0852360A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- component
- volatile organic
- organic chlorine
- main
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は揮発性有機塩素化合物を
接触分解処理するために用いる触媒に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst used for catalytically cracking volatile organic chlorine compounds.
【0002】[0002]
【従来の技術】揮発性有機ハロゲン化合物にはフロン、
トリクロロエチレン、テトラクロロエチレン等の有機塩
素化合物を始め種々の化合物がある。これらの揮発性有
機ハロゲン化合物の中にはその化学的安定性、取扱い易
さより産業用のみならず、一般家庭用としても多用され
ている物がある。Freon is a volatile organic halogen compound,
There are various compounds including organic chlorine compounds such as trichlorethylene and tetrachloroethylene. Some of these volatile organic halogen compounds are widely used not only for industrial use but also for general household use because of their chemical stability and ease of handling.
【0003】例えば、フロンは液化し易くかつ気化し易
いという性質より噴射剤や冷媒等としてクーラー、冷蔵
庫などに用いられている。また、例えば、トリクロロエ
チレンやテトラクロロエチレン等は金属への鍍金時の脱
脂工程やドライクリーニングなどに巾広く用いられてい
る。For example, chlorofluorocarbon is used as a propellant, a refrigerant, etc. in a cooler, a refrigerator, etc. because it is easily liquefied and vaporized. Further, for example, trichloroethylene, tetrachloroethylene and the like are widely used in a degreasing process at the time of plating a metal, a dry cleaning and the like.
【0004】しかし、フロンはオゾン層の破壊をもたら
すことが指摘され、地球環境保護の観点からその使用が
問題視されてきている。そして、特定フロンの使用は今
や禁止され、フロンを大気中に放出する場合には何等か
の無害化処理を施すことが求められている。また、トリ
クロロエチレンやテトラクロロエチレンには発癌作用が
あることが見いだされている。このため、これらの大気
中への排出、あるいは埋め立て処分や不法投棄による土
壌汚染や地下水の汚染が問題となってきている。However, it has been pointed out that CFC causes the destruction of the ozone layer, and its use has been regarded as a problem from the viewpoint of protecting the global environment. The use of specific CFCs is now prohibited, and some kind of detoxification treatment is required when CFCs are released into the atmosphere. In addition, it has been found that trichlorethylene and tetrachloroethylene have a carcinogenic effect. For this reason, discharge into the atmosphere, soil contamination due to landfill disposal or illegal dumping, and groundwater contamination have become problems.
【0005】環境衛生上の見地から、各地においてこれ
らの化合物の使用や廃棄に関して法規制が実施されてき
ている。これに伴い揮発性有機塩素化合物の無害化処理
技術の開発が強く望まれている。From the standpoint of environmental hygiene, legal regulations have been implemented in various places regarding the use and disposal of these compounds. Along with this, development of a detoxifying treatment technique for volatile organic chlorine compounds is strongly desired.
【0006】従来、排気中、あるいは排水中のフロン、
トリクロロエチレン、テトラクロロエチレン等は活性炭
やゼオライト等で吸着し除去している。しかし、吸着し
たこれらの化合物を無害化する方法は確立されていな
い。[0006] Conventionally, CFCs in exhaust gas or drainage,
Trichloroethylene, tetrachloroethylene, etc. are adsorbed and removed by activated carbon, zeolite, etc. However, a method for detoxifying these adsorbed compounds has not been established.
【0007】最近提案されている揮発性有機塩素化合物
の分解方法には熱分解法、光分解法、接触分解法などが
ある。熱分解法は高温、高圧下で揮発性有機塩素化合物
を燃焼させるものであり、光分解法は揮発性有機塩素化
合物にそのまま、あるいはオゾンを共存させ紫外線を照
射するものである。そして、接触分解法は触媒を用いて
分解させるものである。Recently proposed decomposition methods for volatile organochlorine compounds include thermal decomposition method, photodecomposition method and catalytic decomposition method. The thermal decomposition method is to burn a volatile organic chlorine compound at high temperature and high pressure, and the photolysis method is to irradiate ultraviolet rays with the volatile organic chlorine compound as it is or in the presence of ozone. Then, the catalytic cracking method is to decompose by using a catalyst.
【0008】熱分解法は用いる装置が大掛かりであった
り、処理コストが高いなどの問題がある。また光分解法
は揮発性有機塩素化合物が処理気体中に低濃度で含まれ
る場合に有効であるものの、高濃度で含まれる場合には
適していない。これに対して接触分解法は簡便な方法で
あり、高濃度で揮発性有機塩素化合物を含む気体に対し
ても有効であり、最近特に注目されている。この接触分
解法では、アルミナ、シリカ、ゼオライト、チタニア、
ジルコニア等の無機酸化物を単独、あるいは組み合わせ
て担体を作成し、得た担体に銅、クロム、鉄、白金、パ
ラジウム等の金属を触媒活性金属成分として担持させた
触媒を用いる。この触媒と揮発性有機塩素化合物とを水
蒸気と酸素との共存下で400〜500℃で接触させる
(特開昭50−2669号、特開平3−12221号、
特開平3−47516号等)。なお、これら開示された
提案には助触媒成分の使用に付いては何等開示されてい
ない。The thermal decomposition method has problems that the apparatus used is large-scale and the processing cost is high. The photolysis method is effective when the volatile organic chlorine compound is contained in the treated gas at a low concentration, but is not suitable when it is contained at a high concentration. On the other hand, the catalytic decomposition method is a simple method, is effective even for a gas containing a volatile organic chlorine compound at a high concentration, and has recently attracted particular attention. In this catalytic cracking method, alumina, silica, zeolite, titania,
A catalyst in which an inorganic oxide such as zirconia is used alone or in combination to prepare a carrier and a metal such as copper, chromium, iron, platinum or palladium is supported as a catalytically active metal component on the obtained carrier is used. This catalyst is contacted with a volatile organic chlorine compound at 400 to 500 ° C. in the presence of water vapor and oxygen (Japanese Patent Laid-Open No. 50-2669, Japanese Patent Laid-Open No. 3-12221).
JP-A-3-47516). It should be noted that these disclosed proposals do not disclose the use of the promoter component.
【0009】一般に触媒を用いたガスの接触反応では、
高SV(単位時間当りのガス流量/触媒の体積)、高L
V(線速度)といった条件下での反応が求められてい
る。このためには、反応に用いる触媒は固体酸性が高
く、活性点の数が多いことが望まれる。特に、揮発性有
機塩素化合物を接触分解する触媒には優れた耐塩化水素
性が望まれる。上記従来の触媒の中で耐酸性より考えれ
ば、ジルコニアやチタニアを用いた担体で触媒を構成す
ることが好ましい。確かにこれらの担体に白金やパラジ
ウム等の金属を触媒活性金属成分として担持した触媒の
初期活性は高い。しかし、長期間活性を維持するものは
未だ見いだされていない。Generally, in the catalytic reaction of gas using a catalyst,
High SV (gas flow rate per unit time / catalyst volume), high L
A reaction under conditions such as V (linear velocity) is required. For this purpose, it is desired that the catalyst used in the reaction has a high solid acidity and a large number of active sites. In particular, a catalyst that catalytically decomposes a volatile organic chlorine compound is desired to have excellent hydrogen chloride resistance. Considering acid resistance among the above conventional catalysts, it is preferable to configure the catalyst with a carrier using zirconia or titania. Certainly, the initial activity of a catalyst in which a metal such as platinum or palladium is carried as a catalytically active metal component on these carriers is high. However, the one which maintains the activity for a long time has not been found yet.
【0010】[0010]
【発明が解決しようとする課題】本発明は上記状況を考
慮してなされたものであり、その課題は、揮発性有機塩
素化合物を水蒸気と酸素との共存下で効率よく分解で
き、且つ長期間活性を維持する触媒の提供である。The present invention has been made in consideration of the above situation, and its object is to decompose a volatile organic chlorine compound efficiently in the presence of water vapor and oxygen, and for a long period of time. The purpose is to provide a catalyst that maintains the activity.
【0011】[0011]
【課題を解決するための手段】上記の課題を解決するた
め、本発明者らは耐塩化水素性に優れたジルコニアを用
いて担体を作成し、この担体に種々の主触媒活性金属成
分と助触媒成分とを担持してその触媒活性を測定した。
その結果、貴金属金属を主触媒活性金属成分とし、リン
酸を助触媒成分として用いると、得られた触媒は揮発性
有機塩素化合物をきわめて効率よく分解することを見出
だし本発明に到達した。In order to solve the above problems, the inventors of the present invention prepared a carrier using zirconia having excellent hydrogen chloride resistance, and prepared various carriers with various main catalytically active metal components. The catalyst component was loaded and the catalyst activity was measured.
As a result, they have found that when a noble metal is used as the main catalytically active metal component and phosphoric acid is used as the co-catalyst component, the resulting catalyst decomposes volatile organic chlorine compounds very efficiently, and reached the present invention.
【0012】すなわち、上記課題を解決する本発明の触
媒は、ジルコニアを主成分とする担体に、主触媒活性金
属成分として白金、パラジウム、ルテニウムからなる群
より選ばれた少なくとも1種を担持させ、助触媒成分と
してリン酸化物を担持させた触媒である。そして、主触
媒活性金属成分の担持量が触媒に対して金属換算で0.
1〜5重量%相当量、助触媒成分の担持量が触媒に対し
て五酸化二リンとして2〜5重量%相当量であるもので
ある。That is, in the catalyst of the present invention for solving the above-mentioned problems, at least one selected from the group consisting of platinum, palladium and ruthenium as a main catalytically active metal component is supported on a carrier containing zirconia as a main component, It is a catalyst supporting phosphorous oxide as a promoter component. Then, the supported amount of the main catalytically active metal component is 0.
1 to 5% by weight, and the amount of the cocatalyst component supported is 2 to 5% by weight as diphosphorus pentoxide with respect to the catalyst.
【0013】[0013]
【作用】本発明に係る触媒の構成において、ジルコニア
を主成分とする担体に触媒活性金属成分として白金、パ
ラジウム、ロジウムなどの金属を0.1〜5重量%担持
することにより、分解活性の高い触媒が得られることは
すでに公知のものでありこの範囲については新規なもの
でない。In the structure of the catalyst according to the present invention, a catalyst mainly composed of zirconia is loaded with 0.1 to 5% by weight of a metal such as platinum, palladium or rhodium as a catalytically active metal component, so that the decomposition activity is high. It is already known that a catalyst can be obtained, and this range is not new.
【0014】本発明としてならしめるところのものは、
これらの主触媒活性金属成分と助触媒成分としてのリン
酸化物との双方をジルコニアを主成分とする担体に担持
したことである。このようにして初めて高活性と長寿命
とを併せ持つ揮発性有機塩素化合物の分解触媒を得たも
のである。What the present invention can provide is as follows:
That is, both the main catalytically active metal component and the phosphorus oxide as the co-catalyst component are supported on the carrier containing zirconia as the main component. Thus, for the first time, a catalyst for decomposing a volatile organic chlorine compound having both high activity and long life is obtained.
【0015】本発明において用いられる担体を得るには
以下のようにする。まず、ジルコニウム塩を加水分解
し、ジルコニア水和物を得る。次いでこの水和物と成型
助剤とを混合し、十分捏和して可塑化し、成型し、乾燥
し、焼成する。ここで使用できるジルコニウム塩は硝酸
ジルコニウム、酢酸ジルコニウム、塩化ジルコニウム等
であり、アンモニア水、水酸化ナトリウム、炭酸アンモ
ニウム等の溶液を用いて加水分解する。用いる成型助剤
は触媒担体を製造するのに用いられる通例のものでよ
く、特に限定されるものではないが焼成後に何も残留さ
せないような有機成型助剤であれば好都合である。The carrier used in the present invention is obtained as follows. First, the zirconium salt is hydrolyzed to obtain a zirconia hydrate. Next, the hydrate and a molding aid are mixed, kneaded sufficiently to be plasticized, molded, dried and fired. Zirconium salts that can be used here are zirconium nitrate, zirconium acetate, zirconium chloride, etc., which are hydrolyzed using a solution of aqueous ammonia, sodium hydroxide, ammonium carbonate or the like. The molding aid used may be a conventional one used for producing a catalyst carrier, and is not particularly limited, but it is convenient if it is an organic molding aid that does not leave any residue after firing.
【0016】成型体の形状は一般に触媒担体として用い
られている円筒状、球状、ハニカム状でよく、触媒反応
に適した形状を選択すれば良い。よって、粉状担体に触
媒活性金属成分と助触媒成分とを担持させた触媒を耐火
性基体に付着させて用いることも可能である。また、成
型体を焼成して担体を得るが、この時の焼成温度は50
0〜600℃とすることが望ましい。焼成温度が低いと
十分な担体強度が得られず、高すぎると得られる担体の
比表面積が減少するからである。The shape of the molded body may be a cylindrical shape, a spherical shape, or a honeycomb shape generally used as a catalyst carrier, and a shape suitable for the catalytic reaction may be selected. Therefore, it is also possible to use a catalyst in which a catalytically active metal component and a co-catalyst component are supported on a powdery carrier by adhering it to a refractory substrate. Also, the molded body is fired to obtain a carrier, and the firing temperature at this time is 50
The temperature is preferably 0 to 600 ° C. This is because if the baking temperature is low, sufficient carrier strength cannot be obtained, and if it is too high, the specific surface area of the obtained carrier decreases.
【0017】このようにして得た担体に白金、パラジウ
ム、ルテニウム等の金属を主触媒活性金属成分とし、リ
ン酸を助触媒成分として担持させ、次いで乾燥し、40
0〜600℃の温度で焼成して本発明の触媒を製造す
る。この際、主触媒活性金属成分の担持量を金属換算で
触媒量に対して0.1〜5重量%相当量とするのは、こ
の範囲より担持量が少ないと十分な触媒活性が得られな
いからである。そして、この範囲より多くても活性向上
に対する更なる効果が得られず、経済性を損なうのみで
あるからである。The carrier thus obtained is loaded with a metal such as platinum, palladium, ruthenium, etc. as a main catalytically active metal component and phosphoric acid as a co-catalyst component, and then dried.
The catalyst of the present invention is manufactured by calcining at a temperature of 0 to 600 ° C. At this time, the amount of the main catalytically active metal component supported is set to 0.1 to 5% by weight based on the catalyst amount in terms of metal, because when the supported amount is less than this range, sufficient catalytic activity cannot be obtained. Because. Further, even if it exceeds this range, the further effect on the activity improvement cannot be obtained, and the economical efficiency is only impaired.
【0018】助触媒成分の担持量を酸化物換算で触媒量
に対して2〜5重量%相当量とするのは、この範囲外の
担持量では長時間安定した分解活性を維持することがで
きないからである。The amount of the cocatalyst component supported on the catalyst is equivalent to 2 to 5% by weight based on the amount of the catalyst. If the supported amount is outside this range, stable decomposition activity cannot be maintained for a long time. Because.
【0019】本発明の触媒反応は、触媒中の固体酸の酸
性点に水分子が吸着してブレンステッド酸型の活性を発
揮し、揮発性有機塩素化合物分子から塩素原子を引き抜
くことにより当該化合物分子を分解するものである。本
発明の触媒が揮発性有機塩素化合物をきわめて効率よく
分解できるのは、リン酸化物を助触媒成分として添加す
ることで主触媒活性金属成分と助触媒成分とが相乗効果
を示し、活性点の数が大幅に増加するためと思われる。In the catalytic reaction of the present invention, water molecules are adsorbed at the acidic points of the solid acid in the catalyst to exhibit Bronsted acid type activity, and the chlorine atom is extracted from the volatile organic chlorine compound molecule to remove the compound. It decomposes molecules. The catalyst of the present invention can decompose volatile organic chlorine compounds very efficiently because the addition of phosphorus oxide as a co-catalyst component shows a synergistic effect between the main catalytically active metal component and the co-catalyst component. It seems that the number will increase significantly.
【0020】[0020]
【実施例】次に本発明の実施例について述べる。EXAMPLES Next, examples of the present invention will be described.
【0021】(実施例1、2) (1) 担体の作成 内容積100リットルの撹拌機付ステンレス製反応槽に
水36リットルを入れ、70℃まで加温し、この温度に
保持した。次に濃度14%のアンモニア水150ミリリ
ットルを加え、溶液のpHを9.5とした。次いでZr
O2として2349gの硝酸ジルコニウムを含む水溶液
18リットルと濃度14%のアンモニア水19.1リッ
トルとを、反応液のpHが9.0〜9.5になるように
調整しつつ15分間で全量を同時に滴下した。滴下終了
後、さらに30分間撹拌を続け、ZrO2として3.2
重量%濃度のジルコニア水和物スラリーを得た。得られ
たスラリーを濾過してジルコニア水和物ケーキを得、こ
れを温度50℃の温水80リットルに投入し、撹拌して
再分散し、次いで濾過した。このリパルプ洗浄操作を全
部で3回繰り返し、アンモニア分を除去したジルコニア
水和物ケーキを得た。(Examples 1 and 2) (1) Preparation of carrier 36 liters of water was placed in a stainless steel reactor having an internal volume of 100 liters equipped with a stirrer, heated to 70 ° C., and kept at this temperature. Next, 150 ml of 14% concentration aqueous ammonia was added to adjust the pH of the solution to 9.5. Then Zr
18 liters of an aqueous solution containing 2349 g of zirconium nitrate as O 2 and 19.1 liters of 14% -concentrated aqueous ammonia were adjusted so that the pH of the reaction solution was 9.0 to 9.5, and the total amount was changed in 15 minutes. It was dripped at the same time. After the dropping was completed, stirring was continued for another 30 minutes to obtain ZrO 2 of 3.2.
A zirconia hydrate slurry with a concentration of wt% was obtained. The resulting slurry was filtered to obtain a zirconia hydrate cake, which was poured into 80 liters of warm water at a temperature of 50 ° C., stirred and redispersed, and then filtered. This repulp washing operation was repeated three times in total to obtain a zirconia hydrate cake from which the ammonia content was removed.
【0022】次いで、得られた水和物ケーキの内の9.
0Kg(ZrO2として1395g)と有機成型助剤と
してアビセル(商品名 旭化成工業株式会社製)45g
メトロース(商品名 信越化学株式会社製)15gとを
加え、加温ジャケット付ニーダー中で十分可塑化するま
で捏和した。なお、捏和物の500℃での強熱減量は5
3%であった。Then, in the hydrate cake obtained, 9.
0 kg (1395 g as ZrO 2 ) and 45 g Avicel (trade name, manufactured by Asahi Kasei Co., Ltd.) as an organic molding aid
15 g of Metroose (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) was added and kneaded in a kneader with a heating jacket until it was sufficiently plasticized. The loss on ignition of the kneaded material at 500 ° C is 5
It was 3%.
【0023】次に、得られた捏和物を製丸機にて直径約
2.0mmのビードに造粒し、100℃の温度で15時
間乾燥した後、500℃で2時間焼成した。このように
して触媒担体を得た。窒素ガス吸着によるBET法によ
り求めたこの担体の比表面積は115m2/gであっ
た。Next, the kneaded material obtained was granulated into beads having a diameter of about 2.0 mm by a rounding machine, dried at a temperature of 100 ° C. for 15 hours, and then calcined at 500 ° C. for 2 hours. In this way, a catalyst carrier was obtained. The specific surface area of this carrier as determined by the BET method using nitrogen gas adsorption was 115 m 2 / g.
【0024】(2) 触媒の作成 塩化白金酸4.34gを水10ミリリットルに溶解して
得た溶液と、リン酸6.7gを温水60ミリリットルで
溶解して得た液とを混合し、含浸液を得た。この含浸液
の全量を前記担体200gに含浸させ、含浸物を110
℃で15時間乾燥し、次いで500℃で2時間焼成して
触媒A(実施例1)を得た。(2) Preparation of catalyst A solution obtained by dissolving 4.34 g of chloroplatinic acid in 10 ml of water and a solution obtained by dissolving 6.7 g of phosphoric acid in 60 ml of warm water were mixed and impregnated. A liquid was obtained. 200 g of the carrier was impregnated with the entire amount of the impregnating liquid to obtain 110
The catalyst was dried at 15 ° C. for 15 hours and then calcined at 500 ° C. for 2 hours to obtain catalyst A (Example 1).
【0025】次に含浸液作成時の塩化白金酸量を4.4
8gとし、リン酸量を17.28gとしたこと以外前記
の方法とほぼ同様の方法で触媒B(実施例2)を得た。
得られた触媒A、触媒Bの白金とリン酸化物の担持量を
表1に示した。Next, the amount of chloroplatinic acid at the time of preparing the impregnating solution was set to 4.4.
Catalyst B (Example 2) was obtained in substantially the same manner as above except that the amount of phosphoric acid was 8 g and the amount of phosphoric acid was 17.28 g.
Table 1 shows the amounts of platinum and phosphorus oxide supported on the obtained catalysts A and B.
【0026】(3) 触媒活性の評価 触媒充填量50ミリリットルの固定床流通型反応装置に
得られた触媒A、Bをそれぞれ充填して触媒層を形成し
た。次いで、反応温度が500℃となるようにしつつ下
記組成の試料ガスをSV=5000hr-1で触媒層を通
過させた。試料ガスを通過させた後50時間後と300
時間後に排気ガス中のトリクロロエチレンの量を株式会
社島津製作所製のガスクロマトグラフを用いて分析し、
トリクロロエチレンの分解率を求めた。得られた結果を
表1に併せて示した。(3) Evaluation of catalytic activity A catalyst bed was formed by filling each of the obtained catalysts A and B in a fixed bed flow type reactor having a catalyst filling amount of 50 ml. Then, a sample gas having the following composition was passed through the catalyst layer at SV = 5000 hr −1 while keeping the reaction temperature at 500 ° C. 50 hours and 300 after passing the sample gas
After a period of time, the amount of trichlorethylene in the exhaust gas was analyzed using a gas chromatograph manufactured by Shimadzu Corporation,
The decomposition rate of trichlorethylene was determined. The obtained results are also shown in Table 1.
【0027】 (試料ガス組成) トリクロロエチレン : 0.23 ミリリットル/分 水 : 0.33 ミリリットル/分 空気 : 3704.2 ミリリットル/分 (比較例1、2)塩化白金酸4.30gを水60ミリリ
ットルに溶解して得た溶液にリン酸3.32gを混合
し、含浸液を得た。この含浸液の全量を実施例1で得た
担体200gに含浸させ、含浸物を110℃で15時間
乾燥し、次いで500℃で2時間焼成して触媒C(比較
例1)を得た。(Sample Gas Composition) Trichlorethylene: 0.23 ml / min Water: 0.33 ml / min Air: 3704.2 ml / min (Comparative Examples 1 and 2) 4.30 g of chloroplatinic acid was added to 60 ml of water. 3.32 g of phosphoric acid was mixed with the obtained solution to obtain an impregnating solution. 200 g of the carrier obtained in Example 1 was impregnated with the whole amount of this impregnating solution, and the impregnated product was dried at 110 ° C. for 15 hours and then calcined at 500 ° C. for 2 hours to obtain a catalyst C (Comparative Example 1).
【0028】また、塩化白金酸を4.58g、リン酸を
24.72gとして同様にして触媒D(比較例2)を得
た。得られた触媒C、触媒Dの白金とリン酸化物の担持
量を表1に示した。A catalyst D (Comparative Example 2) was prepared in the same manner with 4.58 g of chloroplatinic acid and 24.72 g of phosphoric acid. Table 1 shows the amounts of platinum and phosphorus oxide supported on the obtained catalysts C and D.
【0029】次いで実施例1と同様にしてこれらの触媒
の活性を評価した。得られた結果を表1に併せ示した。Then, the activity of these catalysts was evaluated in the same manner as in Example 1. The obtained results are also shown in Table 1.
【0030】(実施例3、4)塩化白金酸2.16gを
水60ミリリットルに溶解して得た溶液にリン酸6.6
6gを混合し、含浸液を得た。この含浸液の全量を実施
例1で得た担体200gに含浸させ、含浸物を110℃
で15時間乾燥し、次いで500℃で2時間焼成して触
媒E(実施例3)を得た。(Examples 3 and 4) Phosphoric acid 6.6 was added to a solution obtained by dissolving 2.16 g of chloroplatinic acid in 60 ml of water.
6 g were mixed to obtain an impregnating liquid. 200 g of the carrier obtained in Example 1 was impregnated with the entire amount of this impregnating solution, and the impregnated product was heated at 110 ° C.
After being dried for 15 hours, it was calcined at 500 ° C. for 2 hours to obtain a catalyst E (Example 3).
【0031】また、塩化白金酸を8.76g、リン酸を
6.76gとし、同様にして触媒F(実施例4)を得
た。得られた触媒E、触媒Fの白金とリン酸化物の担持
量を表1に示した。A catalyst F (Example 4) was obtained in the same manner with 8.76 g of chloroplatinic acid and 6.76 g of phosphoric acid. Table 1 shows the amounts of platinum and phosphorus oxide supported on the obtained catalysts E and F.
【0032】次いで実施例1と同様にしてこれらの触媒
の活性を評価した。得られた結果を表1に併せ示した。Then, the activity of these catalysts was evaluated in the same manner as in Example 1. The obtained results are also shown in Table 1.
【0033】(比較例3)塩化白金酸4.25gを水6
5ミリリットルに溶解して含浸液を得た。この含浸液の
全量を実施例1で得た担体200gに含浸させ、含浸物
を110℃で15時間乾燥し、次いで500℃で2時間
焼成して触媒G(比較例3)を得た。(Comparative Example 3) 4.25 g of chloroplatinic acid was added to 6 parts of water.
It was dissolved in 5 ml to obtain an impregnating liquid. 200 g of the carrier obtained in Example 1 was impregnated with the entire amount of this impregnating solution, and the impregnated product was dried at 110 ° C. for 15 hours and then calcined at 500 ° C. for 2 hours to obtain catalyst G (Comparative Example 3).
【0034】次いで実施例1と同様にしてこれらの触媒
の活性を評価した。得られた結果を表1に併せ示した。Then, the activity of these catalysts was evaluated in the same manner as in Example 1. The obtained results are also shown in Table 1.
【0035】 表1の結果より本発明の範囲の触媒である触媒A、B、
E、Fはトリクロロエチレンを長時間、効率良く分解で
きることが判る。[0035] From the results in Table 1, catalysts A and B, which are catalysts within the scope of the present invention,
It is understood that E and F can decompose trichlorethylene efficiently for a long time.
【0036】触媒CとDは助触媒成分であるリン酸化物
の担持量が本発明の範囲外のものであり、初期活性は高
いものの、長時間使用すると触媒の劣化が起こりトリク
ロロエチレン分解効率が低下する。助触媒成分であるリ
ン酸化物の担持量が酸化物換算で2〜5重量%範囲にお
いて主触媒金属成分と助触媒成分の相乗効果による活性
点の数を増やす効果を発揮し、さらにリン酸化物の担持
量を増やすとその効果は逆に低下するためである。The catalysts C and D have a supported amount of phosphorous oxide as a cocatalyst component outside the range of the present invention, and although the initial activity is high, the catalyst deteriorates when used for a long time and the decomposition efficiency of trichlorethylene decreases. To do. When the amount of phosphorous oxide, which is a co-catalyst component, is in the range of 2 to 5% by weight in terms of oxide, it exerts the effect of increasing the number of active sites due to the synergistic effect of the main catalyst metal component and the co-catalyst component. This is because the effect is decreased when the supported amount of is increased.
【0037】触媒Gは助触媒成分であるリン酸化物を無
担持の触媒であり、初期活性は高いものの、長時間使用
すると触媒の劣化が起こりトリクロロエチレン分解効率
が低下することが判る。It is understood that the catalyst G is a catalyst which does not support phosphorous oxide as a co-catalyst component and has high initial activity, but when used for a long time, the catalyst deteriorates and the decomposition efficiency of trichlorethylene decreases.
【0038】[0038]
【発明の効果】本発明の触媒では助触媒成分として加え
たリン酸化物が主触媒金属成分と相乗効果をなす。その
結果、揮発性有機塩素化合物を効率良く、長時間処理す
ることができ、実用的である。In the catalyst of the present invention, the phosphorus oxide added as the cocatalyst component has a synergistic effect with the main catalyst metal component. As a result, the volatile organic chlorine compound can be efficiently treated for a long time, which is practical.
【0039】よって、本発明の触媒は金属の脱脂工程や
ドライクリーニング等から排出される排ガス、廃液等の
揮発性有機塩素化合物の無害化に使用でき、環境汚染防
止対策上きわめて有効である。Therefore, the catalyst of the present invention can be used for detoxifying volatile organic chlorine compounds such as exhaust gas discharged from a metal degreasing process and dry cleaning, waste liquid, and the like, and is extremely effective in preventing environmental pollution.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 早川 至 千葉県 市川市 中国分 3−18−5 住 友金属鉱山株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Toru Hayakawa 3-18-5 Chugoku, Ichikawa City, Chiba Sumitomo Metal Mining Co., Ltd. Central Research Laboratory
Claims (2)
触媒活性金属成分と助触媒成分とから構成され、主触媒
活性金属成分が白金、パラジウム、ルテニウムからなる
群より選ばれた少なくとも1種であり、助触媒成分がリ
ン酸化物である揮発性有機塩素化合物分解用触媒。1. A support comprising zirconia as a main component, a main catalytically active metal component and a co-catalyst component, wherein the main catalytically active metal component is at least one selected from the group consisting of platinum, palladium and ruthenium. A catalyst for decomposing volatile organic chlorine compounds, in which the co-catalyst component is phosphorus oxide.
対して金属換算で0.1〜5重量%相当量、助触媒成分
の担持量が触媒に対して五酸化二リン換算で2〜5重量
%相当量である請求項1記載の触媒。2. The amount of the main catalytically active metal component supported on the catalyst is equivalent to 0.1 to 5% by weight of the metal, and the amount of the cocatalyst component supported is 2 to the catalyst based on diphosphorus pentoxide. The catalyst according to claim 1, which is equivalent to 5% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6186217A JPH0852360A (en) | 1994-08-09 | 1994-08-09 | Catalyst for decomposition of volatile organic chlorine compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6186217A JPH0852360A (en) | 1994-08-09 | 1994-08-09 | Catalyst for decomposition of volatile organic chlorine compound |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0852360A true JPH0852360A (en) | 1996-02-27 |
Family
ID=16184424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6186217A Pending JPH0852360A (en) | 1994-08-09 | 1994-08-09 | Catalyst for decomposition of volatile organic chlorine compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0852360A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100343752B1 (en) * | 2000-04-12 | 2002-07-25 | 한국에너지기술연구원 | High active composite catalyst for simultaneous oxidation of halogenated volatile organic compounds(HVOCs) and volatile organic compounds(VOCs), and prepararation method of it, and controlling method of its reaction |
KR100763226B1 (en) * | 2006-02-17 | 2007-10-04 | 삼성전자주식회사 | Photocatalyst materials manufacturing method of transition metal ion added and 10? mean particle diameter sized metal oxide having semiconductor characteristic, material manufactured thereby, and filter, fan filter unit and clean room system having the same material |
-
1994
- 1994-08-09 JP JP6186217A patent/JPH0852360A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100343752B1 (en) * | 2000-04-12 | 2002-07-25 | 한국에너지기술연구원 | High active composite catalyst for simultaneous oxidation of halogenated volatile organic compounds(HVOCs) and volatile organic compounds(VOCs), and prepararation method of it, and controlling method of its reaction |
KR100763226B1 (en) * | 2006-02-17 | 2007-10-04 | 삼성전자주식회사 | Photocatalyst materials manufacturing method of transition metal ion added and 10? mean particle diameter sized metal oxide having semiconductor characteristic, material manufactured thereby, and filter, fan filter unit and clean room system having the same material |
US7846864B2 (en) | 2006-02-17 | 2010-12-07 | Samsung Electronics Co., Ltd. | Photocatalyst materials having semiconductor characteristics and methods for manufacturing and using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0275620B1 (en) | Method and catalyst for purification of gas | |
JPH06142517A (en) | Catalyst for decomposition of nitrous oxide | |
JPH0852360A (en) | Catalyst for decomposition of volatile organic chlorine compound | |
JPH0857323A (en) | Catalyst for decomposition of volatile organic halogen compound and production thereof | |
JPH0852361A (en) | Catalyst for decomposition of volatile organic chlorine compound | |
JP3604740B2 (en) | Ozone decomposition catalyst and ozone decomposition method | |
JPH0838896A (en) | Catalyst for decomposing volatile organochlorine compound | |
JP3598539B2 (en) | Catalyst for decomposition of volatile organic chlorine compounds | |
JP3457917B2 (en) | Exhaust gas treatment catalyst, exhaust gas treatment method and treatment apparatus | |
JP2903960B2 (en) | Method for producing catalyst carrier for treating organochlorine compound, catalyst using obtained carrier, and method for producing the same | |
JPH0852353A (en) | Catalyst for decomposing volatile organochlorine compound | |
JPH0852354A (en) | Catalyst for decomposing volatile organohalogen compound | |
JP2000024500A (en) | Catalyst for exhaust gas treatment, exhaust gas treatment and treatment apparatus | |
JPH0857322A (en) | Catalyst for decomposition of volatile organic halogen compound and production thereof | |
JPH07256099A (en) | Catalyst for treating organochlorine compound | |
JP3332024B2 (en) | Organic compound combustion removal catalyst and combustion removal method | |
JPH06218232A (en) | Purifying method for nitrous oxide containing waste gas | |
JP3221071B2 (en) | Catalyst for decomposition of nitrous oxide | |
JP3509286B2 (en) | Decomposition method of chlorinated organic compounds | |
JPH08323208A (en) | Decomposition catalyst of volatile organochlorine compound | |
JPH06218233A (en) | Purifying method for waste gas containing nitrous oxide | |
JP4063511B2 (en) | Exhaust gas pretreatment method and pretreatment catalyst | |
JPH05212389A (en) | Treatment of waste water containing organo halogen compound | |
JP3221110B2 (en) | Catalyst for decomposition of nitrous oxide | |
JPH06142509A (en) | Catalyst for decomposing nitrous oxide |